Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Theses &

Dissertations Electrical & Computer Engineering

Spring 2005

Creating Software [Sic] Environments on an M-Node Beowulf
Cluster to Execute Discrete-Event Simulations

Jermaine Fitz-Gerald Headley
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

b Part of the Computer and Systems Architecture Commons, and the Software Engineering Commons

Recommended Citation

Headley, Jermaine F.. "Creating Software [Sic] Environments on an M-Node Beowulf Cluster to Execute
Discrete-Event Simulations" (2005). Master of Science (MS), Thesis, Electrical & Computer Engineering,
Old Dominion University, DOI: 10.25777/11yf-hq97

https://digitalcommons.odu.edu/ece_etds/362

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fece_etds%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fece_etds%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/362?utm_source=digitalcommons.odu.edu%2Fece_etds%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

CREATING SOTWARE ENVIRONMENTS ON AN M-NODE BEOWULF
CLUSTER TO EXECUTE DISCRETE-EVENT SIMULATIONS

By
Jermaine Fitz-Gerald Headley
B.S in Computer Engineering May 2003, Old Dominion University
A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
May 2005

Approved by

=z = = i prese

Roland R. Mielke (Director)

James Leathrum (Member) /Q

h, A et B

LT LB TTRITINN
LA A

1 .
Stephen A. Zahorian (Member)

ABSTRACT

CREATING SOFTWARE ENVIRONMENTS ON AN M-NODE BEOWULF
CLUSTER TO EXECUTE DISCRETE-EVENT SIMULATION

Jermaine ¥itz-Gerald Headley
Old Dominion University, 2005
Director: Dr. Roland R. Mielke

This thesis describes the development of a software tool that facilitates the
creation of software environments that make a simulation tool execute k replications of
an application program on several nodes of an M-node Beowulf cluster. It is assumed that
each cluster-node consists of p processors. The p processors that are contained in the
master cluster-node are termed master processors, and the p processors that are contained
in a slave cluster-node are termed slave processors. The slave processors are used to
execute the replications, while the master processors are dedicated to schedule the
replications and process other housekeeping chores. For each slave cluster-node that is
selected, P processors are specified to participate in the execution of the replications,

where 1 < P < p. The total slave processors selected to execute the replications is N.
These slave processors are contained in the set IT with cardinality |IT) = N. Therefore,

the k replications are executed concurrently if k < N. Otherwise, the k replications are

grouped into batches that are executed concurrently as processors become available.

iTH

ACKNOWLEDGEMENTS

I would like to express my gratitude to my commitiee members for their support and
contributions throughout the development of this thesis. Without their patience and many
hours of guidance on my research, the completion of this thesis would have not been
possible. I would like to extend special thanks to my committee director, Dr. Roland R.
Mielke, for his contributions. I am indebted to him for the encouragement and suppori he
provided, his many hours of advising, and his untiring efforts spent editing the

manuscript.

I would like to acknowledge all other individuals who were supportive of this thesis. It is

not possible to list all, but be assured that you have my gratitude for your contributions.

TABLE OF CONTENTS

LISTOF TABLES

CHAPTER 1

[3 03101050 v e o 1271 1= 4 L2 D O
1.2 Thesis ContribButions. .. oot e e e e e e e e e e e e e e

T N T L 0= 4 s A

CHAPTER I

2.1 BeowWulf CIUSTeIS.oort i o e et e e et e e e e e e e e e e
2.2 Message Passing Interface (MPD......... ... oo e e

2.3 0verview of XEace ook . ot e e

CHAPTER 11

3.1 Scheduling Replications...
3.2 Parametric SPeedup... ... oooovt it e e e e e e e e
3.3 Job ERvIrONIMIEIS.ottt i cit s cee v it e een e e e et e een e
3.4 Maintaining the Independence Among Replications... oo vee e

3.5 Parametric Job Descriplionn... vin i e e e e

v

Page

.. Vil

e VAT

[N Y

10
12

)
16
18
22
.24

CHAPTER IV
VARIANCE REDUCTION JOBS... ... i e
4.1 Variance Reduction Analysis...........ocoi oo oo i i e e e
4.2 Common Random Numbers...........cccccoivvvi i iin i e .30
4.3 Antithetic VAri@les. oo oot e e e s et et et e e e e
31

33

4.4 Synchronizing the Random Numbers... ...,
4.5 VR Job DesCriptions. covvt e e e e e e e e

CHAPTER V
5.1 The Partifioning Problem.........coooir i i e e s
5.2 Task Precedence Graph Model...........ocoo i e
5.3 The Scheduling Problem............ooo oo oo i e e e e eins
5.4 Scheduling Tasks within a Replication.................cooociiiin i v e e
R 11T 131 TR
5.6 Partitioned Job Environment....ot e e

5.7 Partitioned Job DeSCriptioncooov vt vee e vie e vee i cva i s e e

CHAPTER VI

IMPLEMENTATION...
6.1 Implementing the Job ENVIronments...c..cocoovie i i veeves e e
6.2 Process Interaction on Master Processor... oo v e e

6.3 Process Interaction O Slave. .. oo i e s e e e e s

CHAPTER Vil
7.1 Arena Application-specific Environment..
7.2 Parametric Case Sudy.... e,
JOD DesCHIPHON. .. et e e e e e e
RESUIS. ... e e e e e e e e e e e e

26
26

31

35

.36
37
.39
A40

43
50

cend5

39
64
66

.69

69
71
73
74

Vi

7.3 Variance Reduction under AV Case Study...... ... oo v e 77
JOB DESCIIPLION.o oot et e s cee et e e et ere eeniereee e e eaniennn 18
Resulls... .o e e el 1B

7.4 Partitioned Job Case Study..........cccoo e . 82
JOb DESCHPHION. eev e vee s et cer e e e e e et e aae e 87
LT 1L S OO . ¥ |

CHAPTER VIII
B FUture WorK.. .. oo e o e e e e e e 94

APPENDICES
A APPLICATION START-UP SCRIPTS. e 102

LIST OF TABLES

Table 5-1. Initial States of Processors......... oottt i v e e e e e e
Table 5-2. Initial States of Tasks... ... e
Table 5-3. States of Processors after First Loop through Algonthm 5-1....................
Table 5-4. States of Tasks First Loop through Algorithm 5-1....................o
Table 5-5. States of Processors Second Loop through Algorithm 5-1.......................
Table 5-6. States of Tasks after Second Loop through Algorithm 5-1...
Table 5-7. States of Processors after Third Loop through Algorithm 5-1............... .
Table 5-8. States of Tasks Third Loop through Algorithm 5-1...
Table 5-9. States of Processors Fourth Loop through Algorithm 5-1.......................
Table 5-10. States of Tasks Fourth Loop through Algorithm 5-1...
Table 5-11. States of Processors after Fifth Loop through Algorithm 5-1.............. ..
Table 5-12. States of Tasks after Fifth Loop through Algorithm 5-F.................... ..
.13
79
79
88

Table 7-1. Parametric Case Study Job Description........... ...
Table 7-2. Model 02-a Job Description... ... s
Table 7-3. Model 02-b Job Descriplion...coo oot e e
Table 7-4 Partitioned Case Study Job Description...oooo oo

vil

45
406

46
47
A7

48

.48
A8

49

49
49

49

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4,
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 5-1.
Figure 5-2,
Figure 5-3.
Figure 5-4.
Figure 5-3.
Figure 5-6.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 7-1.
Figure 7-2.

LIST OF FIGURES

Topology of Balrog’s Infer-connect...cooooii i e e

viil

Remote Connections Among MPI Daemons.................ooi i
D0 L IS o Ta TS

Master-Slave and Slave-Slave Remote Communicalions.

Virtual Network Topologycco v ci it e

Job Environment Created for Windows-based Applications.....................

Job Environment Created for Limx-based Applications.......................

Template of Streams File... ...

Parametric Job Description Forms...ocoi i i e e e
.28

M/M/s,s=1,2 Models................... ...

VR-AYV Job Description Form... ...
VR~ CRN Job Description FOrm...o veeiie e i e rer i vee e e

Fork and Join Structiresccovve it ver e vee i e eve e eeevee e vae e
Sample DAGModel...ot i e e e e e
Ghant Charts Hlustrating Optimum Schedule Length.........................0L

Neiwork of Processorsfor N=16and 01 =4..........ccvi v i e,

Partitioned Job Description FOrms...c.oo oo iin i i e i vee e e

Hereditary Relationships Among Core Xface Processes on Master

Hereditary Relationships Among Core Xface Processes on Slave..

Remote Communication between Masier and Slave Processors...

Remote Communtcation between Master and Leaders.................cocoi o0l

Communication between Leader and Non-leaders in ['y.........................
IPCs on Master Processor......... o cov i venvee e e eee e e e e
IPCs on Slave Processor in Parametric and VR Jobs Environment.....!
IPCs on Leaders in Partitioned Job Environment.....ocoienn.d
IPCs on Non-leader in Partitioned Job Environment.....}
Arena Application-specific Execufion Environment...............c. oo vee oo
ArenaModel O1... . ..

11

Al

19
19
21

21
23

25

33
34
DAGModel......... oo e

38

4l
45
S50

52
54
57

61
03

64
65
67
G7
68
70
72

Figure 7-3. Plots of Theoretical and Actual Execution Times vs. Number of

| €8] Wt o) - JU

Figure 7-4. Plot of Total Overhead vs. Number of Processors.............coo e
.76
77

Figure 7-5. Plol of Speed-up vs. Number of Processors.................. ..

Figure 7-6. ArenaModel 02..............ocoi i s e e
Figure 7-7. Model 02-2 Average Delays...cooovvve v iin e oo e e e
Figure 7-8. Mode! 02-b Average Delays..........coccovii v oo vt i e
Figure 7-9. Comparison of Average Delays observed in Model 02 (a) and (b).............
Figure 7-10. Model 03; Simulation Model of Production Line............................
Figure 7-11. General Structure of Simulation Apphications..........c.ocvv e cciireenenn
Figure 7-12. DAG Representation of Model 03...
Figure 7-13. Mean Times toexecute DAG...co oot e
Figure 7-14. Execution Times versus Number of Sub-clusters form=1...................
Figure 7-15. Execution Times versus Number of Sub-clusters form=2...................90
Figure 7-16. Execution Times versus Number of Sub-clusters form=3...................
Figure 7-17. Comparson of Actual Curves form=1,2,3............ ...
Figure 7-18. Speedups per Replication versus the Number of Sub-clusters................
Figure 7-19. Comparison of Total Speedups form= 1,2 3......... ... iii e,
Figure 8-1. Future Setup on Slave Cluster-node...coooov i

Figure 8-2. Future Setup 1 on Slave Cluster-node......... ..o,

Figure 8-3. Future Setup 2 on Slave Cluster-nede...

X

.76

16

80

81

.83

84

86

80
90

90
ot

5]

91

.95
91
.97

NOTATION
Symbol Description
A Inter-arrival time between the j-1" and j*" entities
Ci The i alternative configuration of a system
c Number of alternate configurations of a system

Cov{X,, X, } Covariance of the random variables X; and X;

D;
di(1)

Fa

o T
-
»a
e

28 2772

w oo

e

Sk (k)

Delay in queue of the ™ entity

Average delay in queue resulting from the i replication of a model with
sample size |

Probabilistic distribution of inter-arrival times

Probabilistic distribution of service times

Expected value of random variable X

Directed-edge connecting tasks T; and T;

Number of replications

Sample size of configuration C;

Total number of cluster-nodes in the Beowulf

The cardinality of the set T, m= |I']

The cardinality of the set 1, N = | 1]

Number of sub-clusters

Processor in the set I'1

Number of processors in a slave cluster-node specified io participate in the
execution of the replications

Total number of processor in each cluster-node

Predefined rule used to place the processors in [1into [, 1 €i<n

Number of distinct random number streams defined in the model under
execution

Service time of j™ entity

Sample variance of X, X,,---, X,

xi

The i" task in a partitioned program

Sequential time to execute k replications on a single processor

Parallel time to execute k replications on N processors

Random sequence that drives the k replications

The i stream in U

Random number drawn from the sequence U

Variance of random vanable X

Weight of edge ¢;

The node weight or sequential execution time required to execute task T;
Random variable

Sample mean of X, X,,--- X,

Sub-cluster comprising m slave processor

Set of proecessors used fo execute ajob.

True expected value of X

The total number of tasks in a partitioned program
Total speedup given by the ratio of Ts to Tp
Speedup in the first dimension

Speedup in the second dimension

The floor function invoked on a
The remainder of the division %

ais contained within b

The empty set

CHAPTER1
INTRODUCTION

The implementation of most commercial simulation packages is such that the
replications of an application program are executed sequentially on a single processor.
Oftentimes in practice, the application program must be replicated many times to
improve the precision in the results. If the replication lengths of the simulation are short,
taking several milliseconds or even seconds, performing several hundred replications will
not take a long time. However, if the replication lengths are long, taking several minutes
or even howrs, the simulation could take several days to complete. For very long
simulations, the total sirmidation time can be reduced dramatically if the replications are
executed concurrently on a parallel platform. Several supercomputing platforms are
available, ranging from high-end computing machines that are very sophisticated but
expensive to lower-end machines that are not as sophisticated but much cheaper. A
Beowulf cluster is an inexpensive low-end supercomputer that provides computing power
comparable fo that of some sophisticated high-end supercomputer. If each cluster-node

consisis of p processors, an M-node Beowulf cluster with one master cluster-node and

(M—1) slave cluster-nodes can be utilized to execute at most p(M-1) replications

concurrently on the slave processors while the master processors are dedicated to
schedule the replications. If the number of replications is k and N processors are selected
to execute the replications such that k >N, the replications are grouped into batches, and
the replications within a batch are executed concurrenily. The resulting speed-up in the
total execution time will be considerable but not N fold since overhead is introduced in

each batch execution time.

Several problems are introduced when a simulation application designed to
execute sequentially on a single machine is ported to the parallel plaiform of a Beowulf
cluster. First, the operating system on a majority of Beowulf clusters is a version of the
Linux kemel because Linux is freely available and cheap to maintain. The problem is that
most current commercial simulation packages are designed for Windows platforms. Due

io the differences between the two platforms, a middle layer between the Linux operating

system and the simulation application is required. The purpose of the middle layer is to
emulate a Windows environment. Both freeware and cheap sofiware tools that emulate
Windows environments on top of Linux platforms are available. Therefore, one only
needs to search for an efficient Windows emulator that supports the application of choice.
However, running Windows-based applications on an emulator introduces a new
problem, Certainly, the application will run slower on the emulated Windows platform
than it would on a native Windows platform. Therefore, the nature of the problem
introduced is to determine if it is worth the efforts to run a Windows-based application on
the emulated Windows plaiform. The solution to this problem depends on whether the
speedup achieved to execuie the replications concurrently on the slave processors is
enough to compensate for the exira time that is required io run ithe application on the

emulated platform.

A second major problem is that the random numbers that drive the simulation
replications must be controlled when the simulation is execuied on the parallel platform.
Simulation packages thal are designed to execute sequentially on a single processor
automatically control the independence of random numbers between replications by using
the last random number U; generated in the i™ replication as the seed in the i+1*
replication. This method of random number control will not work when the simulation is
migrated to the parallel platform of the Beowulf. Therefore, a different method that does
not create any sequential dependence among the replications is required. Commercial
simulation packages use a random sequence U with a very long cyele-length (o drive the
replications. The long cycle-length guarantees that U will take a long time to recycle
during long simulation runs. The sequence U is oftentimes segmented info many smaller
fixed-length sub-sequences called streams, For example, in the Arena-Version 5.00.2 [1]
simulation package, the cycle length of U1s 3.1 x 10°7, and there are 1.8 x 10" separate
streams each of length 1.7 x 10°*; and each stream is further subdivided into 2.3 x 10"
sub-sireams each of length 7.6 x 10% The stream U' is specified by the index i.
Segmenting U allows several differeni streams to be used at the various random poinis in
the simulation model by simply specifying the stream index to use with a parlicular

probability distribution at a given random point. The method of random number control

on the parallel platform that is described in the thesis utilizes the assignment of separate
streams 1o the random points in the simulation model to insure that all k replications can
begin concurrently, Furthermore, the streams used in the replications are carefully
controlled to prevent stream overlapping. The danger of driving the replications with
overlapping streams is that the independence in the results produced by the replications is

not guaranteed.

1.1. Problem Statement

This thesis describes the development of a software tool that facilitates the
creation of sofiware environments that make a simulation tool execute k replications of
an application program on several nodes of an M-node Beowulf cluster. It is assumed that
each cluster-node consists of p processors. The p processors that are contained in the
master cluster-node are termed master processors, and the p processors that are contained
in a slave cluster-node are termed slave processors. The slave processors are used to
execute the replications, while the master processors are dedicated to schedule the
replications and process other housekeeping chores. For each slave cluster-node that is
selected, P processors are specified to participate in the execution of the replications,

where | < P <p. The total slave processors selected to execute the replications 1s N.
These slave processors are contained in the set [T with cardinality |[1| = N, Therefore,

the k replications are executed concurrently if k < N. Otherwise, the k replications are

grouped into batches that are executed concurrently as processors become available.

One of the software environments that the tool creates support variance reduction
under two frequently used variance reduction techniques (VRTs), Antithetic Variates
(AV) and Common Random Numbers {CRN). In addition, a software environment is
created to execute a single replication on m processors, The application programs that are
executed in the latter environment must be partitioned into ¢ inter-dependent tasks, and a
task precedence graph model must be used to represent the tasks. The tasks are executed
on the m processors according to the dataflow {2] sirategy specified by the task graph.

The software environments the tool creates are not application-specific. They are robust

enough to support several simulation applications, and both Windows-based and Linux-
based applications are supported.

The software tool that is developed is called XFuce. The XFace tool provides a
front-end graphical user interface (GUI) to the user. The GUI allows the user of the tool
to easily load and execute k replications of an application program on N slave processors
in the Beowulf cluster. The GUI also allows the user to monitor the execution status of
the application program. The back-end of the tool creates the sofiware environmenis,
executes the replications, and monitors the processing of the replications on each slave

PIOCESsOT.

1.2. Thesis Contributions

There are several job scheduling tools that are designed to schedule batch jobs to
the machines in a Beowulf cluster. The common objective of these tools is to reduce the
execution time of parallel applications by hamessing the power of several cluster-nodes.
The XFace tool falls into this category of applications, bui it 15 unique in the sense that
that it seeks to batch replications of simulation applications that were designed to execute
sequentially on single-processor machines, The contributions of the tool developed in the
thesis are as follows:

¢ The XFace tool creates sofiware environments that control the random numbers
driving the replications so that the independence of the results produced by the
replications 15 guaranteed,

s An environment is created that supports the parametric execution of k replications
of a simulation application on N processors,

s Anenvironment is created that supporis variance reduction under AV,

s An environment is created that supports variance reduction under CRN.

* Anenvironment is created that supports the execution of each of the k replications

on m processors in a dataflow strategy, and the concurrent execution of the k

replications on n sub-clusters.

1.3. Thesis Overview

The organizational structure of the remaining portions of the thesis is as follows.
Chapter 2 presents the background information. The chapter begins with a brief overview
of Beowulf clusters. It then presents an overview of the Message Passing Interface (MPI)
that is used to implement remote-process communication (RPC) among processes on

remote processors, The chapter concludes with an overview of the XFace tool.

Chapter 3 presents the implementation concepts of parametric jobs. The main
scheduling algorithm used to schedule iterations is presented in Section 3.1. The equation
used to estimate the parametric speedup in the total execulion time when the program is
executed in the software environments created by the XFace tool is developed in Section
3.2, The software environments are presented in Section 3.3. These software
environments apply to all three job-types. However, the environments do not fully
support partitioned jobs. Therefore, they are extended in Section 5.6 to support
partitioned jobs. Section 3.4 presenis the method proposed to maintain the independence
among the replications executed on the paraliel platform. Finally, the job description

forms used to submit parameiric jobs are described in Section 3.5.

Chapter 4 presents the variance reduction jobs. Section 4.1 presents a general
overview of the analysis of variance reduction on the outputs of a simulation. Sections
4.2 and 4.3 present the concepts behind CRN and AV, respectively. Detailed analyses of
CRN and AV can be found in [3], [4], [5]. Section 4.4 stresses the importance of
synchronizing the random numbers used in the simulation when CRN or AV is applied.
Finally, the job description forms used to submit variance reduction jobs are described in

Section 4.5,

Chapter 5 presents the design concepts of partitioned jobs. The partitioning problem
and scheduling problem are briefly addressed in Section 5.1 and Section 5.3, respectively.
The task precedence graph model used to represent pariitioned programs is described in

Section 5.2. The scheduling algorithm used to schedule the tasks in the task graph to the

mi processors in a sub-cluster is presented in Section 5.4. The equation used to estimate
the speedup i the total execution time of partitioned jobs is presented in Section 5.5. The
software environments described in Section 3.3 are extended in Section 5.6 to support
partitioned jobs. Finally, the job description forms used to submit partitioned jobs are

described in Section 5.7.

Chapter 6 presents the implementation of the XFace tool. The core processes and
shell scripts in the XFace implementation are presented in Section 6.1. The
implementations of the virtual networks described in Chapters 3 and 5 are then presented
in Section 6.2. The interaction among processes on the master processor is described in
Section 6.3. Finally, the interactions among processes on each slave processor during the

job execution phase are described in Section 6.4.

Chapter 7 presents three case studies, one for each job-type. The Arena application is
used in the first two case studies. Section 7.1 presents the job environment that is created
specifically to execute Arena programs. The parametric case study is then presented in
Section 7.2. This is followed by the presentation of the variance reduction under AV case

study in Section 7.3. Finally, the partitioned case study is presenied in Section 7.4.

Finally, Chapter 8 presents concluding remarks and identifies future work to enhance

the XFace tool.

CHAPTER I
BACKGROUND

This chapter presents brief background information on Beowulf clusters and the

MPI protocol. The chapter also gives a general overview of the XFace tool.
2.1, Beowulf Clusfers

Since the Beowulf [6], |7} project began at NASA in 1994, the main goals of the
Beowulf have always been to explore the possibilities of building an efficient High
Performance Computing (HPC) system that is low cost and easily upgradeable with
minimal efforts. Therefore, the components of the cluster-nedes and network switches in
the Beowulf are commercially available off-the-shelf components that are not vendor-
specific. The idea that brought the Beowulf into existence i1s adopted from the Network of
Workstations (NOW) project |71, [8], which consists of a network of workstations with
each workstation consisting of several high-end, powerful microprocessors. The Beowull
exploits machines with cheaper, less powerful microprocessors that are intended for the
PC market. Thus, the result is a system that provides efficient high performance
computing at low cost. ‘The high performance to cost ratio of the Beowulf i1s very
appealing to the HPC commumty. As a result, the Beowulf is replacing several
expensive, sophisticated high performance supercomputers in certain application areas.
Architecturally, the Beowulf is a distributed memeory supercomputer that is used to
parallelize the execution of large applications. However, several variations of this
architecture exist. In some Beowulf architectures, the cluster-nodes are equipped with at
least two processors that provide symmetric multiprocessing (SMP). The processors in an
SMP cluster-node are interconnected via shared-memory. Another variation involves
cluster-nodes that have one processor dedicated for processing and a second dedicated for
communication on the private network connecting the chuster-nodes. However, in the
latter variation, applications are oftentimes written that utilize the second processor for
processing,

The cluster-nodes in a Beowulf are inierconnected via a privale interconnect,

Several topologies, such as Star, Mesh [9], and Crossbar {i10], are used for the

interconnect. One major disadvantage of Beowulfs is that the speeds of the switches in
the interconnect are not as fast as the speeds of the processors in the cluster-nodes.
Consequently, the bandwidth of the private interconnect results in long communication
latencies, rendering the bandwidth the bottleneck in the computing performance of
Beowulfs. As switching technology advances, fast network protocols are being developed
that exploit the increasing speeds of the interconnect swilches to provide high bandwidth
on the order of gigabits per second. For example, oplical Gigabit Ethemnet providing up
10 gigabit per second bandwidth have been reported [11], [12]. However, as the speeds of
the interconnect swiiches grow, the speeds of the processors in the cluster-nodes grow at
even a faster rate. Therefore, the resultant effect is that the processing speed to
communication bandwidth ratio continues to grow. Tremendous research initiatives
aimed at developing sophisticated high-speed communication protocols that will increase
the bandwidth of the interconnect are in progress. For example, the Virtual Interface
Architecture (VIA) project [13] is one such initiative. The VIA trades reliability for speed
and reduces the kernel-level communication overhead associated with message passing
by giving applications direct access to the network cards in the cluster-nodes.

A Beowulf system can be either heferogeneous [14] or homogeneous. In
heterogeneous systems, the configuration of the Beowulf is such that multiple operating
systems may run on the cluster-nodes, and the cluster-nodes may contain processors with
different architectures. On the other hand, in homogenous system, the clusier-nodes are
very similar. All cluster-nodes run the same operating system, and the processors all have
the same architecture. Homogenous Beowulfs are the more widespread of the two.

The Linux kernel is the dominant operating system that runs on most Beowulfs,
mainly due to the fact that the Linux kernel is an open-source kemel that is freely
available to the general public. In addition, the Linux kernel fully supports Beowulf
systems, and tremendous amounts of freeware are developed for clusiers running the
Linux kemel.

The architecture of the Beowulf (Balrog) on which the XFace tool was developed
and also on which the case studies presented in Chapier 7 were conducted is as follows.
Balrog is a 32-node dual processor system and consists of:

s 32 AMD 760MPX motherboards,

e Each cluster-node has dual AMD Athlon MP 2600 processors runming at
2.1 GHertz,

¢ The master cluster-node has 2.048 GByte DDR PC2100 ECC Registered
System Memory, and 60 GByte EIDE Hard Drive at 7Z200RPM,

e Each slave cluster-node has 1.024 Gbyte DDR PC2100 ECC Registered
Systern Memory, and 20 Gbyte EIDE Hard Drive at 7200RPM,

s HP Procurve 4108GL 3G-port [0/100/100C¢ Gigabit Ethernet Switch for

the private interconnect.

Node 1 Node 16

\/

GigaBit
Interconnect

N

Node 32 N Node 17

Figure 2-1. Topology of Balrog’s Interconnect

The private interconnect in Balrog is based on the Star topology, as illustrated in Figure

2-1. Every cluster-node can setup direct connections with every other cluster-node.

The processes running on remote cluster-nodes use message-passing protocols such as
MPI [151, [16] and PVM [17], [18] to communicate. The MPT message-passing library is

used in the implementation of the XFace tool.

10

2.2. Message Passing Interface (MPI)

MPI is an industry standard message-passing protocol that is well supported on
HPC systems, especially distributed memory systems. Portability and efficiency are two
major features of the MPI message-passing protocol. Thus, MPI can be implemented on a
wide range of HPC systems. The portable implementation of MPI is MPICH [19], and it
enables MPI programs to be easily ported among different HPC systems. MPI maps MPI
processes to the processors in MPI nodes, where the MPI nodes are the cluster-nodes that
are utilized to run an MPI program. The same MPI process is executed on each processor
in the MPI nodes. However, each MPI process is executed in a unique address space.
Therefore, the global variables are stored in different physical locations in memory so
that the global variables written by one MPI process are not seen by the other MPI
processes. One or more MPI daemons run on each MPI node. The MPI daemons enable
communication via message passing among both remote and local MPI processes. Figure
2-2 illusirates the remote connections among MPI daemons on 4 MPI nodes. Every MPI
daemon can reach every other MPI daemon. The local MPI processes on an SMP MPI
node can share the same MPI daemon, or an MPI daemon can be dedicated to each MPI
process. In the case when the local MPI processes share the same MPI daemon, the local
MPI processes communicate locally via shared memory, but use message passing 1o
communicate with remote MPI processes. Figure 2-3 (a) illustrates the case when two
local MPI processes share the same MPI daemon and use shared memory for local
communication. In the case when a MPI daemon is dedicated to each local MPI process,

the local MPI processes communicate via message passing, as illustrated in Figure 2-3

(b).

MPI processes are ranked with unique consecutive integers from 0 to N. On
Beowulfs running Linux, MPI programs read a file named “machine LINUX” at
initialization to identify the cluster-nodes to be used as MPI nodes. Each cluster-node that
will participate in the execution of an MPI program is listed in “machine LINUX” in the
format <cluster node_alias{:P]>. The first enfry specifies the alias of the clusier node.

The second eniry P is optional. If the cluster-node is an SMP node consisting of p

11

processors, P specifies the number of processors to use. If P 1s not specified, MPI uses a

default value of one.

MPI Node

O MPi Daemon

Nebwork
Connection

Figure 2-2. Remote Connections Among MPI Daemons

——
MPI
Daemon
MFPi MPIl
Process Caemon

Figure 2-3. (a) Shared MPI Daemon {b) Dedicated MPI Daemons

12

2.3. Overview of XFace Tool

The XFace tool wtilizes the parallel platform of a Beowulf together with the MPI
messaging passing protocol to execute k replications of a simulation application
concurrently on N processors. Hereafter, the terms “simulation program™ and “program”™
are used interchangeably throughout the remaining portions of the thesis. A program that
is replicated k times is naturally a parallel program since the replications are independent
and thus can be executed concurrently. Furthermore, the program structure may consist of
blocks of codes that may be executed in parallel according to the dataflow strategy that
materializes during the execution of each replication of the program. Thus, it may be
possible to achieve speed-ups in the overall program execution time in two ways. In the
{irst, the speed-up in the program execution time is realized by concurrently executing the
k replications on N processors, where each replication is executed on a single processor.
In the second, the speed-up is realized by utilizing the implicit parallelism within the
program by assigning m processors to execute each replication. Therefore, if the k
replications are executed concurrently on n sub-clusters, such that the i sub-cluster
contains my processors, both ways of achieving speedups in the program execution time
are realized. For ease of reference, the speedup in the first way is termed /*-demension

speedup, and the speedup in the second way is termed 2™-dimension speedup.

The XFace tool execudes jobs, each of which consisis of a set of job files. Each set of
job files contains one or more application programs that must be replicated k times, and
mput files that are read by the application programs. A job is executed in several
iterations on the slave processors that are contained in the set I'l. The replications are
executed during the execution of the iterations. An iterarion is the sequential execution of

x replications, where 1< x < k. Therefore, the execution of each iteration requires

resources such as memory, central processing unit time, and input files from which the
replicated programs read data. Thus, iterations are executed as resources become
avatlable on the slave cluster-nodes.

Each job that is executed by the XFace tool has three phases: the job initiation phase,

the job execution phase, and the job completion phase. The job initiation phase begins

I3

after a job description has been submitted, and ends when the execution of the job is
initiated. During the job initiation phase, the job environments are setup on the slave
processors, and the job files are loaded onto the slave cluster-nodes. Also, to prevent
overwriting the results of the replications, directories are created on each slave cluster-
node to store the results. These directories are termed the iterution directories. The job
execution phase follows the job initiation phase. The job execution phase is the time
during which the iterations are being executed on the slave processors. It ends when the
execution of the last iteration to execute is finished. After the job execution phase, the
resulis produced by the iterations are scattered on the slave nodes. Therefore, the job
completion phase is the time during which the results are gathered from the slave cluster-

ntodes onto the master cluster-node.

The XFace tool groups jobs into three types: parametric jobs, variance reduction
jobs, and partitioned jobs. For parametric jobs, the tool creates the necessary software
environment on the M-node Beowulf cluster to realize the 1*-dimension speedup. In this
environment, the k replications of the program are executed on N processors, and each
replication is execuied on a single processor. Additionally, one replication, x = 1, is
executed in each ieration. Hence, the total number of iterations is the same as the number
of replications k. The program that is replicated in the iterations is submified to the ool
via a job description. The job description is a text file that specifies the job-type, the
platform that the job is to execute on, the number of replications, the number of
application programs submitted, pathnames to the job files, and the slave processors fo
execute the job. The details of the parametric job description are presented in Section 3.5,

The variance reduction (VR) job-type is an extension of the parametric job-type.
The VR job-type adds support for the variance reduction techniques (VRTs) AV and
CRN. AV and CRN are applied to simulations to reduce the variance of the ouipu
produced by the replications. A variance reduction job that employs AV as the VRT of
choice is notated VR-AV, and a variance reduction job that employs CRN as the VRT of
choice is notated VR-CRN. In VR-CRN jobs, ¢ programs that models altemate
configurations of a system are compared, where ¢ > 2. To differentiate between the

results produced by the programs, each program is assigned a distmct configuration

14

number. Each of the programs is replicated k times such that the corresponding
replications of the programs are synchronized. Therefore, for VR-CRN jobs, the total
number of iterations that is executed is the product ¢ x k .

In VR~AYV jobs, one application program is submitted in the job description. The
replications of the program are executed in pairs of two such that alternate replications
are compared. One pair of replications is executed per iteration. Therefore, the program is
replicated twice, x = 2, in each iteration that is executed. As a result, the total number
of iterations that is executed in VR-AYV jobs is the product 2 x k.

Finally, for partitioned jobs, the tool creates a software environment to realize both
the 1”-dimension and 2™-dimension speedups in the execution times. Each program that
is execufed in this environment is partitioned into ¢ interdependent tasks. The @ tasks are
indexed arbitrarily with distinct task integers from 0 to ¢ - 1. The program is replicated
once, X = 1, in each iteration that 1s executed on sub-cluster I'; containing my; slave
processors. Therefore, the total number of iterations that is executed in partitioned jobs is

equal to k.

The XFace tool uses MPI messages fo schedule iterations among the slave
processors. With the exception of partitioned jobs, the only messages passed during the
job execution phase are scheduling information such as the iteration number, the iteration
start time, the iteration end time, and the iteration execufion time. Therefore, the total
execufion fimes of the parametric and VR jobs that the XFace tool execules are not
affected greatly by the cornmunication latencies associated with the private interconnecl.
However, since data must be passed among the m processors that execute each
replication of a partitioned job, the communication latencies will greatly affect the total
job execution time of partitioned jobs; but, with proper load balancing, the data passed

among processors can be minimized.

15

CHAPTER 111
PARAMETRIC JOBS

Consider a simulation program that is replicated k times, where the k replications
are independent. That is, the i replication of the program is driven by unique random
number streams U', i =1, 2, ..., r. The independence property of the k replications allows
us to execute concurrently all k replications of the program provided that at least k
processors are assigned to execute the program. The objective of the parametric feature of
the XFace tool is to reduce the overall execution time of the program by dynamically
scheduling the k replications among the N processors that are selected to execute the

program. The replications are scheduled according to the availability of the N processors.
3.1. Scheduling Replications

When the replications are executed on the parallel platform of the Beowulf,
overhead is charged to distribute the executions of the k replications over the N
processors selected fo execute the program. The prime contributors to this overhead are
the time to execute the scheduling algorithm used to schedule the iterations, the times to
communicate the ieration numbers from the master processor to the slave processors
during scheduling, and the overhead to execute the application on the emulated platform.
The total overhead injected into the execution time can be reduced by designing a
scheduling algorithm that incurs a small overhead with respect to the total sequential
execution time of the program, and by carefully choosing a communication mediwm that
allows for efficient, inexpensive communications among the processors. The main

scheduling algorithm that 1s used in the XFace tool is listed as Algorithm 3-1.

Algorithm 3-1. Main Scheduling Algorithm
Begin
1. For each processor P, j =1, 2, ..., Nin II mark P, idle. Seti = 0.
2. Whilei < k. do

16

2.1 For each idle processor Py infl do
i. Schedule iteration i to P,
fi. Seti=1i+ I, and mark P, busy.

End for
2.2 Wait on any busy processor 1o finish. Mark each finished processor P, idle.
(Do background work while waiting.)
Lnd while
End

Step 1 in Algorithm 3-1 is the initialization step, which can be done in O(1) time.

Therefore, the total time complexity of Algorithm 3-1 with respect to the number of

iterations scheduled to the slave processors is O(k) .

3.2. Parametriec Speedup

Let Tr be the replication time to execute one replication of a program that is
replicated k times. Define the sequential execution fime Ts of the program as the time to
sequentially execute the k replications on a single processor, and the parallel execution
time Tp of the same program as the time to execute concurrently the k replications on N

processors. Theoretically, Ty and Tp are related to Tr as follows.

T, (T, k)=kT, GB-1)

Ty (Tok N)= ﬂ% J S(k, N)]TR, (3-2)

adend

0, kmodN=0

where $(k, N) w{l kmod N # 0

17

In Equation (3-2), I_aJ denotes the floor of a, and the expression amod bdenotes the
remainder of the integer division % Equations (3-1) and (3-2) are valid only for fixed

values of Tg. If Tr varies, the average Tr can be used to give estimates of Ts and Tp
1deal

The proof of Equation (3-2) 15 as follows. Letl Tr be fixed, and let (N divide k) p
times leaving remainder q, such that N,k>1. The floor function in Equation (3-2) always
returns p, and the step function refumns zero if q = 0, and one otherwise. In proving
Equation (3-2), two cases are considered for 1 S N <k : (1) when q =0, (2) when q # 0.
If q = 0, the replications are batched into p batches with each batch containing N

replications. Therefore, the theoretical time to execute the k replications is

px T, = H\%J Ty . On the other hand, if q # 0, the replications are batched into (p + 1)

batches. Hence, the theoreiical time fo execute all k replications is

(p+1T, = [-I%JTR + T, . Finally, if N > k, the replications are batched into one batch

of size k, and the total execution time is Tx.
Since Equation (3-2) is ideal, the actual parallel execution time with total
overhead To is given by (3-3), where To is the total overhead associated with the time to

set up a batch,

Ty (T N)= Q—EJ (k. N)) (T, +T,) 3-3)

Thus, the effect of the scheduling overhead is to increase the program parallel execution
time. In general, speedup is defined as the ratio of the program sequential execution time

to the program parallel execution time,

_ program sequential execution time _ Tg
program parallel executiontime T,

actual

(3-4)

speedup = 1

I8

3.3. Job Environments

The communication between processes on remote processors in any job
environment created by the XFace tool is achieved via MPI library routines. Figure 3-1
{a) portrays the master-slave communication beiween processes on the master processor
and each slave processor, while Figure 3-1 (b) illustrates the slave-slave communication
between processes on any fwo slave processors. The job scheduler and the monitor
process are two resources of the XFace tool. The job scheduler runs on the master
processor, and employs Algorithm 3-1 to schedule the iterations to the slave processors.
One instance of the monitor process runs on each of the N slave processors. The monitor
process enables master-slave communication between the master processor and each
slave processor, and also enables slave-slave communication between any two slave
processors. The job scheduler and the monitor process are described in Section 6. 1.

The job scheduler and the monitor process are implemented on top of the MPI
library. The MPI layers in Figure 3-1(2) provide the communication channel between the
Jjob scheduler and the monitor process, Similarly, the MPI layers in the diagram in Figure
3-1(b) provide the communication channel between two instances of the monitor process.
Therefore, the job scheduler and the monitor process communicate by invoking MPI
library routines, Likewise, two instances of the monitor process communicate by

invoking MPI library routines.

'The virtual network topology of the N slave processors and master processor used
for scheduling is illustrated in Figure 3-2. The processors submiited to execute the job are
labeled “Slave 1™ through “Slave N” in the figure. The network links between the master
processor and each slave processor in the figure illustrate the master-slave
communication links established between the job scheduler and each instance of the
monitor process. The job scheduler uses the master-slave communication links to
communicate iterations to the slave processors during scheduling. Since the replications
of the program under execution are independent, there 1s no communication between
remote processes on any two stave processors when the replications are executed. Hence,

the slave-slave communicafion links are not shown in Figure 3-2.

19

Master Stave
Job Scheduler Montior Process
MFi Layer MP1 Layer
Linux Kernsl Linux Kerpel

1L i}

Private Back-plane Network

(a)

Slave Stave
Moniter Process Montior Process
MP! Laysr MPI Layer
Linux Kernel Linux Kernsl
Private Back-plane Network J

®

Figure 3-1. (a) Master-slave Commumnication (b) Slave-siave Communication

Blave

Master g

Figure 3-2. Virtual Network Topology

20

The job environment created on each slave processor for jobs consisting of
Windows-based application programs is different from the environment created on each
slave processor for jobs consisting of Linux-based application programs. Figure 3-3
depicts the job environment that is created on each slave processor when the application
programs submitted in the job description are Windows-based. The interface beiween the
XFace fool and the automation confroller in Figure 3-3 is the text file model.rxt. The
automation controller is a program that externally controls the simulation application.
The automation controller and the simulation application are both Windows-based
applications developed to nm on a Windows platform. Therefore, they run on top of the
emulated Windows platform created by the Windows emulator. Most Windows-based
applications register an object mode! with the Windows kemel. The application object
model creates an interface between the application and the automation program. The
automation program conirols the application by issuing commands to the application
object model.

At the start of each iferation, the monitor process writes the name of the
application program and the number of times, x, that the program must be replicated for
the current iteration to model.txt. The monitor process then starts the start-win-app script
o initiate the execution of the iteration. The start-win-app process in turn starts the
automation controller to initiate the execution of the application program. The antomation
controller starts a new instance of the application if an instance of the application is not
already running in the job environment. Once an instance of the application is numing,
the antomation controller opens the application program specified in model.txt and
replicates the program x times, At the end of the x replications, the automation controller
saves changes made to the program, and then eloses the program. Finaily, the automation
program terminates, signaling the end of the iteration. This event triggers the termination

of the start-win-app script.

Figure 3-4 illustrates the job environment that 1s created on each slave processor
10 execute Linux-based application programs. The environment is not applicable for VR
jobs. According to the definitions of the parametric and partitioned job-types i Section

2.3, the application program submitted in the job description is replicated once per

21

iteration. Therefore, only one replication is executed per iteration of every job that is
executed in the environment in Figure 3-4. Since the application is native to the Linux
kernel, an emulator is not needed. So the monitor process starts the start-lin-app script to

execute the replication, which in tum executes the command required to execute the

replication.

I XFace Tool 1 I |
l I l Application's Object !
' | | Modet |

I Simulation

1 Monitor spawn Start-Win- § Automation Application l
|{ Process App I (_—_:> ‘:|J>| Controller <}:-J1> !
| Process l I Program l
| | | ,
| MP{ Layer l I Windows Emulator

Linux Kemel

Figure 3-3. Job Environment ereated for Windows-based Applications.

i XFace Tool 1
| l
| Simulation
1 Application
I
i Monitor spawn
Process Stan-Lin-App
| — >
Process |
I Program
| l
l MPi Layar [
Linux Kerna!

Figure 3-4. Job Environment created for Linux-based Applications.

22

The job environments in Figures 3-3 and 3-4 are application-specific. The job
scheduler does not need any information about the simulation application to schedule the
iterations to the slave processors. Also, the monitor process does not depend on the
application. The monitor process only requires information about the application program
name and the number of times the program is replicated per iteration. This information is
made available 1o the monttor process during the job initialization phase when the job is
loaded onto the slave processors. The start-win-app and start-lin-app scripts are also
independent of the application. The start-win-app script only needs the application-
specific command that is used 1o initiate the execution of the automation controller.
Likewise, the start-lin-app script only needs the command to execute the application
program. For Linux-based applications, the command is entered in the job description.
However, for Windows-based applications, the user must add the command to execute
the automation controller directly to the start-win-app script. This is done only once for
each application that the tool must support. The start-win-app script is simple, and
support for an application is easily added to the script.

To add support for a Windows-based application, an automation program and an
installation of a Windows emulator on the native Linux platform are required. The
automation program should provide the controls described earlier. The emulator should
emulate the Windows environment that is required to execute both the designated
application and the antomation program. The command to execute the automation
program Is added to the stari-win-app script. The application start-win-app script is
described in Appendix A.

3.4. Maintaining the Independence Among Replications

An application program that 1s execuied in the environment created by the XFace
tool must read a text file containing stream indices at the beginning of each simulation
replication. The file specifies k sets of stream indices. The firsi set of indices in the file is
used fo specify streams in the first replication, the second set of seed values is used to
specify the streams in the second replication, and so on. A separator is used to separate

the sets, and an end-of-file marker is used to mark the end of the file. A template of the

23

text file is illustrated in Figure 3-5. The ‘&’ character is used 1o separate the sets, and the
character sequence “EOF” marks the end of the file. The values within a set need not be
entered on the same text line in the file,

If the simulation model under execution contatns r distinct streams, each of the k
sets in the streams file must contain r distinct stream indices. The i index in the j™ set
specifies U' in the j™ replication, for 1<i<r and 1< j<k. The independence among the
replications now depends on how the stream indices in each set are chosen. The stream
indices in each set should not be generated randomly. This is to guarantee that the sets are
disjoint, and no set contains more than one instance of the same index. Instead, the stream
indices must be carefully chosen so that the streams do not overlap. For example, if the
fixed-length of the streams is L, then the stream U’ is the sub-sequence in U containing
the random numbers U, to Uy, U’ is the sub-sequence containing the random numbers Uy,
to Uz, and so on. Since U’ and U™’ are adjacent sub-sequence in U, if r random points
are defined in the model, and random point r; requires between L and 2L random
numbers, then if U' is assigned to 1, U™ should not be assigned 1o another random point

i+l

to prevent the overlapping of U* and U™\

< 15t got containing r indices >
&
< 2™ get containing rindices >
&

&
< k' set containing r indices >

EOF

Figure 3-5. Template of Streams File

24

During the job initialization phase, the XFace tool parses the sireams file in the
job description into k smaller files. The parsed files are then distributed with the
replications so that the j* set in the unparsed file is distributed with the j* replication.
Therefore, at the beginning of j" replication, the program should read the file stream. xt
and set streams to use in the replication. This requires that the target simulation
application should provide support for changing the indices of the streams defined in the

model.

3.5. Parametric Job Description

The job description forms that are used to submit parametric jobs are displayed in Figure
3-6. The form used to submui parametric jobs that contain Linux-based applications is
displayed in Figure 3-6 (a), and the form used to submt parametric jobs that contain
Windows-based applications is displayed in Figure 3-6 (b). The information submitted in
a parametric job description is as follows. First, either the Linux platform or emulated
Windows platform is selected to run the application. The number of times the application
program must be replicated is then entered in the “Total Replications™ text box. The
pathnames to the program executable file and the streams file containing the stream
indices that specify the streams to use in each replication are entered in the “Program
Executable” and the “Seeds File” text boxes, respectively. If the program reads input
files, the pathnames to the input files are entered in the “Inpui 1” and “Input 2” text
boxes. If the number of input files is greater than two, clicking the “Add More Input Files
...” buiton displays a dialog box that prompts the user to enter the additional input files.
If the application is Linux-based, the command to execute the program is entered in the
“Command” text box. Otherwise, the application name is entered in the “Application”
text box. Finally, the machines containing the processors to execute the replications are
selected from the machines list. If all the required fields mn the form are filled, clicking
the “OK” button submits the job description. The “Cancel” button cancels the job
description process, and the “Help” button provides helpful mformation about the job

description.

25

Sblechy

. vnane odu oy
T2 e nc. ot ey
3, vmasxs, wdu. e
‘It vnssc.odu.ede
05, vmase, S0, adu
A%, ynase, adu, ety
07 swnasc.odu, et
T3 vRase DL Do
3. umane, od. o
NLO . urkasos o ety
rdd wvsc. ody. e

Y
pore A e

|
;
Lk
i
;
;

rre
ihpreped

s d Ll
rRE Smase, Stk e
PEIZ %0, D0 K
03 ez, od, eik
k13, vrast, otk ey
B, unaan ok o
oS wvmise. At rdu
TOF . vnase, odir. oo
A3, unase.ndin el
T3anssc, ot ek
TedBovnase, odu. ey
grdl, wmieo, adu.ege

Falp

L ..e,,g...‘:m,\.,;«.,..,...w

Figure 3-6, Parametric Job Description Forms (a) Windows-based (b) Linux-Based

26

CHAPTER IV
VARIANCE REDUCTION JOBS

In this chapter, variance reduction jobs are described. The chapter presents an
overview of the statistical analyses of tweo VRTs that, when applied to the random
outpuis of a simulation, reduce the variances in the differences between the statistical
measures that are of inferest. The analyses presented in the chapter focus on CRN and
AV, These VRTs were chosen because of their wide use in practice and also due to their

ease of implementation.

The notation used in the chapter is as follows. Random vanables are typed in

boldface letters. The expected value of the random variable X is denoted E{X}, the
variance of X is denoted Var{X}, and the covariance of the random variables X; and X,

is denoted Cov{X,, X,}. Other notation used in this chapter that is not listed here is

defined when first used. Detailed definitions of these and other statistical terms used

throughout the chapter are presented in [20].

4.1. Variance Reduction Analysis

Suppose we would like 10 compare two alternative configurations, C; and C;, of a
system. Suppose further that C; and C; are the simple M/M/1 and M/M/2 models in
Figure 4-1; the GI/G/s model is described in {21], [4]. Let the sample size of C, be |; and
the sample size of C; be lp, |, =1, =1 forreplicationi,i=1,2, ...,k Foragivenk and I,
henceforth denoted as the sample point (k, [), the goal is to reduce the variance in the
differences between sample values produced by C, and C, To simplify the variance
reduction analysis, let the expected average delay in queue, di(l), resulting from the i®
replication of the M/M/s model, s = 1, 2, be of interest. To define the quantity di(l),

suppose the j™ entity enters the M/M/s system at time t;, j=0 and experiences service
time §; Let A =t,—1t_,, j >0, be the inter-arrival time between the -1 and j® entities

entering the system. The sample value D is defined as the delay in queue of the ™ entity

27

during replication i, or equivalently, the time from arrival to the start of service

expetienced by the j™ entity.
D,=0,D, =Max{D,, +S D, +(S,-A} j=0 (4-1)

The quantity d;(1) 1s defined as the sample average of the Dy’s in the i™ replication.

2D,
d, ()=~ (4-2)

In a stochastic simulation, the quantities A; and S; are random samples drawn from the
probabilistic distributions F, and Fg that specify the inter-arrival and service time
distributions, respectively. Therefore, di(l) s a random sample of the random variable
ddl).

For the i replication, denote X, =d} (1) the expected average delay in queue for
Cy, and Y, =d;(1) the average delay in gueue for C; Consider the random samples
Z =X =Y, fori=1, 2, ..., k. Assume that the Xi’s, Y;’s and Z;’s are statistically

independent, and identically distributed (IID). Let puy, py, and pz be the true expected

values of the Xi's, Yi's and Zis, respectively. That s,

MX=E{X}=E{X! X, e X pY:E{Y}:E{YI +Y, o +Y,), and
w, =E{Z}=E{Z + Z, +--- +Z_}. Then the variance of Z is defined in Equation {4-3)
[4].

Var{Z} = Var{X} + Var{Y} + 2Cov{X, Y} (4-3)

Since Z; is defined as the sum or difference between the average delays X; and Y; in i™

replications of Cy and C,, respectively, reduction of the variance between X; and Y;

28

observed in the i replications of Cy and C; is achieved by reducing the variances in the
Z;s. Observing Equation (4-3), it is obvious that the vaniance in the Z;'s can be reduced

by either inducing positive correlation between X; and Y; if Z =X -Y,, or negative

correlation between X; and Y;if Z =X +Y,.

Entity Entity
ot |= OO - O i | Q= |
Module uie Module

queue

CH

Server Entity
Medule O |:;> Departure
1 Module

Entity
=00 0L]

Server Entity
Moduie O |:}> Departure
2 Module

)

Figure 4-1. (a) M/M/1 Model (b) M/M/2 Model

For a given sample point (k, 1), we would like to define unbiased point estimators
of the statistics px, iy, iz, and Var{X}, Var{Y}, and Var{Z}because oftentimes in
practice these statistics are not known. Suppose the Xi’s are generated independently

from the same model, that is, the X;’s over n replications of Cy are IID. Likewise, if the

Y;’s over n replications of C; are also IID, the Z;’s are also IID. Thus, the sample mean

X(k) is an unbiased estimator of py and the sample variance $2 (k) is an unbiased

29

estimator of Var{X}, that is, E{i(k)}=ux, and E{S (k)}=Var{X}. The sample

mean X (k) and the sample variance S (k) are defined as follows.

k
_ XX
X(k)= —M*k (4-4)

e
8 (k) = (4-5)

Likewise, the sample means ?(k), i(k) , and the sample variances S} (k), and S} (k)
are unbiased estimators of py, pz, and Var{Y}, Var{Z}, respectively, and are defined

similarly as X (k)and S% (k) in Equations (4-4) and (4-5).

Suppose we perform k replications of both C, and C; such that the i™ replications
of C; and C; are synchronized. Furthermore, suppose the pair (X, Y:) resulting from the
jit replications of C; and C; are generated from a common random number sequence, but
for different i, i = 1, 2, ..., k, separate common random number sequences are used to
generate (X;, Y;). That is, in the it synchronized replications of C; and C;, X; and Y; of
the pair (Xj, Y;) are correlated, but the X;’s are IID and the Y;’s are also IID. Using the
resulis i Equations (4-3) and (4-4), the variance of _i(k) is given in Eqguation (4-6).

Var[i (k)] _ Vark{Z} _ Var{X}+ Var{:{{} + 2Cov{X, Y} 4-6)

Therefore, the variance of the sample mean i(k) is inversely proportional (o the number
of replications. Thus, replicating C; and C; a large number of times will reduce the

variance in i(k). This is where the parallel platform provided by the Beowulf cluster

30

proves very handy. However, powerful VRTs such as CRN and AV are oftentimes used

in practice to reduce the variance in Z(k). This is due to the fact these VRTs converge

the sample mean E(k) to the true mean pz at a faster rate than the convergence rate

when the models are replicated many times.
4.2. Common Random Numbers

Common Random Numabers is a variance reduction technique that is used to

reduce the variance in i(k) by inducing positive correlation between X; and Y;. For the

case whenZ, =X -Y,, Equation (4-6) reduces to Equation (4-7).

Var{X} + Var{Y} - 2Cov{X, Y}
k

Var{i(k)} = (-7

Clearly, if in the i synchronized replications of C; and C, X; and Y; of the pair (Xi, Y3)
are generated independently, that 1s, distinct random number sequences are used to drive

the simulations of C; and C,, it follows that X; and Y; are uncorrelated and

Cov {X, Y} =0 . Thus, Equation (4-7) reduces as follows.

Var {E(k)} _ Var{X} ; Var{Y} @5

On the other hand, if in the i synchronized replications of C; and C5, X; and Y; of
the pair (X;, Y;) were generated from a common random number sequence, X; and Y; are

positively correlated and Cov {X, Y} >0. Therefore, according 1o Equations (4-7) and
(4-8), the variance of i(k) is smaller for the case when X; and Y; are postiively
correlated, Cov{X, Y}>0, than for the case when X; and Y; are independent,

Cov {X, Y} = (), resulting in the desired variance reduction in E(k) .

3l

4.3. Antithetic Variates

Antithetic Variates (AV) is another VRT that depends on the induction of

correlation between the random variables of interest to reduce variance, AV reduces the

X+

variance of Z, = by inducing negative correlation between X' and X, where

the random outputs X and X are generated from paired replications of the same model.

Therefore, the variance of the sample mean E(k}is given by Equation (4-9).

Var{x'} + Var{x’} +2Cov{X’, X*}
4k

Var{Z(k)} = (4-9)

Thus, the variance of the sample mean E(k) is smaller when Cov {X‘, XZ} <0 than that

for the case when Cov {X‘, Xz} =0. Unlike CRN, antithetic random numbers are used

for the same purpose in each paired replications. Thus, for example, if in the i" paired
replication of C,, the random number Uy is used to generate the k™ service time in the
first replication of the pair, then 1-Uy must be used to generate the k™ service time in the

second replication. Further information on AV is presented in [3], [4], and [5].
4.4. Synchronizing the Random Numbers

The driving force behind CRN and AV is the proper synchronization of the
random numbers that are used during the simulation. Without proper synchronization of
the random numbers, neither CRN nor AV would work. This section describes one
methed of synchronizing the random numbers used in simulations under CRN or AV,
The presentation focuses on synchromzation techniques applied to simulations under
CRN. However, the synchronization techniques that are described in this section are also

applicable to simulations under AV.

32

The idea behind CRN is to induce positive correlation between X; and Y; in the ith
synchronized replications of C; and C; by enforcing that the order of random number
usage in C; and C; is the same. That is, in the i replications of €, and C,, the same
common random number sequence U is used to drive the simulations of C; and C..
Furthermore, the k random number Uy drawn from U is used for the same purpose in the
i" replications of C; and C;, Hence, if in the i™ replication of Cy, the random number U,
is used to generate the '™ inter-arrival time, then U, must also be used to generate the r™
inter-arrival time in the i replication of C,. Therefore, for CRN to work, it is critical that
the random numbers used in the simutalion of C; and C; are not merely the same, but are
also properly synchronized.

There are many ways 1o synchronize the order of random number usage in the
simulation of C; and C; [3], [4]. The method of synchronization of the common random
numbers used to drive the simulations of C; and C; implemented here is as follows. Label
each point in C;, j = 1, 2, that generates random variates a random point. Thus, for the
M/M/1 queuing model in Figure 3-1 (a), there are two such points, one in the Entity
Creation Module where the inter-arrival times are generated and another in the Server
Module where the services times are generated. Similarly, for the M/M/2 queuing model
in Figure 3-1 (b), there are three random points, one in the Entity Creation Module where
the inter-arrival times are generated, and one in each of the two Server Modules where
the service times are generated. One way to achieve synchronization of the common
random numbers driving the simulations of C; and C; in each replication is to assign
separate random number streams to each random point in C;, j =I, 2 that are different.
However, the assignment must be such that the same stream is assigned to tdentical
random points in C; and C;. Thus, for C,, if we assign stream Ulto generate inter-arrival
times and stream U’ to generate service times, then we must make the same stream
assignments in C,, that is, assign U" fo generate inter-arrival times, and U to generate
service times for the two servers. Even though the two server modules in the M/M/2
model constitute two random points, these random points are the same since both random

points generate service times for the same purpose in the system being modeled.

33

4.5, VR Job Descriptions

This section describes the job description forms used to submit VR jobs to the
XFace tool. VR jobs are only supported on the emulated Windows environment. The VR~
AV job description form is displayed in Figure 4-2, It is very stmilar to Windows-based

parametric job description form in Figure 3-6 (b).

{01 arnase, od, e
nlf2. whasc oo, adu
a2, shase,eda,2du
nidd mase Bk, T
i avmast . ok, adu
im0, cdredy
[iERld umase, 0cda, ek
HniE.vaaze.adl,edy
I nog.amaze, o, ady
REURE DTN PES T
Ik vmase. oo edu
in12.amasouciady
‘ 1%, vnase ol edu
An)E uriase ok, adu
018 wmasg odasedu

N

Figure 4-2. VR-AV Job Description Form

The VR-CRN job description form is presented in Figure 4-3. The total number of
configurations ¢, ¢ = 2, of the system or systems being simulated is entered into the
“Total Configuration” text box. Since CRN involves the comparison of at least two
alternate models, the minimum value that can be entered in this field is 2. The number of

replications of each configuration is entered in the “Total Replication” text box. Each

34

model will be replicated k times. The application name is entered in the “Application”
text box. The slave processors to execute the job are selected from the machines list.
Finally, a set of job files 1s entered for each configuration. When entering the job files,
the configuration number is first enfered and then the job files are entered in the text
fields provided. The “Submit Configuration Files” button is used to submit the job files
for a configuration. Each configuration submitted is displayed in the “Configuration
Submitted” window. The “View Submitied Files...” button displays the job files
submitted for the selected configuration, and the “Delete” button deletes the selected
configuration. The “OK”, “Cancel,” and “Help” buttons serve the same purposes as those

on the job description forms in Figure 3-6.

oy : i
kb ¥

TR T m; ‘:r:r)?{gltu%tim. idex]
%, vnaze oo, bdu e Sttt A
nfhi3vmasc odu.adu
Sl REELLE TR
i nfiS, vnane iy, edu
[$n0B.ymazc ot ey
[007, vaace, odk, et : I :
G wmaso, wduadu . . lste.
1 oS amast ot Lo «

[vl omas. ook, el

i e e

Figure 4-3. VR- CRN Job Description Form

35

CHAPTER Y
PARTITIONED JOBS

This chapter presents the concepis behind the partitioned job feature of the XFace
tool. The execution of a program that is made up of interdependent units of computation,
where the interdependencies among computation uniis are dictated by the flow of data
during program execution, is considered. The partitioned job feature of the XFace tool is
used to execuie the k replications of a partitioned program on sub-clusters consisting of
several processors. Before delving into any further details, a formal definition of the sub-
cluster model used fo execute each replication of the program is presented. For a given
program that is executed using the partitioned job feature of the XFace tool, let the
processors that are contained in the set 11 be P, h =1, 2, ... N, and let the N processors
be divided into n sets according to a predefined rule R that places each processor Py, into a
set I3, 1 <1 <n. Each T is considered a sub-cluster with cardinality | = m;. Define T’
as the set containing all sub-clusters, so that IT]=n 1tis necessary that R satisfies the
following condifion: Forevery Incland Iyl I <i, j<nandi#), Iin = {},
where {} denotes the empty set, so that each processor Py, can only be contained in either
[; or I'; but not both. Therefore, the N slave processors submitted o execute the job are
divided iito n mutually exclusive sub-clusters according to the placement rule R. The

maxitnum sub-cluster size 1s given by
mmnxz MAX {E Fi ib i r: I? b] Fu I} . (5-1)

Suppose a replication is splil into ¢ computation units. Since the @ computation

units are interdependent, even if m__ > ¢, all the computation units cannot execute

RIAY

concurrently for a given replication that is executed on I'; consisting of m,, processors.

However, the precedence constraints among the ¢ computation units may be such that
sets of independent computation units exist that can be executed concurrently. If this is

the case, we can utilize such parallelism if we can partition the program into computation

36

units and execute each replication of the program on sub-cluster I'; consisting of my;
PrOCEssors.

Unfortunately, executing each replication of the program on sub-cluster [injecis
overheads that have the effect of increasing the execution time of each replication. Also,
problems that were not present when each replication of the program was executed on a
single processor must now be addressed. These problems include the following. A
partitioning algorithm is needed to partition the program into interdependent computation
units, each of which must be of a certain size or granularity in order to achieve the
maximum speedup 1n the execution time of each replication of the program; a scheduling
algorithm is needed to efficiently map the computational units in the partitioned program
to the processors in T';; the executions of the computation units on the processors in T
must be synchronized; the data dependencies that exist among the computational units in
the partitioned program must be preserved during the execution of each replication of the
program; and data must be forwarded among the processors in I

The partitioning and scheduling problems are briefly addressed in Sections 3.1
and 5.3, respectively. The remaining problems are automatically taken care of by
representing the partitioned program by the task precedence graph model described in
Section 5.2,

5.1. The Partitioning Problem

A program comprises a set of mstructions. The mstructions perform computations
on input data to produce output data. The partitioning of the program is the act of
dividing the program instructions into smaller instruction subsets that are executed
sequentially on a single processor. The computation performed by an instruction subset is
a unit of computation. Each unit of computation is defined as a fask.

Tremendous research had been done on the partitioning problem: for example, the
partitioned problem is addressed in [22], 23], The partitioning problem is a difficult
problem, NP-complete in the strong sense. Several factors must be considered when
partitioning a program into tasks, such as but not limited to, the program size, the average

task size or granularity of the partitioned program, the number of available processors,

37

load balancing, and the multiprocessor architecture that will execute the program. The
partitioning problem is not the focus of the thesis. Therefore, it is assumed that a parallet
algorithm is already designed for the program that will be submitted to the XFace tool,
and that the application program is already partitioned into interdependent tasks and is
represented by a task precedence graph.

5.2. Task Precedence Graph Model

A program pariitioned mio miterdependent tasks can be modeled by the task
precedence graph illustrated in Figure 5-1. The nodes in the graph represent the tasks in
the partifioned program. Each directed-edge between any two tasks represents the
precedence constraints between the tasks, the flow of data between the tasks, and the
communication costs associated with daia flowing between the tasks. A task precedence
graph is commonly referred as a dynamic acyclic graph (DAG) in the scheduling
literature. An in depth discussion of the DAG model 1s presented in [24].

In general, a DAG G = (V. E) consists of a set of weighted nodes V={i=0, |, 2,
....n | Tj}, and a set of weighted directed-edges, E={i,j =0, 1, 2, ..., n| ey}, that
connect nodes in the graph. Each node T; € V is associated with a computational cost ¢; =
W(T,), where W(T;) is the node weight or sequential execution time required to execute
task T;. Each directed-edge e;; € E connects the two interdependent tasks T; and T; with
the edge going from T; to T;. The direction of the edge e;; represents the precedence
constramis between T; and T;, specifying that the execution of T, must precede the
execution of Ty. The direction of the edge ey; also indicates that the flow of data is from T;
to T; during program execution. The weight W{e,;) of e;; represents the communication
cost charged to forward the data produced by the execution of T; on processor Py to
processor Py, that will execute T;. In this thesis, for the edge e;; that connects T; and T;, T;
is defined as the parent of T;, and T; is defined as the child of Ti. Furthermore, it is
assumed that the edge weights are negligible with respect to the task weights to disregard

the communication overhead associated with the edges.

38

Figure 5-1. DAG Model.

A DAG has entry nodes, exit nodes, and nodes that are neither entry nor exit
nodes. An enfry node in a DAG 1s a node that is not dependent on any other node in the
DAG for data at the start of program execution, and thus can begm execution if it is
scheduled to a processor. Thus, entry nodes in a DAG are the first to execute. An entry
node has no parent and k children. For example, for the DAG in Figure 5-1, the node that
represents task T, 1s the only entry node in the graph. On the other hand, an exit node has
k parents bui no children. The precedence constraints that exist among the nodes in the
DAG dictate that an exit node cannot begin execution until ali its k parents are executed.
As a result, exit nodes are the last nodes in the DAG to execute. For the DAG depicted
in Figure 5-1, the node that represents task T, is the only exit node in the graph. Nodes
that are neither entry nor exi{ nodes have k, parents and k; children. For the DAG
depicted in Figure 4-1, the nodes that represent tasks Ty, T,, and T3 are neither exit nor
entry nodes. Each of these nodes has parent Ty and child T,.

When the program represented by the DAG in Figure 5-1 is executed, task T is

executed first. After the execution of Ty completes, the data produced by T, 1s forwarded

39

to the processors scheduled to execute tasks T, T3, and T;. If at least three processors are
available, tasks T,, T, and T; can begin execution simultaneously on separaie processors
since no data dependency exists among these tasks. Otherwise, if less than three
processors are available, tasks Ty, T, and T; cannot all begin execution at once.
However, they can begin execwdion in any order. Finally, task T, can begin execution
after tasks Ty, Tz, and T; are executed and all data have been forwarded to the processor

that will execute T,

In the examples that are considered in this thesis, DAGs thai are of similar
structures to that of the DAG in Figure 5-1 are considered. The DAGs have one or more
entry nodes that are followed by at least two nodes that can be executed in parallel, and
end with one or more exit nodes. It is assumed that the computational costs of the nodes
in parallel are much greater than the computational costs of the entry nodes and exit
nodes. Also, the assignment of task indices in the DAG is irrelevani, that is, the nodes
that represent the tasks can be indexed in any order.

Estimation of the task weights 15 done prior 1o the execution of the DAG.
Practically, a task weight can be estimated by executing the task with all the required
data several times on a dedicated processor. The average of the execution times gives an

estimate of the task weight.

5.3. The Scheduling Problem

The scheduhing problem is to map the tasks in the DAG to the processors in sub-
cluster I to achieve optimum speedup in one replication of the program represenied by
the DAG. This is a difficult problem that is also NP-complete. Tremendous research had
been done on the scheduling problem. As a result, a plethora of scheduling algorithms
exist that schedule the tasks m a DAG (o targeted mulfiprocessors {24], These scheduling
algorithms use a wide variety of heuristics to schedule tasks within a DAG to the
targeted multiprocessors. However, the ultimate objective of all these algorithms is o

achieve optimum schedule length.

40

Since the scheduling problem is not the main focus of this thesis, a simple
scheduling algorithm is developed to demonstrate the partitioned job feature of the XFace
tool. However, it is worthy to note that the algorithm developed and implemented m the

tool can be replaced with a more sophisticated scheduling algorithm.

5.4. Scheduling Tasks within a Replication

The scheduling algorithm developed in this seciion is based on the following
assumptions; {1) The scheduling algorithm operates under a non-preemptive scheduling
option, that is, once a task begins execution on a processor, the task will execute to
completion; (2) the DAG is assumed to have deterministic property, that is, no
probabilistic measures are associated with the edges in the DAG. Although it is assumed
that the edge weights are negligible with respect to the task weights, Algorithm 35-1
makes use of the edge weights when scheduling, This was done to support future work on
the XFace tool. Algorithm 5-1 still works if the weights are assumed to be negligible and
equal. The scheduling algorithm utihizes fork and join structures embedded within the
DAG during scheduling in an attempt to achieve the optimum' speedup in the execution
time of one replication of the program. Figure 5-2 (a) and (b) depict fork and jon
structures, respectively. The terms head of a fork and fail of a join are used in this seclion
and are defined as follows. The head of a fork 1s the parent task in the fork structure, and
the tail of a join is the child task in the join structure. For example, T, i1s the head of the
fork structure depicted in Figure 5-2 (a), and T, is the tail of the join structure depicied in
Figure 5-2 (b).

I. The current implementation of Algorithm 5-1 in the XFace tool does not yield the optimum
schedule length, This is due to the fact that the execution of task T, on processor Py, maybe
preempted to forward data to processor P on which task T, will be executed, given that T is a
child of T..

41

V;E\‘ W {En. t}-l)

(a} (b}

Figure 5-2. (a) Fork Structure (b) Join Structure

In scheduling the DAG in Figure 5-1, the following steps are executed.

(1) Add tasks that are ready (ready tasks) to execute to the ready list. Ready tasks are
those that have no data dependency or a dependency count of zero. The
dependency count of task T; is defined as the cuwrrent number of parent tasks that

must produce data that is required for T; to begin execution.

(2) For each ready task T; with a dependency count of zero, map T, to a processor and
add T; to the ready list.

(3) Upon the completion of the execution of task T;, decrement the dependency count
of each child of T;.

During the execution of each replication of the program represented by the DAG model
in Figure 5-1, Algorithm 5-1 will be executed several times. It is executed once before
any task is executed, and once after each task completes execulion. It could be the case
that several tasks finish simultaneously. In this case, the scheduling algorithm 1s executed
once for all the finish tasks. Therefore, the input parameters to the algorithm are as listed

below.

42

(1) The DAG that is being executed. A data structure must be defined to store the

state of each task. The DAG can be implemented as an array of task structures.

(2) The list of processors that are assigned to execute the DAG. Each processor in

the list is either marked “scheduled” or “unscheduled” indicating its availability.

(3) The list of tasks that finish execution prior to the current execution of the

scheduling algorithm. The list will be empty the first time the algorithm executes.

(4) The ready list of tasks. All ready tasks will be added to the ready list. The

processor assigned to execute a ready task is stored within the task structure.

Algorithm 5-1. Scheduling Tasks within a DAG
Begin
(1) For each scheduled task T, that completes execution, decrement the dependency

count of each task Ty that is a child of T,

(2) Add all tasks in the DAG that have a dependency count of zero to the ready list.

For each task T, added to the ready list, eliminate T, from the scheduling process.

(3) For each task T, added to the ready list:

i If T, is the head of a fork and not the tail of a join, schedule T, to the next
available processor P, and assign P, 1o the child Ty of T, such that the
edge weight W(ey) is the heaviest of all edges connecting T, 1o one of its
children T,.

ii. Else if T; is the tail of a join and not the head of a fork, schedule T, to the
same processor Py, that its parent T, was scheduled such that the edge
weight W(e,) is the heaviest of all edges connecting T, to one of its parents
T.

43

iil. Else 1) is both the tail of a join and the head of a fork. and processor Py,
was assigned to T, by a parent and processor Py, is available. schedule T,
to the same processor Py, that its parent T, was scheduled such that the
edge weight W{e,) is the heaviest of the edges that connects T, to one of its
parents T, Otherwise, if T, was not assigned a processor, schedule T, 1o
the next available processor P, Assign P+, * = m or n, to the child Ty of
T, such that the edge weight W(ey) is the heaviest of all edges connecting
T, to one of its children T
End
Algorithm 5-1 groups the executions of communicational intensive tasks on the same

processor in an effort to reduce the schedule length.

5.5. Speedups

The 1deal parallel execution time for k replications executed on n sub-clusters [,
where my; processors are contained in I'; and every I'; < T has the same size m; = m, is
defined by Equation (5-1). The replication time Ty now depends on the number of

processors m that are contained in sub-cluster I3,

Tp (T (m). k,n) = (E +S(k, n)JTR (m) (5-2)
Ty (1 00, 1) = | £ 505), 0+, 63

Speedups in the execution time of the partitioned program can be achieved in fwo ways.
The 1*-dimension speedup results from execufing the partitioned program on n sub-
clusters. The 2™-dimension speedup results from execuling each replication of the
partitioned program on sub-cluster I'; containing m processors. The 1"-dimension
speedup is denoted t1p and the 2"-dimension speedup is denoted ,p. The 1*-dimension

speedup 15 the ratio of the sequential time Ts to execute the k replications on a single

44

processor and the parallel time to execute the k replications on n sub-clusters each
containing one processor. The 2°*-dimension speedup is the ratio of the paralle! time to
execute the k replications on n sub-clusters gach containing one processor and the parallel
time to execute the k replications on n sub-clusters each contaming m processors.

Therefore, the total speedup is the product of ©ip and 1p.

s (5-4)
Tp (T, k n)

o (T (), k, n)=

NN T (T k n) o
T:D(R(m)v » ﬂ)—— TP (TR(]“)5 k, n) ("-)

s (5-6)
Tp (Ti(m), k, n)

autual

(T (m), k, n) = 1, X 1, =

Ideally, the 1™-dimension speedup 7;p in Equation (5-4) is same as the parametric
speedup in Equation (3-4). However, practically, 7ip will be less than the parametric
speedup because of the scheduling and communication overheads that are added to the
execution time of each replication executed on sub-cluster I,

Unliket,;,, 7., 18 not easily estimated because 1., depends on the structure of the

DAG, the scheduling algorithm used for scheduling tasks in the DAG, and the number of
processors assigned to execute the DAG. However, once these factors are known, an

optimum t.,, can be estimated with the aid of Ghant Charts.
The following example demonstrates estimating 1., and also demonstrates

Algorithm 5-1 at work. For this example, arbitrary task weights are added to the DAG
depicted in Figure 5-1. The modified DAG is depicted in Figure 5-3. For scheduling
purposes, all edges in the DAG have weight e, where e is negligible with respect to the
task weights. The three processors Py, P, and P; are assigned to execute one replication

of the program represented by the DAG i Figure 5-3. Throughout the example, the

45

possible state of processor Py, h = 1, 2, or 3, 1s either S or NS, where S§ denotes that
processor Py 15 scheduled to execute task T, and NS denotes that processor Py, is not
scheduled 1o execute any task. The possible execution state of task T; is E, EP or EC,
where E denotes that task T; is executing, EP denotes that the execution of task T; is
pending, and EC denotes that the execution of task T; has completed. NA denotes that an
item is not applicable. The states of the three processors prior o the first invocation of
the scheduling algorithm are displayed in Table 5-1, and the initial states of the tagks in
the DAG are displayed in Table 5-2.

Figure 5-3. Sample DAG Model

Table 5-1. Initial States of Processors

P] P}_ P 3
Processor State NS NS NS

46

Table 5-2. Initial States of Tasks

Ty T, T; Ts T,
Dependency Count 0 i 1 ! 3
Scheduled Processor NA NA NA NA NA
Execution State EP P EP EP EP
Has task Deen eliminated from
Scheduling Process? No No No No No

Initially, all processors assigned to execute the DAG are marked unscheduled
(NS). The tasks states, displayed in Table 5-2, are explained as follows. The
“Dependency Count” row displays the current dependency count of each task. Imtially,
no processor is scheduled; thus, the “Scheduled Processor” row displays NA (not
applicable) for each task, and the execution state of each task is marked as execution
pending (EP).

At the beginning of the tirst loop through Algorithm 5-1, the entry node T, has a
dependency count of zero. As a result, it is added to the ready list, scheduled to the next
available processor P,, and is eliminated from the scheduling process. Table 5-3 and
Table 5-4 display the processors states and tasks states, respectively, afier the execution
of the first loop of the scheduling algorithm.

Table 5-3. States of Processors after First Loop through Algorithm 5-1

Pl P, P';

Processor State 5 NS NS

47

Table 5-4. States of Tasks after First Loop through Algorithm 5-1

Ty T, T, Ty T;
Dependency Count 0 1 l 1 3
Scheduled Processor Py NA NA NA NA
Execution State EpP Ep EP EP Ep
Has task been eliminated from
Scheduling Process? Yes No No No No

The second loop through Algorithm 5-1 is executed after task Ty has completed
execution. At this point, processor P, that was scheduled to execute Tp is now available,
Thus, all three processors are available for task execution. The dependency counts of
tasks Ty, T,, and T; are decrement by one. As a result, all three tasks have dependency
counts of zero. Thus, each of these tasks is added to the ready list and scheduled to a
processor al the end of the loop. The states of the processors and the tasks after the
execution of the second loop through Algorithm 5-1 are displayed in Tables 5-5 and 5-06,
respectively.

The third loop through the algorithm s executed when the execution of T,
completes. The dependency count of task T, is decremented by one, and now has a value
of two. After the execution of the loop, no task is added to the ready list. Tables 5-7 and
5-8 display the states of the processors and tasks after the execution of the third loop
through the algorithm.

Table 5-5. States of Processors after Second Loop through Algorithm 5-1

rocessor State 5 5 5

Table 5-6. States of Tasks after Second Loop through Algorithm 5-1

Scheduling Process?

Ty T, T, Ts T
Dependency Count 0 4] 0 0 3
Scheduled Processor Py Py P P, NA
Fxecution State EC EP EP EP EpP
Has task been efiminated from

Yes Yes Yes Yes No

Table 5-7. States of Processors after Third Loop through Algorithm 5-1

P,

P,

Ps

Processor State

NS

Table 5-8. States of Tasks after Third Loop through Algorithm 5-1

Ty T, T, T, T,
Dependency Count 0 0 0 o 2
Scheduted Processor P Py P, P, NA
Execution State EC B EC E EP
Has Task been eliminated from
Seheduling Process? Yes Yes Yes Yes No

Task T4 18 not added to the ready list until the execution of tasks Ty and T; have
completed, which occurs after the fifth loop through the algorithm. The processor states
and task states after the fourth and fifth loops through the algorithm are displayed in

Tables 5-9 through 5-12.

Table 5-9. States of Processors after Fourth Loop through Algorithm 5-1

P,

Py

Processor State

NS

N3

Table 5-10. States of Tasks after Fourth Loop through Algorithm 5-1

Scheduling Process?

To T, T, Ty T
Dependency Count 0 1 1 I 1
Scheduled Processor Py Py P P, NA
Execution State EC EC EC E EP
Has Task been eliminated from

Yes Yes Yes Yes No

Table 5-11. States of Processors after Fifth Loop through Algorithm 5-1

Py

Py

IProcessor State

NS

N3

Table 5-12. States of Tasks after Fifth Loop through Algorithm 5-1

49

To T, T, T Ty
IDependency Count 0 0 0 0 0
Scheduled Processor Py Py P P Py
Execution State EC EC EC EC EP
Has Task been eliminated from
Scheduling Process? Yes Yes Yes Yes Yes

50

The Ghant Chart in Figure 5-4 illustrates the schedule length achieved for the
example. A schedule length of 17 time-units is achieved for the execution of the DAG in
Figure 5-3, If one replication of the program represented by the DAG were executed on a
single processor, the optimum schedule length achievable is 33 time-units. Therefore,
using three processors to execute the DAG, a speed-up in the execution time of one

replication of the program, .. of 51% is achievable. If insiead two processors were
used to execute the DAG, 1., would be less than 51%. Also, if more than three

processors were used to execute the DAG, 1., would not exceed 51%.

key:
B Processor is idle
Processor is busy executing task T,

Figure 5-4. Ghant Chart Hlustrating Optimum Schedule Length

5.6. Partitioned Job Environment

This section describes the extensions to the execution environments presented in
Section 3.3 that are required to support the partitioned job feature of the XFace tool.
Figure 5-5 depicts an illustration of the sub-clusters T, 1 <1 £ 4, in a partitioned-job

environment for the case my = m,; = m; = my = 4 slave processors are contained n sub-

51

clusters I'y, I'z, I3, and Iy, respectively, and N = 16 slave processors are contained in I'T.
The network illustrates the communication links via MPI library routine calls among
processes on remote processors in the Beowulf cluster.

In general, the placement rule R used to place each slave processor P, I <] <N,
in each sub-cluster I';, 1 €1 < n, is as foliows., The maximum sub-cluster size Mgy
allowed 15 an input parameter that the user enters in the job description. For a given my,
and N, the total number of sub-clusters n contained in I is given by the following

eXpressions.

n= , Nmodm, =0 (5-1a)
mﬂ]ﬂ.’(
N
n= +1, Nmeodm_ =0 (5-1b)
m

max

The placement rule R 1s such that the first my.x slave processors mn [are placed in T'y, the
second g, slave processors in I are placed in I';, and 5o on, If the remainder of the

division in (5-1) is zero, Nmed m

ANAX

={0,eachI; c I, 1 <i<n, has the same size, that

15, m, =m, =...=m, =m, . Otherwise, the remainder of the division in (5-1) is non-

zero and each of the first I, « I, T £ 1 < n-1, has the same size, that is,

m =m,=..=m_ , =m, ., and the last I'; C I" has size m,, where 1 <m_ < m

max ? max '

The N slave processors in I1 are ranked from 1 to N, inclusively. The ranking is
done according to the posttions of the selected machines in the machine list displayed m
the job desenption form displayed in Figures 5-6. The p processors that are contained in

the first selected machine in the list are arbitrarily ranked 1 to p. Similarly, the p

processors that are contained in the second selected machine in the list are ranked (p + 1)

to 2p, and so on. For sub-cluster I'; < I, 1 <1 < n, the ranks of the slave processors in [

are in the range {i—1)xm,, +1 to ixm,,, inclusive. Thus, the rank of slave

processor P; < I is j, such that 1<i<nand (i-1)xm,, +1<j<ixm, . Theslave

max may "’

52

processor P; ¢ I'; with the smallest rank is assigned the leader of sub-cluster I, For the
job environment diagramed in Figure 5-5, the slave processors with ranks 1, 5, 9, and 13

are the leaders of ['y, [, s, and [y, respectively.

——————
L ——,

sub-tluster 1

/

em—

Figure 5-5. Network of Processors for N= 6 andn=4

As before, the master processor runs an mstance of the job scheduler. However, in
this case, the job scheduler schedules the Herations only to the leaders of the sub-clusters.
Each leader runs an instance of the task scheduler. For each iteration that 1s executed on
I';, the task scheduler implements Algorithm 5-1 to schedule the processors in I, All
slave processors in [, mcluding the leader, are scheduled to tasks in the pariitioned

program.

53

5.7. Partitioned Job Description

The job description form that is used to submit partitioned jobs 15 displayed in
Figure 5-6. Partitioned jobs with Linux-based application programs are submitted using
the version of the form in Figure 5-6 (a), and partitioned jobs with Windows-based
application programs are submitted using the version in Figure 5-6 (b). The total number
of tasks ¢, ¢ = 2, in the partitioned program is first entered into the “Total Tasks” text
box. The number of replications is then entered in the “Total Replication” text box. If the
application is Linux-based, the command to execute the program is entered in the
“Command” text box in the form shown in Figure 5-6 (a). Otherwise, the application
name is entered in the “Application” text box in the form shown in Figure 5-6 (b). The
machines to execute the job are then selected from the machines list. Finally, a set of job
files (task files) is entered for each task. For each set of task files, the task index is first
entered, and then the task files are entered in the text fields provided. The “Submit Files”
button 13 used to submit the task files. The tasks that are already submitted are displayed
in the “Task Files Submitted” window. The “View Submitted Files...” button displays
the task files submitted for the selected task, and the “Delete” button deletes the task files
submitied for the selected task.

ser

1
4y :
f

bl sfrivies
L. umasc, ooz, echs
W2, vrEse, odu, edu il N S .
s0F, waer ook, a0k R 3

o2 wrasc, o, 20U 2 i
A emzne. oche, 2t
036, umace, odu, echs ' L Talsta
107w, odu,eda F ot e

ey s e

g

Ao o

Flley qut ﬂASg-aci‘ﬁc Tockt -
- Task Thdex for whinch Jobi Filee are hejng entersdt T

L
‘e j Pt
R [RER—— Y I

Sty Ftls]

02 wmase, o, edu
nG3 . vRenc, odv, sdu
o mant.adu ett

LT N ’ “ P
View Subsirtad Files..,] @ -

TR

aG6 yrane, odi, otk Balats

R A, o £0

et g - : Feln |

TS el W et

Figure 5-6. Partitioned Job Descrniption Forms (2) Windows-based (b) Linux-Based

CHAPTER Vi
IMPLEMENTATION

This chapter presents the implementation of the XFace tool. The top-level layout
of the core processes and scripts on the master processor and each slave processor are
illustrated in Figures 6-1 and 6-2. The figures diagram the hereditary relatronships among
the major processes in the XFace tool. The darker shaded blocks represent the
fundamental processes implemented in the tool. Blocks that are contained within shaded
blocks represent the components of the shaded blocks. The lighter shaded blocks
represent some of the major auxiliary shell scipts that complement the XFace
implementation, There are several other auxiliary scripts in the tool that are not illustrated
in Figures 6-1 and 6-2. Many of these scripts perform very simple housekeeping chores
that are too ftrivial to discuss. Thus, for the conciseness of this chapter, the simple

housekeeping scripts are not described.

The XFace Launcher script starts an instance of the XFace application by starting
the XFace parent process. The XFace parent process first runs clean-up scripts to
initialize the job environment on all processors, and then launches the Xdisplay process.
The Xdisplay process displays the job description forms used to submit jobs to the tool.
After the submission of a job description, the Xdisplay process runs a set of auxiliary
scripts that create the iteration directories, and a second set that loads the job on the slave
processors. After the job description is loaded on the slave processors, the Xdisplay
process signals the XFace parent process. The reception of this signal triggers the XFace
parent process to start the master control process to execute the job. The master control
process implements the job scheduler that runs on the master processor, and also the
instances of the monitor process that run on the slave processors. The job scheduler
schedules the iterations to the instances of the monitor process. The instances of the
monitor process initiate and monitor the executions of the iterations. The master conirol
process signals the XFace parent process at the completion of the executton phase. The
XFace parent process then runs a set of auxiliary scripts that gather the results from the

slave processors to the master processor. The upcoming subsections give detailed

56

descriptions of the more important processes and scripts illustrated in Figures 6-1 and 6-
2.

The XFace parent process is responsible for initializing the job environments, and
starting the Xdisplay and master control processes. At start up of the XFace application,
the clean-up scripts are run to initialize the job environment on the machines listed in
machines. LINUX. During the inifialization step, the shared memories and semaphores
that failed to de-allocate at the end of the previous job are released. Also, the XFace-
related zombie processes, if any, that existed on the machines are killed. The initialization
step is very important because every instance of the XFace tool uses the same set of keys
to allocate the semaphores and shared memories used for infer-process communications
(IPCs). As a result, an instance of the XFace tool will not start if the previous instance
was not propetly exited and the semaphores and shared memories were not successfully
de-allocated. Due to the importance of cleaning up the job environments on the
processors involved, the clean up scripts are run both at start up of the XFace application
and also at the end of every job that is executed by the tool. A second consequence of
using the same sei of keys (o initialize shared memories and semaphores is that the
current implementation of the XFace tool only allows for the execution of one job at a

time. Tt does not support executing multiple jobs concurrently.

The Xdisplay process displays an input GUI windoﬁ, a monitor GUI window, and
the output GUI window at different times. The input GUI window is displayed at start-up
of the XFace tool. It is used fo select one of the job description forms displayed in
Figures 3-6, 4-2, 4-3, and 5-6 that are used 1o submit jobs to the tool. The monitor GUI
window is displayed at the beginning of the job execution phase. It displays the current
execution status and statistics of each iteration. It also provides functionalities thal allow
the user to abort the job execution, and to view the submitted job description at anytime
during the job execution phase or job completion phase. Finally, the output GUI window
is displayed at the end of the job completion phase. It displays the job run statistics, and

provides the user with the functionalities to save the job results and start a new job.

Master

Make job dir
on slaves Job Loader
——r— -
-V\::\ p 7

Xiaee
Launchur

j!:IKN
/"/ \-\

Muke job fir Clean-up
on 1astes jobenv

Gathur regnits

Figure 6-1. Heredifary Relationships Among Core XFace Processes on Master

Slave

Montior Process

Partitioned Job Processor

Parametric VR Job

Job Processor Processor Non-Leades Thask
Mumber a
Ssheduler

Application
start-np

Application

Figwre 6-2. Hereditary Relationships Among Core XFace Processes on Slave

58

The master control process is the backend of the XFace tool that executes the
iterations of jobs submitted to the tool. The same mstance of the master conirol process
runs on the master processor and also on the slave processors. The part of the master
control process that runs on the master processor implements the job scheduler, and the
part of the master control that runs on the slave processors implements the monitor
Process.

The job scheduler is started at the beginning of the job execution phase. During
the job execution phase, the job scheduler employs Algorithm 3-1 to schedule the
iterations fo instances of the monitor process. Each scheduled instance of the monitor
process forwards job execution stafistics to the job scheduler. The execution statistics
include the iteration start time, the iteration end time, and the iteration total execution
time, The job scheduler communicates the execution statistics to the Xdisplay process,
which in tum uses this information to update the information displayed in the monitor
GUI window.

An instance of the monitor process is started on each slave processor P; - IT at the
beginning of fhe job execution phase. The instance of the monitor process running on P;
imifiates and monitors the execution of the iterations that are scheduled 1o P;. The monilor
process runs until it is sent the termination signal by the job scheduler. The termination
signal can be etther of type I, or type I If a type I termination signal is sent, the monitor
process aborts the execution of the current iteration and waits for further instruction from
the job scheduler. Further instruction in this case could be either the scheduling of
another iteration or the termination signat of type 1L If a type II termination signal is sent,
the monitor process exits execution. Currently, only the termination signal of type II is
implemented. The termination signal of type 1 is reserved for future expansion of the tool.
It will be implemented to abort the execution of a particular iteration from the monitor
GUI window.

Depending on the job-type, different instances of the monitor process run on the
slave processors. This is illustrated in Figure 6-2. The instance of the monitor process that
runs on the slave processors is specific 1o the job-type. The paramertric job processor
runs on the slave processors if the job-type is parametric; the VR job processor runs on

the slave processers if the job-type is VR, and the partitioned job processor nuns on the

59

slave nodes if the job-iype is partitioned. For partitioned jobs, each sub-cluster [
contains one processor that 1s designated the leader and (m-1) that are designated non-
leaders. All the leaders run the same instance of the monitor process. Similarly, the non-
leaders run the same instance of the monitor process, which is different from the instance
that is run on the leaders.

The task scheduler is a component of the monitor process that runs only on the
leaders. For each iteration that is scheduled to the leader P; in sub-cluster [', the task
scheduler ranning on P; employs Algorithm 4-2 to schedule the slave processors in T to
the tasks in the partitioned program. Therefore, the leaders execute the task scheduler as
well as the tasks in the partitioned program that are scheduled to the leaders. The
execufion of the tasks scheduled 1o each leader is off-loaded to an auxiliary process, the
worker process. The worker process that runs on a leader is dedicated to that leader. This
is illustrated in Figure 6-2. Thus, during the job execution phase, the task scheduler and
the worker process run concurrently on each leader in I'T. The task scheduler schedules
the tasks in the partitioned program, while the worker process executes the tasks that are

scheduled to run on the leader.

The application start-up scripis are used to imtiate the application programs that
are replicated in the execution of the iterations. There are two sets of application start-up
scripts: Windows-based and Linux-based. The Windows-based start-up scripts are used
to initiate the execution of Windows—based application programs, while the Linux-based
start-up scripts are used to imitiate the execution of Linux-based application programs.

The application start-up scripts are further described in Appendix B.

6.1. Implementing the Job Environments

This section describes the implementation of the job environments that are created
by the XFace tool. The virtual network topologies in Figures 3-2 and 5-5 are easily
implemented on top of the MPI library. By default, when the master control process is
started on the master processor and slave processors, the processors are placed mto one

group, notated as the world-group. A communication channel is automatically established

60

between every pair of processors in the world-group. Thus, master-slave communication
channels are established between the master processor and each slave processor, and
slave-slave commmmication channels are established between every pair of slave
processors. The instance of the master control process that runs on each of the processors
in the world-group are ranked with natural numbers in the range 0 to N. The instance of
the master control process that runs on the master processor is antomatically ranked 0,
and the instances that run on the slave processors are ranked from | to N. Each processor
is tagged with a processor identification number (ID) that is identical to the rank of the
instance of the master control process that runs on that processor. Thus, the master
processor has processor ID = 0, the slave processor rnuming the instance of the master
control process with rank 1 has processor 1D = 1, and so on. As a result, when the
instances of the monttor process are grouped, the slave processors are automatically
grouped in a similar fashion.

For parametric and VR jobs, the slave-slave channels are disregarded since they
are not needed. The job scheduler uses the master-slave channels to schedule the
iteraitons fo the instances of the monitor process. Figure 0-3 diagrams the remote
comrmmications between the job scheduler and the instances of the monifor process
running on the slave processors. Figure 6-3 (a) diagrams a general view of the
communication channels, while Figure 6-3 (b) diagrams a zoomed view of the
communication channel between the job scheduler and an instance of the monitor
process. The job scheduler communicates the iteration numbers and the termination
signals to the instances of the monitor process. An instance of the monitor process that is
scheduled an iteration starts the appropriate application-start-up script to initiate the
execution of the iteration, and then sends the iteration start-time to the job scheduler. At
the end of the iteration, the mstance of the monitor process sends the iteration end time,
total execution time, and a request for another iteration to the job scheduler. I all
iterations are not scheduled, the job scheduler fulfils the monitor process request by
scheduling the next iteration to the slave processor on which the monitor process runs.
Otherwise, the job scheduler sends the termination signal of type II. This causes the

monitor process to terminate ifs execution.

Gl

Mantor
Prosess !
1 |

Meonitol

Job < LN e
Scheduler — 1 Procuss

= z
< N

Monitor

Procuss

N

Monitos Menttor
Process anw Procuss
0¥ -1) 3
(@)

iteration numbers,
termnalion signal

-
; Moniter
Provess
< ‘_**3

eration eXxecution statisiics,
ez ation numbers

v}

{ Job

Scheduler

Figure 6-3. (a8) Remote Communication between Master and Slave Processors (b)

Messages passed between Job Scheduler and Monitor Process

For partitioned jobs, each sub-cluster is implemented as a sub-group of the world-
group, which is also easily implemented on top of the MPI library. Sub-groups are
created from the world-group, and the sub-groups constitute the sub-clusters, none of
which contains the master processor. The sub-clusters are created as follows. Each
mstance of the monitor process invokes the MPI routine MPI_Comm-split() that places
the instance of the monitor process instantiating the invocation in a sub-cluster. The
MPI_Comm_spli) routine takes the tupple <color, key> as two of its arguments. All
instances of the monitor process invoking MPI_Comm_split() with the same color value

are placed m the same sub-cluster. The key values are used to rank the instances of the

62

monitor process in the newly formed sub-cluster. The placement rule R described in
Section 5.6 is used fo generate the number of sub-clusters n that is contained in I'. Each
instance of the monitor process that belongs to sub-cluster I'; uses color value =1 and key
value equal to its rank in the world-group, in the invecation of MPI_Comm_split().
Therefore, after the invocations of MPI_Comm_split(), the momitor processes, and hence
the slave processors, are placed into sub-clusters in accordance with the placement rule
R. After the creation of the sub-clusters, each slave processor in [; has two ranks: its rank
(world rank) in the world group, and its rank (sub-cluster rank) in sub-cluster I';. The
world rank of the slave processor P; < I'i is a natural number in the range 1 1o N, and the
sub-cluster rank is a natural number in the range 0 to {m; — 1). The world rank of P;

corresponds with the rank defined in Section 5.6.

Figure 6-4 illustrates the remote communication channels between the job
scheduler and the instances of the monitor process that run on the leaders for the setup in
Figure 5-5. The job scheduler schedules the iterations to the instances of the monitor
process that run on the leaders. As before, the job scheduler communicates iteration and
termination signals to the instances of the monitor process that run on the leaders. The
instances of the monifor process that run on the leaders communicate the execution
statistics of the iterations and iteration requests to the job scheduler. The execution of
each iteration that s scheduled to the leader of sub-cluster [replicates the parfitioned
program once on sub-cluster [[;. The task scheduler nmning on the leader schedules the
slave proeessors in [1o the tasks in the partitioned program. The diagram in Figure 6-5
illustrates the remote communications between the task scheduler running on the leader
Py « T, and the non-leader slave processors in T'), where I'; is sub-cluster | in the
diagram depicied in Figure 6-4. Figure 6-5 also illustrates the IPC between the task
scheduler and the worker process. The remote communications beiween the task
scheduler and the mstances of the monitor process running on the non-leaders in [, are
achieved via slave-slave communication channels. However, the IPC between the task
scheduler and the worker process is achieved via shared memory. For each task that is

scheduled to a slave processor in I'y, the task scheduler communicates the task index and

63

the locations of the data that the task needs to begin execution. In either case, the worker
process running on the leader or the instance of the monitor process running on a non-
leader communicates task execution statistics and task requests to the task scheduler.
When all tasks have been executed, the task scheduler sends the termination signal of

type 11 to all requesting slave processors in 1.

l Sub-clil_slcr I }

Monor Provess 1
. (Leader)

Sub-cluster 4 - Sub-chuster 2

‘ Monitor Process 13 l } Job { ‘ Monitor Process 13 .";
(Leader) <:::> Schedaler <:‘l‘> ¢L.eader) ¥] f

Monttor Process 13
(Leader)

(a)

teration numbers,
{ermmation signal

Job ’:::D’ Monutor Process 13]
Seheduler m (Leader)

ieralionexesnlion stabistics,
1teiation numbers

(b)

Figwe 6-4. {a) Remote Communication between Master and Leaders (b) Messages

passed between Job Scheduler and Monitor Process on Leader

04

Monitor
Prouvess 2
(Non-Leader)

[} .
J\} Leader }

e T |
Fask Schednler / I Shared r Worker
(Moniter Procuss 1) /\r_\/ [Memoery ‘ ou,ss

|

Monilor Monitor
Procuss 4 Provess 3
(Non-Lender) (Non-Leader)
(@
task ndhyss, task wdiues, task smic=s,
tsanumstion swal, fummnation sgual, tornunation stgial,
data lovations data lcations data lovations ;
Task Moo Task E_MM«~L > Shared [;‘_jl/ Work=r
Srheduler Provzss Suhedulzr /wa«.ﬁ—w1 | Memoey /LWW,N?W“J Provsts
(Laadar) <:) {Nen-Loadug) (Lader) L A S {Loaler)
ek uxzetition statistecs, Task wxsettion stabistius, task #xucubion statistios,
task requests task rzmpizsts tnsk rrquests
(b) (©

Figure 6-5. (a) Communication between Leader and Non-leaders in I'y (b) Messages
passed between Task Scheduler and Monitor Process on Non-Leader (c) Messages passed

between Task Scheduler and Worker Process

6.3. Process Interactions on Master Processor

The Linux operating system provides a nich source of inter-process
communication mechanisms that allow processes running on the same processor to
communicate with each other and also with the system kernel {25], [26]. Processes

ruaning on the master processor communicate via text files, shared-memory, and signals.

65

The diagram in Figure 6-6 depicts the IPCs among the processes on the master processor.
The XFace parent process and the Xdisplay process communicates via signals and shared
memory. When a job description is submitted, the Xdisplay process writes the number of
processors in the set I'T to the shared-memory inierface between the Xdisplay process and
the XFace parent process. The XFace parent process reads this value and uses if to start
the master control process. Signals are used to signal asynchronous events among the

processes in the figure.

i]

por ¥y m————— —~—

descraption Q e Job

\\\descnplwn
/ \

signals R

. 3

-t

Master Control
Process

) . T T e e i XFace Parent
Xhsplsy Provess :(>1l Shared Memory :\::> Process

——— e e — — —

/
/ tteration cxeculion

& slalus and stadsstics
r——=———= 1

terption execution
status and statsstics

Figure 6-6, IPCs on Master Processor

The Xdisplay process and the master control process communicate via ext files
and shared-memory. After the submission of a job, the Xdisplay process writes the job
description to text files. The alias names of the salve machines are writien to the file
machines. LINUX, and the remaining portion of the job description is wriften {o the file
JobDescription.txt, These mput files are read by the master control process and are used
to initiate the job. The contents of machines. LINUX are used by the MPI resources to

66

launch the master control process on the slave processors, and the master control process
uses the contents of both files during the job execution phase.

During the job execution phase, the job scheduler writes current execulion status and
statistics to the shared-memory interface between the master control process and the
Xdisplay process. The Xdisplay process reads the contents of the shared-memory and
updates the information displayed in the momtor GUI window. Synehronization of all
write and read operations performed on the shared-memories is implemented using

semaphores [26].

6.4. Process Interactions on Slave

The IPCs among the processes on each slave processor depend on the job type.
Figure 6-7 diagrams the IPCs on the slave processor in parametric and VR job
environments. The diagram in the figure portrays the communication achieved between
processes via command line arguments. For each iteration that is scheduled to a slave
processor, the monitor process spawns the application-start-up script io execute the
iteration and passes command line argumenis. The command line arguments passed are
the name of the application-start-up script, the iteration number, the configuration
number if the job type is VR-CRN, the job type, the alias name of the machine execuling
the iteration, the pathname to the application program, and the apphcation name if the
platform is Windows or program execution command if the platform 18 Linux. Therefore,
when the application start-up script starts, 1t has all the necessary information to initiate
the execution of the iteration.

The setup is slightly different for partitioned jobs. Figure 6-8 diagrams the IPCs
among the task scheduler, the worker process, and the application start-up secript. The task
scheduler uses the shared-memory interface to communicate task indices and termination
signals to the worker process. Likewise, the worker process uses the shared-memory
interface to communicate the task execution statistics and task requests to the task
scheduler. As usual, signals are used to handle asynchronous events between the task
scheduler and the worker process. The worker process writes the remote locations of the

data thai are needed io start the execution of the task to a shared text file interface. The

67

worker process then spawns the application start-up script to execute the task, passing the
following command line arguments: the name of application start-up script, the iteration
number, the task index, the alias name of the slave machine, and the application name if
the platform is Windows or the task execution command if the platform 1s Linux. The
start-up script copies the data from the remote locations specified in the text file interface,
and then initiates the execution of the task.

The IPCs among the processes on a non-leader processor is illustrated in Figure 6-
9. The IPCs in the figure are as described in Figure 6-8 for the IPCs between the worker

process and the application start-up script.

K cammand line

agruments
g N

! Monitor Process [[L

Figure 6-7. IPCs on Slave Processor in Parametric and VR Jobs Environment

. i comunand lue -
s1gnais agraments I~ i
- > e i) !
?asl\ Scheduler N : Worker | . L Appheation
{Component of Pr N i i Start Seot
Momtor Process) <II::> ' Shered Memery | <IL__> oeess I \,\E Tuxt File — 1> Start-up Seap
b Y 2 data
locations logations |

Figure 6-8, IPCs on Leaders in Partitioned Job Environment

command Jing

agrumients . SR—
[1 b
; Meonitor Process P 1 "\Ppll“'"‘élu‘:?;'“"t'“l’
:{> [R I
dat.a !---—------m-----------....----I data —
locations [ocations

Figure 6-9. IPCs on Non-leader in Partitioned Job Environment

68

69

CHAPTER VI
CASE STUDIES

This chapter presents three case studies that demonstirate the features of the XFace
tool. A case study is presented for each job-type: parametric, VR, and partitioned. The
parametric case study is aimed at illustrating the speed-up in the execution time that is
achievable for the application program used in the case study. Since the VR and
partitioned job-types are extensions of the parametric job-type, the descriptions of the
results obtained for the parametric case study are applicable to the results obtained for the
VR and partitioned case studies. Therefore, the VR case siudy is focused on illustrating
that the environment the tool creates supports variance reduction under the VRTs
presented in Chapter 4. The VR case study employs variance reduction under AV. On the

other hand, since the speed-up in the 1%

dimension is the same as the speed-up in
parametric jobs, the partitioned case study is aimed ai demonstrating the speed-up in the

execution times in the 2° dimension.

The target application for the parametric and VR case studies is the student
version of the Windows-based application Arena-Version 5.00.2 [1]. At the time of this
writing, the current implementation of Arena is designed {o run sequentially on single
processors. This is also frue for other similar commercial discrete event simulation
packages. Therefore, due to the unavailability of a simulation application that supports
the partitioned feature of the tool, an example program was designed and implemented in
the C programming language {27] to demonstrate the third feature of the Xafce tool. For

brevity in the case studies, the application programs used are made very simple.

7.1. Arena Application-specific Environment

The application-specific environment the XFace tool creates for the Arena
application is described in this section. The diagram in Figure 7-1 depicts the Arena-
specific execution environment created on each slave processor to execute Arena

programs. The environment depicted in the figure is an instance of the environment

70

diagramed in Figure 3-3. The automation control program that controls the Arena
application is implemented in Visual Basic for Applications (VBA) [28]. An
implementation of WINE [29] is used to create the Windows environment that is required

to run Arena and the VBA automation control program.

I XFace Tool] I |

‘ ‘ l Arena's Object]

!] | Model |

I l I VBA Ari

I :’Aonitor Spé'ig Start-Win- | I;J> I:>| Auternation <;:J‘> o |
rocess App model tt Confrolier ‘

i Process I [Program I

|
| l | |
I MFI Layer] WINE

Linux Kernel

Figure 7-1. Arena Application-specific Execution Environment

The Arena application supports many embedded VBA events that are triggered at
various points throughout the simulation run of an Arena program (model) [1]. Each
event is handled by a unique service routine that is initiated by Arena when an event is
triggered. By default, the event service routines are void of VBA codes. VBA code must
be wriiten within each service routine if the routine is to do anything useful when it is
invoked. A brief description of the Arena-initiated VBA events that are triggered during
the model simulation run are as follows. The event RunBegin 1s inggered pnior to Arena
checking and initializing the model; the event RunBeginSimulation is triggered once after
the model is checked and initialized; the event RunBeginReplication 1s triggered at the

start of every replication of the simulation; the event RunEndReplication is triggered at

71

the end of every replication; the event RunEndSimulation is triggered at the end of the
simulation while the generated simmlation data are still available; and the event RunEnd
is triggered at the very end of the simulation run. Detailed descriptions of the Arena-
initiated events, the event service routines, and the points in the simulation run cycle
where the events are triggered are presented in | 1].

The event RunBegin allows changes to be made to the structural properties of the
modules in the Arena model before the model is checked and initialized. For each Arena
model that is executed in the environment diagramed in Figure 7-1, the RunBegin event is
used to implement the method proposed in Seclion 5.4 10 maintain the independence
among the replications. The service routine that is associated with the RunBegin event is
ModelLogic RunBegin. The VBA code implemented in ModelLogic RunBegin reads the
streams file described in Section 3.4 and sets the random number streams in the model.
The VBA code that is implemented in Modellogic RunBegin for the Arena models that

are used in the case studies is listed in Appendix B.

7.2. Parametric Case Study

The Arena model that is used for the parametric case study is iflustrated in Figure
7-2. The model is a simple single-server quening system. The Entity Creation module
creates entities arriving in the system, with inter-arnval times selected from an
exponential distribution with expected value one nunute. The Server module models the
server that services the entities. Upon entering the system, if an entity finds the server
idle, the entity goes directly into service. Otherwise, the enfity waits in a queue uniil the
server becomes available. An entily seizes the server resources at the beginning of
service, and releases them when service is complete. The entity service time is modeled
as a delay drawn from an exponential distribution with mean five minutes. An entity thai
has completed service departs the system via the Entity Disposal module.

The random number stream U’ is used to generate the entity inter-arrival times,
and the random number stream U’ is used to generate the service time delays. The
random number streams U’ and U?* are defined in the Seeds object. For each stream, the

Seeds object defines the seed value that is used to initialize the stream, and the method of

72

reinitializing the stream between replications. Arena offers four options to reinitialize the
streams between replications; No, Yes, AV, and CRN, The “No” option directs Arena not
to reinitialize the streams between replications, the “Yes” option directs Arena to
reinitialize the streams, and the “AV” and “CRN” options direct Arena to reinitialize the
streams with the AV and CRN VRTs built into the Arena application. In the case studies
that use Arena programs, the method used to reinitialize the streams between replications
is only important for VR-AV jobs in which exactly two replications are executed per
iteration. For the VR-AYV case study, the method of reinitializing the streams is set to AV,
For the other job-types, only one replication is executed per iteration. Therefore,
reinitializing the stream between replications is not applicable, so the default option “No”™
is specified.

Model 01 is setup to advance the simulation clock m real time. The simulation
stopping condition is set to stop the simulation afier 5 minutes of real time has elapsed
since the start of the simulation, regardless of the state of the system. Therefore, the

length of each replication is fixed at 5 minutes, or equivalently 300 seconds. Hence,

ideally, the sequential time Ts to execute 10 replications of Model 01 is 3000 seconds.

Seeds
1
l

;‘E‘-“‘ «ma‘.':,.,w.q.‘.-;‘% gfz.;-._.@k ey ﬂ,ﬁ ;,.‘!,._, T e ?
0o o i i L g
t Entity Creation %ﬁ-—-—-——-—-—-......._-f“ Sarvar A «; Enfity Disposal ‘g
5] i 4 :
i 3 .
ij P R ? ' it & LR :é M W-ﬁ'ﬂ'—“‘”“l’.’?:"lﬂw:’;?ﬂ'-m‘h«"H{’ﬂ.?‘?!}"

Figure 7-2. Arena Model 01

73

7.2.1, Job Description

A sample of the job description submitied for the parametric case study is
recorded in Table 7-1. The job-type indicates that the parametric job description form is
used to submit the job. The job-type directs the XFace tool to set up the parametric
environment to execuie the job. The next two lines in the job description indicate that 10
replications of the application program will be executed on the Windows platforms
created on the slave processors. The next lines specify that the target application 1s Arena,
and the application program that the tool will execute in each job run is Model 0!. One
slave processor aliased n01.vmasc.oduedu will execute all 10 replications of Model 01.
Finally, the last two lines in the job description specify the pathnames to Model 01 and
the streams file that will be used to initialize U’ and U? in each replication.

A total of fifteen job descriptions similar to the one listed in Table 7- 1 were
submitted at different times to the XFace tool, with the number of slave processors N

varying from | to 15.

Table 7-1. Parametric Case Study Job Description

Job Deseription I

Job type 1 PARAMETRIC JOB
Platform to Run Application : Wmdows

Number of Replications 10

Windows Application o ARENA

Windows Application Program : Model 01 .doe

Machines Selected to Execute the Job:
nd1 vmasc.odu.cdu

Job Input Files:
fomefjhead/Examples/param _examnple/WIN/Model(1 /Model 01 .doe
/homefihead/Examples/param_example/WIN/Model01/seeds. it

74

7.2.2. Results

The execution times of the jobs submitted to the XFace tool for the parametric
case study are displayed in the plots in Figure 7-3. The theoretical curve is a plot of the
theoretical execution times versus the number of processors N. The theoretical execution
times were computed for N =1, 2, ..., 15 and Ts = 3000 seconds using Equation (3-2).
The actual curve is a plot of the actual execution times resulting from the experiment
versus the number of processors N. A comparison of the plots reveals that the resulting
Job execution times are as expected since the actual curve closely matches the theoretical
curve. A major difference between the curves is that each data point in the actual curve is
above its counterpart i the theoretical curve. For each N, the difference between the
actual execution time and the theoretical execution time is attributed {o the overhead To
that is associated with each batch of replications that is executed on the N processors.
This overhead is attributed to the scheduling overhead, the communication overhead, and
the overhead to run the Arena application on the Windows emulator.

A plot of the overhead versus N is displayed in Figure 7-4. The overheads are
expressed as multiples of the overhead for N = 10. The overhead is minimal for N = 10,
and is approximately 1.70 percent of the sequential time Ts. This is due to the fact that
the replications are grouped into one batch; thus, only one batch setup time is
experienced. Contrastingly, the overhead is worst for N = 1 since the replications are
grouped into ten batches and ten batch setup times are experienced.

A plot of the speedup in the total simulation execution times against N is

illustrated in Figure 7-5. For each N, the speedup was computed using Equation (3-4)

with Tg {300, 10) = 3000 seconds and the parallel execution times T . (300, 10, N)

taken from the plot in Figure 7-3. As N increases from one to five, the speedup in the
execution times increases almost linearly with N, then remains constant as N increases
from five to nine, increases for N = 10, then finally fluctuates about a constant value for

N > 10. The shape of the curve in Figure 7-5 is explained as follows. For a given k and N,

Suppose p = [%J and g=kmedN. The number of batches decreases and the batch size

increases as N increases from one to five. Hence, the number of replications that are

75

executed concurrently on the N processors increases. However, the increase is not linear
because for N =1, 2, and 5, q = 0 and the processors are fully utilized, whereas for N =3
and 4, q 1s non-zero and the processors are not fully utilized. For example, for N = |, ten
batches each having batch size equal to one are created. Thus, the replications are
sequentially executed since each batch size is one. Actually, for N = 1, the tool performs
worse than sequentially executing the replications on a single processor without the use
of the tool because of the total overhead that 1s associated with the ten batches. As a
result, the speedup for N = 1 is less than one. However, for N = 2, the replications are
executed concurrently in five baiches having size equal to two. The effect is a reduction
in the total execution time of the ten replications by almost a half. Hence, the speedup in
the total execution for N = 2 almost doubles, achieving a value that is a little less than
two. For N = 3, the replications are executed concurrently in four batches, with the first
three batches having size equal to three and the last batch having size equal to one.
During the execution of the batch with size one, two of the three processors submitted to
execute the replications are not used. Hence, the speed-up in the total execution time for
N =3 is not three-fold. The case for N = 4 is similar to the case for N = 3, For N =5, the
replications are executed concurrently in two batches of 5, thus, the speedup achieved is
almost five-fold. Now, for N between 6 and 9, inclusively, the replications are executed
concurrently in two batches that are of different sizes. During the execution of the first
batch, N replications are executed concurrently. However, only q replications are
executed concurrently in the second baich, and (N — q) processors are idle. Therefore, the
speed-up in the total execution time remains constant for N = 5 to N = 9. Finally, for N =
10, the replications are executed concurrently in one batch of size 10, which results in the
maximum speedup in the total execution time. For N > 10, the excess (N — k) processors

are idle duning the execufion of the replications; hence, the speedup remains constant.

In general, the dependence of the speedup in the job total execution time on the
number of processors will be similar to that displayed in the curve in Figure 7-5.
Furthermore, the application most efficiently utilizes the N processors submitted to

execute the job when N divides k evenly.

76

Tphsec

4009
3500
7009
oo

B 8 10
WNumber of Processors (0D

@ - - Theoretical ——@=—— Actual I

Figure 7-3. Plots of Theoretical and Actual Execution Times vs. Number of Processors

Overhead

8.00000

6.00000

4.00000

2.00000 4

0.00000

4

] 8 10

Pumber of Processors (1)

14

Speedug

10.60

.00

6.00

4.00

2.00

LY

6 8 1o

Number of Provessors (V)

Figure 7-5. Plot of Speed-up vs. Number of Processors

77

7.3. Variance Reduction under AV Case Study

The model used for the VR-AV case study is shown in Figure 7-6. The model is
also a single-server system. The server is modeled with Seize, Delay and Release blocks.
The inter-arrival times of the entities entering the system and the service times of the
server are generated from exponential distributions with means of two minutes and four
minules, respectively. The maximum capacity of the queue in the system is set at 100
entifies. The Count block is used to count the number of entities that have entered
service. The simulation is stopped after the one-hundredth entity entering the system
begins service. Thus, a total of 100 delays are observed in the queue at the end of each
replication. The Reports and ReportLines blocks are used to write the average of the 100
delays experienced in the queue for each replication to the report file “Avg Delays In

Queue,” and the finish time for each replication to the report file “Replication Finish

M Exd
Times.
Seeds ! | Covmlers I I Repotts Regorlines
B Selptd o Feplicardon St h e 2 Feiarzalnilot:i Thae
Ay Debm e Aoy Dotk Dyiocwrie
“ﬁq”"u.e.m.wqm.. g . e i
;- EnftyDispasal |
fx Erthy Crestion %_“-—-—i Queve Selze Courd Delsy +—o Releaze ; yOsposal
H 5 i

Pttt g rke-,gnefsﬁ LETRE: SO Felaed Coenl EeFt ol A Bt ot o

<t TR S)

Figure 7-6. Arena Model 02

The two streams U’ and U? that drive the simulation of the model are defined in the
Seeds block. During the simulation, U' is used to generate the inter-arrival times and U?

is used to generate the service times. Two sets of experiments are conducted. In the first

78

experiment, the model is executed using the parametric feature of the XFace tool. This
version of the model is Model 02-a. Model 02-a is replicated 100 hundred times. Thus,
100 hundred average delays in queue, X;, X3, ..., Xjp are observed. In the second
experiment, the model 15 executed using the VR feature of the XFace tool, and the AV
VRT described in Section 4.3 is applied to the simulation. This version of the model is

Model 02-b. One hundred paired replications of Model 02-b are executed, constituting a

total of 200 replications. In the first replication of each pair, the random numbers U! and
U; are used to generate the inter-arrival and service times, respectively, while 1 - Ul and

1-U; are used in the second replication. Thus, 100 pairs of average delays in queue,
(Xl Xz) (X1 X?‘) (Xl x?) are observed, where X! and X7 result from the first
1A P22)7 M0 100) >))

and second replications of each pair, respectively
7.3.1. Job Description

Two job descriptions are submitted to the XFace tool at different times. The job
description submitted in the first experiment is listed in Table 7-2. The job is submitted
as a parametric job. A total of 30 processors are submitted to execute one hundred
replications of Model 02-a. The job description submitfed to the tool in the second
experiment is listed in Table 7-3. The job 15 submitted as a VR-AV job, and a total of 30

processors are also submitted to execute 100 replications of Model 02-b.
7.3.2. Results

The 100 average delays in queue obtained from the first experiment are allocated
into 10 equally spaced bins. The bin contents are plotted in the histogram in Figure 7-7.
Clearly, the 100 average delays have a normal distribution, agreeing with the Central
Limit Theorem [20]. Therefore, confidence intervals can be constructed about the sample

mean of the 100 average delays. The data summary of the experiment is as follows:

Table 7-2. Model 02-a Job Description

Fob Pesuription

Tol: type PARAMETRIC JOB
Paltform 1o Run Appheation . Wunlows

Number of Repheations 1060

Windows Apphuation ARENA

Windows Applivation Program

Machates Selected to Exovuts the Job

201 ymase oda edu
102 vmasc odu edu
104 vruase odu edu
195 vmass odu edu
186, vmase odu.sdu
n67 vosase odu.edn
10¥ vmase odu edu
109 ymase.odu. edu
010 vmase odu ey
ail vmirse ode edu
niZ vmase.odn.edu
ai3 vmase odu edu
nl4 vmase oda edn
11 5 vmase odu edu
n}6 vmass. odu.edn

Job Input Files

ul 7 vmase.odu eidu
nt¥ vmase odue. odu
nl®vmnpse odu edi
u2Gymass.odiedu
u2l vaase odu edu
u>2 vmase odu cdue
na3 vaase.odu edu
124 vmase odu edu
nes vaass ody ede
126 vriRse.oda edu
nZ7 vaase.odu edn
n28 vmasec odu edn
122 vmase odu edu
130 vmase odu vde
n3i vaase odu edu

Model 02-z. dos

Momefjhead/Exampleshr_example/AViModel 02-afdodet 02-a doe
Mhomehhead/Examplesfer_example/AV/Model 02-akseeds txt

Table 7-3. Model 02-b Job Description

Job Dstription

Job type

VR-AV JOB

Paltform to Run Apphcation Windows
Number of Pawred Replications - 100

Windows Application

Windows Application Program -

ARENA

Machines Selected 10 Execute the Job

8l vmase ody edu
nG2 vmase.odu edu
al4 vmasc odu edu
005 vmase odu. cdu
n06. ¥mass.odue. cdu
n07 vmasc odu edn
n¥ vmase odu. edu
200 vmasc.odu edu
r1D vmase odu cdu
nll vmase.odu edu
012 vmasc odu.edu
113 vmass odu cdu
ni4 vmase odu cdu
nl3 ymass odu edu
nig.ymasc odu.cdn

Job Input Files

/homefhend/Examplesir_example/AVModel 92-afModel 025 doe
Momeshead/Examplesir_sxample/AV/IModel 02-a/seeds 1xt

ni7 vmase odu edu
RIS vmase odu edu
nl9 vmase odu edu
120 vmase odu edu
n2} vmase.odu edu
n22 vmasc odn exin
n23 vmasc odn vdu
n24 vimase odu edu
n2S vmasc odu edu
n26 vmase.odu edu
n27 vmase odu edu
n28 vmasc odu edu
n29 vmasc odu edu
n30 vmase odu edu
n3i vmase edu edu

Model 92-b doe

79

80

Number of Average Delays Experienced in Queue = 100

Min Average Delays Experienced in Queue = | 44694
Max Average Delays Experienced in Queue = 194,804
Sample Mean = 102.656
Sample Variance =869.342
95% Confidence Interval =[96.806, 108.506]
Half-width = 584975

Thus, if 100 sets of experiments were conducted, it can be claimed with 95% confidence
that the sample mean obtained in one of the experiments chosen at random will be
contained within the interval [96.800, 108.506].

Figure 7-7. Model 02-a Average Delays

-

§
The average X,= ~‘—2----~’- of the average delays observed in each paired

replication in the second experiment 1s computed. The 100 X;’s are allocated into 10

equally spaced bins. The bin contents are plotied in the histogram in Figure 7-8. The
data summary of X;’s is as follows:

31

Number of Average Delays Experienced in Queue = 200

Number of X;’s =100

Min Xj =78.3182

Max X = 124.857

Sample Mean = 100.425

Sample Variance = 101.762

95% Confidence I1terval =[98.4239, 102.427]
Half-width =2.00141

Figure 7-8. Model 02-b Average Delays

The sample variance of the average delays in the second experiment is much
smaller than the sample vanance of the average delays in the first experiment. The
reduction in variance is about 88%. This confirms that applying AV VRT in Model 02-b
reduces the variance of the average delay in queue. The reduction in the variance of the
sample mean 1s also reflected in the 95% confidence interval. If one hundred expenments
were conducted, it can now be claimed with the same 95% confidence that the sample

mean obtained in an experiment chosen at random will be contained within the interval

82

198.4239, 102.427]. The fact that the half~width of the 95% confidence interval in the
second experiment is less than the half-widih of the 95% confidence interval in the first
experiment confirms greater precision in the sample mean obtained in the second
experiment. That is, the sample mean obtained in the second experiment is closer to the
{rue mean.

To further illustrate the variance reduction achieved under AV, the plots of the
one hundred average delays observed in both experiments are displayed in Figure 7-9.
The plots reveal that the average delays obtained from Modej 02-a are more dispersed

about the true mean than the average delays obtained from Model 02-b.

A Nodel 02-b Average Delays m Model 02-a Average Delays }

Figure 7-9. Comparison of Average Delays observed in Model 02 (a) and (b)

7.4. A Partitioned Case Study

The purpose of the case study described in this section is fo demonstrate the
speedups that are achievable by executing one replication of Model 03, shown in Figure
7-10, on sub-cluster [contaming m = 1, 2, and 3 processors. In the case study, little
emphasis is placed on the structural properties of Model 03; the model is viewed from a

very high level of abstraction. Therefore, each sub-model m Model 03 is viewed as a

83

black box. Model 03 models a production line that manufactures widgets. The widgets
are manufactured from three parts, Part A, Part B, and Part C. The Create Paris sub-
model creates the three parts and forwards data describing each part to the appropriate
Process Part sub-model. Each Process Part sub-model processes the part and forwards it
to the Merge Parts sub-model. The Merge Parls sub-model merges the parts when all
three parts are available. The intricate internal workings of the sub-models are irrelevant
to the case study. Instead, the partial simulation times of the sub-models are the important
aspects in the case study. Therefore, with respect to Model 03 details, it is only assumed
that the random numbers in the simulation are controlled using the proposed method in

Section 3.4 to gnarantee independence in the results.

Process Part A submodel '———

Create Parts submodel Process Pad B submodel Merge Parts submodel

Ll

Process Part C submodel

Figure 7-10. Model 03: Simulation Model of Production Line

Suppose Model 03 is setup so that the simulation is advanced in real time.
Furthermore, suppose the simulation stopping condition is triggered by an internal event
that 15 not time dependent so that the replication time of the model is random. For
simplicity of the case study, assume that the partial times to simulate the sub-models in
Model 03 are random, and that these partial times are uniformly distributed as follows.
Process Part A partial simulation time is uniform on the interval [3, 5] minutes; Process

Part B partial simulation time is uniform on the mterval [1, 5] munutes; Process part C

34

parfial stimulation time is uniform on the interval {1, 6] minutes; finally, Create Paris and
Merge Parts partial simulation times are both uniform on the interval [1, 3] minutes.

This level of abstraction makes sense if the general structure of simulation
applications depicted in Figure 7-11 is constdered. A typical application such as Arena
presents the user with a graphical user-interface that allows the user to describe the model
using graphical modules, objects, and blocks. The graphical representation of the model
1s translated into a high-level simulation language code, such as Siman [30] in the case of
Arena, which is then compiled and linked with libraries to generate the model executable
code, Therefore, the level of absiraction s justified if it is assumed that the sub-models in
Model 03 are translated into high-level codes that can be executed in parallel m a
dataflow strategy.

Applicaton Front End of Modei

o e
| Transiater l
<l L

High-levei Simutation Language
GCode Rpresentation of Modet

~ b

Compiler }

Applicaten Bask End J-. }7

Object Code R presentation of
Medeal

L@ | {}]
< 5

Exetutabte Code R presantation
of Model

Graphical Representation l

Libraries

Figure 7-11. General Structure of Simulation Applications

85

Model 03 was carefully developed so that the computations of the model can be
easily partitioned into tasks. The tasks are as follows: The computation of the Create sub-
model 15 considered task Tp, the computations of the Process Part A, B, and C sub-
models are considered tasks Ty, T, and T;, respectively; finally, the computation of the
Merge sub-model is considered task T, As a result, the precedence task graph
representation, depicted in Figure 7-12, is very similar to the stimulation model. It should
be noted that this was done solely to simphify the case study, and that in general the
computational model used to represent the computation units of the simulation model will
be independent of the structure of the simulation model. To make the case study
tractable, the mean computation fimes of the sub-models are used for the tasks weights.

Each replication of Model 03 is executed on sub-cluster I'; — T defined in Section
5.1. The mean theoretical times to execute one replication of Model 03 on I';’s containing
one processor, two processors, and three processors are 14.5 minutes, 11.5 minutes, and 8
minutes, respectively. These are the times to execute the DAG in Figure 7-12, and are

estimated using the Ghant Charis in Figure 7-13.

Three sets of experiment were conducted in which the number of processors, m;,
in I varied from 1 to 3. In the first experiment, each I'; had size m = 1, and the number of
sub-clusters, n, in I varied from 1 to 10. For each value of n, Model 03 was replicated 10
fimes, The second and third experiments were similar to the first except that each I'; had
size m = 2 in the second experimeni, and m = 3 in the third experiment. In the
experiments, the tfasks were implemented in the ANSIstandard C programming
language. The C codes that implement the tasks were very simple. Task T, and T, were
both implemented with delays drawn from a uniform distribution on the interval {1, 3]
minutes. Similarly, tasks T;, T, and T; were implemented with delays drawn from
uniform distributions on the intervals [3, 5] minutes, [1, 5] minutes, and [1, 6] minutes,
respectively. The C implementation of the PMM Lmear Congruential Generalor
(PMMLCG) in [4] was used to generate the random sequence U. The unique random
streams U', U%, U, U*, and U° were used to generate the uniform delays in Ty, Ty, T2, T,

and Ts, respectively.

Figure 7-12. DAG Representation of Moedel 03

(b}

key:
B Processor is idle
Processor 1s busy executing task T,

Figure 7-13. Mean Times to execute DAG on {a) One processor, (b) Two processors,

{c) Three processors

86

87

7.4.1. Job Description

A sample of the job descriptions submitted to the XFace tool in the experiments is
listed in Table 7-4. The items in the job descriptions are as follows. The total number of
1asks in the partitioned program is five. The partitioned program will be replicated ten
times on the native Linux platform running on the processors i1 T'i. The job execulion
command that executes the tasks executable files is T*, where * will be replaced with 0,
1, 2, and 4 by the XFace tool. The maximum number of processors that is allowed in ['; is
two, The processor aliased n01. vmasc.odu.edu is the only processor submitied to execule
the job. Since only one processor is submitted, only one sub-cluster is created. Finally, a
set of job files 1s submitied for each of the five tasks in the partitioned program. The job
files are the task executable, and the seeds {ile that will be used to initialize the random
number streams in each task. The DAG representation of Model 03 1s submitted as the
text file listed in Figure C-1 in Appendix C.

For the three experiments, a total of 30 job descriptions sinular to the one
depicted in Table 7-3-1 but with varying number of slave processors N were submitted at
different times to the X¥Face tool. In all three experiments, the number of sub-clusters n
varied from 1 to 10. However, the number of processors N varied from I to 10 in the {irst
experiment with m = 1, 2 to 20 in the second experiment with m = 2, and 3 to 30 in the

third experiment with m =3,

7.4.2. Results

The execution times pbtained from the experiments are plotted against the
number of sub-cluster (n), and are displayed in Figures 7-14, 7-15, and 7-16. The curves
in each figure are the theoretical mean execution times versus n, and the actual execution
times obtained in the experiments versus n. The theoretical mean execution times are
computed using Equation (5-1) forn =1, 2, ..., 10, and the theoretical mean replication
times Tr{m) for m = 1, 2, and 3. The theoretical mean replication times are Tg(l) = 14.5

minuies, Tr(2) = 11.5 minutes, and Tg(1) = 8 minutes. These times are estimated by the

88

Ghant Charts in Figure 7-13. The curves in each figure confirm that the actual execution

times closely match the theoretical execution times.

Table 7-4. Partitioned Case Study Job Description

Job Description

Job Type . PARTITIONED JOR
Number of Taske 5

Platform to Run Applivation : Linux

Number of Replications [

Job Execution Command : T*

Maximum Machines Per Subchuster @ 2

The machines are subulustered as follows:
Suboluster ¥:
101 . vmasce.oda.vdu

Task 0 Job Files: Task 3 Job Frles:

Mhom c/jhivad/Examples/part example/job/T0 /hom e/jhead/Examples/part_example/job/T3
Mrom efjhead/Exam ples/part_exam ple/job/seeds? /hom e/jhead/Exam ples/part_example/job/seeds3
Task 1 Job Files: Task 4 Job Files:

Mom c/jhead/Exam ples/part_exam plefjob/T1 /hom efjhead/Examples/part_example/job/T4

flrom efjhcad/Exam ples/part_cxample/job/sceds] /om e/jhoad/Exam ples/part_example/job/spedsd

Task 2 Job Files:
Mom s/fhead/Exam ples/part_exam ple/job/T 2
Mmom v/ihead/Examples/part_example/job/sceds?

For each n such that ¥ % n » 0, the number of idle processors increases as m
increases from [to 3. For example, for n = 3, the replications are batched into four

batches. However, iwo of the three sub-clusters are not used during the execution of the

last baich. Therefore, during the execution of the last batch, (2 x §)=2 processors are
idle when m = I, (2 x 2)=4 processors are idle when m =2, and (2 x 3)=6 processors

are idle when m = 3. For each replication, the mean utilization of each processor in a

89

busy sub-cluster is estimated from the Ghant Charts in Figure 7-13. For m = |, the only
processor P; is fully utilized. For m =2, the ulilizations of P, and P are 100% and 26%,
respectively. Finally, for m = 3, the utilizations of Py, Pz, and P; are 100%, 37%, and
32%, respectively.

Figure 7-17 illustrates a comparison of the actual curves form =1, 2, and 3. For
each n, the execution time for m = 3 is the smallest and the execution time for m = 1 is
the Iargest. These observations reveal that the time to execute one replication of Model

03 decreases as the size of the sub-clusters increases from 1 io 3. For each n, the
speedups per replication ., (k, n,m) were computed using Equation (5-3) for k = 10

and m = 2, 3. The plots of the speedups per replication versus n are exhibited in Figure 7-
18. The average speedup per replication for m = 2 with respect to m = 1 is 1.25, and the
average speedup per replication for m = 3 with respect to m = | is 1.68. Therefore, on the
average, each replication in the second experiment was executed [.25 times faster than its
counterpart in the first experiment, and each replication in the third experimeni was
executed 1.68 times faster than its counter part in the first experiment. These speedups
appear small at first glance. However, the total speedup in the second experiment is
1.25 x 5, {k,n), and 1.61x 7, (k, n), where 7,,(k, n) is the speedup resulted form
using n sub-clusters to execnie the k replications.

The total speedups, t{k, n,m), in the execution times were computed using
Equation (5-5). Figure 7-19 displays the total speedups in the execulion times for the
three cases m = 1, 2, 3. The general shape of the curve in the figure is the same as the
same as the shape of the speedup curve in Figure 7-5. As expected, the speed-up curve
for m = 3 is shifted further along the positive speedup axis than the speedup curve for m
= 2, which is in tum shified further along the positive speedup axis than the speedup
curve for m = 1. The general shape of the curves results from the speedup m the

execution times in the first dimension, t,,(k, n), and the displacement in the three

curves results from the speedup in the execution times in the second dimension,

Ty, (K, 0, m).

Te (5€0)

Number of Sub-clusters (n}

- « % - -Theoretical ——Actual]

Figure 7-14. Execufion Times versus Number of Sub-clusters form = |

Number of subclusters {n)

~ - #% - ~Theoretical —— Actual [

Figure 7-15. Execution Times versus Number of Sub-clusters form =2

Number of subclusters (n}

- - -M- - - Theoretical —— Actual

Figure 7-16. Execution Times versus Number of Sub-clusters form =3

90

Number of Sub-clusters {n}

[tmmm=1 —em=2 —h—m=3 |

Figure 7-17. Companson of Actual Curves form=1, 2, 3

Replication

Speedups per

0 2 4 5] 8 10 12
Number of Sub-clusters {n}

[~#—m=2 —tm=3]

Figure 7-18. Speedups per Replication versus the Number of Sub-clusters

15.00

10.00

5.00

Total Speedup

0.00

Number of Sub~clusters (n)

[—e—m=1—#—m=2 —4—m=3|

Figure 7-19. Comparison of Total Speedups form=1, 2, 3

92

CHAPTER VIII
CONCLUDING REMARKS

The three case studies described in Chapter 7 illusirate the capabilities of the
XFace tool. The parametric case study reveals that the use of ten processors to execute
ten replications of the sample program resulted in a speedup of over eight times the
sequential execution time. The speedup is not 10-fold due 1o overhead. The dominant
contributors of the overhead are the times to startup and execute the application on the
emulated platform. In the environment depicted in Figure 3-3, the awtomation control
program must be restarted at the beginning of every iteration that is executed on
processor P However, it is not necessary fo restart the application program in every
iteration. At the beginning of the first iteration that is executed on processor Pj, the
automation control must start an instance of the application since one will not exist.
However, in the subsequent iterations that are executed on P;, the automation controller
should use the running instance of the application to avoid restarting it at the beginning of
every iteration. Additionally, to decrease the overhead associated with executing the
automation program, the automation program should be a lightweight process. That is, it
should not do more than is required of it. The less it has o do the faster it will run. To
illustrate the overhead invelved with starting up an application on the emulator, a small
experiment was conducted using Arena. In this experiment, a simple automation program
was developed. The automation program simply started an instance of Arena on the
emulated platform, then immediately closed the Arena instance. Therefore, the execution
time of the automation program approximates the time fo start an instance of the Arena
application on the emulated platform. The execution of the program was timed, and 55
execution fimes were taken. The average of the execution times is 8.20 seconds. If the
execution times of the replications are on the order of a couple seconds, an application
startup time of 8.20 seconds will have a severe impact on the replication time. Thus, the
speedup achieved, if any, will be very small. This is why 1t was stated clearly in the
opening section of Chapter 1 that the tool works for simulation that takes a long time to
complete. The impact of this relatively large startup time on the total execution time of

the simulation can be lessened if the application is started once, only in the first iteration

93

that is executed on processor P;. If it is assumed that at the beginning of the job execution
phase, an iteration is started on all N processors simultaneously, N <= k, then all
replications in the first batch will experience the startup {ime concurrenily. As a resuit,
the overall effect on the total execution time is as if the application had started once.
Thus, provided that the automation program is a lightweight process, the overhead to nin
the application on the emulated platform is greatly reduced if the application is not

restarted in every iteration.

The case studies reveal that speedups are achievable for all N > 1. However, the
processors are only fully utilized for some values of N. In particular, for given k and N,
the processors are best utilized when N <=k and N divides k evenly. For these cases, all
processors will be utilized during the execution of every batch of replications. However,
the utilization will not be 100% in all cases, If the replication lengths are fixed, then all
replication should take approximately the same time to complete. Thus, if all replications
within a batch are started simultaneously, the processors will be almost 100% utilized.
However, the stopping condition of the simulation could be triggered by an event in the
simulation that is not time dependent, such as stopping the simulation after 100 cusiomers
have completed service. In the latter case, the replication lengths are samples from a
random process, because they are mappings of the random input processes driving the
simulation. As a result, during the execution of a batch, some replication will take longer
than some. Therefore, some processors will be 1dle while the others are busy completing
the longer replications in the batch. To counter this problem the scheduler schedules a
replication when a processor becomes available. With this heunstic, the replications are
executed in batches of random sizes if the replication length is random. However, the
executions of the batches overlap. Therefore, under this scheduling heuristic, all
processors are kept busy as long as there are replications remaining to be executed.

Processors are only under utilized when the final batch of replication is executing.

For a given program that is represented by the DAG model, the speedup per
replication depends on the structure of the DAG, and the number of processors m used to

execute each replication, assuming that the DAG model reflects the most efficient way to

94

partition the program for the architecture at hand. Therefore, in some programs, the
speedup per replication will be significant, while in others it will not be very significant,
However, it should be remembered that the total speedup is now the product TipTyp.
Therefore, the significance of tp depends on t;p. If 11p is large, then even a small t;p
will result in a large total speed-up. For the handerafted example used in the third case
study, T2p of 1.67 was achieved using three processors to execute each replication, which
is not very significant. However, because 1,5 was fairly large, the resultant speed up was

also huge.

8.1, Future work

This section highlights the future work that could be done on the XFace tool.
Currently, support for a Windows-based application is added to the XFace tool by editing
the start~win-app script, and entering the execution command that starts the automation
program. In the future, support for a Windows-based application could be added from the
front-end GUI, thus making the start-win-app script transparent to the user. This could be
achieved by adding a backend XFace process, script editor, thai edits the script, and a
dialog box, Add New Application Support. The Add New Application Support dialog
could be lannched from the click of a button or meny item in the tool’s front-end GUI
The Add New Application dialog will prompt the user for the information to be entered
in the script. Upon closing the dialog, the script editor 1s started and passed the
information entered via shared-file. The script editor edits the script and then exits
execution.

The implementation of the task-scheduling algorithm is such that busy processors
are interrupted during task execution to forward data to remote processors that are
preparing to execute dependent tasks. In the future, a new implementation of the task-
scheduling algorithm could be realized. In this implementation, one processor in a slave
cluster-node could be dedicated for communicating dependent data and the others
dedicated for execufing the tasks. The setup on a slave cluster-node is illustrated in
Figure 8-1 for the case when each cluster-node contains 2 processors. As deseribed in

Section 2.2, the MPI daemons enable communication among remote processes. The MPU

95

process 1 is an instance of the master confrol process, and the MPI process 2 is dedicated
to forward dependent data fo remote processors. MPI process 1 and MPI process 2 will
never communicaie because the dependent data is already local to the dependent task.
Thus, if T; and T; are tasks such that T; depends on T; for data, and T; and T are both
executed on Py, there is no need to forward the dependent data since it is already
available 1o T;. However, if T; was executed on P; and T is later executed on some
remote processor Py, the dependent data must be forwarded to Py, before the execution of

T, begins.

dependency dependency
MPL data orared | data MPi \-
Process . ared | (- Process Daeman
<}:{> ~=s Memary <L1;J1>
Processor P, Processor P,

Figure 8-1. Future Setup on Slave Cluster-node

The MPI process 2 acts as an XFace daemon that only listens for incoming data
requests and forwards the dependent data to the remote processors generating the
requests. Data requests are sent by remote XFace daemons. Thus, the XFace daemon
(MPI process 2} in Figure 8-1 only communicates with other remote XFace daemons. As
a result, the execution of task T; in the figure 1s not preempted when the dependent data is
forwarded to remote processors. However, since P, is timed sliced among MPI daemon [,
MPI process 1, and task T;, the execution of task T; will be preempted to execute the MPI
daemon and the MPI process. To prevent this, the MPI daemon and the MPI process are
blocked {put 1o sleep) after the execution of task T; begins, and are awakened at the end

96

of task T; execution. This could reduce the execution time of tasks that are executed on
each slave processor.

For the case when each cluster-node contains p processors, either of the designs n
Figures 8-2 and 8-3 could be implemented on each slave cluster-node. In the diagram
depicted in Figure 8-2, tasks executed on the local processors write dependent data to a
common shared-memory. All local executing tasks contend for the shared-memory. As
result, the task execution times will be increased when the shared memory 15 highly
contended. The diagram depicted in Figure 8-3 solves the shared memory contention
problem by allocating dedicated shared memories to the tasks. However, the
implementation of this design will require many more shared memory locations than the
implementation of that in Figure 8-2. Therefore, the trade-off involved here is that more
shared memory locations must be uiilized to counter the share memory contention
problem. Thus, if memory is available in abundance, the design in Figure 8-3 is chosen
over that in Figure 8-2.

The task scheduler should be prevented from scheduling tasks to processors that
are dedicated for data forwarding. This could be implemented by excluding all the
processors that are dedicated for data forwarding from the set the [1. Consequently, the
sub-clusters formed from the processors in I will not contain processors dedicated for

data forwarding.

MP|

Process MRy

Daemon <JI:J1> Pm‘;ess TaskT)
1) .

N

Processor P,

MPi i
Process
p-1

Processor P, _,

Figure 8-2. Future Setup 1 on Slave Cluster-node

dependency
MPI data ;- -,
Process p,'.”,'cls w5 Shared
: NS
Processor P, dep«:;;f?cy L
MPI MP1
Process Daemon
_ oss) S\
) dependencyf,-"l
data - Processor P,
WP
@ Process
p-1
Processor P, _,

Figure 8-3. Future Setup 2 on Slave Cluster-node

98

REFERENCE

[1] Kelton, W.D., Sadowski, R.P., and Sadowski, D.A. “Simulation with Arena,”
McGraw-Hill, 1998,

[2] Kavi, KM, and Shirazi, B. “Dataflow architecture: Are dataflow computers
commercially viable?,” IEEE Potentials, Ociober 1992, pp. 27 -30.

[3] Brailey, P., Fox B. L., and Schrage Linus E. “A Guide to Simulation, 2" ed,”
Springer, 1987,

[4] Law, AM, and Kelton, W.D. “Simulation Modeling And Analysis, 3" ed.,”
MeGraw-Hill, 2000.

{5} Nelson, B.L.. “Robust Comparisons Under Common Random Numbers,” ACM
Transactions on Modeling and Computer Simulation, July 1993, vol. 3, no. 3, pp. 225-
243,

[6] Becker, 1.D., Sterling, T., Savarese, D., Dorband E J., Ranawak, A.U., and Packer,
V.C. "Beowulf: A Parallel Workstation for Scientific Compulation,” Proceedings of

International Conference on Parallel Processing, 1995.

17] Ridge, D., Becker, D., Merkey, P., and Sterling, T. “Bewulf: Hamessing the Power of
Parallelism in a Pile-of-PCs,” IKEE Proceedings on Aerospace Conference, 1997, vol.2,
pp. 79-O1.

[8] Castagnera, K., Cheng, D., Fatoohi, R., Hook, E., Kramer, B., Manning, C., Musch,
J., Niggley, C., Saphir, W., Sheppard, D., Smith, M., Stockdate, 1., Welch, S., Williams,
R., and Yip, D. “Clustered Workstations and their Potential Role as High Speed Compute
Processors,” NAS Computational Services Technical Report RNS-94-003, NAS Systems
Division, NASA Ames Research Center, April 1994.

99

[9] Norton, C.D., and Cwik, T.A. “Early experiences with the myricom 2000 switch on
an SMP Beowulf-class cluster for unstructured adaptive meshing,” IEEE International
Conference on Cluster Computing, Oct. 2001 Newport Beach, California, U.S.A.
Proceedings, pp. 7-14.

[{10] Han G, Klenke, RH,, and Aylor, JH. “Performance modeling of hierarchical
crossbar-based multicomputer systems,” IEEE Transactions on Computers, Sept 2001,
vol. 50, no. 8. pp. 877 —890.

[11] Woodward, T.K., Lentine, A L., Fields, J.D., Giaretta, G., and Limacher, R. “First
demonstration of native Ethernet optical transport system prototype at 10 Gb/s based on
multiplexing of gigabit Ethernet signals,” IEEE Photonics Technology Letters, Aug 2000,
vol. 12, no. 8, pp. 1100 --1102.

[12] Do-Yeon, K., Sang-Min, L., Chang-Ho, €., Hae-Won J., Yeong-Seon, K. “Trends of
10 gigabit Ethernet switch development in Korea,” JEEE Pacific Rim Conference on
Communications, Computers and signal Processing, (PACRIM), 2003, vol. 02, pp. 1032
—1035.

{13] “Virtual Interface Architecture Specification. Version 1.0,” Compag, Intel and

Microsoft Corporations, Dec 1997, available at hitp:/mww.via.org.

[14] Macks, A. “Heterogeny in a Beowulf,” Proceedings of the 16th Annual International
Symposium on High Performance Computing Systems and Applications (HPCS'02),
2002,

[15] “Document for Standard Message-Passing Inferface,” Message Passing Interface
Forum, May 28, 1993,

100

[16] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. “A High-Performance, Portable
Implementation of the MPI Message-Passing Interface Standard,” Parallel Computing,
1996, vol, 22, no. 6, pp. 789-828.

{17} Beguelin, A., Dongarra, I., Geist, A., Manchek, R., and Sunderam, V. “Visualization
and debugging in a helerogeneous environment,” {EEE Computer, June 1993, vol, 26, no.
6, pp. 88-95.

{I8] Dongarra, J., Geist, A, Manchek, R, and Sunderam, V. “Integrated PVM
framework supports heterogeneous network computing,” Computers in Physics, April
1993, vol. 7, no. 2, pp. 166-75.

[19] Gropp, W., and Lusk, E. “A User’s guide for MPICH, a portable implementation of
MPL” ANL-96/6, Mathematics and Computer Science Division, Argonne WNational
Laboratory, 1996,

{20} Papoulis, A., and Pillai, §. U. “Probability, Random Variables and Stochastic
Processes, 4" ed.,” McGraw-Hill, 2002.

[21] Crane, M. A, and Iglehart, D.L. “Simulating Stable Stochastic Systems, I: General
Multi-Server Queues,” Journal of the Association for Computing MachineryVol. 21, No.
1, Jan 1974, pp. 103 -13.

[22] Sarkar, V. “Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors,” PhD Thesis, Stanford University, April 1987. CSL-TR-87-328.

23] Mazumdar, 8., Mathew R., and Leathrum, FL., “A Strategy for Distributing
Simulations for Statistical Analysis,” Proceedings of the Summer Computer Simulation
Conference (SCSC 2004), July 2004, San Jose, CA, USA, pp. 151-156.

101

[24] Kwok Y., and Ahmad, I. “Static Scheduling Algorithms for Allocating Directed
Task Graphs o Multiprocessors,” ACM Computing Surveys vol 31, no. 4, Dec 1999,

[25] Rusling, D. A “The Limux Kemnel Version 0.8-3” available at
http/Awww. tdp.ore/L DP/k/tlk-title himl.

[26] Mitchell, M., Oldham, J., and Samuel, A. “Advanced Linux Programming,” New
Riders Publishing, June 2001.

[27] American National Standards Institute, New York, NY. American National Standard
for Information Systems Programming Language-C, ANSI X3.159-1989, 1990.

[28] Getz, K., and Gilbert, M., “VBA Developer's Handbook,” SYBEX Inc., 1997

[29] “How to use and configure Wine for running Windows applications,” Wine User

Guide, available at http://www winehg.org/

[30] Banks, J., Bumeite, B., and Rose, R. “Infroduction to Siman V and Cinema V,” John
Wiley & Sowns, Inc., 1994

102

APPENDIX A
APPLICATION START-UP SCRIPTS

#/bin/sh
R B R A R R R R A R R R R R R R B R R R
Author : Jermaine Headley

Project : Thesis Research
Intplementation Date : April 6, 2004
#

start-win-app

This script is used to start the Windows Application specified in $6, and run the Windows Application
program specitied in 35. The soript creates the run directory <nn*> in the </tmp/Xiace> ditectory,

where * is the iteration number specified in the command line argument $1. The application program is
run in the </tmp/XFacefrun*> directory so that the application program wiites output files in the directory
<tmp/XFace/ran™>,

#

Command Line arguments;

30 = Name of this Script " start-win-app"

$1 = job run number

$2 = configiration number

$3 =the job type

$4 = name of slave node running this script

$5 = pathname to the Windows Application Program (inodel file)

86 = Windows Application name in all upper-case

#

R R R R R R R R H R R R R R R R R R R RN R AR
PATHNAME="thome/thead/programs/XFace”

XFACE DIR="/tmp/XFace”

STREAMSDIR="/tmp/XFace/STREAMS/"

WINE="/opt/cxoftice/bin/wine”

master="balrog vmasc.odu.cdu"

PARAMETRIC=0
PARTITIONED=2
VR_AV=3
VR_CRN=4

Define Windows Application Name Constants
ARENA="ARENA"

Command Line Arguments
node="34"

model="$5"

\Viﬁ_ﬂpp:" $6"

#

Generate the name of the nin directory, and the name of the seeds file that is scheduled with the current
iteration. For AV-CRN jobs, the iteration directory is <"run" + conliguration number + Heration

number>. Similarly, the seeds file is <"seeds + configuration number + iteration number>. For alf other
jobs, the run directory is <"run” + job run number> and the streams file is <"run" + job run numbes>.

#

Note: The blocks of codes within this section will not get executed 99% of the time this script is

invoked because the run directories were already created when the Job Loader seript was executed alter

103

the job submission. However, in the rear event one of the run directory gets deleted or was not created

we would like to catch this error because it has the potential of crashing the XFace Application

#

if test §3 = 3VR_CRN
then
JOBDIR="${XFACE_DIR}/JOB/contig$2”
RUNDIR="${XFACE DIR}/run$2$1"

#
#I run directory does not exist create it and copy the seeds file for this run
#
if test ! -4 $RUN_DIR
then
echo "creating subdirectory ${RUNDIR}”
wkdir "${RUNDIR}"
cp "SJOBDIR/*" "${RUNDIR }"

seeds file="${STREAMSDIR }streams${215{1}"
it test -e $seeds_file
then
cp $seeds_file "SRUNDIR/seeds] txt”
fi
fi

iftest $3 = $VR_AV
then
JOBDIR="${XTFACE_DIR }/J0B"
RUNDIR="${XFACE_DIR }/run$1"

#
1f the run directory does not exist create i, eopy the seeds files for this run
the application program to the run directory
#
iftest | -d SRUN_DIR
then
mkdir SRUNDIR
cp "$JOBDIR/A*" $RUNDIR

seeds filel="${STREAMSDIR }streams$1”
seeds [He2="${STREAMSDIR }streams{ expr $1 + 1'}"

if test -e $seeds_filel

then

ep $seeds_filel "SRUNDIR/seeds] . txt”
i

if test -¢ $seeds file2
then
cp $seeds file2 "SRUNDIR/seeds2.1xt"
i
fi
fi

if test $3 = $PARAMETRIC

104

then
JOBDIR="${XFACE DIR}/JOB"
RUNDIR="${XFACE DIR}/run$1”

#
i the run directory does not exist ereate it, copy the seeds file for this run
the application program to the run directory
#
it test | -d SRUN_DIR
then
mkdir SRUNDIR
cp SJOBDIR/* SRUNDIR

seeds file="${STREAMSDIR }streams$1"
if test -& $seeds_file
then
cp $seeds_file "$RUNDIR/seeds. txt"
fi
fi
i

#

An application that displays a graphical user-interface needs a display. Therefore, set the X DISPLAY
variable so that if the Windows Application requires a display to run one is available. Note that this

display is only availabe it the X server is running on $node under the user login.

#

export DISPLAY=8node:0.0

#

#

Change to the mn dierctory specified by $RUNDIR so that the results of the replications are saved in the
this directory.

#

cd FRUNDIR

#***t*****#**************************#

#
ADD CODE SPECIFIC TO EACH WINDOWS APPLICATION BELOW
#

#*******#*#******k*****#*************#************#******************************#***#

CODE TO EXECUTE ARENA APPLICATION PROGRAMS

F M oI sk

This section of code nums only Arena Version 5.03 application programs.

The name of the automation controller 1s a VBA application calied “run_arena_model.exe.” T is stored
in the directory <~/XFace/windows>. The run_arena_model.exe program replicates the Arena program
specified in the file model.ixt x times. The Arena program and the number of replications x are specified
on e first and second lines in model.txt, respectively.

#

The windows emulater used to run the Arena application and the automation program 15 a commercial

105

implementation of the “WINE™ tool by CodeWeavers. The CodeWeavers Professional 3.0 sofiware
must be installed at the location </opticxotfice/bin/wine>.
#
if test $win_app = SARENA
then

echo "Running run $1 of the Arena Application Program $model on $node...........

#

The file model.txt is the interface between the XFace too] and the automation controller. It contains the
name of the Arena model and the number of replications x that the model must be replicated. Thus, i

must be copied from the job directory <$JOBDIR> to the run directory <$RUNDIR> so that the

autemation controller that automates the Arena application can know the name of the Arena mode] to
open when it starts the Arenn application, and the number of times the Arena model must be

replicated.

#

cp "$JOBDIR/model. txt" model.txt

#

Run x replications of the Arena application program

#

${WINE} 3{PATHNAME }/windows/run_arena_model_then_quit.cxe

echo "Run $1 of the Arena Application Program $modef on $node completed...........

#

Remove files no longer needed from RUNDIR

#

rm -f "${RUNDIR }/model txt" * Backup.doe *.opw *.p
fi
#

exit 0

#1/binfsh
R R R R R R R A R R B B R R B R R A
Author : Jermaine Headley

Project : Thesis Research
Implementation Date : April 6, 2004
#

start-up-part

This script is used to start the partitioned application specified in the command line arguments $(@.
The seript creates the run directory <run*> in the </tmp/XFace> direciory, where * is the iferation
nomber specified in the second command line argument, The application s 1un in the <Amp/XTFaceun*>
directory zo that the output files are written to the directory </tmp/XFace/run*>,

#

Command Line Arguments:

#350 =Name of this script "start-up-part”

#31 = jobrun munber

#32 = taskindex

#$3 = processor name of the processor on which this script runs

106

$4 - $9 = Command 1o execute the task

A R R R S R R A R A AR B BRI B B R B R R R
XFACEDIR="/tmp/XFacel”

STREAMSDIR="/tmp/XFace/STREAMS/"

data_files="/tmp/XFace/JOB/data_{iles"

#
Parse command line arguments to the array argy
#
=0
for argument in "$@"
do
argv[$ij=$argument
Fexprdi+ 1’
done

agrv_len="expr $i- I’
job_run="${argv[0]}"
task_index="${argv[1]}"
Iocal _machine="${argv[2]}"
app="8§{argv[3]}"

unset argv[0]

unset argv[1]

unset argvi2}

unset argvf3]

i

Create the run directory it it doesn't alveady exist

#

RUNDIR="${XFACEDIR }runfjob_run"

if test ! -d SRUNDIR

then
echo "creating run directory $RUNDIR....."
mkdir SRUNDIR

#
Copy the seeds file for the current iteralion and the current task
#
seeds_file="8{STREAMSDIR }streams$ {job_run)${task _index}"
cp $seeds_file "SRUNDIR/seeds${task_index} txt"

fi

#

Copy the dependency data from the processors on which the parent tasks were run,
which are specified by the data files names and Jocations in data_{iles

#

echo" "

echo " start-up-part running on $local_machine ...
echo "Recieves task $task_index of job run $job_nm...."

OLD I1F3=8$IF3

IF3=:

i=1

file=

remote_machine=

for str in “cat $data_files’

do

107

if test "$str" 1= "$local_machine" -a $i=2
then
remote_machine="8sir"
echo "copying ${file} from % {remote_machine}: SRUNDIR to ${local machine}:fRUNDIR......"
rcp "${remote_machine}:${RUNDIR }/%{file}" "$SRUNDIR"
=1
else
Ale="$str"
=exprdi+ 1
fi
done
IF8=301L.D IFS

#

Exeente the tsak if it is a valid executable file

#

if test x "${app}”

then
echo “executing the command ${app} ${argv[@]:...."
cd "${RUNDIR}”
"${app}" "${argv[@]}"
exit D

else
echo "${app} iz not an executable file.....
exit 1

h

108

APPENDIX B
AN IMPLEMENTATION OF ARENA
MODELLOGIC_RUNBEGIN EVENT HANDLER

Option Explicit
Pim SeedsModule As Arena. Module

R S R R R R R R R R R R R B B B T R R B R R
*# The function SearchSubModel() recursively searches oSubmaodel for a SEEDS element with

'# tag = "seeds”, If the SEEDS ¢lement is found, the global variable SeedsModule is assigned to the SEEDS
'# element found and the function returns True. Otherwise, the function returns False,

R e R B R R R B R O R R A R R B R R R R
Private Function SearchSubModel(oSubmodel As Arena.submodel) As Boolean

Dun index As Long

Dims As Arena.submodel

index = (

'base case - the SEEDS element is in the modules collection of oSubmodel
mdex = oSubmodel. Model Modules Find{(smFindTag, "seeds”)

If index <> 0 Then
Set SeedsModule = oSubmodel. Model Modules Item(index)
SearchSubModel = True
Exit Function

End If

"Recursive case -~ oSubmodel contains at least one submode! and the SEEDS element
'was not found. Recursively search each submodel in oSubmodel.
For Each s In oSubmodel Model. Submodels

'Exit if SEEDS element was found in s
If SearchSubModel(s) = True Then
ScarchSubModel = True
Exil Function
End If
Next

'SEEDS element was not found in oSubmeodel so return false
SearchBubModel = False
End Funetion

R R A A R R R R R A R R R R B R B R
'# The function SetSeedsValues () set the seeds value for each stream defined in the SEEDS element

'# defined in the model. If a SEEDS element, with tag = "seeds", is defined in the model, this function

'# searches for the SEEDS element. If found, it sets the seed values of the streams defined in the SEEDS

'# element with values read from the file "seeds*" stored in the working directory, where * is the replication
'# number. When the model is replicated, the streams are initialized to the new seed values set in the

'# SEEDS element.

#

'# The enixies in the sceds* files are read in as Strings. Reading in the entries as Siring allocates enough

109

"# memory to store very large number, which is very eritical for reading in very large values from the

'# seeds* tiles. The values m the seeds file are separated by commas.

ki

' Note: FFor this implementation to be of any use, the stveams from which the moedel gets random numbers
must not only be defined in the SEEDS element, but must also be hard coded in the model. Thus, for

"# example, if stream 3 js delined in the SEEDS element, and stream 3 is used to provide random numbers
"# for a uniform distribution on the interval {10 50}, stream 3 may be hard coded in an expression

'# as UNIF(10,50.3).

R R R R R R A R R A R R A R S R
Private Sub SetSeedsValues(currentReplication As Long)

Dim oModules As Arena.Modules

Dim oSubModels As Arena Submodels

Dim s As Arena.submodel

Dim found As Boolean

Dim index As Long

Dim FileNum As Integer

found = False
index=10

Tirst, search the modules collection of ThisDocument Model for the SEEDS element
Set oModules = ThisDocument Model. Modules
index = oModules Find(smFindTag, "seeds")

it index <> 0 Then
Set SeedsModule = oModules Ttem(index)
found = True

End I

Tt the SEEDS element was not found in the modules collection and ThisDocument Model
‘contains at least one submodel, then each submode] is searched recursively for
'the SEEDS element
If found = False Then
Set oSubModels = ThisDocument. Model. Submodels
It oSubModels.Count < 0 Then
For Each s In oSubModels
If SearchSubModel(s) Then
found = True
Exit For
End It
Next
End If
EndIf

"The Search is over, If the SEEDS element was found, the streams that will
be used for this replication are specified in the file secds®
If found Then

Dim seedValue As String

Dim operandName, seedsk As String

Dim Char

‘Open seeds* file. Exit if the file was not opened successtully, or it the
"file was not found
seedsk = "seeds" & currentReplication & " txt"

FiteNum = FreeFile

1o

Open seedsk For Input As #FileNum
If FiteNum = 0 Then

Exit Sub
End If

Read in the seeds values while not EOF. The seeds values are separated
by & commas ',
mdex = |
Do Until EOF(FileNum)
Char = Input(l, #FileNum)

If Cligr = ," Then
operandName = "Seed(" & index & ")"
SeedsModule Data(operandName) = seedValue
index = index + 1
seedValue =""

Eiself Char <~ " Then
seedValue = seedValue + Char

End If

Loop

1 StvComp(seedValue, " ") <> 0 Then

" pperandName = "Seed(" & index & ")"

' BeedsModule. Data(operandName) = seed Value
'End If

Close #iFileNum
EndIf

End Sub

R R R R R S A R A R R R R R R B AR R B
'# This function is an implantation of Arena MedellLogic RunBegin() event handler, It is invoked once

'# before Arena checks the model.

Btz e e e e s e s s s b R kG i
Private Sub ModelLogic RunBegin() ‘

' ADD YOUR CODE HERE

SetSeedsValues (1)

End Sub

111

APPENDIX C
PARTITONED CASE STUDY TASK GARPH

R R A R R R R R R R R A B R R A e
Sample Task Graph

#

The format of the task graph is as follows. Lines that are comments are started with the pound *#°

characier. The first non-comment line must contain the number of task in the graph. The nexi non-

comment lines contain information for the task, The format for each task T, is as follows:

task_index task_weight number_of parents number of children
[<parent, data file> ... <parent, data file>] NULL
[«<child, edge weight> ... <child, edge weight>] NULL

I o3k T 3£ 3k

1) The furst entey specifies the task index of T; for which the information is being entered. This entry
must be an integer.

#

2) The second entry specifies the tagk weight of T,. This is the computational cost incured when T, is
executed. It must be a double value.

#

3) The next two entries specify the number of tasks that parent T, and the number of tasks that are

children of T, respectively. These entries must be integers.

#

3) The third set of entries are optional. If task T, has no parent, the next entries are ignored until the string
"NULL" is encountered. Otherwise, n taples of the format <parent, data file> must be entered and
terminated by the string "NULL".

For each tupple <parent, data file> entered, the child field specifies the index of child T, and the
data tile field specifies the file storing the dependency data that T, produced. Ti needs this data to
begin execution

4) The fourth set of entries are also optional. If task T, is childless, the next entries are ignored until the
the string "NULL" is encountered. Otherwise, n tuples of the formal <child, edge weight> must be
entered and terminated by the siring "NULL".

For each tuple <child, edge weight> entered, the child field specifies the index of child T,

and the edge weight specifies the weight of the edge ¢ connecting T, and T,. For the current
implementation of the XFace tool, the edge weights are assumed to be negligible with respect o the
task weights. However, for scheduling purposes, all edge weights are assumed to be 1. This
agsumption does not affect the total execution time of the DAG; it is only used to schedule the task in
the DAG.

3ok Gk Ak Ak Ak oSk Sk A% b e 3R R 3 b b 3 3

The information for a task need not be entered on the same line. it can be entered on several lines.

No comments are allowed on lines that contain task information.

#

T R R A A A R R R R R R A R R AR AR R R AR

4
The sample graph consists of 5 tasks
4

5
#
Task TO Information

112

(1) Task Weight = 2.0

(2) No tasks in the DAG parent TO.

() Since TO has no parent, it has 0 dependency data file

#
#
#
#
#
(3) TO parent three children. The children tasks are T1, T2, and T3.
#
#
#
#
£
0

20 03 NULL <1 1.0> <2 1.0> <3 1.0» NULL

Task T1 Information
#
(1) Task Weight = 10.0
(2) T1 has one parent. The task that parent T1 is TO.

(3) T1 parent one child. The child task is T4.

Parent Task Data File
TO partA.pd

#
#
#
#
#
#
(4) Dependency data file is as follows,
#
#
#
i
#
#
1

10.0 1 1 <0 partAp0> NULL <4 1.0> NULL

Task T2 Information
#
(1) Task Weight = 7.0
(2} T2 has one parent. The task that parent T2 is TO.

(3) T2 parent one child. The child task 15 T4.

Parent Task Data File
TO partB.p0

#
#
#
#
#
#
(4) Dependency data file is as follows
#
#
#
#
#
2

7.0 1 1 <0 partB.p0> NULL <4 1.0> NULL

7
Task T3 Information

#

(1) Task Weight=12.0
#

(23 T3 has one parent. The task that parent T2 is TO.

(3) T3 parent one child. The child task 1s T4.

Pavent Task Data File

#

#

#

#

(4) Dependency data file ig as follows.
#

#

T0 partC.p0

#
#

3120 11 <0 partC.pb> NULL <4 1.0> NULL

3

Task T4 Information

(1) Task Weight = 2.0

(3) T4 is childless.
(<)) Dependency data filss are as follows.
Parent Task Data File
Tl partA.pl
T2 partB.p2
T3 partC.p3

{5) Since T4 has no children, there are o Parent-Child edge

(2) T+ has three parents. The tasks that parent T4 are T1, T2, and T3.

o dE 3 3R e 3E ZE R 3 3R gk 3k e 3 o3 3 R

2.0 3 0 <] partApl> <2 partB.p2> <3 partC.p3>NULL NULL

113

	Creating Software [Sic] Environments on an M-Node Beowulf Cluster to Execute Discrete-Event Simulations
	Recommended Citation

	tmp.1722360266.pdf.kaF8F

