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ABSTRACT

CREATING SOFTWARE ENVIRONMENTS ON AN M-NODE BKOWULF

CLUSTER TO EXECUTE DISCRETE-EVENT SIMULATION

Jermaine Fitz-Gerald Headley

Old Dominion University, 2005

Director: Dr. Roland R. Mielke

This thesis describes the development of a software tool that facilitates the

creation of software environments that make a simulation tool execute k replications of

an application program on several nodes ofan M-node Beowulf cluster. It is assumed that

each cluster-node consists of p processors. The p processors that are contained in the

master cluster-node are termed masterprocessors, and the p processors that are contained

in a slave cluster-node are termed slave processors. The slave processors are used to

execute the replications, while the master processors are dedicated to schedule the

replications and process other housekeeping chores. For each slave cluster-node that is

selected, P processors are specified to participate in the execution of the replications,

where 1 & P & p. The total slave processors selected to execute the replications is N.

These slave processors are contained in the set II with cardinality jII~ = N. Therefore,

the k replications are executed concurrently if k & N. Otherwise, the k replications are

grouped into batches that are executed concurrently as processors become available.
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CHAPTER I
INTRODUCTION

The implementation of most commercial simulation packages is such that the

replications of an application program are executed sequentially on a single processor.

OIIentimes in practice, the application program must be replicated many times to

improve the precision in the results. If the replication lengths of the simulation are short,

taking several milliseconds or even seconds, performing several hundred replications will

not take a long time. However, if the replication lengths are long, taking several minutes

or even hours, the simulation could take several days to complete. For very long

simulations, the total simulation time can be reduced dramatically if the replications are

executed concurrently on a parallel platform. Several supercomputing platforms are

available, ranging from high-end computing machines that are very sophisticated but

expensive to lower-end machines that are not as sophisticated but much cheaper. A

Beowulf cluster is an inexpensive low-end supercomputer that provides computing power

comparable to that of some sophisticated high-end supercomputer. If each cluster-node

consists of p processors, an M-node Beowulf cluster with one master cluster-node and

(M — 1) slave cluster-nodes can be utilized to execute at most p(M — 1) replications

concurrency on the slave processors while the master processors are dedicated to

schedule the replications. If the number of replications is k and N processors are selected

to execute the replications such that k & N, the replications are grouped into batches, and

the replications within a batch are executed concurrently. The resulting speed-up in the

total execution time will be considerable but not N fold since overhead is introduced in

each batch execution time.

Several problems are introduced when a simulation application designed to

execute sequentially on a single machine is ported to the parallel platform of a Beowulf

cluster. First, the operadng system on a majority of Beowulf clusters is a version of the

Linux kentel because Linux is freely available and cheap to maintain. The problem is that

most current commercial simulation packages are designed for Windows platforms. Due

to the differences between the two platforms, a middle layer between the Linux operating



system and the simulation application is required. The purpose of the middle layer is to

emulate a Windows environment. Both freeware and cheap software tools that emulate

Windows environments on top of Linux platforms are available. Therefore, one only

needs to search for an efficient Windows emulator that supports the application of choice.

However, running Windows-based applications on an emulator introduces a new

problem. Certainly, the application will run slower on the emulated Windows platform

than it would on a native Windows platform, Therefore, the nature of the problem

introduced is to determine if it is worth the efforts to run a Windows-based application on

the emulated Windows platform. The solution to this problem depends on whether the

speedup achieved to execute the replications concurrently on the slave processors is

enough to compensate for the extra time that is required to run the application on the

emulated platform.

A second major problem is that the random numbers that drive the simulation

replications must be controlled when the simulation is executed on the parallel platform.

Simulation packages that are designed to execute sequentially on a single processor

automatically conhol the independence of random numbers between replications by using

the last random number Ul generated in the i"'eplication as the seed in the i+1"

replication. This method of random number control will not work when the simulation is

migrated to the parallel platform of the Beomdf. Therefore, a different method that does

not create any sequential dependence among the replications is required. Commercial

simulation packages use a random sequence U with a very long cycle-length to drive the

replications. The long cycle-length guarantees that U will take a long time to recycle

during long simulation runs. The sequence U is oftentimes segmented into many smaller

fixed-length sub-sequences called streams. For example, in the Arena-Version 5.00.2 [1]

simulation package, the cycle length of U is 3. 1 x 10 ', and there are 1.8 x 10ia separate

streams each of length 1.7 x 10'"; and each stream is further subdivided into 2.3 x 10"

sub-streams each of length 7,6 x 10". The stream U's specified by the index i.

Segmenting U allows several different streams to be used at the various random points in

the simulation model by simply specifying the stream index to use with a particular

probability distribution at a given random point. The method of random number control



on the parallel platform that is described in the thesis utilizes the assignment of separate

streams to the random points in the simulation model to insure that all k replications can

begin concurrently. Furthermore, the streams used in the replications are carefully

controlled to prevent stream overlapping. The danger of driving the replications with

overlapping streams is that the independence in the results produced by the replications is

not guaranteed.

1.1. Problem Statement

This thesis describes the development of a software tool that facilitates the

creation of soltware environments that make a simulation tool execute k replications of

an application program on several nodes of an M-node Beow&f cluster. It is assumed that

each cluster-node consists of p processors. The p processors that are contained in the

master cluster-node are termed masterprocessors, and the p processors that are contained

in a slave cluster-node are termed slave processors. The slave processors are used to

execute the replications, while the master processors are dedicated to schedule the

replications and process other housekeeping chores. For each slave cluster-node that is

selected, P processors are specified to participate in the execution of the replications,

where I & P & p. The total slave processors selected to execute the replications is N.

These slave processors are contained in the set II with cardinality ~fl~ = N. Therefore,

the k replications are executed concmTently if k & N. Otherwise, the k replications are

grouped into batches that are executed concurrently as processors become available.

One of the software environments that the tool creates support variance reduction

under two frequently used variance reduction techniques (VRTs), Antithetic Vaiiates

(AV) and Common Random Numbers (CRN). In addition, a solhvare environment is

created to execute a single replication on m processors. The application programs that are

executed in the latter environment must be partitioned into ip inter-dependent tasks, and a

task precedence graph model must be used to represent the tasks. The tasks are executed

on the m processors according to the dataflow [2] strategy specified by the task graph.

The software environments the tool creates are not application-specific. They are robust



enough to support several simulation applications, and both Windows-based and Linux-

based applications are supported.

The software tool that is developed is called XPaoe. The XFace tool provides a

front-end graphical user interface {GUI) to the user. The GUI allows the user ol'he tool

to easily load and execute k replications of an application program on N slave processors

in the Beowulf cluster. The GUI also allows the user to monitor the execution status of

the application program. The back-end of the tool creates the software environments,

executes the replications, and monitors the processing of the replications on each slave

processor.

1.2. Thesis Contributions

There are several job scheduling tools that are designed to schedule batch jobs to

the machines in a Beowulf cluster. The common objective of these tools is to reduce the

execution time of parallel applications by harnessing the power of several cluster-nodes.

The XFace tool falls into this category of applications, but it is unique in the sense that

that it seeks to batch replications of simulation applications that were designed to execute

sequenrially on single-processor machines. The contributions of the tool developed in the

thesis are as follows:

~ The XFace tool creates software environments that control the random numbers

driving the replications so that the independence of the results produced by the

replications is guaranteed,

~ An environment is created that supports the parametric execution of k replications

of a simulation application on N processors,

~ An environment is created that supports variance reduction under AV,

~ An environment is created that supports variance reduction under CRN.

~ An environment is created that supports the execution of each of the k replications

on m processors in a dataflow strategy, and the concurrent execution of the k

replications on n sub-clusters.



1.3. Thesis Overview

The organizational structure of the remaining portions of the thesis is as follows.

Chapter 2 presents the background information. The chapter begins with a brief ovetview

of Beowulf clusters. It then presents an overview of the Message Passing Interface (MPI)

that is used to implement remote-process communication (RPC) among processes on

remote processors. The chapter concludes with an overview of the XFace tool.

Chapter 3 presents the implementation concepts of parametric jobs. The main

scheduling algorithm used to schedule iterations is presented in Section 3. l. The equation

used to estimate the parametric speedup in the total execution time when the program is

executed in the soflware environments created by the XFace tool is developed in Section

3.2. The software environments are presented in Section 3.3. These software

environments apply to all three job-types. However, the environments do not fidly

support partitioned jobs. Therefore, they are extended in Section 5.6 to support

partitioned jobs. Section 3.4 presents the method proposed to maintain the independence

among the replications executed on the parallel platform. Finally, the job description

forms used to submit parametric jobs are described in Section 3.5,

Chapter 4 presents the variance reduction jobs. Section 4.1 presents a general

overview of the analysis of variance reduction on the outputs of a simulation. Sections

4,2 and 4.3 present the concepts behind CRN and AV, respectively. Detailed analyses of

CRN and AV can be found in [3]„[4], [5]. Section 4.4 stresses the importattce of

synchronizing the random numbers used in the simulation when CRN or AV is applied.

Finally, the job description forms used to submit variance reduction jobs are described in

Section 4.5.

Chapter 5 presents the design concepts of partitioned jobs. The partitioning problem

and scheduling problem are briefly addressed in Section 5.1 and Section 5. 3, respectively.

The task precedence graph model used to represent partitioned programs is described in

Section 5.2. The scheduling algorithm used to schedule the tasks in the task graph to the



m processors in a sub-cluster is presented in Section 5.4. The equation used to estimate

the speedup in the total execudon time of partitioned jobs is presented in Section 5.5. The

software environments described in Section 3.3 are extended in Section 5.6 to support

partitioned jobs. Finally, the job description forms used to submit partitioned jobs are

described in Section 5.7.

Chapter 6 presents the implementation of the XFace tool. The core processes and

shell scripts in the XFace implementation are presented in Section fx l. The

implementations of the virtual networks described in Chapters 3 and 5 are then presented

in Section 6.2. The interaction among processes on the master processor is described in

Section 6.3. Finally, the interactions among processes on each slave processor during the

job execution phase are described in Section 6.4.

Chapter 7 presents three case studies, one for each job-type. The Arena application is

used in the first two case studies. Section 7.1 presents the job environment that is created

specifically to execute Arena programs. The parametric case study is then presented in

Section 7.2. This is followed by the presentation of the variance reduction under AV case

study in Section 7.3. Finally, the partitioned case study is presented in Section 7.4.

Finally, Chapter 8 presents concluding remarks and identifies future work to enhance

the XFace tool.



CHAPTER H
BACKGROUND

This chapter presents brief background information on Beowulf clusters and the

MPI protocol. The chapter also gives a general overview of the XFace tool.

2.1. Beowulf Clusters

Since the Beowulf [6], [7] project began at NASA in 1994, the main goals of the

Beowulf have always been to explore the possibilities of building an efficient High

Performance Computing (HPC) system that is low cost and easily upgradeable with

minimal efforts. Therefore, the components of the cluster-nodes and network switches in

the Beowulf are commercially available off-the-shelf components that are not vendor-

specific. The idea that brought the Beowulf into existence is adopted from the Networkol'orkstations(NOW) project [7], [8], which consists of a network of workstations with

each workstation consisting of several high-end, powerful microprocessors. The Beowulf

exploits machines with cheaper, less powerful microprocessors that are intended for the

PC market. Thus, the result is a system that provides efficient high performance

computing at low cost. The high performance to cost ratio of the Beomdf is vet)

appealing to the HPC community. As a result, the Beowulf is replacing several

expensive, sophisticated high performance supercomputers in certain application areas.

Architecturally, the Beowulf is a distributed memory supercomputer that is used to

parallelize the execution of large applications. However, several variations of this

architecture exist. In some Beowulf architectures, the cluster-nodes are equipped with at

least two processors that provide symmetric multiprocessing (SMP). The processors in an

SMP cluster-node are interconnected via shared-memoty. Another variation involves

cluster-nodes that have one processor dedicated for processing and a second dedicated for

communication on the private network connecting the cluster-nodes. However, in the

latter variation, applicadons are oftennmes written that utilize the second processor for

processing.

The cluster-nodes in a Beowulf are interconnected via a private interconnect.

Several topologies, such as Star, Mesh [9], and Crossbar [l0], are used for the



interconnect. One major disadvantage of Beowulfs is that the speeds of the sv;itches in

the interconnect are not as last as the speeds of the processors in the cluster-nodes.

Consequently, the bandwidth of the private interconnect results in long communication

latencies, rendering the bandwidth the bottleneck in the computing peiformance of

BeowRfs. As switching technology advances, fast network protocols are being developed

that exploit the increasing speeds of the interconnect switches to provide high bandwidth

on the order of gigabits per second. For example, optical Gigabit Ethernet providing up

10 gigabit per second bandwidth have been reported [I I], [12]. However, as the speeds of

the interconnect switches grow, the speeds of the processors in the cluster-nodes grow at

even a faster rate. Therefore, the resultant effect is that the processing speed to

communication bandwidth ratio continues to grow. Tremendous research initiatives

aimed at developing sophisticated high-speed communication protocols that will increase

the bandwddth of the interconnect are in progress. For example, the Virtual Interface

Architecture (VIA) project [13] is one such initiative. The VIA trades reliability for speed

and reduces the kernel-level communication overhead associated tvdth message passing

by giving applications direct access to the network cards in the cluster-nodes.

A Beowulf system can be either heterogeneous [14] or homogeneous. In

heterogeneous systems, the configuration of the Beowulf is such that multiple operating

systems may run on the cluster-nodes, and the cluster-nodes may contain processors with

different architectures. On the other hand, in homogenous system, the cluster-nodes are

very similar. All cluster-nodes run the same operating system, and the processors all have

the same architecture. Homogenous Beowuifs are the more widespread of the two.

The Linux kernel is the dominant operating system that runs on most Beowulfs,

mainly due to the fact that the Linux kernel is an open-source kernel that is freely

available to the general public. In addition, the Linux kernel fully supports Beowulf

systems, and tremendous amounts of freeware are developed for clusters running the

Linux kernel.

The architecture of the Beomdf (Balrog) on which the XFace tool was developed

and also on which the case studies presented in Chapter 7 were conducted is as follows.

Balrog is a 32-node dual processor system and consists of:

~ 32 AMD 760MPX motherboards,



~ Each cluster-node has dual AMD Athlon MP 2600 processors running at

2.1 GHertz,

~ The master cluster-node has 2.048 GByte DDR PC2100 ECC Registered

System Memory, and 60 GByte EIDE Hard Drive at 7200RPM,

~ Each slave cluster-node has 1.024 Gbyte DDR PC2100 ECC Registered

System Memory, and 20 Gbyte EIDE Hard Drive at 7200RPM,

~ HP Procurve 4108GL 36-port 10/100/1000 Gigabit Ethernet Switch for

the private interconnect.

Figure 2-1. Topology of Balrog's Interconnect

The private interconnect in Balrog is based on the Star topology, as illustrated in Figure

2-1. Every cluster-node can setup direct connections with every other cluster-node.

The processes running on remote cluster-nodes use message-passing protocols such as

MPI [15], [16] and PVM [17], [18] to commtuucate. The MPI message-passing library is

used in the implementation of the XFace tool.
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2.2. Message Passing Interface (MPI)

MPI is an industry standard message-passing protocol that is well supported on

HPC systems, especially disttibuted memory systems. Portability and efficiency are two

major features of the MPI message-passing protocol. Thus, MPI can be implemented on a

wide range of HPC systems. The portable implementation of MPI is MPICH [19J, and it

enables MPI programs to be easily ported among different HPC systems. MPI maps MPI

processes to the processors in MPI nodes, where the MPI nodes are the cluster-nodes that

are utilized to run an MPI program. The same MPI process is executed on each processor

in the MPI nodes. However, each MPI process is executed in a unique address space.

Therefore, the global variables are stored in different physical locations in memory so

that the global variables written by one MPI process are not seen by the other MPI

processes. One or more MPI daemons run on each MPI node. The MPI daemons enable

conuntaucation via message passing among both remote and local MPI processes. Figure

2-2 illustrates the remote connections among MPI daemons on 4 MPI nodes. Every MPI

daemon can reach every other MPI daemon. The local MPI processes on an SMP MPI

node can share the same MPI daemon, or an MPI daemon can be dedicated to each MPI

process. In the case when the local MPI processes share the same MPI daemon, the local

MPI processes communicate locally via shared memory, but use message passing to

communicate with remote MPI processes. Figure 2-3 (a) illustrates the case when two

local MPI processes share the same MPI daemon and use shared memory for local

communication. In the case when a MPI daemon is dedicated to each local MPI process,

the local MPI processes communicate via message passing, as illustrated in Figure 2-3

(b)

MPI processes are ranked with unique consecutive integers from 0 to N. On

Beowulfs running Linux., MPI programs read a file named 'machine.L1NUX" at

initialization to idennfy the cluster-nodes to be used as MPI nodes. Each cluster-node that

will patticipate in the execution of an MPI program is listed in 'machine.LINUX" in the

format &cluster node alias[:P]&. The first entry specifies the alias of the cluster node.

The second entry P is optional. If the cluster-node is tut SMP node consisting of p



11

processors, P specifies the number of processors to use. If P is not specified, MPI uses a

default value of one.

MPI Node

MPI DaemonC3
Network
Connection

Figure 2-2. Remote Connections Among MPI Daemons

(a)

Figure 2-3. (a) Shared MPI Daemon (b) Dedicated MPI Daemons
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2.3. Overview of XFace Tool

The XFace tool utilizes the parallel platform of a Beowulf together with the MPI

messaging passing protocol to execute k replications of a simulaflon application

concurrently on N processors. Hereafter, the terms 'simulation program" and 'program"

are used interchangeably throughout the remaining portions of the thesis. A program that

is replicated k times is naturally a parallel program since the replications are independent

and thus can be executed concurrently. Furthermore, the program structure may consist of

blocks of codes that may be executed in parallel according to the dataflow strategy that

materializes during the execution of each replication of the program. Thus, it may be

possible to achieve speed-ups in the overall program execution time in two ways. In the

first, the speed-up in the program execution time is realized by concurrently executing the

k replications on N processors, where each replication is executed on a single processor.

In the second, the speed-up is realized by utilizing the implicit parallelism within the

program by assigning m processors to execute each replicauon. Therefore, if the k

replications are executed concurrently on n sub-clusters, such that the i 'ub-cluster

contains m; processors, both ways of achieving speedups in the program execution time

are realized. For ease of reference, the speedup in the first way is termed J"-demension

speedup, and the speedup in the second way is termed 2""-dimension speedup,

The XFace tool executes jobs, each of which consists of a set of I oh files. Each set of

job files contains one or more application programs that must be replicated k times, and

input files that are read by the application programs. A job is executed in several

iterations on the slave processors that are contained in the set II. The replications are

executed during the execution of the iterations. An iteration is the sequential execution of

x replications, where I & x & k. Therefore, the execution of each iteration requires

resources such as memory, central processing unit time, and input files from which the

replicated programs read data. Thus, iterations are executed as resources become

available on the slave cluster-nodes.

Each job that is executed by the XFace tool has three phases: the job initiation phase,

the job execuflon phase, and the job completion phase. The job initiation phase begins
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after a job description has been submitted, and ends when the execution of the job is

initiated. During the job initiation phase, the job environments are setup on the slave

processors, and the job files are loaded onto the slave cluster-nodes. Also, to prevent

overwriting the results of the replications, directories are created on each slave cluster-

node to store the results. These directories are termed the iteranon directories. The job

execution phase follows the job initiation phase. The job execution phase is the time

during which the iterations are being executed on the slave processors. It ends when the

execution of the last iteration to execute is finished. After the job execution phase, the

results produced by the iterations are scattered on the slave nodes. Therefore, the job

completion phase is the time during which the results are gathered from the slave cluster-

nodes onto the master cluster-node.

The XFace tool groups jobs into three types: parametric jobs, variance reduction

jobs, and partitioned jobs. For parametric jobs, the tool creates the necessary softv are

environment on the M-node Beowulf cluster to realize the I"-dimension speedup. In this

environment, the k replications of the program are executed on N processors, and each

replication is executed on a single processor. Additionally, one replication, x = l, is

executed in each iteration. Hence, the total number of iterations is the same as the nmnber

of replications k. The program that is replicated in the iterations is submitted to the tool

via a job description. The job description is a text file that specifies the job-type, the

platform that the job is to execute on, the number of replications, the number of

application programs submitted, pathnames to the job files, and the slave processors to

execute the job. The details of the parametric job description are presented in Section 3.5.

The variance reduction (VR) job-type is an extension of the parametric job-type.

The VR job-type adds support for the variance reduction techniques (VRTs) AV and

CRN. AU and CRN are applied to simulations to reduce the variance of the output

produced by the replications. A variance reduction job that employs AV as the VRT of

choice is notated VR-AV, and a variance reduction job that employs CRN as the VRT of

choice is notated VR-CRN. In VR-CRN jobs, c programs that models alternate

configurations of a system are compared, where c & 2. To differentiate between the

results produced by the programs, each program is assigned a distinct configuration
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number. Each of the programs is replicated k times such that the corresponding

replications of the programs are synchronized. Therefore, for VR-CRN jobs, the total

number of iterations that is executed is the product c x k

In VR-AV jobs, one application program is submitted in the job description. The

replications of the program are executed in pairs of two such that alternate replications

are compared. One pair of replications is executed per iteration. Therefore, the program is

replicated twice, x = 2, in each iteration that is executed. As a result, ihe total number

of iterations that is executed in VR-AV jobs is the product 2 x k.

Finally, for partitioned jobs, the tool creates a software environment to realize both

the I"-dimension and 2""-dimension speedups in the execution times. Each program that

is executed in this environment is partitioned into qt interdependent tasks. The &p tasks are

indexed arbitrarily with distinct task integers from 0 to &p
- I. The program is replicated

once, x = I, in each iteration that is executed on sub-cluster I; containing m; slave

processors. Therefore, the to% number of iterations that is executed in partitioned jobs is

equal to k.

The XFace tool uses MPI messages to schedule iterations among ihe slave

processors. With the excepdon of partitioned jobs, the only messages passed during the

job execution phase are scheduling information such as the iteration number, the iteration

start time, the iteration end time, and the iteration execution time. Therefore, the total

execution times of the parametric and VR jobs that the XFace tool executes are not

affected greatly by the communication latencies associated with the private interconnect.

However, since data must be passed among the m processors that execute each

replication of a partitioned job, the communication latencies wdll greatly affect the total

job execution time of partitioned jobs; but, with proper load balancing, the data passed

among processors can be minimized.
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CHAPTER III
PARAMETRIC JOBS

Consider a simulation program that is replicated k times, where the k replications

are independent. That is, the i replication of the program is driven by unique random

number streams U', i = 1, 2, ..., r. The independence property of the k replications allows

us to execute concurrently all k replications of the program provided that at least k

processors are assigned to execute the program. The objective of the parametric feature of

the XFace tool is to reduce the overall execution time of the program by dynamically

scheduling the k replications among the N processors that are selected to execute the

program The replications are scheduled according to the availability of the N processors.

9.1. Scheduling Replicaiions

When the replications are executed on the parallel platform of the Beowulf,

overhead is charged to distribute the executions of the k replications over the N

processors selected to execute the program. The prime contributors to this overhead are

the time to execute the scheduling algorithm used to schedule the iterations, the times to

communicate the iteration numbers from the master processor to the slave processors

during scheduling, and the overhead to execute the application on the emulated platform.

The total overhead injected into the execution time can be reduced by designing a

scheduling algorithm that incurs a small overhead with respect to the total sequential

execution nme of the program, and by carefully choosing a communication medium that

allows for efficient, inexpensive communications among the processors. The main

scheduling algorithm that is used in the XFace tool is listed as Algorithm 3-1.

Algorithm 3-1. Main Scheduling Algorithm

l. For eaehproeessorP,, j = l, 2, ..., Nirt fI murkP, idle. Set t = 0.

2. Whilei & k. do



2.1 For each idle processor Pt inFI do

i. Schedule i teration i to Pr

ii. Set t = i + l, and mark P, bttsy.

Fndfor

2.2 Wait on any busy processor to ftntsh. Mark each ftnished processor P, idle.

(Do background work while waiting)

End while

Step 1 in Algorithm 3-1 is the initialization step, which can be done in O(l) time.

Therefore, the total time complexity of Algorithm 3-1 with respect to the number of

iterations scheduled to the slave processors is O(k) .

3.2. Parametric Speedup

Let TR be the replication time to execute one replication of a program that is

replicated k times. Define the sequential execution time Ts of the program as the time to

sequentially execute the k replications on a single processor, and the parallel execution

time Tp of the same program as the time to execute concurrently the k replications on N

processors. Theoretically, Ts and Tp are related to TR as follows.

Ts (TR, k) =kTR (3-1)

Tp (T„,k, N) = — +S(k, N) Ts, (3-2)

(0, k mod N = 0
where S(k, N)=( 'h kmodN w 0
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In Equation (3-2), [aJ denotes the IIoor of a, and the expression amod b denotes the

a
remainder of the integer division —. Equations (3-1) and (3-2) are valid only for fixed

b

values of TR. If Ts varies, the average TR can be used to give estimates of Ts alld Tp
n nl

The proof of Equation (3-2) is as follows. Let TR be fixed, and let (N divide k) p

times leaving remainder q, such that N, k & I. The floor function in Equation (3-2) always

returns p, and the step function returns zero if q = 0, and one otherwise. In proving

Equation (3-2)„ two cases are considered for I & N & k: (I) when q = 0, (2) when q w 0.

If q = 0„ the replications are batched into p batches with each batch containing N

replications. Therefore, the theoretical time to execute the k replications is

lkl
p x TR =

~

—
]

T„. On the other hand, if q w 0, the replications are batched into (p + I)

batches. Hence, the theoretical time to execute all k replications is

Ik I

(p + I) T, =
~

—
]
T, + T„. Finally, if N & k, the replications are hatched into one batch

of size k, and the total execution time is Ta.

Since Equation (3-2) is ideal, the actual parallel execution time with total

overhead To is given by (3-3), where To is the total overhead associated with the time to

set up a batch.

Tp (Ts k N) +S(k N) (Ts +To) (3-3)

Thus, the effect of the scheduling overhead is to increase the program parallel execution

time. In general, speedup is defined as the ratio of the program sequential execution time

to the program parallel execution time,

program sequential execution time
speedup

program parallel execution time Tp
a lull

(3-4)



9.3. Job Environments

The communication between processes on remote processors in any job

environment created by the XFace tool is achieved via MPI library routines. Figure 3-1

(a) portrays the master-slave communication between processes on the master processor

and each slave processor, while Figure 3-1 (b) illustrates the slave-slave communication

behveen processes on any two slave processors. The job scheduler and the monitor

process are two resources of the XFace tool. The job scheduler runs on the master

processor, and employs Algorithm 3-1 to schedule the iterations to the slave processors.

One instance of the monitor process runs on each of the N slave processors. The monitor

process enables master-slave communication between the master processor and each

slave processor, and also enables slave-slave communication between any hvo slave

processors. The job scheduler and the monitor process are described in Section 6.1.

The job scheduler and the monitor process are implemented on top of the MPI

library. The MPI layers in Figure 3-1(a) proidde the communication channel between the

job scheduler and the monitor process. Similarly, the MPI layers in the diagram in Figure

3-1(b) provide the communication channel between two instances of the monitor process.

Therefore, the job scheduler and the monitor process communicate by invoking MPI

library routines. Likewise, two instances of the monitor process communicate by

invoking MPI library routines.

The virtual network topology of the N slave processors and master processor used

for scheduling is illusu'ated in Figure 3-2. The processors submitted to execute the job are

labeled "Slave I" through 'Slave N" in the figure. The network links between the master

processor and each slave processor in the figure illustrate the master-slave

communication links established between the job scheduler and each instance of the

monitor process. The job scheduler uses the master-slave communication links to

communicate iterations to the slave processors during scheduling. Since the replications

of the program under execution are independent, there is no communication between

remote processes on any two slave processors when the replications are executed. Hence,

the slave-slave communication links are not shown in Figure 3-2.
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Meeter Slave

(a)

S lave Slave

(b)

Figure 3-1. (a) Master-slave Communication (b) Slave-slave Communication

Figure 3-2. Virtual Nehvork Topology
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The job environment created on each slave processor for jobs consisting of

Windows-based applicadon programs is different from the environment created on each

slave processor for jobs consisting of Linux-based application programs. Figure 3-3

depicts the job environment that is created on each slave processor when the application

programs submitted in the job description are Windows-based. The interface between the

XFace tool and the automation controller in Figure 3-3 is the text file model.rxc The

automation controller is a program that externally controls the simulation application.

The automation controller and the simulation application are both Windows-based

applications developed to run on a Windows platform. Therefore, they run on top of the

emulated Windows platform created by the Windows emulator. Most Windows-based

applications register an object model with the Windows kentel. The application object

model creates an interface between the application and the automation program. The

automation program controls the application by issuing commands to the application

object model.

At the start of each iteration, the monitor process writes the name of the

application program and the number of times, x, that the program must be replicated for

the current iteration to model.txt. The monitor process then starts the start-win-app sciipt

to initiate the execution of the iteration. The start—win-app process in turn starts the

automation controller to initiate the execution of the application program. The automation

controller starts a new instance of the application if an instance of the application is not

already running in the job environment. Once an instance of the application is rurnung,

the automation controller opens the application program specified in model.txt and

replicates the program x times. At the end of the x replications, the automation controller

saves changes made to the program, and then closes the program. Finally, the automation

program terminates, signaling the end of the iteration. This event triggers the termination

of the start-win-app script.

Figure 3-4 illustrates the job environment that is created on each slave processor

to execute Linux-based application programs. The environment is not applicable for VR

jobs. According to the definitions of the parametric and partitioned job-types in Section

2.3, the application program submitted in the job description is replicated once per
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iteration. Therefore, only one replication is executed per iteration of every job that is

executed in the environment in Figure 3-4. Since the application is native to the Linux

kernel, an emulator is not needed. So the monitor process starts the start-lin-app script to

execute the replication, which in turn executes the command required to execute the

replication.

XFaca Tool
1

Figure 3-3. Job Environment created for Windows-based Applications.

XFace Tool

Figure 3-4. Job Environment created for Linux-based Applications.
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The job environments in Figures 3-3 and 3-4 are application-specific. The job

scheduler does not need any information about the simulation application to schedule the

iterations to the slave processors. Also, the monitor process does not depend on the

application. The monitor process only requires information about the application program

name and the number of times the program is replicated per iteration. This informafion is

made available to the monitor process during the job initialization phase when the job is

loaded onto the slave processors. The start-win-app and start-lin-app scripts are also

independent of the application. The start-win-app script only needs the application-

specific command that is used to initiate the execution of the automation controller.

Likewise, the start-lin-app script only needs the command to execute the application

program. For Linux-based applications, the command is entered in the job description.

However, for Windows-based applications, the user must add the command to execute

the automation controller directly to the start-win-app script. This is done only once for

each application that the tool must support. The stait-win-app script is simple, and

support for an application is easily added to the script.

To add support for a Windows-based application, an automation program and an

installation of a Windows emulator on the native Linux platform are required. The

automation program should provide the controls described earlier. The emulator should

emulate the Windows environment that is required to execute both the designated

application and the automation program. The command to execute the automation

program is added to the start-win-app script. The application start-win-app script is

described in Appendix A.

3.4. Maintaining the Independence Among Replications

An application program that is executed in the environment created by the XFace

tool must read a text file containing stream indices at the beginning of each simulation

replicauon. The file specifies k sets of stream indices. The first set of indices in the file is

used to specify streams in the first replication, the second set of seed values is used to

specify the streams in the second replication, and so on. A separator is used to separate

the sets, and an end-of-file marker is used to mark the end of the file. A template of the
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text file is illustrated in Figure 3-5. The '8r'haracter is used to separate the sets, and the

character sequence *'EOF" marks the end of the file. The values within a set need not be

entered on the same text line in the file.

If the simulation model under execution contains r distinct streams, each of the k

sets in the streams file must contain r distinct stream indices. The i 'ndex in the j 'et
specific U'n the j"'eplication, for l & i & r and I & j & k. The independence among the

replications now depends on how the stream indices in each set are chosen. The stream

indices in each set should not be generated randomly. This is to guarantee that the sets are

disjoint„and no set contains more than one instance of the same index. Instead, the stream

indices must be carefully chosen so that the streams do not overlap. For example, if the

fixed-length of the streams is L, then the stream U's the sub-sequence in U containing

the random numbers Ui to Ui„U is the sub-sequence containing the random numbers Uc

to Uz., and so on. Since U'nd U' are adjacent sub-sequence in U, if r random points

are defined in the model, and random point ri requires between L and 2L random

numbers, then if U's assigned to r;, U'+'hould not be assigned to another random point

to prevent the overlapping of U'nd

U'igure

3-5. Template of Streams File
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During the job initialization phase, the XFace tool parses the streams file in the

job description into k smaller files. The parsed files are then distiibuted with the

replications so that the j"'et in the unparsed file is distributed with the jia replication.

Therefore, at the beginning of j"'eplication, the program should read the file stream. txt

and set streams to use in the replication. This requires that the target simulation

application should provide support for changing the indices of the streams defined in the

model.

3.5. Parametric Job Description

The job description forms that are used to submit parametric jobs are displayed in Figure

3-6. The form used to submit parametric jobs that contain Linux-based applications is

displayed in Figure 3-6 (a), and the form used to submit parametric jobs thai contain

Windows-based applications is displayed in Figure 3-6 (b). The information submitted in

a parametric job description is as follows. First, either the Linux platform or emulated

Windows platform is selected to run the application. The number of times the application

program must be replicated is then entered in the "Total Replicafions" text box. The

pathnames to the program executable file and the streams file containing the stream

indices that specily the streams to use in each replication are entered in the 'Program

Executable" and the 'Seeds File" text boxes, respectively. If the program reads input

files, the pathnames to the input files are entered in the 'Input I*'nd 'Input 2" text

boxes. If the number of input files is greater than two, clicking the * Add More Input Files

..." button displays a dialog box thai prompts the user to enter the additional input files.

If the application is Linux-based, the command to execute the program is entered in the

*'Command" text box. Otherwise, the application name is entered in the 'pplication"

text box. Finally, the machines containing the processors to execute the replications are

selected from the machines list. If all the required fields in the form are filled, clicking

the 'OK." button submits the job description. The 'Cancel" button cancels the job

description process, and the 'Help" button provides helpful information about the job

description.



(a)

(b)

Figure 3-6. Parametric Job Description Forms (a) Windows-based (b) Linux-Based
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CHAPTER IV
VARIANCE REDUCTION JOBS

In this chapter, variance reduction jobs are described. The chapter presents an

overview of the statistical analyses of two VRTs that, when applied to the random

outputs of a simulation, reduce the variances in the differences between the statistical

measures that are of interest. The analyses presented in the chapter focus on CRN and

AV. These VRTs were chosen because of their wide use in practice and also due to their

ease of. implementation.

The notation used in the chapter is as follows. Random variables are typed in

boldface letters. The expected value of the random variable X is denoted E{X[, the

variance of X is denoted Var {X), and the covariance of the random variables Xi and Xx

is denoted Cov{X„X,). Other notation used in this chapter that is not listed here is

defined when first used. Detailed definitions of these and other statistical terms used

throughout the chapter are presented in [20].

4.1. Variance Reduction Analysis

Suppose we would like to compare two alternative configurations, Ci and C&, of a

system. Suppose ftuther that Ci and C& are the simple M/M/1 and M/M/2 models in

Figure 4-1; the GI/O/s model is described in [21], [4]. Let the sample size of C i be li and

the siunple size of Cz be 12, I, =I. =I,for replication i, i = 1,2, ..., k. For a given k and 1,

henceforth denoted as the sample point (k, I), the goal is to reduce the vaiiance in the

differences between sample values produced by Ci and Cz To simplify the variance

reduction analysis, let the expected average delay in queue, d;(I), resulting fiom thei"'eplicationof the M/M/s model, s = 1, 2, be of interest. To define the quantity d,(1),

suppose the j entity enters the M/M/s system at fime t,, j & 0 and experiences service

time S„. Let A, = t, — t, „j & 0, be the inter-arrival time behveen the j-I" and j entities

entering the system. The sample value D; is defined as the delay in queue of the j"'ntity
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during replication i, or equivalently, the time from arrival to the start of senice

experienced by the j entity.

D„= 0, D, = Max(D,, + S,, D,] + (S~] -A,)&, j 0

The quantity d;(I) is defined as the sample average of the D,'s in the i" replication.

(4-2)

In a stochastic simulation, the quantities A; and S„are random samples drawn from the

probabilistic distributions Fx and Fs that specify the inter-arrival and service time

distributions, respectively. Therefore, d;(I) is a random sample of the random variable

d(I).

For the i"'eplication, denote X, = d', (1) the expected average delay in queue for

Cn and Y, = d, (I) the average delay in queue for Cz. Consider the random samples

Z, =X, +Y„ for i = I, 2, ..., k. Assume that the X s, Y,'s and Z s are statistically

independent, and identically distributed (IID). Let px, pv, and pz be the true expected

values of the X s, Y,'s and Z;*s, respectively. That is,

px = E {X} = E {X, + X. + " 4Xr }, p, = E{Y} = E{Y, + Y. +" +Ye}, and

pa = E {Z} = E {Z, + Z. + " + Zr } . Then the variance of Z is defmed in Equation (4-3)

[41

Var{Z} = Var {X} + Var {Y} + 2Cov {X, Y}

Since Z; is delined as the sum or difference between the average delays X; and Y; ini"'eplicationsof Ct and Cz, respectively, reduction of the variance between X; and Y,



observed in the itb replications of Ci and C, is achieved by reducing the variances in the

Z,'s. Observing Equation (4-3), it is obvious that the variance in the Z s can be reduced

bY either inducing positive correlation between X; and Y; il', =X,- Y„or negative

correlation between X; and Y; if Z, =X, +Y,.
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Figure 4-1. (a) M/M/I Model (b) M/M/2 Model

For a given sample point (k„ 1), we would like to define unbiased point estimators

of the statistics ftro Pv, ttz, and VartX), Var(Y), and VarIZ)because oftentimes in

practice these statistics are not known. Suppose the X s are generated independently

from the same model, that is, the X s over n replicarions of Ci are IID. Liketvfse, if the

Y s over n replications of Cz are also IID, the Z s are also IID. Thus, the sample mean

X(k) is an unbiased estimator of tax and the sample variance Ss (k) is an unbiased
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estimator of Var {X}, that is, E IX(k)I = Its, and E IS', (k)} = Var {X}. The sample

mean X(k) and the sample variance S'„(k) are defined as follows.

QX,
X(k) = —=' (4-4)

y(X, -X(k)j
S'„(k.) = -'-I (4-5)

Likewise, the sample means Y(k), Z(k), and the sample variances S'„(k), and S', (k)

are unbiased estimators of Irv, pz, arid Var {Y}, Var {Z}, respectively, iuid are defined

similarly as X(k) and S~ (k) in Equations (4-4) and (4-5).

Suppose we perform k replications of both Ci and Ci such that the i"'eplications

of Ci and Cz are synchronized. Furthermore, suppose the pair (Xs Y,) resulting from the

i"'eplications of Ci and Ci are generated from a common random number sequence, but

for different i, i = I, 2, ..., k, separate common random number sequences are used to

generate (Xs Y;), That is, in the i"'ynchronized replications of Ci and Cn X; and Y; of

the pair (X;, Y;) are correlated, but the X s are IID and the Y,'s are also IID. Using the

results in Equations (4-3) and (4-4), the variance of Z(k) is given in Equation (4-6).

Var tZ(k)] = Var{Z} Var{X}+ Var{Y} + 2Cov{X, Y}

k k
(4-6)

Therefore, the variance of the sample mean Z(k) is inversely proportional to the munber

of replications. Thus, replicating Ci and Ci a large number of times will reduce the

variance in Z(k), This is where the parallel platform provided by the Beowtdf cluster
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proves very handy. However, powerful VRTs such as CRN and AV are oftentimes used

in practice to reduce the variance in Z(k). This is due to the fact these URTs converge

the sample mean Z(k) to the true mean ttz at a faster rate than the convergence rate

when the models are replicated many times.

4.2. Common Random Numbers

Common Random Numbers is a variance reduction technique that is used to

reduce the variance in Z(k) by inducing positive correlation between X; and Y;. For the

case when Z = X - Y„Equation (4-6) reduces to Equation (4-7).

Var IZ(k)j-r— i Var{X}+ Var{Y} — 2Cov{X, Y}
(4-7)

Clearly, if in the i synchronized replications of Ci and Cz, X; and Y; of the pair (X„Y,)

are generated independently, that is, distinct random number sequences are used to drive

the simulations of C& and Cz, it follows that X; and Y, are uncorrelated and

Cov {X, Y} = 0. Thus, Equation (4-7) reduces as follows.

Var IZ(k)I =r— r Var{X} + Var{Y}

k
(4-8)

On the other hand, if in the i synchronized replications of C& and Cz, X; and Y; of

the pair (Xs Y;) were generated from a common random number sequence, X; and Y; are

positively correlated and Cov{X, Y} & 0. Therefore, according to Equations (4-7) and

(4-8), the variance of Z(k)is smaller for the case when X; and Y; are positively

correlated, Cov{X, Y}&0, than for the case when X; and Y; are independent,

Cov {X, Y} = 0, resulting in the desired variance reduction in Z(k) .
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4.3. Antithetic Variates

Antithetic Variates (AV) is another VRT that depends on the induction of

conelation between the random variables of interest to reduce variance. AV reduces the

X', +X,
variance of Z, = ' by inducing negative correlation between X', and X,, where

2

the random outputs X', and X, are generated fiom paired replications of the same model.

Therefore, the variance of the sample mean Z(k) is given by Equation (4-9).

Var(X')+ Var(X'I + 2Cov(X', X')
Var (Z(k) I—

4k
l4-9)

Thus, the variance of the sample mean Z(k) is smaller when Cov(X', X'I & 0 than that

for the case when Cov(X', X'j = 0. Unlike CRN, antithetic random numbers are used

for the same purpose in each paired replications. Thus, for example, if in the i"'aired

replication of Ci, the random number Ut is used to generate the k"'ervice time in the

first replication of the pair, then I-Us must be used to generate the krs service time in the

second replicanon. Further information on AV is presented in [3], [4], and [5].

4.4. Synchronizing the Random Numbers

The driving force behind CRN and AV is the proper synchronization of the

random numbers that are used during the simulation. Without proper synchronization of

the random numbers, neither CRN nor AV would work. This section describes one

method of synchronizing the random numbers used in simulations under CRN or AV.

The presentahon focuses on synchronization techniques applied to simulations under

CRN. However, the synchronization techniques that are described in this section are also

applicable to simulations under AV.
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The idea behind CRN is to induce positive correlation between X; and Y, in thei"'ynchronizedreplications of C& and Cz by enforcing that the order of random number

usage in C& and Cz is the same. That is, in the i"'eplications of Ct and Cz, the same

common random number sequence U is used to drive the simulations of Ct and Cz.

Furthermore, the k"'andom number U~ drawn from U is used for the same purpose in the

i replications of Cz and Cz. Hence, if in the i 'eplication of Cu the random number U,

is used to generate the r inter-arrival time, then U, must also be used to generate the r"

inter-arrival time in the i"'eplication of Cz. Therefore, for CRN to work, it is critical that

the random numbers used in the simulation of Ct and Cz are not merely the same, but are

also properly synchronized.

There are many ways to synchronize the order of random number usage in the

simulation of C& and Cz [3[, [4]. The method of synchronization of the common random

numbers used to drive the simulations of Ct and Cz implemented here is as follows. Label

each point in C;, j = I, 2, that generates random variates a random point. Thus, for the

MOS1 queuing model in Figure 3-1 (a), there are two such points, one in the Entity

Creation Module where the inter-arrival times are generated and another in the Server

Module where the services times are generated. Similarly, for the M/M/2 queuing model

in Figure 3-1 (b), there are three random points, one in the Entity Creation Module where

the inter-arrival times are generated, and one in each of the two Server Modules where

the service times are generated. One way to achieve synchronization of the common

random numbers driving the simulations of Cr and Cz in each replication is to assign

separate random number streams to each random point in C;, j =I, 2 that are different.

However, the assignment must be such that the same stream is assigned to identical

random points in C& and Cz. Thus, for Cn if we assign stream U to generate inter-arrival

times and stream U'o generate service times, then we must make the same stream

assignments in Cz, that is, assign U to generate inter-amval times, and U to generater z

service times for the two servertc Even though the two server modules in the M/M/2

model constitute two random points, these random points are the same since both random

points generate service times for the same purpose in the system being modeled.
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4.5. VR Job Descriptions

This section describes the job description forms used to submit VR jobs to the

XFace tool. VR jobs are only supported on the emulated Windows environment. The VR-

AV job description form is displayed in Figure 4-2. It is veiy similar to Windows-based

parametric job description form in Figure 3-6 {b).

Figure 4-2. UR-AV Job Description Form

The VR-CRN job description form is presented in Figure 4-3. The total number of

configurations c, c & 2, of the system or systems being simulated is entered into the

"Total Configuration" text box. Since CRN involves the comparison of at least two

alternate models, the minimum value that can be entered in this field is 2. The number of

replications of each configuration is entered in the "Total Replicanon" text box. Each
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model will be replicated k times. The application name is entered in the 'Application"

text box. The slave processors to execute the job are selected from the machines list.

Finally, a set of job files is entered for each configuration. When entering the job files,

the configuration number is first entered and then the job tiles are entered in the text

fields provided. The *'Submit Configuration Files" button is used to submit the job files

for a configuration. Each configuration submitted is displayed in the 'Configuration

Submitted" window. The "View Submitted Files..." button displays the job files

submitted for the selected configuration, fuid the 'Delete" button deletes the selected

configuration. The 'OK.", 'Cancel," and "Help" buttons serve the same purposes as those

on the job description forms in Figure 3-6.
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CHAPTER V

PARTITIONED JOBS

This chapter presents the concepts behind the partitioned job feature of the XFace

tool. The execution of a program that is made up of interdependent units of computation,

where the interdependencies among computation units are dictated by the flow of data

during program execution, is considered. The partitioned job feature of the XFace tool is

used to execute the k replications of a petitioned program on sub-clusters consisting of

several processors. Before delving into any further details, a formal definition of the sub-

cluster model used to execute each replication of the program is presented. For a given

program that is executed using the partitioned job feature of the XFace tool, let the

processors that are contained in the set II be Pi„h = I, 2, ..., N, and let the N processors

be divided into n sets according to a predefined rule R that places each processor Ps into a

set I;, I & i & n. Each I; is considered a sub-cluster with cardinality I I; I= m;. Define I

as the set containing all sub-clusters„so that j I I
= n. It is necessary that R satisfies the

followdng condition: For every I; c I and I „c I, I & i, j & n and i f j, I, n I „= I },

where (} denotes the empty set, so that each processor Ps can only be contained in either

I; or I; but not both. Therefore, the N slave processors submitted to execute the job are

divided into n mutually exclusive sub-clusters according to the placement rule R. The

maximum sub-cluster size is given by

Suppose a replication is split into ip computation units. Since the qi computation

units are interdependent, even if m„„,. & la, all the computation units cinmot execute

concurrently for a given replication that is executed on I; consisting of m„... processors.

However, the precedence constraints among the ip computation units may be such that

sets of independent computation units exist that can be executed concurrently. If this is

the case, we can utilize such parallelism if we can partition the program into computation
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muts and execute each replication of the program on sub-cluster l; consisting of m;

processors.

Unfortunately, executing each replication of the program on sub-cluster f; injects

overheads that have the effect of increasing the execution time of each replication. Also,

problems that were not present when each replication of the program was executed on a

single processor must now be addressed. These problems include the following. A

partitioning algorithm is needed to partihon the program into interdependent computation

units, each of which must be of a certain size or granularity in order to achieve the

maximum speedup in the execution time of each replication of the program; a scheduling

algorithm is needed to efficiently map the computational units in the partitioned program

to the processors in 1;; the executions of the computation muts on the processors in I,
must be synchronized; the data dependencies that exist among the computational units in

the partitioned program must be preserved during the execution of each replication of the

program; and data must be forwarded among the processors in I,.

The partitioning and scheduling problems are briefly addressed in Sections 5. I

and 5,3, respectively. The remaining problems are automatically taken care of by

representing the partitioned program by the task precedence graph model described in

Section 5.2.

5.1. The Partitioning Problem

A program comprises a set of instructions. The instructions perform computations

on input data to produce output data. The partitioning of the program is the act of

dividing the program instructions into smaller instruction subsets that are executed

sequentially on a single processor. The computation performed by an instruction subset is

a unit of computation. Each unit of computation is defined as a task.

Tremendous research had been done on the partitioning problem; for example, the

partitioned problem is addressed in [22], [23]. The partitioning problem is a difficult

problem, NP-complete in the strong sense. Several factors must be considered when

partitioning a program into tasks, such as but not limited to, the program size, the average

task size or granularity of the partiuoned program, the number of available processors,
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load balancing, and the multiprocessor architecture that will execute the program. The

partitioning problem is not the focus of the thesis. Therefore, it is assumed that a parallel

algorithm is already designed for the program that will be submitted to the XFace tool,

and that the application program is already partitioned into interdependent tasks and is

represented by a task precedence graph.

5.2. Task Precedence Graph Model

A program partitioned into interdependent tasks can be modeled by the task

precedence graph illustrated in Figure 5-1. The nodes in the graph represent the tasks in

the partitioned program. Each directed-edge between any two tasks represents the

precedence constraints between the tasks, the flow of data between the tasks, and the

communication costs associated with data flowing between the tasks. A task precedence

graph is commonly referred as a dynamic acyclic graph (DAG) in the scheduling

literature. An in depth discussion of the DAG model is presented in [24].

In general, a DAG G= (V, E) consists of a set of weighted nodes V = {i = 0, 1, 2,

...,n
I T;}, and a set of weighted directed-edges, E = {i, j = 0, I, 2, ..., n j e;j}, that

corutect nodes in the graph. Each node T; c V is associated with a computational cost c; =

W(T;), where W(T;) is the node weight or sequential execution time required to execute

task T;. Each directed-edge e;j e E connects the two interdependent tasks T; and T, with

the edge going from T; to Tj. The direction of the edge e;j represents the precedence

constraints between T; and T„, specifying that the execution of T, must precede the

execution of T,. The direction of the edge e„j also indicates that the flow of data is from T;

to Tj during program execution. The weight W(e~) of e;j represents the communication

cost charged to forward the data produced by the execution of T; on processor Pt to

processor Pa that will execute T;. ht this thesis, for the edge e;j that connects T; and T„, T;

is defined as the pctrent of Tj atld Tj is defined as the child of T;. Furthermore, it is

assumed that the edge weights are negligible with respect to the task weights to disregard

the communication overhead associated with the edges.
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Figure S-l. DAG Model.

A DAG has entry nodes, exit nodes, and nodes that are neither entry nor exit

nodes. An eiitry node in a DAG is a node that is not dependent on any other node in the

DAG for data at the start of program execution, and thus can begin execution if it is

scheduled to a processor. Thus, entry nodes in a DAG are the first to execute. An entry

node has no parent and k children. For example, for the DAG in Figure S-l, the node that

represents task T& is the only entry node in the graph. On the other hand, an exit node has

k parents but no children. The precedence constraints that exist among the nodes in the

DAG dictate that an exit node cannot begin execution until all its k parents are executed.

As a result, exit nodes are the last nodes in the DAG to execute. For the DAG depicted

in Figure S-l, the node that represents task T4 is the only exit node in the graph. Nodes

that are neither entry nor exit nodes have ki parents and ki children. For the DAG

depicted in Figure 4-1, the nodes that represent tasks Ti, Ta and T& are neither exit nor

entry nodes. Each of these nodes has parent Ts and child T4.

When the program represented by the DAG in Figure S-l is executed, task Tv is

executed first. After the execution of T0 completes, the data produced by Ta is fonvarded



to the processors scheduled to execute tasks Tu Tz, and Tz. If at least three processors are

available, tasks Tu Tz, and Tz can begin execution simultaneously on separate processors

since no data dependency exists among these tasks. Othenvise, if less than three

processors are available, tasks Tt, Tz, and Tz cannot all begin execution at once.

However, they can begin execution in any order. Finally, task T4 can begin execution

atter tasks Tu Tz, and Tz are executed and all data have been forwarded to the processor

that will execute T4.

In the examples that are considered in this thesis, DAGs that are of similar

structures to that of the DAG in Figure 5-I are considered. The DAGs have one or more

entry nodes that are followed by at least two nodes that can be executed in parallel, and

end with one or more exit nodes. It is assumed that the computational costs of the nodes

in parallel are much greater than the computational costs of the entry nodes and exit

nodes. Also, the assignment of task indices in the DAG is irrelevant, that is, the nodes

that represent the tasks can be indexed in any order.

Estimation of the task weights is done prior to the execution of the DAG.

Practically, a task weight can be estimated by executing the task with all the required

data several times on a dedicated processor. The average of the execution times gives an

estimate of the task weight.

5.3. The Scheduling Problem

The scheduling problem is to map the tasks in the DAG to the processors in sub-

cluster I, to achieve optimum speedup in one replication of the program represented by

the DAG. This is a difficult problem that is also NP-complete. Tremendous research had

been done on the scheduling problem As a result, a plethora of scheduling algotithms

exist that schedule the tasks in a DAG to targeted multiprocessors [24]. These scheduling

algorithms use a wide variety of heuristics to schedule tasks within a DAG to the

targeted muldprocessors. However, the ultimate objective of all these algorithms is to

achieve optimum schedule length.
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Sbtce the scheduling problem is not the main focus of this thesis, a simple

scheduling algorithm is developed to demonstrate the partitioned job feature ol the XFace

tool. However, it is worthy to note that the algorithm developed and implemented in the

tool can be replaced with a more sophisticated scheduling algorithm.

5.4. Scheduling Tasks vttithin a Replication

The scheduling algorithm developed in this section is based on the follov ing

assumptions: (l) The scheduling algorithm operates under a non-preemptive scheduling

option, that is, once a task begins execution on a processor, the task vill execute to

completion; (2) the DAG is assumed to have deterministic property, that is, no

probabilistic measures are associated with the edges in the DAG. Although it is assumed

that the edge weights are negligible with respect to the task weights, Algorithm 5-l

makes use of the edge weights when scheduling. This was done to support future work on

the XFace tooL Algorithm 5-l still works if the weights are assumed to be negligible and

equal. The scheduling algorithm utilizes fork and join structures embedded within the

DAG dming scheduling in an attempt to achieve the optimum'peedup in the execution

time of one replication of the program Figure 5-2 (a) and (b) depict fork and join

structures, respectively. The terms head ofafork and tail ofajoin are used in this section

and are defined as follows. The head ofa fork is the parent task in the fork structure, and

the tail of

adjoin

is the child task in the join structure. For example, Tc is the head of the

fork structure depicted in Figure 5-2 (a), and T„ is the tail of the join structure depicted in

Figure 5-2 (b).

l. The cun eat implementation of Algoritlun 5-1 in the XFace tool does not yield the optimruu

schedule length, This is due to the fact that the execution of task T, on processor Px maybe

precmpted to forward data to processor Pr on wlucb task T, will be executed, givmr that T, is a

child of T,.
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Figure 5-2. (a) Fork Structure (b) Join Structure

In scheduling the DAG in Figure 5-1, the following steps are executed.

(I) Add tasks that are ready (ready tasks) to execute to the ready list. Ready tasks are

those that have no data dependency or a dependency count of zero. The

dependency count of task T; is defined as the current number of parent tasks that

must produce data that is required for T„ to begin execution.

(2) For each ready task Tl with a dependency count of zero, map Tl to a processor and

add T, to the ready list.

(3) Upon the completion of the execution of task T;, decrement the dependencv count

of each child of Ti.

During the execution of each replication of the program represented by the DAG model

in Figure 5-1, Algorithm 5-1 will be executed several times. It is executed once before

any task is executed, and once after each task completes execution. It could be the case

that several tasks finish simultaneously. In this case, the scheduling algorithm is executed

once for all the finish tasks. Therefore, the input parameters to the algorithm are as listed

below.
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(l) The DAG that is being executed. A data structure must be defined to store the

state of each task. The DAG can be implemented as an iuray of task structures.

(2) The list of processors that are assigned to execute the DAG. Each processor in

the list is either marked 'scheduled" or 'unscheduled*'ndicating its availability.

(3) The list of tasks that finish execution prior to the current execution of the

scheduling algorithm. The list will be empty the first time the algorithm executes.

(4) The ready list of tasks. All ready tasks will be added to the ready list. The

processor assigned to execute a ready task is stored within the task structure.

Algorithm S-l. Scheduling Tasks within a DAG

(I) For each scheduled task I; that completes execution, decrement the dependency

count ofeach task?i that is a child of Tr

(2) Add all tasks in the DAG that have a dependency count ofzero to the ready list.

For each task T, added to the ready list, eliminate T from the scheduling process.

(3) For erich task T, added to the ready list:

i. If T,is the head ofa fork and noi the tail ofajoin, schedule T, to the next

available processor P and assign P„, to the child Tt of T, such that the

edge weight 8'(e,s) is the heaviest ofall edges connecting 'I,'o one of its

children Ta

Else if T, is the tail ofa)oin and not the head ofa fork, schedule T, io the

same processor P„, that its parent T, was scheduled such that the edge

weight 5'(e) is the heaviest ofall edges connecting T, to one of its parents
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ni. Else T) is both the tail ofa2oin and the head ofa fork, and processor P„,

was assigned to 2; by a parent andprocessor P„, is available, schedule T,

io the same processor P„, that its parent 2; was scheduled such that the

edge weight JY(eg is the heaviest of the edges that connects 2; to one of tts

parents T,. Otherwise, if Tt was not assigned a processor, schedule T, to

the next available processor P„. Assign P., * = m or n, to the child T„of

Tj such that the edge weight II'(e,e) is the heaviest ofall edges connecnng

T, to one ofits children 2i,,

Algorithm 5-I groups the executions of communicational intensive tasks on the same

processor in an effort to reduce the schedule length.

5.5. Speedups

The ideal parallel execution time for k replications executed on n sub-clusters I;,

where m; processors are contained in I, and every I; c: I has the same size m, = m, is

defined by Equation (5-1). The replication time TR now depends on the number of

processors m that are contained in sub-cluster I;,

Tp (T,i ),k )=I[—"] six, )jT„{ ) (5-2)

Tp (T& (m) k n) =
[[

—

] +
S(k, n) (T„(m) + Tn )

(Ikl
(5-3)

Speedups in the execution time of the partitioned program can be achieved in two ways.

The I"-dimension speedup results from executing the partitioned program on n sub-

clusters. The 2""-dimension speedup results from executing each replication of the

partitioned program on sub-cluster I; containing m processors. The I"-dimension

speedup is denoted rio slid the 2" -dimension speedup is denoted zzo. The I"'-dimension

speedup is the ratio of the sequential time Ts to execute the k replications on a single
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processor and the parallel time to execute the k replications on n sub-clusters each

containing one processor. The 2""-dimension speedup is the ratio of the parallel time to

execute the k replications on n sub-clusters each containing one processor and the parallel

time to execute the k replications on n sub-clusters each containing m processors.

Therefore, the total speedup is the produc1 of r m and vzo.

T

Tp (T„(1), k, n)

Tp (T (I), k, n)
r.c(TR(m), k, n)=

Tp (T„(m), k, n)
aa~l

T
x(T„(m), k, n) = z», x r.o =

Tp (Ts(m), k, n)
at

(5-6)

Ideally, the I"-dimension speedup sto in Equation (5-4) is same as the parametric

speedup in Equation (3-4). However, practically, xm will be less than the parametric

speedup because of the scheduling and communication overheads that are added to the

execution time of each replication executed on sub-cluster I,.

Unlike r», r.c is not easily estimated because r.o depends on the structure of the

DAG, the scheduling algorithm used for scheduling tasks in the DAG, and the number of

processors assigned to execute the DAG. However, once these factors are known, an

optimum v.„can be estimated with the aid of Ghent Charts.

The following example demonstrates estimating r.c, and also demonstrates

Algorithm 5-1 at work. For this example, arbitrtuy task weights are added to the DAG

depicted in Figure 5— 1. The modified DAG is depicted in Figure 5-3. For scheduling

purposes, all edges in the DAG have weight e, where e is negligible with respect to the

task weights. The three processors Pa P&, and P& are assigned to execute one replication

of the program represented by the DAG in Figure 5-3. Throughout the example, the
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possible state of processor Pi„h = I, 2, or 3, is either S or NS, where S denotes that

processor Ps is scheduled to execute task T;, and NS denotes that processor Pi, is not

scheduled to execute any task. The possible execution state of task T, is E, EP or EC,

where E denotes that task T; is executing, EP denotes that the execution of task T, is

pending, and EC denotes that the exerution of task T; has completed. NA denotes that an

item is not applicable. The states of the three processors prior to the first invocation of

the scheduling algorithm are displayed in Table 5-1, and the initial states of the tasks in

the DAG are displayed in Table 5-2.

R

Figure 5-3. Sample DAG Model

Table 5-1. Initial States of Processors
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Table 5-2. hdtial States ot Tasks

Initially, all processors assigned to execute the DAG are marked unscheduled

(NS). The tasks states, displayed in Table 5-2, are explained as follows. The

'Dependency Count" row displays the current dependency count of each task. Initially,

no processor is scheduled; thus, the "Scheduled Processor*'ow displays NA (not

applicable) for each task, and the execution state of each task is marked as execution

pending (EP).

At the beginning of the tirst loop through Algorithm 5-l, the entry node Ta has a

dependencv count of zero. As a result, it is added to the ready list, scheduled to the next

available processor Pu and is eliminated from the scheduling process. Table 5-3 and

Table 5-4 display the processors states and tasks states, respectively, after the execution

of the first loop of the scheduling algorithm.

Table 5-3. States of Processors after First Loop through Algorithm 5-I
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Table 5-4. States ofTasks after First Loop through Algorithm 5-1

The second loop through Algorithm 5-1 is executed after task To has completed

execution. At this point, processor Pr that was scheduled to execute To is now available.

Thus, all three processors are available for task execution. The dependency cotatts of

tasks Tn Tx and T3 are decrement by one. As a result, all three tasks have dependency

counts of zero. Thus, each of these tasks is added to the ready list and scheduled to a

processor at the end of the loop. The states of the processors and the tasks after the

execution of the second loop through Algorithm 5-1 are displayed in Tables 5-5 and 5-6,

respectively.

The third loop through the algorithm is executed when the execution of Tt

completes. The dependency count of task T4 is decremented by one, and now has a value

of two. After the execution of the loop, no task is added to the ready list. Tables 5-7 and

5-8 display the states of the processors and tasks after the execution of the third loop

through the algorithm.

Table 5-5. States of Processors after Second Loop through Algotithm 5-1



Table 5-6. States ofTasks after Second Loop through Algorithm S-l

Table 5-7. States ofProcessors after Third Loop through Algorithm 5-l

Table 5-8. States ofTasks after Third Loop through Algorithm 5-1

Task T4 is not added to the ready list until the execution of tasks T& and T3 have

completed, which occurs aAer the ftAh loop through the algorithm. The processor states

and task states aAer the fourth and ftAh loops through the algorithm are displayed in

Tables 5-9 through 5-12.
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Table 5-9. States of Processors after Fourth Loop through Algorithm 5-1

Table 5-10. States of Tasks after Fourth Loop through Algorithm 5-1

Table 5-11. States of Processors after Fifth Loop through Algorithm 5-1

Table 5-12. States of Tasks after Fifth Loop through Algorithm 5-1
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The Ghent Chart in Figure 5-4 illustrates the schedule length achieved for the

example. A schedule length of 17 time-units is achieved for the execution of the DAG in

Figure 5-3. If one replication of the program represented by the DAG were executed on a

single processor, the optimum schedule length achievable is 33 time-units. Therefore,

using three processors to execute the DAG, a speed-up in the execution time of one

replication of the program, vso, of 51% is achievable. If instead two processors were

used to execute the DAG, rso would be less than 51%. Also, if more than three

processors were used to execute the DAG, sso would not exceed 51%.

key:~ Processorisidle

Processor is busy executing task T,

Figure 5-4. Ghant Chart Illustrating Optimum Schedule Length

5.6. Partitioned Job Environment

This section describes the extensions to the execution environments presented in

Section 3.3 that are required to support the partitioned job feature of the XFace tool.

Figure 5-5 depicts an illustration of the sub-clusters I"s I & i & 4, in a partitioned-job

environment for the case mi = mz = mz = mr = 4 slave processors are contained in sub-
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clusters I i, I z, I i, and I 4, respectively, and N = 16 slave processors are contained in Ii.

The network illustrates the communication links via MPI library routine calls among

processes on remote processors in the Beowuif cluster.

In general, the placement rule R used to place each slave processor P„, I & j & N,

in each sub-cluster 1;, I & i & n, is as follows. The maximum sub-cluster size m,„,„„

allowed is an input parameter that the user enters in the job description. I'or a given m„,,-

and N, the total number of sub-clusters n contained in I is given by the following

expressions.

N
n=, Nmod m„,.„= 0

m
Ill KC

Nn= + 1, Nmodm„,„w 0

The placement rule R is such that the first m„,„slave processors in II are placed in I i, the

second m slave processors in 11 are placed in I z, and so on. If the remainder of the

division in (5-1) is zero, N mod m„,„= 0, each I; c I, I & i & n, has the same size, that

is, m, = m. = ... = m„= m„„. Othetwise, the remainder of the division in (5-1) is non-

zero and each of the first I, c I, I & i & n-l, has the same size, that is,

m, = m. = ... = m„, = m„,.„andthelastl;c: I has sizem„, where 1& m„& m„,.,

The N slave processors in II are ranked from 1 to N, inclusively. The ranking is

done according to the positions of the selected machines in the machine list displayed in

the job description form displayed in Figures 5-6. The p processors that are contained in

the first selected machine in the list are arbitrarily ranked I to p. Similarly, the p

processors that are contained in the second selected machine in the list are ranked (p + I)

to gp, aitd so on. For sub-cluster I, c: I, I & i & n, the ranks of the slave processors in I,

are in the range (i — I) x m„,„+ I to i x m„,„„, inclusive. Thus, the rank of slave

processor P„c: I; isj, such that 1&i &nand (i — I) x m„,„+ I & j & i x m„,., The slave
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processor P; c: I; with the smallest rank is assigned the leader of sub-cluster I e For the

job environment diagramed in Figure 5-5, the slave processors with ranks I, 5, 9, and 13

are the leaders of I', f& I n and f4, respectively.

eeb-ele

/
t

er Z

Figure 5-5. Network of Processors for N = I 6 and n = 4

As before, the master processor runs an instance of the job scheduler. However, in

this case, the job scheduler schedules the iterations only to the leaders of the sub-clusters.

Each leader runs an instance of the task scheduler. For each iteration that is executed on

I;, the task scheduler implements Algorithm 5-l to schedule the processors in I,. All

slave processors in fs including the leader, are scheduled to tasks in the partitioned

program.
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5.7. Partitioned Job Description

The job description form that is used to submit partitioned jobs is displayed in

Figure 5-6. Partitioned jobs with Linux-based application programs are submitted using

the version of the form in Figure 5-6 (a), and partitioned tobs with Windows-based

application programs are submitted using the version in Figure 5-6 (b). The total number

of tasks tp, ip & 2, in the partitioned program is first entered into the 'Total Tasks" text

box. The number of replications is then entered in the "Total Replication" text box. If the

application is Linux-based, the command to execute the program is entered in the

'Command" text box in the form shown in Figure 5-6 (a). Otherwise, the application

name is entered in the 'Application" text box in the form shown in Figure 5-6 (b). The

machines to execute the job are then selected fiom the machines list. Finally, a set of job

files (task files) is entered for each task. For each set of task files, the task index is first

entered, and then the task files are entered in the text fields provided. The 'Submit Files"

button is used to submit the task files. The tasks that are already submitted are displayed

in the "Task Files Submitted" window. The 'View Submitted Files..." button displays

the task files submitted for the selected task, and the 'Delete" button deletes the task files

submitted for the selected task.
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Figure S-6. Partitioned Job Description Forms (a) Windows-based (b) Linux-Based



CHAPTER VI
IMPLEMENTATION

This chapter presents the implementation of the XFace tool. The top-level layout

of the core processes and scripts on the master processor and each slave processor are

illustrated in Figures 6-1 and 6-2. The figures diagram the hereditary relationships among

the major processes in the XFace tool. The darker shaded blocks represent the

fundamental processes implemented in the tool. Blocks that are contained within shaded

blocks represent the components of the shaded blocks. The lighter shaded blocks

represent some of the major auxiliary shell scipts that complement the XFace

implementation. There are several other auxiliary scripts in the tool that are not illustrated

in Figures G-l and 6-2. Many of these scripts perform veil simple housekeeping chores

that are too trivial to discuss. Thus„ for the conciseness of this chapter, the simple

housekeeping scripts are not described.

The XFace Launcher script starts an instance of the XFace application by starting

the XFace parent process. The XFace parent process first runs clean-up scripts to

initialize the job environment on all processors, and then launches the Xdisplay process.

The Xdisplay process displays the job description forms used to submit jobs to the tool.

After the submission of a job description„ the Xdisplay process runs a set of auxiliary

scripts that create the iteration directories, and a second set that loads the job on the slave

processors. After the job description is loaded on the slave processors, the Xdisplay

process signals the XFace parent process. The reception of this signal triggers the XFace

parent process to start the master control process to execute the job. The master control

process implements the job scheduler that runs on the master processor, and also the

instances of the monitor process that run on the slave processors. The job scheduler

schedules the iterations to the instances of the monitor process. The instances of the

monitor process initiate and monitor the executions of the iterations. The master control

process sigttats the XFace parent process at the completion of the execution phase. The

XFace parent process then runs a set of auxiliary scripts that gather the results from the

slave processors to the master processor. The upcoming subsections give detailed
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descriptions of the more important processes and scripts illustrated in Figures 6-I and 6-

The XFace parent process is responsible for initializing the job environments, tutd

statung the Xdisplay and master control processes. At start up of the XFace application,

the clean-up scripts are run to initialize the job environment on the machines listed in

machines.LINUX. During the iniualization step, the shared memories and semaphores

that failed to de-allocate at the end of the previous job are released. Also, the XFace-

related zombie processes, if any, that existed on the machines are killed. The initialization

step is vety important because every instance of the XFace tool uses the same set of keys

to allocate the semaphores and shared memories used for inter-process communications

(IPCs). As a result, an instance of ihe XFace tool will not start if the previous instance

was not properly exited and the semaphores and shared memories were not successfully

de-allocated. Due to the importance of cleaning up the job environments on the

processors involved, the clean up scripts are run both at start up of ihe XFace application

and also at the end of every job that is executed by the tool. A second consequence of

using the same set of keys to initialize shared memories and semaphores is that the

current implementation of the XFace tool only allows for the execution of one job at a

time. It does not support execudng multiple jobs concurrently.

The Xdisplay process displays an input GUI window, a monitor GUI window, and

the output GUI window at different times. The input GUI window is displayed at start-up

of the XFace tool. It is used to select one of the job description forms displayed in

Figures 3-6, 4-2, 4-3, and 5-6 that are used io submit jobs io the tool. The monitor GUI

window is displayed at the beginning of the job execution phase. It displays the current

execution status and statistics of each iteration. It also provides functionalities that allow

the user to abort the job execution, and to view the submitted job description at anytime

dming the job execution phase or job completion phase. Finally, the output GUI window

is displayed at the end of the job completion phase. It displays the job nut statistics, and

provides the user with the functionalities to save the job results and start a new job.
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Master

Figure 6-1. Hereditary Relationships Among Core XFace Processes on Master

Slave
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Figure 6-2. Hereditary Relationships Among Core XFace Processes on Slave



The master control process is the backend of the XFace tool that executes the

iterations of jobs submitted to the tool. The same instance of the master control process

runs on the master processor and also on the slave processors. The part of the master

control process that runs on the master processor implements the job scheduler, and the

part of the master control that runs on the slave processors implements the monitor

process.

The job scheduler is started at the beginning of the job execution phase. During

the job execution phase, the job scheduler employs Algorithm 3-l to schedule the

iterations to instances of the monitor process. Each scheduled instance of the monitor

process forwards job execution statistics to the job scheduler. The execution statistics

include the iteration start time, the iteration end time, and the iteration total execution

time. The job scheduler communicates the execution statistics to the Xdisplay process,

which in turn uses this information to update the information displayed in the monitor

GUI window.

An instance of the monitor process is started on each slave processor Pl c: II at the

begimnng of the job execution phase. The instance of the monitor process rumiing on P„

initiates and monitors the execution of the iterations that are scheduled to P;. The monitor

process runs until it is sent the termination signal by the job scheduler. The termination

signal can be either of type I, or type II. If a type I termination signal is sent, the monitor

process aborts the execution of the current iteration and waits for further instruction from

the job scheduler. Further instruction in this case could be either the scheduling of

another iteration or the termination signal of type II. If a type II termination signal is sent,

the monitor process exits execution. Currently, only the termination signal of type II is

implemented. The termination signal of type I is reserved for future expattsion of the tool.

It will be implemented to abort the execution of a particular iteration from the monitor

GUI window.

Depending on the job-type, different instances of the monitor process run on the

slave processors. This is illustrated in Figure 6-2. The instance of the monitor process that

runs on the slave processors is specific to the job-type. The parumerricj ob processor

runs on the slave processors if the job-type is parametric.„ the VRjob processor runs on

the slave processors if the job-type is VR; and the partitionedj ob processor runs on the



slave nodes if the job-type is partitioned. For partitioned jobs, each sub-cluster I,
contains one processor that is designated the leader and (m-I) that are designated non-

leaders. All the leaders run the same instance of the monitor process. Similarly, the non-

leaders run the same instance of the monitor process, which is different fiom the instance

that is run on the leaders.

The task scheduler is a component of the monitor process that runs only on the

leaders. For each iteration that is scheduled to the leader P„ in sub-cluster I;, the task

scheduler running on P„employs Algorithm 4-2 to schedule the slave processors in I; to

the tasks in the partitioned program. Therefore, the leaders execute the task scheduler as

well as the tasks in the partitioned program that are scheduled to the leaders. The

execution of the tasks scheduled to each leader is off-loaded to an auxiliary process, the

worker process. The worker process that runs on a leader is dedicated to that leader. This

is illustrated in Figure 6-2. Thus, during ihe job execution phase, the task scheduler and

the worker process run concurrently on each leader in FL The task scheduler schedules

the tasks in the partitioned program, while the worker process executes the tasks that are

scheduled to run on the leader.

The application start-up scripts are used to initiate the application programs that

are replicated in the execution of the iterations. There are two sets of application start-up

scripts: Windows-based and Linux-based. The Windows-based start-up scripts are used

to initiate the execution of Windows—based application programs, while the Linux-based

start-up scripts are used to initiate the execution of Linux-based application progratns.

The application start-up scripts are further described in Appendix B.

6.1. Implementing the Job Environments

This section describes the implementation of ihe job environments thai are created

by the XFace tool. The virtual network topologies in Figures 3-2 and 5-5 are easily

implemented on top of the MPI library. By default, when the master control process is

started on the master processor and slave processors, the processors are placed into one

group, notated as the world-group. A communicadon channel is automatically established
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between every pair of processors in the world-group. Thus, master-slave commutucation

channels are established between the master processor and each slave processor, and

slave-slave communication channels are established between every pair of slave

processors. The instance of the master control process that runs on each of the processors

in the world-group are ranked with natural numbers in the range 0 to N. The instance of

the master control process that runs on the master processor is automatically ranked 0,

and the instances that run on the slave processors are ranked from I to N. Each processor

is tagged with a processor identification number (ID) that is identical to the rank of the

instance of the master control process that runs on that processor. Thus, the master

processor has processor ID = 0, the slave processor running the instance of the master

control process with rank I has processor ID = I, and so on. As a result, when the

instances of the monitor process are grouped, the slave processors are automatically

grouped in a similar fashion.

For parametric and VR jobs, the slave-slave channels are disregarded since they

are not needed. The job scheduler uses the master-slave channels to schedule the

iterations to the instances of the monitor process. Figure 6-3 diagrams the remote

communications between the job scheduler and the instances of the monitor process

running on the slave processors. Figure 6-3 (a) diagrams a general view of the

communicauon channels, while Figure 6-3 (b) diagrams a zoomed view of the

communication channel between the job scheduler and an instance of the monitor

process. The job scheduler communicates the iteration numbers and the termination

signals to the instances of the monitor process. An instance of the monitor process that is

scheduled an iteration starts the appropriate application-start-up script to initiate the

execution of the iteration, and then sends the iteration start-time to the job scheduler. At

the end of the iteration, the instance of the monitor process sends the iteration end time,

total execution time, and a request for another iteration to the job scheduler. If all

iterations are not scheduled, the job scheduler fulfils the monitor process request by

scheduling the next iteration to the slave processor on which the monitor process runs.

Otherwise, the job scheduler sends the termination signal of type II. This causes the

monitor process to terminate its execution.
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Figure 6-3. (a) Remote Communication between Master and Slave Processors (b)

Messages passed between Job Scheduler and Monitor Process

For pattitioned jobs, each sub-cluster is implemented as a sub-group of the world-

group, which is also easily implemented on top of the MPI library. Sub-groups are

created from the world-group, and the sub-groups constitute the sub-clusters, none of

which contains the master processor. The sub-clusters are created as follows. Each

instance of the monitor process invokes the MPI routine MPI Comm-split() that places

the instance of the monitor process instantiating the invocation in a sub-cluster. The

MPI Comm split() routine takes the tupple &color, key& as two of its arguments. All

instances of the monitor process invoking MPI Comm splito with the same color value

are placed in the same sub-cluster. The key values are used to rank the instances of the
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monitor process in the newly formed sub-cluster. The placement rule R described in

Secdon 5.6 is used to generate the number of sub-clusters n that is contained in I . Each

instance of the monitor process that belongs to sub-cluster I, uses color value = i and key

value equal to its rank in the world-group, in the invocation of MPI Comm split().

Therefore, after the invocations of MPI Comm split(), the monitor processes„and hence

the slave processors, are placed into sub-clusters in accordance with the placement rule

R. After the creation of the sub-clusters, each slave processor in I; has two ranks: its rank

(world rank) in the world group, and its rank (sub-cluster rank) in sub-cluster I;. The

world rank of the slave processor P, a I; is a natural number in the range I to N, iuid the

sub-cluster rank is a natural number in the range 0 to (m, — I). The world rank of P„

corresponds with the rank defined in Section 5.6.

Figure 6-4 illustrates the remote communication channels between the job

scheduler and the instances of the monitor process that run on the leaders for the setup in

Figure 5-5. The job scheduler schedules the iterations to the instances of the monitor

process that run on the leaders. As before, the job scheduler communicates iteration and

termination signals to the instances of the monitor process that run on the leaders. The

instances of the monitor process that run on the leaders communicate the execution

statistics of the iterations and iteration requests to the job scheduler. The execution of

each iteration that is scheduled to the leader of sub-cluster I, replicates the partitioned

program once on sub-cluster I;. The task scheduler running on the leader schedules the

slave processors in f; to the tasks in the partitioned program. The diagram in Figure 6-5

illustrates the remote communications between the task scheduler rtuuting on the leader

Pi c: I i and the non-leader slave processors in Fi, where I i is sub-cluster I in the

diagram depicted in Figure 6-4. Figure 6-5 also illustrates the IPC between the task

scheduler and the worker process. The remote communications between the task

scheduler and the instances of the monitor process running on the non-leaders in I i are

achieved via slave-slave coriununication channels. However, the IPC between the task

scheduler and the worker process is achieved via shared memory. For each task that is

scheduled to a slave processor in I i, the task scheduler communicates the task index iuid
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the locations of the data that the task needs to begin execution. In either case, the v orker

process running on the leader or the instance of the monitor process mnning on a non-

leader communicates task execution statistics and task requests to the task scheduler,

When all tasks have been executed, the task scheduler sends the termination signal of

type II to all requesting slave processors in I 1.

Sub- tu~tr I

Sub- luster 4

OMonster Ptoress 1

rLe relet)

Monnot Pro~see 13 ~ Job ~ Mon«lot Ptnc ss J~J

(Lender) ~& Schcduler ~ I/ (Lesd r)

Momtor P oc ". 13
tLc«rla)

I
bub-lusta'

Sub-cluster 3

tter«uon number,
1 rmtn«tron stdnsl

Job ~'onster Proc ss 1 t

dch dul ~ fL «d r)

tt st«ones«I:st«on st«ltstr s,
rra suon nun«has

Figure 6ML (a3 Remote Commmucation bet)veen Mastet and Leaders (h) Messages

passed het)veen Joh Scheduler and Monitor Process on Leader



64

DMonitor
Process 3

Odon-(nader)

Leader

Task Sekedaler
(Monitor Process l )

I"i~ I Skated
i ~ kvorker

I Isksnon i'~
i

Proerss

OMonitor
Process 4

(Non-Leader)

Monitor
Prol.t:N 3

(Non-Lee/der)

sek taken,
Ia olaellolt slg Nl

Ntk Uldl
I" lease» NNN)

taa Ink
tati lal I aeg 11,a data lo.at Nn

Task ~ Mlsalt
a tl dole ~ Pf As
(L". d:I) cc(—3 (N sand )

ta k eNNlao»l salsa
Is'k Iaall

I, R a "Noise Nlt sl ra
task lslrl

(aa oo litle I
k ls Siss

(c)

D
ata lo oeo e al' aoa

l

Figure 6-5. (a) Communication between Leader and Non-leaders in l l (b) Messages

passed between Task Scheduler and Monitor Process on Non-Leader (c) Messages passed

between Task Scheduler and Worker Process

6.3. Process interactions on Master Processor

The Linux operating system provides a rich source of inter-process

communication mechanisms that allow processes running on the same processor to

communicate with each other and also with the system kernel [25], [26]. Processes

mnning on the master processor communicate via text hles, shared-memory, and signals.
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The diagram in Figure 6-6 depicts the IPCs among the processes on the master processor.

The XFace parent process and the Xdisplay process communicates via signals and shared

memory. %hen a job description is submitted, the Xdisplay process writes the number of

processors in the set II to the shared-memory interface between the Xdisplay process and

the XFace parent process. The XFace parent process reads this value and uses it to start

the master control process. Signals are used to signal asynchronous events among the

processes in the figure.
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Figure 6-6, IPCs on Master Processor

The Xdisplay process and the master control process communicate via text files

and shared-memory. After the submission of a job, the Xdisplay process v.rites the job

description to text files. The alias names of the salve machines are written to the file

machTFTes.LINUX, and the remaining portion of the job description is written to the file

jobDescription.rxr. These input files are read by the master control process and are used

to initiate the job. The contents of machines.LEÃUX are used by the MPI resources to



launch the master control process on the slave processors, and the master control process

uses the contents of both files during the job execution phase.

During the job execution phase, the job scheduler writes current execution status and

statistics to the shared-memory interface between the master control process and the

Xdisplay process. The Xdisplay process reads the contents of the shared-memory and

updates the information displayed in the monitor GUI windov. Synchronization ol'll
write and read operations performed on the shared-memories is implemented using

semaphores [26].

6.4. Process Interactions on Slave

The IPCs among the processes on each slave processor depend on the job type.

Figure 6-7 diagrams the IPCs on the slave processor in parametric and VR job

environments. The diagram in the figure portrays the communication achieved behveen

processes via command line arguments. For each iteration that is scheduled to a slave

processor, the monitor process spawus the application-start-up script to execute the

iteration and passes command line arguments. The command line arguments passed are

the name of the application-start-up script, the iteration number, the configuration

number if the job type is VR-CRN, the job type, the alias name of the machine executing

the iteration, the pathname to the application program, and the application name if the

platform is Windows or program execution command if the platform is Linux. Therefore,

when the application start-up script starts, it has all the necessaty information to initiate

the execution of the iteration.

The setup is slightly different for partitioned jobs. Figure 6-g diagrams the IPCs

among the task scheduler, the worker process, and the application start-up script, The task

scheduler uses the shared-memory interface to communicate task indices and termination

signals to the worker process. Likewise, the worker process uses the shared-memory

interface to communicate the task execution statistics and task requests to the task

scheduler. As usual„signals are used to handle asynchronous events between the task

scheduler and the worker process. The worker process writes the remote locations of the

data that are needed to start the execution of the task to a shared text file interface. The



worker process then spawns the application start-up script to execute the task, passing the

followmg command line arguments: the name of application start-up script, the iteration

number, the task index, the alias name of the slave machine, and the application name if

the platform is Windows or the task execution command if the platform is Linux. The

start-up script copies the data from the remote locations specified in the text file interface,

and then initiates the execution of the task.

The IPCs among the processes on a non-leader processor is illustrated in Figure 6-

9. The IPCs in the figure are as described in Figure 6-8 for the IPCs between the worker

process and the application start-up script.

Manlier Pfor:ess

oommsnd line
agrnments

tion Start-ng

Figure 6-7. IPCs on Slave Processor in Parametric and UR Jobs Environment

signals
rommand isle

1

Shar rd Memorr
i

Figure 6s-8. IPCs on Leaders in Partitioned Job Environment



oonmland line
ndm&nants

Text ado
d.ta data

I 'it&on aloft.n]&

aeflpt

locations lolnnons

Figure 6-9. IPCs on Non-leader in Partitioned Job Environment



69

CHAPTER Vll
CASK STUDIES

This chapter presents three case studies that demonstrate the features of the XFace

tool. A case study is presented for each job-type: parametric, VR, and partitioned. The

parametric case study is aimed at illustrating the speed-up in the execution time that is

achievable for the application program used in the case study. Since the VR and

partitioned job-types are extensions of the parametric job-type, the descriptions of the

results obtained for the parametric case study are applicable to the results obtained for the

VR and partitioned case studies. Therefore, the VR case study is focused on illustrating

that the environment the tool creates supports viuiance reduction under the VRTs

presented in Chapter 4. The VR case study employs variance reduction under AV. On the

other hand, since the speed-up in the l" dimension is the same as the speed-up in

parametric jobs, the partitioned case study is aimed at demonstrating the speed-up in the

execution times in the 2" dimension.

The target application for the parametric and VR case studies is the student

version of the Windows-based application Arena-Version 5.00.2 [I[. At the time of this

writing, the current implementation of Arena is designed to run sequentially on single

processors. This is also true for other similar commercial discrete event simulation

packages. Therefore, due to the unavailability of a simulation application that supports

the partitioned feature of the tool, an example program was designed and implemented in

the C programming language [273 to demonstrate the third feature of the Xafce tool. For

brevity in the case studies, the application programs used are made very simple.

7.1. Arena Application-specific Environment

The application-specific environment the XFace tool creates for the Arena

application is described in this section. The diagram in Figure 7-1 depicts the Arena-

specific execution environment created on each slave processor to execute Arena

programs. The environment depicted in the figure is an instance of the environment
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diagramed in Figure 3-3. The automation control program that controls the Arena

application is implemented in Visual Basic for Applications (VBA) [2g). An

implementation ofWINE [29j is used to create the Windows environment that is required

to run Arena and the VBA automation control program.

XFece Tool

Figure 7-1. Arena Application-specific Execution Environment

The Arena application supports many embedded VBA events that are triggered at

vnrious points throughout the simulation run of an Arena program (model) [1]. Each

event is handled by a tmque service routine that is initiated by Arena when an event is

triggered. By default, the event service routines are void of VBA codes. VBA code must

be written within each service routine if the routine is to do anything useful when it is

invoked. A brief description of the Arena-initiated VBA events that are triggered during

the model simulation run are as follows. The event RunBegin is triggered prior to Arena

checking and initializing the model; the event RunBegrnStrnularion is triggered once after

the model is checked and initialized; the event RunBeginReplioorion is triggered at the

start of every replication of the simulation; the event RunEndReplicarion is triggered at
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the end of every replication; the event RunEndginndarion is triggered at the end of the

simulation while the generated simulation data are still available; and the event RnnEnd

is triggered at the very end of the simulation run. Detailed descriptions of the Arena-

initiated events, the event service routines, and the points in the simulation run cycle

where the events are triggered are presented in [ t).

The event RunBegin allows changes to be made to the structural properties of the

modules in the Arena model before the model is checked and initialized. For each Arena

model that is executed in the environment diagramed in Figure 7-I, the RunBegi n event is

used to implement the method proposed in Section 5.4 to maintain the independence

among the replications. The service routine that is associated with the RnnBegin event is

ModelLogic RnnBegin. The VBA code implemented in ModelLogic RnnBegin reads the

streams file described in Section 3.4 and sets the random number streams in the model.

The VBA code that is implemented in Mode!Logic RunBegin for the Arena models that

are used in the case studies is listed in Appendix B.

7.2. Parametric Case Study

The Arena model that is used for the parametric case study is illustrated in Figure

7-2. The model is a simple single-server queuing system. The Entity Creation module

creates entities arriving in the system, with inter-arrival times selected from an

exponential distribution with expected value one minute. The Server module models the

server that services the entities. Upon entering the system, if an entity finds the seiver

idle, the entity goes directly into service. Otherwise, the entity waits in a queue until the

server becomes available. An entity seizes the server resources at the beginning of

service, and releases them when service is complete. The entity service time is modeled

as a delay drawn from an exponential distribution with mean five minutes. An entity that

has completed service departs the system via the Entity Disposal module.

The random number stream U's used to generate the entity inter-arrival times,

and the random number stream U is used to generate the service time delays. The

random number streams U'nd U are defined in the Seeds object. For each stream, the

Seeds object defines the seed value that is used to initialize the stream, and the method of
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reinitializing the stream between replications. Arena offers four options to reinitialize the

streams between replications: No, Yes, AV, and CRN. The 'No" option directs Arena not

to reinitialize the streams between replications, the 'Yes" option directs Arena to

reinitialize the streams, and the *'AV" and "CRN" options direct Arena to reinitialize the

streams with the AV and CRN VRTs built into the Arena application. In the case studies

that use Arena programs, the method used to reinitialize the streams between replications

is only important for VR-AV jobs in which exactly two replications are executed per

iteration. For the VR-AV case study, the method of reinitializing the streams is set to AV.

For the other job-types, only one replication is executed per iteration. Therefore,

reinitializing the stream between replications is not applicable, so the default option 'No"

is specified.

Model Ol is setup to advance the simulation clock in real time. The simulation

stopping condition is set to stop the simulation after 5 minutes of real time has elapsed

since the start of the simulation, regardless of the state of the system. Therefore, the

length of each replication is fixed at 5 minutes, or equivalently 300 seconds. Hence,

ideally, the sequential time Ts to execute I 0 replications of Model 0 I is 3000 seconds.

Beads

Figure 7-2. Arena Model 01
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7.2.1. Job Description

A sample of the job description submitted for the parametric case study is

recorded in Table 7-1. The job-type indicates that the parametric job description form is

used to submit the job. The job-type directs the XFace tool to set up the parametric

environment to execute the job. The next two lines in the job description indicate that 10

replications of the application program will be executed on the Windows platforms

created on the slave processors. The next lines specify that the target application is Arena,

and the application program that the tool will execute in each job run is Model Ol. One

slave pmcessor aliased nO1.vmasc.odu.edu will execute all 10 replications of Model 01.

Finally, the last two lines in the job description specify the pathnames to Model Ol and

the streams file that wall be used to initialize U'nd U in each replication.

A total of fifteen job descriptions similar to the one listed in Table 7- I were

submitted at different times to the XFace tool, with the number of slave processors N

varying from 1 to 15.

Table 7-1. Parametric Case Study Job Description



7.22. Results

The execution times of the jobs submitted to the XFace tool for the parametric

case study are displayed in the plots in Figure 7-3. The theoretical curve is a plot of the

theoretical execution times versus the number of processors N. The theoretical execution

times were computed for N = 1, 2, ..., 15 and Ts = 3000 seconds using Equation (3-2).

The actual curve is a plot of the actual execution times resulting from the experiment

versus the number of processors N. A comparison of the plots reveals that the resulting

job execution times are as expected since the actual curve closely matches the theoretical

curve. A major diflerence between the curves is that each data point in the actual crave is

above its counterpart in the theoretical curve. For each N, the difference between the

actual execution time and the theoretical execution time is attributed to the overhead To

that is associated with each batch of replications that is executed on the N processors.

This overhead is attributed to the scheduling overhead, the communication overhead, and

the overhead to run the Arena application on the Windows emulator.

A plot of the overhead versus N is displayed in Figure 7-4. The overheads are

expressed as multiples of the overhead for N = 10. The overhead is ntinimal for N = 10,

and is approximately 1.70 percent of the sequential time Ts. This is due to the fact that

the replications are grouped into one batch; thus, only one batch setup time is

experienced. Contrastingly, the overhead is worst for N = 1 since the replications are

grouped into ten batches and ten batch setup times are experienced.

A plot of the speedup in the total simulation execution times against N is

illustrated in Figure 7-5. For each N, the speedup was computed using Equation (3-4)

with Tg (300, 10) = 3000 seconds and the parallel execution times Tp (300„10, N)Pad~a

taken from the plot in Figure 7-3. As N increases from one to five, the speedup in the

execution times increases almost linearly with N, then remains constant as N increases

from five to nine, increases for N = 10, then finally fluctuates about a constant value for

N & 10. The shape of the curve in Figure 7-5 is explained as follows. For a given k and N,

Ikl
suppose p=)—)and q=kmodN. The number of batches decreases and the batch size

INj
increases as N increases from one to five. Hence, the number of replications that are



executed concurrently on the N processors increases. However, the increase is not linear

because for N = I, 2, and 5, q = 0 and the processors are fully utilized, whereas for N = 3

and 4, q is non-zero and the processors are not fully utilized. For example, for N = I, ten

batches each having batch size equal to one are created. Thus, the replications are

sequendally executed since each batch size is one. Actually, for N = I, the tool performs

worse than sequentially executing the replications on a single processor without the use

of the tool because of the total overhead that is associated with the ten batches. As a

result, the speedup for N = I is less than one. However, for N = 2, the replications are

executed concurrently in five batches having size equal to two. The effect is a reduction

in the total execution time of the ten replications by almost a half. Hence, the speedup in

the total execution for N = 2 almost doubles, achieving a value that is a little less than

two. For N = 3, the replications are executed concurrently in four batches, with the first

three batches having size equal to three and the last batch having size equal to one.

During the execution of the batch with size one„ two of the three processors submitted to

execute the replications are not used. Hence, the speed-up in the total execution time for

N = 3 is not three-fold. The case forN = 4 is similar to the case for N = 3. For N= 5, the

replications are executed concurrently in two batches of 5, thus, the speedup achieved is

almost five-fold. Now, for N between 6 and 9, inclusively, the replications are executed

concurrently in two batches that are of different sizes. During the execution of the first

batch, N replications are executed concurrently. However, only q replications are

executed concurrently in the second batch, and (N — q) processors are idle. Therefore, the

speed-up in the total execution time remains constant for N = 5 to N = 9. Finally, for N =

I 0, the replications are executed concurrently in one batch of size IO, which results in the

maximum speedup in the total execution time. For N & 10, the excess (N — k) processors

are idle during the execution of the replications; hence, the speedup remains constant.

In general, the dependence of the speedup in the job total execution time on the

number of processors will be similar to that displayed in the curve in Figure 7-5.

Furthermore, the application most efficiently utilizes the N processors submitted to

execute the job when N divides k evenly.



Figure 7-3. Plots ofTheoretical and Actual Execution Times vs. Number of Processors

Figure 7-4. Plot ofTotal Overhead vs. Number of Processors

Figure 7-5. Plot of Speed-up vs. Number of Processors



7.3. Variance Reduction under AV Case Study

The model used for the VR-AU case study is shown in Figure 7-6. The model is

also a single-server system. The server is modeled with Seize, Delay and Release blocks.

The inter-arrival times of the entities entering the system and the service times of the

server are generated from exponential distributions with means of two minutes and four

minutes, respectively. The maximum capacity of the queue in the system is set at I 00

entities. The Count block is used to count the number of entities that have entered

service. The simulation is stopped after the one-hundredth entity entering the system

begins service. Thus, a total of 100 delays are observed in the queue at the end of each

replication. The Reports and ReportLines blocks are used to write the average of the I 00

delays experienced in the queue for each replication to the report file 'Avg Delays In

Queue," and the finish time for each replication to the report file 'Replication Finish

Times."

SeelI5 ~C.~, ~Repass Reaaalayes

yseey C causa Seyse Caaal Delay Release
Essay Oseasel

Figure 7-6. Arena Model 02

The two streams U'nd U that drive the simulation of the model are defined in the

Seeds block. During the simulation, U's used to generate the inter-arrival times andU's

used to generate the service times. Two sets of experiments are conducted. In the first



experiment, the model is executed using the parametric feature of the XFace tool. This

version of the model is Model 02-a. Model 02-a is replicated 100 hundred times. Thus,

100 hundred average delays in queue, Xi, Xz, ..., Xiw are observed. In the second

experiment, the model is executed using the VR feature of the XFace tool, and the AV

VRT described in Section 4.3 is applied to the simulation. This version of the model is

Model 02-b. One hundred paired replications of Model 02-b are executed, constituting a

total of 200 replications. In the first replication of each pair, the random numbers U', and

U, are used to generate the inter-arrival and service times, respectively, while 1 - U'and

1- U, are used in the second replication. Thus, 100 pairs of average delays in queue,(''x] Xt ) (xp Xz) '''Xtpp xtpp) are observed, where X', and X, result from the first

and second replications of each pair, respectively

7.3.1. Job Description

Two job descriptions are submitted to the XFace tool at different times. The job

description submitted in the first experiment is listed in Table 7-2. The job is submitted

as a parametric job. A total of 30 processors are submitted to execute one hundred

replications of Model 02-a. The job description submitted to the tool in the second

experiment is listed in Table 7-3. The job is submitted as a VR-AV job, and a total of 30

processors are also submitted to execute 100 replications of Model 02-b.

7.3.2. Results

The 100 average delays in queue obtained from the first experiment are allocated

into 10 equally spaced bins. The bin contents are plotted in the histogram in Figure 7-7.

Clearly, the 100 average delays have a normal distribution, agreeing with the Central

Limit Theorem [20]. Therefore, confidence mtervals can be constructed about the sample

mean of the 100 average delays. The data summary of the experiment is as follows:
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Number of Average Delays Experienced in Queue = 100

Min Average Delays Experienced in Queue

Max Average Delays Experienced in Queue

Sample Mean

Sample Variance

95% Confidence Interval

Half-width

= 1.44694

= 194.864

= 102.656

= 869.342

= [96.806, 108.506]

= 5,84975

Thus, if 100 sets of experiments were conducted, it can be claimed with 95% confidence

that the sample mean obtained in one of the experiments chosen at random will be

contained within the interval f96.806, 108.506].

',;0-.::::-'.,20"",,':":;:,',:$g,:.-:;::,'.80.;.',*;.'.,'-.,I!0,'"'':;:,'; yt00,:: 1 20, . 14{1 160,:IBO 200
'""„.„,.Ai'0'i'age."D&!atla,'- *.

Figure 7-7. Model 02-a Average Delays

X', +X,
The average X = ' of the average delays observed in each paired

2

replication in the second experiment is computed. The 100 X„'s are allocated into 10

equally spaced bins. The bin contents are plotted in the histogram in Figure 7-8. The

data summary ofXj's is as follows:



Number ofAverage Delays Experienced in Queue = 200

NumberofX s

Mui X,

Max X,

Sample Mean

Sample Variance

= 100

= 78.3182

= 124.857

= 100.425

= 101.762

95% Confidence Interval

Half-width

= [98.4239, 102.427j

= 2.00141
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Avera'rte'. Delays

Figure 7-8. Model 02-b Average Delays

The sample variance of the average delays in the second expeiiment is much

smaller than the sample variance of the average delays in the first experiment. The

reduction in variance is about 88%. This confirms that applying AV VRT in Model 02-b

reduces the variance of the average delay in queue. The reduction in the variance of the

sample mean is also reflected in the 95% conlidence interval. If one hundred experiments

were conducted, it can now be claimed with the same 95% confidence that the sample

mean obWned in an experiment chosen at random will be contained within the interval



[98.4239, 102.427]. The fact that the half-width of the 95% colifidence interval in the

second experiment is less than the half-width of the 95% confidence interval in the first

experiment confirms greater precision in the sample mean obtained in the second

experiment. That is, the sample mean obtained in the second experiment is closer to the

true mean.

To further illustrate the variance reduction achieved under AV, the plots of the

one hundred average delay s observed in both experiments are displayed in Figure 7-9.

The plots reveal that the average delays obtained from Model 02-a are more dispersed

about the true mean than the average delays obtained from Model 02-b.

Figure 7-9. Comparison of Average Delays observed in Model 02 (a) and (b)

7.4. A Partitioned Case Study

The purpose of the case study described in this section is to demonstrate the

speedups that are achievable by executing one replication of Model 03, shown in Figure

7-10, on sub-cluster I; containing m = I, 2, and 3 processors. In the case study, little

emphasis is placed on the structural properlies of Model 03; the model is viev ed from a

very high level of abstraction. Therefore, each sub-model in Model 03 is viewed as a



black box. Model 03 models a production line that manufactures widgets. The widgets

are manufactured from three parts, Part A, Part B, and Part C. The Create Parts sub-

model creates the three parts and forwards data describing each part to the appropriate

Process Part sub-model. Each Process Part sub-model processes the part and fonvards it

to the Merge Parts sub-model. The Merge Parts sub-model merges the parts when all

three parts are available. The intricate internal workings of the sub-models are irrelevant

to the case study. Instead, the partial simulation times of the sub-models are the important

aspects in the case study. Therefore, with respect to Model 03 details, it is only assumed

that the random numbers in the simulation are controlled using the proposed method in

Section 3.4 to guarantee independence in the results.

Figure 7-l0. Model 03: Simulation Model of Production Line

Suppose Model 03 is setup so that the simulation is advanced in real time.

Furthermore, suppose the simulation stopping condition is triggered by an internal event

that is not time dependent so that the replication time of the model is random. For

simplicity of the case study, assume that the partial times to simulate the sub-models in

Model 03 are random, and that these partial times are uniformly distributed as follov s.

Process Part A partial simulation time is uniform on the interval [3, 5] minutes; Process

Part B partial simulation time is uniform on the interval [l, 5] minutes; Process part C



partial simulation time is uniform on the interval [1, 6] minutes; finally, Create Pails and

Merge Parts partial simulation times are both uniform on the interval [I, 3] minutes.

This level of abstraction makes sense if the general structure of simulation

applications depicted in Figure 7-11 is considered. A typical application such as Arena

presents the user with a graphical user-interface that allows the user to describe the model

using graphical modules, objects, and blocks. The graphical representation of the model

is translated into a high-level simulation language code, such as Siman [30] in the case of

Arena, which is then compiled and linked with libraries to generate the model executable

code. Therefore, the level of abstraction is justified if it is assumed that the sub-models in

Model 03 are translated into high-level codes that can be executed in parallel in a

dataflow strategy.

Appficaton Front End

Appiioaton Back End

Figure 7-11. General Structure of Simulation Applications
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Model 03 was carefully developed so that the computations of the model can be

easily partitioned into tasks. The tasks are as follows: The computation of the Create sub-

model is considered task Tii', the computations of the Process Part A, B, and C sub-

models are considered tasks Ti, Tx and T&, respectively; finally, the computation of the

Merge sub-model is considered task T4. As a result, the precedence task graph

representation, depicted in Figure 7-12, is very similar to the simulation model. It should

be noted that this was done solely to simplify the case study, and that in general the

computational model used to represent the computation units of the simulation model will

be independent of the structure of the simulation model. To make the case study

tractable, the mean computation times of the sub-models are used for the tasks weights.

Each replication of Model 03 is executed on sub-cluster I; c I defined in Section

5.1. The mean theoretical times to execute one replication of Model 03 on I s containing

one processor, hvo processors, and three processors are 14.5 minutes, 11.5 minutes, and 8

minutes, respecdvely. These are the times to execute the DAG in Figure 7-12, and are

estimated using the Ghant Charts in Figure 7-13.

Three sets of experiment were conducted in which the number of processors, m;,

in I; varied from 1 to 3. In the first experiment, each I; had size m = 1, and the number of

sub-clusters, n, in I varied Irom I to 10. For each value ofn, Model 03 was replicated 10

times. The second and third experiments were similar to the first except that each I"; had

size m = 2 in the second experiment, and m = 3 in the third experiment. In the

experiments, the tasks were implemented in the ANSI-standard C programnung

language. The C codes that implement the tasks were very simple. Task Ta and Ti were

both implemented urith delays drawn from a uniform distribution on the interval [I, 3]

minutes. Similarly, tasks Tn T&, and Ti were implemented with delays drawn from

uniform distributions on the intervals [3, 5] minutes, [I, 5] minutes, and [1, 6] minutes,

respectively. The C implementation of the PMM Linear Congruential Generator

(PMMLCG) in [4] was used to generate the random sequence U. The unique random

streams U', U, U', U', and U'ere used to generate the uniform delays in Tw Ti, T&, T&,

and Ts, respectively.
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Figure 7-l2. DAG Representation of Model 03
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Figure 7-13. Mean Times to execute DAG on (a) One processor, (h) Two processors,

{c) Three processors



7.4.1. Job Desrriptlou

A sample of the job descriptions submitted to the XFace tool in the experiments is

listed in Table 7-4. The items in the job descriptions are as follows. The total number of

tasks in the partitioned program is five. The partitioned program will be replicated ten

times on the native Linux platform running on the processors in I,. The job execution

command that executes the tasks executable files is T*, where * will be replaced with 0,

I, 2, and 4 by the XFace tool. The maximum number of processors that is allowed in I; is

two. The processor aliased n01.vmasc.odu.edu is the only processor submitted to execute

the job. Since only one processor is submitted, only one sub-cluster is created, Finally, a

set of job files is subntitted for each of the five tasks in the partitioned program. The job

files are the task executable, and the seeds file that will be used to initialize the random

number streams in each task. The DAG representation of Model 03 is submitted as the

text file listed in Figure C-I in Appendix C.

For the three experiments, a total of 30 job descriptions similar to the one

depicted in Table 7-3-1 but with varying number of slave processors N were submitted at

different times to the XFace tool. In all three experiments, the number of sub-clusters n

varied from I to 10. However, the number ofprocessors N varied from I to 10 in the lirst

experiment with m = I, 2 to 20 in the second experiment with m = 2, and 3 to 30 in the

third experiment with m = 3.

7,4.2. Results

The execution times obtained from the experiments are plotted against the

number of sub-cluster (n), and are displayed in Figures 7-14, 7-15, and 7-16. The cwwes

in each figure are the theoretical mean execution times versus n, and the actual execution

times obtained in the experiments versus n. The theoretical mean execution times are

computed using Equation (5-1) for n = I, 2, ..., 10, and the theoretical mean replication

times Ts(m) for m = I, 2, and 3. The theoretical mean replication times are TR(l) = 14.5

minutes, Ta(2) = 11.5 minutes, and Ta(I) = g minutes. These times are estimated by the



Ghent Charts in Figure 7-l 3. The curves in each figure confirm that the actual execution

times closely match the theoretical execution times.

Table 7-4. Partitioned Case Study 1ob Description

Job Description

Job Tfpr.
Num brr of Tasks
Pletfomn to Run Appli stion
Num bor of Roplioatinnr
Job Exeoution Command
Maximum Machines Per Subolustvr

PARTITIONED JOB
I
Linux
10
'f s

2

Thr. msohines sre subolustered as follows.
Subolustvr I:
ttpl.viuase.oda.trdu

Task 0 Job Files:
/home/jhead/Exstnples/part example/job/T0
/homr/jltead/Examples/purt example/job/serdsp

Task I Job Files:
/horn u/jhesd/Examples/part example/Job/T I

/home/jhead/Examples/part exsmplr/job/soedsl

Task 2 Job Files:
/hontu/jheud/Exsmplrs/port exatnple/Job/T2
/horn e/jltesd/Examples/part example/Job/seeds2

Task 3 Job Pilvr,:
/home/jhead/Examples/part exstuple/job/TJ
/home/jhead/Examples/part exsmplr/job/seods3

Task 4 Job Files:
/homr/jhesd/Examples/part vxample/job/I'4
/homv/jhesd/Exsmplvs/part vxatnple/Job/so ds4

For each n such that k % n 0-"0, the number of idle processors increases as m

increases from l to 3. For example, for n = 3, the replications are hatched into four

batches. However, two of the three sub-clusters are not used during the execution of the

last hatch. Therefore, during the execution of the last batch, (2 x l) = 2 Processors are

idle when m = l, (2 x 2)vn 4 processors are idle when m = 2, and (2 x 3)= 6 processors

are idle when m = 3. For each replication, the mean utilization of each processor in a



busy sub-cluster is estimated from the Ghant Charts in Figure 7-13. For m = 1, the only

processor Pi is fully utilized, For m =2, the utilizadons of Pi and Pz are 100% and 26%,

respectively. Finally, for m = 3, the utilizations of Pi, Px and Pi are 100%, 37%, and

32%, respectively.

Figure 7-17 illustrates a comparison of the actual curves for m = 1, 2, and 3. For

each n, the execution time for m = 3 is the smallest and the execution time for m = 1 is

the largest. These observations reveal that the time to execute one replication of Model

03 decreases as the size of the sub-clusters increases from 1 to 3. For each n, the

speedups per replication z.» (k, n, m) were computed using Equation {5-3) for k = 10

and m = 2, 3. The plots of the speedups per replication versus n are exhibited in Figure 7-

18. The average speedup per replication for m = 2 with respect to m = 1 is 1.25, and the

average speedup per replication for m = 3 with respect to m = 1 is 1.68. Therefore, on the

average, each replication in the second experiment was executed 1.25 times faster than its

counterpart in the first experiment, and each replication in the third experiment was

executed 1.68 times faster than its counter part in the first experiment. These speedups

appear small at first glance, However, the total speedup in the second experiment is

1.25 x s»(k, n), and 1.61 x s»(k, n), where s»(k, n) is the speedup resulted form

using n sub-clusters to execute the k replications.

The total speedups, r(k, n,m), in the execudon times were computed using

Equatioii (5-5). Figure 7-19 displays the total speedups in the execution times for the

three cases m = 1, 2, 3. The general shape of the curve in the figure is the same as the

same as the shape of the speedup curve in Figure 7-5. As expected, the speed-up curve

for m = 3 is shifted further along the positive speedup axis than the speedup curve for m

= 2, which is in turn shifted further along the positive speedup axis than the speedup

curve for m = 1. The general shape of the curves results from the speedup in the

execution times in the first dimension, s»(k, n), and the displacement in the three

curves results from the speedup in the execution times in the second dimension,

zi„(k, n, m).



Figure 7-I4. Execution Times versus Number of Sub-clusters for m = 1

Figure 7-15. Execution Times versus Number of Sub-clusters for m = 2

Figure 7-16. Execution Times versus Number of Sub-clusters for m = 3
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Figure 7-17. Comparison of Actual Curves for m = 1, 2, 3

Figure 7-18. Speedups per Replication versus the Number of Sub-clusters

Figure 7-19. Comparison of Total Speedups for m = 1, 2, 3



CHAPTER VIII

CONCLUDING REMARKS

The three case studies described in Chapter 7 illustrate the capabilities of the

XFace tool. The parametric case study reveals that the use of ten processors to execute

ten replications of the sample program resulted in a speedup of over eight times the

sequential execution time. The speedup is not 10-fold due to overhead. The dominant

contributors of the overhead are the times to startup and execute the application on the

emulated platform. In the environment depicted in Figure 3-3, the automation control

program must be restarted at the beginning of every iteration that is executed on

processor P„. However, it is not necessary to restart the application program in eveiy

iteration. At the beginning of the first iteration that is executed on processor P;, the

automation control must start an instance of the application since one will not exist.

However, in the subsequent iterations that are executed on P„, the automation controller

should use the running instance of the application to avoid restarting it at the beginiung of

every iteration. Additionally, to decrease the overhead associated with executing the

automation program, the automation program should be a lightweight process. That is, it

should not do more than is required of it. The less it has to do the faster it will run. To

illustrate the overhead involved with starting up an application on the emulator, a small

experiment was conducted using Arena. In this experiment, a simple automation program

was developed. The automation program simply started an instance of Arena on the

emulated platform, then immediately closed the Arena instance. Therefore, the execution

time of the automation program approximates the time to start an instance of the Arena

application on the emulated platform. The execution of the program was timed, and 55

execution times were taken. The average of the execution times is 8.20 seconds. If the

execution times of the replications are on the order of a couple seconds, an application

startup time of 8.20 seconds will have a severe impact on the replication time. Thus, the

speedup achieved, if any, will be very small. This is why it was stated clearly in the

opening section of Chapter I that the tool works for simulation that takes a long time to

complete. The impact of this relatively large startup time on the total execution time of

the simulation can be lessened if the application is started once, only in the first iteration



that is executed on processor Pi. If it is assumed that at the beginning of the job execution

phase, an iteration is started on all N processors simultaneously, N &= k, then all

replications in the first batch will experience the startup time concurrently. As a result,

the overall effect on the total execution time is as if the application had stat%ed once.

Thus, provided that the automation program is a lightweight process, the overhead to run

the application on the emulated platform is greatly reduced if ihe application is not

restarted in every iteration.

The case studies reveal that speedups are achievable for all N & 1. However, the

processors are only fully utilized for some values of N. In particular, for given k and N,

the processors are best utilized when N &= k and N divides k evenly. For these cases, all

processors will be utilized during the execution of every batch ol'eplications. However,

the utilization will not be 100% in all cases, If the replication lengths are fixed, then all

replication should take approximately the same time to complete. Thus, if all replications

within a batch are started simultaneously, the processors will be almost 100% utilized.

However, the stopping condition of the simulation could be triggered by an event in the

simulation that is not time dependent, such as stopping the simulation after 100 customers

have completed service. In the latter case, the replication lengths are samples from a

random process, because they are mappings of the random input processes driving the

simulation. As a result, during the execution of a batch, some replication will take longer

than some. Therefore, some processors will be idle while the others are busy completing

the longer replications in the batch. To counter this problem, the scheduler schedules a

replication when a processor becomes available. With this heuristic, the replications are

executed in batches of random sizes if the replication length is random. However, ihe

executions of the batches overlap. Therefore, under this scheduling heuristic, all

processors are kept busy as long as there are replications remaining to be executed.

Processors are only under utilized when the final batch of replication is executing.

For a given program that is represented by the DAG model, the speedup per

replication depends on the structure of the DAG, and the number of processors m used to

execute each replication, assuming that the DAG model reflects the most efllcient way to
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partition the program for the architecture at hand. Therefore, in some programs, the

speedup per replication will be significant, while in others it will not be very significant.

However, it should be remembered that the total speedup is now the product vmrzn.

Therefore, the significance of xio depends on rio. If rm is large, then even a small rm

will result in a large total speed-up. For the handcrafted example used in the third case

study, rzo of 1.67 was achieved using three processors to execute each replication, which

is not very significant. However, because vm was fairly large, the resultant speed up was

also huge.

8.1. Future work

This section highlights the future work that could be done on the XFace tool.

Currently, support for a Windows-based application is added to the XFace tool by editing

the start-win-app script, and entering the execution command that starts the automation

program. In the futu'e, support for a Windows-based application could be added from the

front-end GUI, thus making the start-win-app script transparent to the user. This could be

achieved by adding a backend XFace process, script editor, that edits the script, and a

dialog box, Add New Application Support. The Add New Application Support dialog

could be launched from the click of a button or menu item in the tool's front-end GUI.

The Add New Application dialog will prompt the user for the information to be entered

in the script. Upon closing the dialog, the script editor is started and passed the

information entered via shared-file. The script editor edits the script and then exits

execution.

The implementation of the task-scheduling algorithm is such that busy processors

are interrupted during task execution to fonvard data to remote processors that are

preparing to execute dependent tasks. In the future, a new implementation of the task-

scheduling algorithm could be realized. In this implementation, one processor in a slave

cluster-node could be dedicated for communicating dependent data and the others

dedicated for executing the tasks. The setup on a slave cluster-node is illustrated in

Figure g-l for the case when each cluster-node contains 2 processors. As described in

Section 2.2, the MPI daemons enable communication among remote processes. The MPI



process I is an instance of the master control process, and the MPI process 2 is dedicated

to forward dependent data to remote processors. MPI process I and MPI process 2 will

never communicate because the dependent data is already local to the dependent task.

Thus, if T; and T; are tasks such that Tl depends on T; for data, and T; and Tj are both

executed on Pi, there is no need to forward the dependent data since it is already

available to T„. However, if T; was executed on Pi and Tl is later executed on some

remote processor Pia the dependent data must be forwarded to PI, before the execution of

T, begins.

dependency dependency

Mii dale ' data Mpr MPI
Process Taskrr ~ . - "" Sam~ - '" Process ~ Daemon)

Process
Damson

1
Memory 2

1

Figure 8-I. Future Setup on Slave Cluster-node

The MPI process 2 acts as an XFace daemon that only listens for incoming data

requests and forwards the dependent data to the remote processors generating the

requests. Data requests are sent by remote XFace daemons. Thus, the XFace daemon

{MPI process 2) in Figure 8-I only communicates with other remote XFace daemons. As

a result, the execution of task T; in the figure is not preempted when the dependent data is

forwarded to remote processors. However, since Pi is timed sliced among MPI daemon I,

MPI process I, and task Tj, the execution of task T, will be preempted to execute the MPI

daemon and the MPI process. To prevent this, the MPI daemon and the MPI process are

blocked (put to sleep) after the execution of task Tj begins, and are awakened at the end



of task TI execution. This could reduce the execution time of tasks that are executed on

each slave processor.

For the case when each duster-node contains p processors, either of the designs in

Figures 8-2 and 8-3 could be implemented on each slave cluster-node. In the diagram

depicted in Figure 8-2, tasks executed on the local processors write dependent data to a

common shared-memory. All local executing tasks contend for the shared-memory. As

result, the task execution times will be increased when the shared memory is highly

contended. The diagram depicted in Figure 8-3 solves the shared memory contention

problem by allocating dedicated shared memories to the tasks. However, the

implementation of this design will require many more shared memory locations than the

implementation of that in Figure 8-2. Therefore, the trade-off involved here is that more

shared memory locations must be utilized to counter the share memory contention

problem Thus, if memory is available in abundance, the design in Figure 8-3 is chosen

over that in Figure 8-2.

The task scheduler should be prevented from scheduling tasks to processors that

are dedicated for data forwarding. This could be implemented by excluding all the

processors that are dedicated for data forwarding from the set the Il. Consequently, the

sub-clusters formed from the processors in ll will not contain processors dedicated for

data forwarding.
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APPENDIX A
APPLICATION START-UP SCRIPTS

¹! /bin/sh
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹P¹¹¹¹¹¹P¹P¹¹¹¹¹P¹¹¹¹¹¹¹
¹ Author . Jermaine Headley
¹ Project: Thesis Research
P Implementation Date: April 6, 2004

¹ stol't"wlil-app
P This script is used to start the Windows Application specified in $6, and mn the Windows Applicauon
¹ progrmn speciTied in $5. The script creates the iun dueetory &nui & in the &/tmp/XFace& direotory,
¹ where * is the iteradon nmnber spemtied in the conunand line mgument $ 1. The application program is
¹ nni in the &/hnp/XFace/mn*& directory so tliat tlm application program wntes output tiles in the directon
¹ &/tmp/XFace/run*&.
¹
¹ Conunand Lme arguments:
¹ $0 = Nauie of tins Script "stan.-win-app"
¹ $ l = job nm nmnber
¹ $2 = configiration number
¹ $3 = the Job type
¹ $4 = name of slave node running this script
¹ $5 = patlmame to the Windows Application Program (model Ele)
¹ $6 = Windows Application name in all upper-case
¹
¹¹P¹¹¹¹¹¹P¹¹¹¹¹¹¹¹¹¹¹¹P¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹P¹¹¹¹¹P¹P¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
PATHNAME="/home/jhead/programs/XFace"
XFACE DIR="/tmp/XFace"
STREAMSDIR="/tmp/XFace/STREAMS/"
WINE="/opt/cxotgice/bin/wine"
master="bslrog.vmasc.odu.edu"

PARAMETRIC=O
PARTITIONED=2
VR AV=3
VR CRN=4

¹ Define Windows Application Name Constants
ARENA="ARENA"

¹ Conunand Line Arguments ¹
node="$4"

model="$5"

ivin app="$6"

¹ Generate the mune of the run directory, and the nmne of the seeds Me that. is scheduled with the cmrent
¹ iteration. For AV-CRN jobs, the iteration dnectoiy is &" mn" + conligmation niunber + iteration
¹ nmnber& Similarly, the seeds tile is &" seeds + configuration number + itm ation number&. For all other
¹ jobs, the mn directoD is &"rttn" + job nm number& and the suemns irle is &"run" + job mn number&
¹
¹ Note: The blocks of codes within this section will not get executed 99'ro of the time this script is
¹ invoked because the run directories were already created when the Job Loader scnpt was executed after
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¹ the Job submission. However, in the rear event oue of the run directo» gets deleted or was not created
¹ we would like to catch this error because it has the potential of craslung the XFace Application
¹
it test $3 =$VR CRN

then
JOBDIR="${XFACE DIR}/JOB/contig$2"

RUNDIR="$ {XFACE DIR}/mn$2$ 1"

¹
¹if mn directory does not exist create it and copy the seeds ide tbr tins run
¹
if test i -d SRUN DIR

then
echo "creaung subdirccto». ${RUNDIR)"
mkdir "$ {RUNDIR)"
cp "$JOBDIR/"" "${RUNDIR}"

seeds tile="$ {STREAMSDIR)stremns${2}${1)"
if test -e $seeds tile

then
cp $seeds lile "SRUNDIR/seedsl.txt"

ii

if test $3 = SVR AV
tllell
JOBDIR="$ {XFACE DIR )/JOB"
RIJNDIR="$ {XFACE DIR)/mn$ 1"

¹
¹ if the run directo». does not exist create it, copy the seeds tiles fi&r this nai
¹ the application program to the run directory

it test! -d $RUN DIR
then
nikdir $RUNDIR
cp "$JOBDIR/*" $RUNDIR

seeds lilel="${STREAMSDIR)streams$ 1"

seeds iilc2="${STREAMSDIR}streams{'expr $ 1+ 1')"

if test -e Secede tilel
then
cp Secede ldel "$RUNDIR/seedsl.txt"

fi

if tea&-e Sseeds tile2
then
cp Secede iile2 "$RUNDIR/seeds2.txt"

fi

if test $3 = SPARAMETRIC



}04

then
JOBDIR="${XFACE DIR}/JOB"
RUNDIR="$ {XFACE DIR}/run$ 1"

¹
¹ it'he nul directory does not exist create it, copy the seeds tile for this run
¹ the application program to the nul directory
¹
if test I -d $RUN DIR

then
mkdir $RUNDIR
cp $JOBDIR/* $RUNDJR

fr
ti
¹

seeds tile=" $ { STREAMSDIR } stremns$1"
if test -e $seeds tile

then
cp $seeds tile "$RUNDIR/seeds 1.txt"

tl

¹ An application that displays a graphical user-interface needs a display Therefore, set the X DISPLAY
¹ variable so that if the Windows Application requues a display to tun one is available Note that tlus
¹ display is only availabe if the X server is numing on $node under the user logm
¹
export DISPLAY=$node:0.0
¹

¹
¹ Clmnge to the mn dierctory specitied by $RUNDIR so tint the results ot'he replications are saved in the
¹ this directe».
¹
cd $RUNDIR

¹aa+s*ssssssssus sasssssssssa sax ra aaa 1*saassaasaaaas ass sas

ass

s aa*+*ssaaasaasasaaw&gave¹
¹
¹ ADD CODE SPECIFIC TO EACH WINDOWS APPLICATION BELOW
¹
¹ as s s s s s s 0 ** 0 ass s su 0 * 4 s s ** 0 s as s san s s + Q *+ Q s Q + sate su s * s* s s as s s as s s + s * 1 s s s s s s s s s s as as st as ¹

¹
CODE TO EXECUTE ARENA APPLICATION PROGRAMS

¹
¹ This section of code»uls only Arena Version 5.03 application programs.
¹ The nemo ot the automation controller is a VBA application called "run arena model.exe.— It is stored
¹ in the directo» &-/XFace/windows&. The nul mens model.exe program replicates the Arena program
¹ specitled in tlm fde model.txt x timea The Arena program and the number of replications x are specified
¹ on the fn st and second lines in model.txt, respectively.

¹ The windows emulator used to run the Arena application and the automation program is a commercial
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¹ iniplementation of the "WINE" tool by CodeWeavers The CodeWeavers Profesmonal 3 0 softwmc
¹ must be installed at the location &/opt/cxolfice/bin/wine&.

if test $win app = $ARENA
then

echo "Running mn $1 of the Arena Application Program $model on $node.....

¹
¹ The file model.txt is the interface between the XFace tool and the auiomaiion controller. It contams the
¹ name of the Arena model and the number of replications x that the model must be replicated. Thus, it
¹ must be copied from the job directory &$JOBDIR& to the run directoiy &$RUNDIR& so that the
¹ mitomation controller that automates the Arena application can know the name of the Arena model to
¹ open when it starts the Arena application, and the number of times the Arena modol must bo
¹ replicated.

cp "$JOBDIR/model.txt" model.txt

¹
¹ Ruu x replications of the Arena application program
P

$ 1WINE} $}PATHNAME}/windows/run arena model then quit.cxe

echo "Run $ 1 of the Arena Application Progrmn $model on $node completed...

¹
¹ Remove tiles no longer needed fmm RUNDIR
¹
rm -f "$}RUNDIR}/model.tan" *.Backup.doe *.opw *.p

fi
¹

exit 0

¹ i /bin/sh
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹p¹¹¹¹¹p¹¹¹¹¹¹p¹¹¹¹¹¹¹p¹¹¹¹¹¹p¹¹¹p
¹ Author: Jennaine Headley
¹ Project: Thesis Resemch
¹ Implementation Date: April 6, 200¹
¹
¹ start-up-part
¹ Tlus script is used to start the partitioned application spccitied in the command lme arguments $(al
¹ The script creates the run directoD &mn"& in thc &/tmp/XFace& directory, where * is the iterauon
¹ number specified in the second eommiuid line argument The apphcation is run in the &/tmp/XFace/run*&
¹ directoiy so that the output tiles are mitten to the directory &/tmp/XFace/mn*&.

¹ Conunand Line Arguments:
¹ $0 =Name ot this script "star-uu-ppar"
¹ $ 1 = job mn number
¹ $2 = task index
P $3 = processor name ot'he processor on which this script runs
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¹ $4 - $9 = Conunand to execute the task
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹7/¹¹7/¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
XFACEDIR="/tmp/XFace/"
STRFAMSDIR="/tmp/Xpace/STREAMS/"
data tiles="/tmp/XFace/IOB/data Ries"

¹ Parse command line arguments to the mray argv

i=0
for argument in "$0a"
do
mgv[$i]=$argiunent
iae expr $i + I 'one

agtv len='expr $ i - I'ob

mn="$ {argv[0]}"
task index="$ [argv[1])"
local maohine="$ [argv[g])
app="$ [argv[3])"
unset argv[0]
unset argv[1]
unset m'gv[2]
unset argv[3]

¹
¹ Create the mn directory it it doesn't already exts&

RUNDIR="$ [XFACEDIR) tun$/ob mn"
if test! -d $RUNDIR
then

echo "creating rwi directory $RUNDIR...."
mkdir $RUNDIR

¹
¹ Copy tile seeds I'ile for tlie culrcnt iteratioil and the current task
¹
seeds file="$ [STREAMSDIR)streams$ [job run)$ [task mdex}"
cp $seeds tile "$RUNDIR/seeds$ [task index) txt"

I'i

¹ Cop) the dependency data from the processors on wluch the parent tasks were nm,
¹ which are specitied by the data files names mid locations in data tiles
¹
echo " "

echo "............. start-up-pmt running on $local maclune.............."
echo "Recieves task $task index ofjob run $job mn
OLD IFS=$11rS

Ir S=:
i=1
tile=
remote maclihe=
for str ui 'cat $data tiles'rf
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if test "$str" != "$1ocal machine" -a gi = 2
tllell

remote machine="$str'cho

"copying $ {file} horn ${remote machine}:$RUNDIR to $ {local maclune}:$RUNDIR....
rcp "$ {remote machine}:$ {RUNDIR}/$ { file}" "$RUNDIR"
i=1

else
lileee$str"
i='expr $i+I'i

done
IFS=$OLD IFS

¹ Execute the teak if it is a valid executable file
¹
if test -x "$ {app}"
then

echo "executing the conunand $ {app i $ {argv[(R] }...."
cd "$ {RUNDIR}"

$ {spp} ${argv[(R]r
exit 0

else
echo "$ {app} is not an executable tile....."
exit I

I'i
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APPENDIX B
AN IMPLEMENTATION OF ARENA

MODKLLOGIC RUNBEGIN EVENT HANDLER

Option Explicit
Dun SeedsModule As Arena.Module

'¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹¹¹A¹¹A¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹ll@N¹A¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹A¹A
'¹ The funcuon SearchSubModel() recursively searches ogubmodel for a SEEDS element with
'¹ tag = "seeds". If the SEEDS element is found, the global vatvable SeedsModulc is assigned to the SEEDS
'¹ element found and the function retmns Tine. Otherwise, the function retmus False.
'¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹A¹¹¹A¹¹¹¹¹¹¹¹¹
Private Function SearchSubModel(oSubmodel As Arena.submodcl) As Boolean
Dun index As Long
Dim s As Arena.submodel

index = 0

'base case - the SEEDS element is in the modules collection of oSubmodel
index = ogubmodeLModeI.Modules.Find(smFindTag, "seeds")

If index && 0 Then
Set SeedsModule = oSubmodel.Model.Modules Item(index)
SearchSubModel = Tme
Exit Function

End If

'Recursive orme - oSubmodel contains at least one submodel and tlm SEEDS element
'was not found. Recursively semch each submodel in oSubmodel.
For Each s In oSubmodel.Model.Submodele

'Exit if SEEDS element was fomid in s
If SearchSubModel(s) = True Then

SearchSubModel = Tme
Exit Function

End If
Next

'SEEDS element was not found in oSubmodel so retmu false
SearchSubModel = False

Fnd Function

'¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹A
'¹ The function SetSeedsValues Q set the seeds value for each stream deluied in tlm SEEDS element

detined in the modeL If a SEEDS element, with tag = "seed~", is defined in the model, this functnin
'¹ searches for the SEEDS element. If found, it sets the seed values of the streams defined m the SEEDS
'¹ element with values read from the file "seeds*" stored in the working duectory, where * is the replication
'¹ number When the model is replicated, the streams are initialrsed to the new seed values set ui the
'¹ SEEDS element.
N
'¹ The entries in the seedss files are read in as Strings. Reading in the entries as String allocates enough



'¹ memos& to store very large number, which is veig critical for reading in verb large values from the
'¹ seeds* tiles. The values in the seeds file are sepamted by commas

'¹ Note. For tlus implementation to be of any use, the streams from which the model gets random numbers
'¹ must not only be detined m the SEEDS element, but must also be bard coded in the model Thus, for
'¹ example, if stream 3 is detined in the SEEDS element, and stream 3 is used to provide random numbers
'¹ tor a uniform distribution on the interval [10 50], stream 3 may be hard raided m an expression
'¹ as UNIF(10,50,3).
'¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
Private Sub SetgeedsValues(currentkeplication As I.ong)
Dim oModules As Arena.Modules
Dim oSubModels As Arena. Submodels
Dim s As Arena.submodel
Dim found As Boolean
Dim index As Long
Dim FileNmn As Integer

found = Falso
index = 0

'First, search the modules collection of 11usDocument.Model for the SEEDS element
Set oModules = ThisDocument ModeLModules
index = oModules.Fmd(sntFindTag, "seeds")

If index && 0 Then
Set SeedsModule = oModules.Item(uidex)
found = Tme

End If

'If the SEEDS element was not found in the modules collection and ThisDocument.Model
'contains at least one submodel, then each submodel is searched recwsivety for
'the SEEDS elmnent
If found = False Then

Set oSubModels = ThisDocument.Model.Submodels
It'SubModels.Count ~ 0 Then

For Each s In oSubModels
It'earchSubModel(s) Then

found = True
Exit For

End If
Next

End If
End If

'The Search is over. If the SEEDS element was found, the stremns that will
'be used for this replication are speciticd in the file seeds*
It found Then

Dim seedValue As String
Dnn operandNmne, seedsk As Sunig
Dim Char

'Open seeds" lile. Exit if the file was not opened successfully, or if the
'file was not fouud
scedsk = "seeds" k. currentReplication ¹r ".txt"

FileNum = FreeFile





APPENDIX C
PARTITONKD CASK STUDY TASK GARPH

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹
¹ Sample Task Graph
¹
¹ The foimat of'the task graph is as follows Lines that are conunents are suirted with thc pound '¹'

character The t'irst non-comment line must contain the number of task ui the graph. The next non-
¹ comment lines contain information for the task. The tonnat for each task T, is as follows:

¹ task index task weightnumber of~arentsnumber of cluldren
¹ [&parent, data tile& ... &parent, data ladle&] NULL

[&child, edge weighc ... &child, edge weight&] NULL
¹
¹ I) The tirst entry specifies the task index of T, for which the information is being entered. Tlus entry

must be an integer.
¹
¹ 2) The second enug specities the task weight of T,. This is the computational cost incurred when T, is
¹ executed. It must be a double value.
¹
¹ 3) The next. two entries specify the nmnber of tasks tlmt parent T, and the number of tasks that are
¹ cluldren of T„respectively. These cntrics must be integers.
¹
¹ 3) The tlurd set of entries are optional. If task T, has no parent, the next entnes are ignored until the string
¹ "NIJLL" is encountered. Othenvisc, n tuples of the format &parent, data tdc must be entered and
¹ teiminated by the string "NULL".
¹

I'or each tupple &parent, data file& entered, the child tield specities the index of child T, and the
¹ data hie iield specifies the file storing the dependency data that T, produced. Ti needs this data to
¹ begin execution.
¹
¹ 0) The fourth set of entries are also optumal. It'ask T, is childless, the next entries are ignored until the

the string 'NIJLL" is encountered. Otherwise, n tuples of the fonuat &cluld, edge weight& must be
entered mid terminated by the string "NUI.L".

¹
¹ For each tuple &child, edge weight& entered, the child iield specifies the index of child T,
¹ and the edge weight specihcs the weight of the edge es connecting T, and Tr For the cmrent
¹ unplementation of the XFace tool, the edge weights are assumed to be negligible with respect to the
¹ task weights. However, tor scheduling purposes, all edge weights are assumed to be 1. Tlus
¹ assumption does not atfect the total execution time of the DAG, it is only used to schedule the task in

the DAG
¹
¹ The mfoimatum tor a task need not be entered on the same line. it can be entered on several lines.
¹ No conuneuts are allowed on lines that contain task utfotmation.

¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹A¹¹¹¹¹¹AAAA¹¹¹AA¹¹¹¹¹A¹¹¹

A The smnple graph consists of 5 tasks
¹-

¹ Tusk TO Information



¹ (I) Task Weight = 2.0
¹
¹ (Z) No tasks in the DAG parent TO.

¹
¹ (3) TO pment three children. The children tasks are Tl, TZ, and T3.
¹
¹ (4) Since TO has no parent, it lies 0 dependency data file
¹

¹-
0 2.0 0 3 NULL &I I 0& &2 1.0& &3 I.O& NULL

¹ Task Tl Inforniation
¹

(I) Task Weight = 10.0
¹

(2) T 1 lies one pmi:nt. The task tliat. parent Tl is TO

¹ (3) Tl parent oiie child. The child task is TA.

(0) Dependency data tile is as follows.
¹

Parent Task Data File
¹ TO partA p0

¹

I 10.0 I I &0 pattA.p0& NULL &4 1.0& NULL

¹ Task T2 Information
¹

(I) Task Weight = 7.0

(2) T2 has one parent The task that parent TZ is TO.
¹
¹ (3) T2 parent one clnld. The child task is T4.

¹ (-I) Dependency data tile is as follows
¹

Parent Task Data File
TO partB.p0

¹

2 7.0 I 1 &0 parrB.p0& NULL &4 1.0& NULL

¹ Task T3 Irifunnahon

¹ (I) Task Weight = 12.0
¹



ll3

¹ (2) T3 has one parent. The task that permit T2 is TO

¹
¹ (3) T3 parent one child The child task is T4
¹
¹ (4) Dependonig data tile is as follows

¹ Pment Task Data File
¹ TO partC.p0

¹-
3 12.0 I I &0 pmtC.pO& NULL &4 1.0& NULL

¹ Task T4 Infmmation
¹
¹ (I) Task Weight = 2.0
¹
¹ (2) T4 has three parents. The tasks that parent T4 are Tl, T2, snd T3.

¹ (3) T4 is cluldless.

¹ (4) Dependency data tiles are as follows.
¹
¹ Parent Task Data File
¹ T I partA.p I

T2 pattB.p2
¹ T3 partC.p3

(5) Since T4 has no clgldren, there are o Pment-Child edge
¹-
4 2.0 3 0 &I pmtA.pl& &2 partB.p2& &3 pmrC.p3&NULL NULL


	Creating Software [Sic] Environments on an M-Node Beowulf Cluster to Execute Discrete-Event Simulations
	Recommended Citation

	tmp.1722360266.pdf.kaF8F

