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ABSTRACT 

The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson 

National Laboratory (JLab) is a particle accelerator which can accelerate an electron beam to 

relativistic speeds and apply the beam onto target samples. The C100 superconducting radio 

frequency (SRF) cavity is the primary accelerating structure of the C100 cryomodule, one of the 

many cryomodules which compose the CEBAF linear accelerator.  SRF cavities are particularly 

sensitive to internal and external vibrations that can result in a phenomenon called microphonics 

which degrade the operational stability of a cryomodule. 

The purpose of this thesis is to investigate the significance of mechanical disturbances on 

the electromagnetic resonant frequency of a C100 SRF cavity.  Knowledge of the mechanical 

resonance of the cavities and cryomodule sheds light into how these disturbances are most easily 

realized as deformation which causes radio frequency (RF) detuning.  Three studies were 

conducted: the development and hammer test calibration of a Finite Element Analysis (FEA) 

model of a C100 cavity, the development and hammer test calibration of an FEA model of a 

C100 cavity string, and the hammer test of the C100-10R cryomodule at the Cryomodule Test 

Facility (CMTF).  

The cavity FEA model was found to accurately predict two modes found in two real 

cavities in a simply supported configuration.  The cavity string FEA model leveraged the 

calibrated cavity FEA model but was not found to accurately predict the modal behavior of a real 

cavity string.  Even so, the modal behavior of the cavity string inside the C100-10R cryomodule 

was captured during a hammer test while it was partially assembled.   



iii 

 

Finally, the C100-10R cryomodule was placed in the CMTF to study RF detuning.  The 

RF detuning spectra during hammer hits and background noise was captured.  The results of the 

hammer testing indicate two strong peaks at low frequencies (9-10 Hz and 22-23 Hz).  These two 

frequencies were found to be nearly coincident to four instances of mechanical resonance found 

during the hammer testing done on the partially-assembled C100-10R.  Because of this, these 

two modes are believed to contribute to RF detuning of the cryomodule.  This test event also 

included the testing of the effectiveness of a configuration of BNNT canisters designed to act as 

dampers.  While these tests show promising results, the lurking variables render these tests 

somewhat inconclusive.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

Particle accelerators are some of the most complex machines ever made.  Even so, the 

underlying principle of particle acceleration is fundamentally very simple: leverage an 

electromagnetic field to apply forces onto charged particles such that they can be accelerated, 

focused into a beam, and used for specific purposes.  The range of uses for such devices is as 

wide as the imagination, ranging from scientific discovery, medical treatment, and entertainment 

[1].   

 

 

 

Figure 1:Cryomodules in the CEBAF Linear Accelerator (Image used Courtesy of Jefferson Lab) 
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The Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson 

National Laboratory (Jefferson Labs or JLab) is a particle accelerator which can accelerate an 

electron beam to relativistic speeds and apply the beam onto target samples.  This allows 

scientists to study “the basic building blocks of matter within the nucleus” [2].  This facility 

contains two linear accelerators made of a small variety of cryomodules (shown in Figure 1), 

including the C100 cryomodule (shown in Figure 2) which is to be studied as a part of this thesis.   

 

 

 

Figure 2: C100-10R Cryomodule (Image used Courtesy of Jefferson Lab) 

 

 

The primary accelerating structure of a C100 cryomodule is the C100 superconducting 

radio frequency (SRF) cavity (shown in Figure 3).  These cavities are electromagnetically 

resonant at a specific frequency (1497 MHz) so that as much electromagnetic energy from the 

incoming radio frequency (RF) waves is transferred to the electron beam as achievable.  To 
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minimize the losses in this energy transfer due to surface resistance in the cavity walls, the C100 

cavities are made of niobium and cryogenically cooled to 2 Kelvin which allows the cavities to 

become superconductors.  Unfortunately, the use of superconductive materials in RF cavities 

reduces their RF bandwidth which makes them sensitive to disturbances [3-6]. This thesis 

focuses on microphonics, a particular type of mechanical disturbance which originates from 

vibrations internal or external to the cryomodule.  To study how vibrations can most easily affect 

these cavities, mechanical resonance in a C100 cryomodule was studied leveraging Modal 

Analysis using Finite Element Analysis (FEA) models.   

 

 

 

Figure 3: Cross-Section of a C100 Cryomodule (Image used courtesy of ANSYS, Inc.) 
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1.2 Literature Review 

The development of particle accelerators is as complex as the machines themselves, 

leaving behind a rich and fascinating history.  Rutherford’s experimentation in the early 1900’s 

led to a need for high-energy beams [1].  Different solutions to this problem were implemented, 

but the first resonant accelerators began development in the late 1920’s [1].  These accelerators 

leveraged normal conducting RF cavities, often made of copper.  Restraints due to surface 

resistance in these cavities led to the application of superconducting materials in RF resonators 

[3].  While the implementation of superconducting materials reduces the surface resistance of the 

cavity and increases the quality factor Q, it also decreases the RF bandwidth [3-6].  Cavities with 

small bandwidths are sensitive to disturbance [4, 5].  Slater’s Perturbation Theorem describes 

how the RF resonant frequency of a cavity changes when it is disturbed [7-11]:  

∆𝜔

𝜔
= −

∫ 𝑑𝑆 �⃗� (𝑟 ) ∙ 𝜉 (𝑟 ) [
𝜇0
4 𝐻

2(𝑟 ) −
𝜀0
4 𝐸

2(𝑟 )]
 

𝑆

∫ [
𝜇0
4 𝐻

2(𝑟 ) +
𝜀0
4 𝐸

2(𝑟 )]
 

𝑉

 

This shows that the disturbed frequency is a function of the electromagnetic content of the cavity 

and its disturbed geometry.  From a mechanical point of view, it is of interest to identify the 

different ways in which this geometry can become disturbed.    

During operation, the inside of the SRF cavities is kept under a very high vacuum while 

the outside is immersed in a bath of liquid helium.  Pressure fluctuations in the helium bath can 

directly disturb cavity shape and volume.  A correlation between the pressure fluctuations of the 

liquid helium and RF detuning in Linac Coherent Light Source II (LCLS-II) cryomodules was 

identified by Contreras-Martinez [9].  Posen and Liepe [12] leveraged FEA to predict the RF 

detuning caused by pressure fluctuations in order to optimize the design of cavities at the Cornell 
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Energy Recovery Linac (ERL).  Zhang et al [13] simulated and studied these effects on cavities 

in the Circular Electron Positron Collider (CEPC).  Schappert [14] notes that feedback control 

methods can be used to help mitigate the effects of helium pressure fluctuations.   

 Thermoacoustic oscillations in liquid helium can generate noise within a cryomodule.  

This occurs when a pipe or channel has a large temperature difference and the warm end is 

closed [15].  Luck and Trepp characterized the mechanism that causes these effects leveraging a 

thermodynamic heat engine approach [15-17].  Hansen et al observed thermoacoustic oscillations 

in the LCLS-II [18].  

 Currents within the cavity walls can interact with the magnetic field from the RF and 

apply a Lorentz force on the wall [9, 19, 20] which leads to changes in cavity geometry and RF 

resonant frequency.  This effect is called Lorentz Force Detuning (LFD).  LFD was related to 

Slater’s Perturbation Theorem by Kandil [10].  LFD was observed in the Horizontal Test Bed 

during a test at Jefferson Labs [21].  The LFD transfer function that relates the RF detuning as 

caused by a modulated RF field was characterized by Delayen [11].  A method of characterizing 

the LFD transfer function leveraging a grey-box model was described by Qiu et al [22].  A state 

space model of this effect was described by Echevarria et al [23] and Keikha et al [24]. 

 The cavities can also be disturbed by external mechanical disturbances called 

‘microphonics’ [11].  Mechanical resonance in structures becomes critical in this area of study 

because small amounts of energy can cause significant deflections.  Resonance in SRF cavities 

and the structures around them can therefore lead to the cavity RF detuning.  Simrock et al [25] 

developed a control system to reduce the effects of microphonics on a Quarter Wave Resonator 

(QWR) using a piezoelectric tuner.  Banerjee et al [4] implemented both passive and active 
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vibration mitigation techniques to improve cryomodule performance at the Cornell-BNL ERL 

Test Accelerator (CBETA).  An active noise control algorithm was developed using a slow and 

fast tuner.  Contreras-Matrinez [9] studied microphonics mechanical excitations and stochastic 

microphonics in LCLS-II cryomodules.  Active resonance control algorithms for the SRF cavity 

was developed and implemented using slow and fast tuners.  Delayen [11] describes methods for 

characterizing microphonics.  Kandil [10] developed an Adaptive Feedforward Control (AFC) 

algorithm to mitigate disturbances on SRF cavities, including microphonics.  Usher [5] 

developed a Low-Level RF (LLRF) controller using an AFC algorithm to mitigate disturbances 

in the National Superconducting Cyclotron Laboratory (NSCL).  Zimmermann [26] proposed 

and simulated a control system for mitigating mechanical disturbances on radiation detectors.  

Keikha et al [24] developed and simulated an RST feedback control system to mitigate 

microphonics and LDF.  This study included an FEA Modal Analysis of a TRIUMF 9 cell 

cavity.  Schappert [14] described an active resonance control system developed at Fermi 

National Accelerator Laboratory.  Davis et al [21] studied the effect of different excitation types 

on the Horizontal Test Bed at Jefferson Labs.  This includes studying background vibrations, 

mechanical sine sweeps, RF pulses, and hammer hits.  Davis et al [27] built a one-dimensional 

FEA model of a C100 cryomodule cavity string assembly at Jefferson Labs which predicted 

three critical vibration modes.   

1.3 Thesis Statement 

 Key works with respect to this thesis are Davis et al [21] and Davis et al [27].  Davis et al 

[21] identifies FEA as a method to shorten the design cycle of solutions.  Later, Davis et al [27] 

built a simplified FEA model of a C100 cavity string, the assembly of parts containing the 

cavities and the systems immediately outside of them.  Three vibration modes were identified as 
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a part of this study.  It is the purpose of this thesis to advance these ideas by correlating 

mechanical resonance behavior in a C100 cryomodule with the RF detuning of its cavities 

leveraging FEA.  Specifically, this thesis will follow the development of a more detailed cavity 

string FEA model that could be used as a virtual test bed for prototype assessment.  Additionally, 

one such prototype solution was investigated.  BNNT, LLC proposed a set of canisters which are 

designed to serve as vibration attenuators.  The effects of these devices on a C100 cryomodule 

were experimentally captured. 

1.4 Thesis Organization 

This thesis is organized into five chapters.  Chapter 1 provides an introduction and 

background to this thesis.  Chapter 2 describes the methods used during this project, specifically 

detailing the dynamics of vibrations, methods of developing, calibrating, and statistically 

describing FEA models.  Chapter 3 describes three studies carried out to support this thesis.  This 

includes two FEA modeling efforts each accompanied by an appropriate testing effort and a test 

of a cryomodule in an application-representative environment used to assess the BNNT canisters.  

Chapter 4 summarizes the results of these modeling and testing efforts and draws conclusions.  

Chapter 5 summarizes this thesis and provides recommendations to continue research in this 

area.  
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CHAPTER 2  

 

METHODS 

 Resonance is a type of structural behavior in which the application of a small excitation 

at a specific frequency produces significant motion.  This is critical in the case of SRF cavities as 

cavity deflection leads directly to RF detuning, which hinders the performance of the cavity and 

the rest of the cryomodule.  It is therefore desired to study the resonance behavior in the C100 

cryomodule to identify how this behavior correlates to RF detuning.  Given the complex 

geometry, extreme temperature distributions, and diversity of materials in a C100 cryomodule, it 

is of great value to leverage FEA to shed light in this area.   

A review of modal analysis is provided in Section 2.1.  Quantitative methods for 

comparing models to test data are provided in Section 2.2.  An introduction into hammer test 

methods is provided in Section 2.3.  A review of the FEA methods used during this thesis is 

provided in Section 2.4.  Finally, a review of methods used during the Design of Experiments is 

provided in Section 2.5. 

2.1 Vibrations and Modal Analysis 

 This section is a summary of modal analysis described by Brandt [28].  To begin, 

consider a finite set of masses [𝑀] acted upon by external forces {𝐹(𝑡)} and the springs [𝐾] and 

dampers [𝐶] which connect them.  The motion {𝑢(𝑡)} of these masses is related according to the 

linear differential equation [28]:  
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[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = {𝐹(𝑡)} (2.1. 1) 

For simplicity, the damping matrix [𝐶] is considered insignificant and will be removed, though 

the validity of this proof will be maintained.  The undamped system is described: 

[𝑀]{�̈�} + [𝐾]{𝑢} = {𝐹(𝑡)} (2.1. 2) 

Free vibration occurs when the system is able to move without the application of external forces.  

This is mathematically described by arguing that the force vector {𝐹(𝑡)} is a zero vector, that is 

[28]: 

[𝑀]{�̈�} + [𝐾]{𝑢} = {0} (2.1. 3) 

The Laplace Transform is found [28]: 

[𝑀](𝑠2{𝑈}) + [𝐾]{𝑈} = {0} (2.1. 4) 

(𝑠2[𝑀] + [𝐾]){𝑈} = {0} (2.1. 5) 

This equation is placed into a form in which the eigenvalues and eigenvectors can be found [28]: 

[𝑀−1](𝑠2[𝑀] + [𝐾]){𝑈} = {0} (2.1. 6) 

([𝑀−1][𝐾] + 𝑠2[𝐼]){𝑈} = {0} (2.1. 7) 

[𝐴] = [𝑀−1][𝐾] (2.1. 8) 

𝜆 = −𝑠2 (2.1. 9) 

([𝐴] − 𝜆[𝐼]){𝑈} = {0} (2.1. 10) 
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Now that this equation is in this form, the system can be solved to yield the rth eigenvalues 𝜆𝑟 

and eigenvectors {𝛹}𝑟 [28].   

([𝐴] − 𝜆𝑟[𝐼]){𝛹}𝑟 = {0} (2.1. 11) 

To interpret these results, consider the following [28]: 

𝑠 = 𝑖𝜔 (2.1. 12) 

𝜆 = −𝑠2 = −(𝑖𝜔)2 = 𝜔2 (2.1. 13) 

𝜔𝑟 = ±√𝜆𝑟 (2.1. 14) 

That is, 𝜔𝑟 represents the frequency at which the system is expected to be able to experience 

unforced vibrations and {𝛹}𝑟 is the deflection that is expected to be observed at that frequency.  

It is worthy of note that the nature of {𝛹}𝑟 as an eigenvector indicates that any scalar multiple of 

{𝛹}𝑟 is also a solution to the rth eigenvalue problem.  As such, the benefit of calculating {𝛹}𝑟 is 

not the exact value of any particular element within the vector, but the relative magnitude of one 

element with respect to all others – that is – its shape.  It is these two ideas, 𝜔𝑟 (mode frequency) 

and {𝛹}𝑟 (mode shape), which analytically define a vibration mode.   

 While 𝜔𝑟 and {𝛹}𝑟 are interesting pieces of information when studying resonance, they 

do not describe the system response at all frequencies.  To do this, the modal coordinates {𝑞(𝑡)}, 

{𝑄(𝑠)} are defined [28]: 

{𝑢(𝑡)} = [𝛹]{𝑞(𝑡)} (2.1. 15) 
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Here, the mode shape matrix [𝛹] is defined as a matrix containing a sufficient list of mode shape 

vectors {𝛹}𝑟 [28]. 

[𝛹] = [{𝛹}1 {𝛹}2 … {𝛹}𝑟 … {𝛹}𝑘] (2.1. 16) 

The modal coordinate vector is similarly defined [28]: 

{𝑞(𝑡)} = |
|

𝑞1
𝑞2…
𝑞𝑟…
𝑞𝑘

|
| (2.1. 17) 

By Equation (2.1.15), the time-domain deflection response {𝑢(𝑡)} is a linear combination of the 

mode shapes.  The Laplace Transform of this equation is found: 

{𝑈(𝑠)} = [𝛹]{𝑄(𝑠)} (2.1. 18) 

The frequency-domain deflection response is therefore a linear combination of the mode shapes.  

This is an important statement because Equation (2.1.18) provides a conceptual description of 

the system at all frequencies once [𝛹] and {𝑄(𝑠)} are known.  Knowing this, Equation (2.1.15) 

is substituted into Equation (2.1.18). 
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[𝑀][𝛹]{𝑞(𝑡)̈ } + [𝐾][𝛹]{𝑞(𝑡)} = 0 (2.1. 19) 

𝑠2[𝑀][𝛹]{𝑄(𝑠)} + [𝐾][𝛹]{𝑄(𝑠)} = 0 (2.1. 20) 

(𝑠2[𝑀] + [𝐾])[𝛹]{𝑄(𝑠)} = 0 (2.1. 21) 

[𝑀−1]( 𝑠2[𝑀] + [𝐾])[𝛹]{𝑄(𝑠)} = 0 (2.1. 22) 

([𝑀−1][𝐾]+𝑠2[𝐼])[𝛹]{𝑄(𝑠)} = 0 (2.1. 23) 

([𝐴] − 𝜆[𝐼])[𝛹]{𝑄(𝜆)} = 0 (2.1. 24) 

This equation can be solved for its eigenvalues.  Since the system matrix [𝐴] is identical to 

Equation (2.1.8), the eigenvalues of this equation are the same as that found earlier, that is, 𝜆𝑟.  

Given that the system and eigenvalues are identical, the eigenvectors can also be said to be 

identical, that is: 

[𝛹]{𝑄(𝜆𝑟)} = {𝛹}𝑟 (2.1. 25) 

Therefore, the eigenvectors (mode shapes) of the system are realized as the unforced deflection 

response at frequencies predicted by the eigenvalues (the associated mode frequencies).   

To find these mode frequencies, consider the same system under forced conditions by 

taking the Laplace Transform of Equation (2.1.2) to find the transfer matrix:   

(𝑠2[𝑀] + [𝐾]){𝑈} = {𝐹} (2.1. 26) 

When a force is applied at a mode frequency: 

{𝑈} = ([𝐾] − 𝜆𝑟[𝑀])
−1{𝐹} = [𝐻]{𝐹} = {

𝑐𝑜𝑛𝑠𝑡.

0
} = {∞} (2.1. 27) 



13 

 

Here, the transfer matrix [𝐻] is defined as the transformation from applied forces to 

displacement.  The elements 𝐻𝑃𝑄 within this matrix refer to the displacement of the Pth point due 

to the Qth force in terms of a frequency-dependent complex number.  In the case of the forced 

response of this system at a resonant frequency, values of 𝐻𝑃𝑄 would theoretically become 

infinite.  Equation (2.1.27) indicates that as the transfer matrix [𝐻(𝑖𝜔𝑟)] becomes infinite, 

{𝑈(𝑖𝜔𝑟)} would also become infinite.  Since only the solutions to Equation (2.1.3) exhibit this 

property, the deflections {𝑈(𝑠 ≠ 𝑖𝜔𝑟)} will be finite in value.  This makes the mode frequencies 

unique in the real world in that they are the frequencies where the response at those frequencies 

appears as a globally significant local maximum, or ‘peak’.  Per Equation (2.1.11), the 

deflection of the system at these frequencies is representative of mode shapes.  As such, the 

theoretical modal properties of a system are physically realizable and potentially measurable.  In 

the broader picture, these properties embody the ideas of resonance. 

2.2 Model Comparison Tools 

 With the modal properties defined and established as physically realizable in Section 2.1, 

some mathematical tools are required to work with them in real data.  Two tools are presented 

here: the Normal Mode Indicator Function (𝑀𝐼𝐹1) and the Modal Assurance Criterion (MAC).  

The former is used in conjunction with peak finding to determine the value of mode frequencies 

and the latter is used to compare two mode shapes.  Throughout this project, MATLAB [29] was 

used to calculate and graph these values.   
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2.2.1 Normal Mode Indicator Function (𝑀𝐼𝐹1) 

 While it is predicted that vibrational systems would naturally resonate at their mode 

frequencies and nowhere else under free vibration conditions, this is not always observed in the 

real world.  For example, evidence of modal behavior (peaks in magnitude) is found in numbers 

and places which do not match model predictions.  Perhaps also – for a variety of reasons – an 

expected mode shape might not be adequately excited such that it produces clear enough signals 

to be found as a peak.  One method of dealing with these issues is the use of a Mode Indicator 

Function (MIF) [28].  While there are different MIF functions, the Normal MIF (𝑀𝐼𝐹1) [28] is 

used for this analysis. 

𝑀𝐼𝐹1 =
∑ [|𝑅𝑒(𝐻𝑃(𝑓))|

2
]𝑃

∑ [|𝐻𝑃(𝑓)|2]𝑃

(2.2. 1) 

 In this case, the term 𝐻𝑃(𝑓) refers to an element in the broader transfer matrix [𝐻] as 

defined in Equation (2.1.27) in the specific case where one force (the hammer) acts on the 

system.  This function works on the principle that “off the natural frequencies of a structure, the 

FRF [Frequency Response Function] is approximately real, whereas exactly at the undamped 

natural frequency, it is purely imaginary” [28].  Considering this, it is reasoned that the 𝑀𝐼𝐹1 is 

an estimate of the real mode frequencies by providing the analyst with a measurement of the 

significance of the imaginary response on the whole system response as a function of frequency.  

Evidence of modal behavior is found where the 𝑀𝐼𝐹1 function experiences a ‘dip’ in value where 

the imaginary component becomes locally more significant.  As a part of this analysis, sets of 

modal frequencies were selected from test data leveraging this tool and the magnitude peaks. 
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Figure 4: Example of the Normal MIF (𝑀𝐼𝐹1) and Response Peaks 

 

 

 An example of the mode frequency selection process is shown in Figure 4.  In this case, a 

C100 cavity is arranged in a hammer test configuration in which accelerometers were placed at 

key locations to capture its resonance behavior.  The upper graph presents the spectra of vertical 

acceleration experienced by each of the sensors.  Clear peaks in magnitude can be seen which 

indicate the values of mode frequencies.  The spectrum of the 𝑀𝐼𝐹1 is presented in the lower 

graph shows dips in the function which provides additional evidence that many of these peaks 

represent modes.   
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2.2.2 Modal Assurance Criterion (MAC) 

 This analysis requires a quantitative comparison of mode shapes to characterize how 

close they match, especially when concerned with comparing a response shape from test data – 

called an observed deflection shape (ODS) – at a particular frequency (ODS frequency) to the 

corresponding analytical mode shape from a model.  First, the ODS shape is normalized to form 

the test vector {𝜓}𝑡 which takes the form of a complex column vector.  The analytical vector 

{𝜓}𝑟 is generated in a model and takes the form of a real-valued column vector of the same size.  

The Modal Assurance Criterion (MAC) is used to compare these two vectors in the form of a 

single scaler.  Brandt defines the MAC [28] as: 

𝑀𝐴𝐶𝑡𝑟 =
|𝜓𝑡

𝐻𝜓𝑟|
2

(𝜓𝑡
𝐻𝜓𝑡)(𝜓𝑟

𝐻𝜓𝑟)
(2.2. 2) 

2.3 A Note on the Conduct of a Hammer Test 

 This section contains a mathematical justification for the use of hammer tests and a 

verification that the data collected from such a test can be used for the purposes of modal 

analysis.  A note is provided which describes an important consideration related to the 

directional nature of excitations delivered by a hammer strike.  As a mitigation to this issue, the 

method of calculating the MAC was adjusted.  Additionally, a note is provided which describes 

the origin and mitigation of reflected asymmetric mode shapes in test data.   

2.3.1 Basic Function of a Hammer Test 

 In Section 2.1, it was determined that the mode frequencies and shapes are physically 

realizable.  Hammer tests are used to capture this modal behavior in real systems by exciting the 
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modes with a small amount of energy and studying the free vibration response.  To do this, the 

system is arranged such that it can freely vibrate (that is, it is an unforced system) once energy is 

imparted onto it.  Accelerometers or like devices are affixed to the system in such a quantity and 

configuration that critical features in analytical mode shapes will be adequately captured.  

Energy is imparted onto the system in the form of a hammer strike and the acceleration of the 

sensors is recorded long enough to capture the transient, free vibration response.  This time-

domain data is fed through a discrete function (for example, a Discrete Fourier Transform or a 

Fast Fourier Transform) which produces the frequency spectrum of their motion. 

 Hammer tests were performed on two C100 representative SRF cavities and the C100-

10R cryomodule.  Also, a load cell was affixed to the tip of the hammer used to impart energy 

onto the systems.  The forces on the tip of the hammer were sampled and the frequency spectrum 

of each hammer hit was determined.  This information was used to bound the region of 

frequencies which could be said to be ‘effectively excited’ during the tests.  The data acquisition 

device used to capture the data in each test formed 𝐻𝑖(𝑓), an estimate of a Frequency Response 

Function (FRF) using the frequency spectra of each of the accelerometers and the hammer force 

spectrum.  

𝐻𝑖(𝑓) =
𝐴𝑖(𝑓)

𝐹(𝑓)

[𝑔]

[𝑙𝑏𝐹]
(2.3. 1) 

While it may appear that this function is a transfer function of acceleration with respect to a 

specific input force, it is not.  It would be an issue if it were, in that 𝐻𝑖(𝑓) would represent forced 

response, not unforced modal response.  To demonstrate that 𝐻𝑖(𝑓) is applicable to this test, it is 

derived.  To begin, the ideal deflection of each sensor when vibrating in one direction can be 

described as simple harmonic motion. 
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𝑢𝑖(𝑡) = 𝑀𝑖 sin(𝜔𝑡 + 𝜑𝑖) (2.3. 2) 

The acceleration of this motion is found with the second time derivative. 

𝑎𝑖(𝑡) = −𝜔
2𝑀𝑖 sin(𝜔𝑡 + 𝜑𝑖) = −𝜔

2𝑢𝑖(𝑡) (2.3. 3) 

The acceleration functions of each accelerometer can be placed into a vector {𝑎(𝑡)}.  After a 

Laplace Transform of this vector, it can be concluded that the frequency-domain acceleration 

vector at a given frequency is a scalar multiple of the frequency-domain deflection vector: 

{𝐴(𝑠)} = −𝜔2{𝑈(𝑠)} (2.3. 4) 

The data acquisition device used this data to generate an estimate of the transfer functions 

between the hammer hit forces and the accelerations of each of the accelerometers.  While the 

exact methods by which the data acquisition device performed this estimation were not 

investigated, a transfer function between the hammer hit forces and the accelerometer 

accelerations can be described as: 

{|𝐻𝑖(𝑓)|} = {
|𝐻1(𝑓)|
…

|𝐻𝑛(𝑓)|
} =

1

|𝐹(𝑓)|
{
|𝐴1(𝑓)|
…

|𝐴𝑛(𝑓)|
} =

(2𝜋𝑓)2

|𝐹(𝑓)|
{
|𝑈1(𝑓)|
…

|𝑈𝑛(𝑓)|
} (2.3. 5) 

{∠𝐻𝑖(𝑓)} = {
∠𝐻1(𝑓)
…

∠𝐻𝑛(𝑓)
} = {

∠𝐴1(𝑓) − ∠𝐹(𝑓)
…

∠𝐴𝑛(𝑓) − ∠𝐹(𝑓)
} = {

∠𝑈1(𝑓) − 𝜋 − ∠𝐹(𝑓)
…

∠𝑈𝑛(𝑓) − 𝜋 − ∠𝐹(𝑓)
} (2.3. 6) 

This shows that the function 𝐻𝑖(𝑓) of Equation (2.3.1) cannot be said to be a true transfer 

function; rather, it is representative of the free vibration acceleration frequency response 

normalized by the excitation applied to the system.  As such, the data collected represents the 

spectrum of ODS shapes.   
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Given this, consideration must be given to the eigenvector {Ψ}𝑟.  In an FEA model with 

many nodes, the efficient modeler will ensure that there will exist nodes which can be used to 

represent the motion of the accelerometers used in hammer tests.  Once the analytical mode 

shape {Ψ}𝑟 of the whole system is found, the predicted motion of the accelerometers can be 

extracted from {Ψ}𝑟 to yield a more condensed analytical mode shape {ψ}𝑟.  Furthermore, if a 

particular frequency in the test data 𝑓𝑡 coincides with the rth analytical mode frequency, it is 

expected that the deflection {𝑈(𝑓𝑡)} would be a scalar multiple of this truncated analytical mode 

shape {𝜓}𝑟 and – from the above equations – it follows that the function {𝐻(𝑓𝑡)} would be as 

well:  

{|𝐻𝑖(𝑓𝑡)|} = {
|𝐻1(𝑓𝑡)|
…

|𝐻𝑛(𝑓𝑡)|
} =

(2𝜋𝑓𝑡)
2

|𝐹(𝑓𝑡)|
{
|𝑈1(𝑓𝑡)|
…

|𝑈𝑛(𝑓𝑡)|
} ∝ {

|𝜓1|𝑟
…
|𝜓𝑛|

}

𝑟

(2.3. 7) 

{∠𝐻𝑖(𝑓𝑡)} = {
∠𝐻1(𝑓𝑡)
…

∠𝐻𝑛(𝑓𝑡)
} = {

∠𝑈1(𝑓𝑡) − 𝜋 − ∠𝐹(𝑓𝑡)
…

∠𝑈𝑛(𝑓𝑡) − 𝜋 − ∠𝐹(𝑓𝑡)
} ≅ {

∠{𝜓1}𝑟 + 𝜑𝑟𝑒𝑓
…

∠{𝜓𝑛}𝑟 + 𝜑𝑟𝑒𝑓

} (2.3. 8) 

These two conclusions (that {𝐻(𝑓)} represents unforced ODS deflections and that a vector of the 

ODS {𝐻(𝑓𝑡)} is analogous to {𝜓}𝑟) demonstrate that the collected data in the form of the 

function {𝐻(𝑓)} contains the modal behavior of the system.  An example of an ODS shape (blue) 

being compared to a truncated analytical mode shape (red) is presented in Figure 5.   
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Figure 5: Example Comparison of ODS Shape and Analytical Mode Shape 

 

 

2.3.2 A Note on Directional Preferences 

 The earlier introduction of the MAC is a critical point in this analysis in that it allows two 

modes shapes to be compared.  While the observed resonant frequencies can be compared to 

analytical mode frequencies leveraging one-dimensional descriptive statistics, the ODS vector 

{𝐻(𝑓𝑡)} cannot be so easily compared to the analytical mode shapes {𝜓}𝑟.  However, the 

reduction in information from a pair of vectors to a single scalar simplifies this issue.  More 

importantly, the introduction of the MAC allows for the simultaneous comparison of the ODS 
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shape and frequency to an analytical mode shape and frequency using scalar quantities; in short, 

similar modes are now comparable. 

 

 

 

Figure 6: Justification for Directional MACs 

 

 

 With the above in mind, consider the system described in Figure 6.  In this case, there are 

three objects of equal mass that are constrained in different ways.  The upper-most mass is only 

allowed to move vertically, the right-most mass is only allowed to move horizontally, and the 

mass in the lower left corner can translate horizontally and vertically.  The masses are connected 

as shown with two types of springs: springs marked k1 are relatively weak while the springs 

marked k2 are – say – 100 times stronger than k1.  The value of k2 was chosen to be sufficiently 

strong such that – while the corner mass is technically part of the overall dynamic system – it 

only moves a negligible amount at any time.  This allows for the transfer of energy imparted onto 
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the corner mass to the upper-most and right-most masses without its motion being significant to 

any mode shape.  Additionally, the restriction of motion on the corner mass will prevent its 

inertia from applying significant forces onto the other masses.  For this illustration, the 

insignificance of the acceleration and displacement of the corner mass allow it to be removed 

from the analysis of vibration modes.  The reduced system is described using Equation (2.1.3) 

as:

[
𝑚 0
0 𝑚

] {
�̈�(𝑡)

�̈�(𝑡)
} + {

𝑘1 0
0 𝑘1

} {
𝑥(𝑡)

𝑦(𝑡)
} = {

0
0
} (2.3. 9) 

This system is solved for its eigenvalues: 

(
𝑘1
𝑚
|
1 0
0 1

| + 𝑠2 |
1 0
0 1

|) {
𝑥
𝑦} = {

0
0
} ;     𝑠 = ±𝑖√

𝑘1
𝑚
;     𝜆1,2 = 

𝑘1
𝑚

(2.3. 10) 

Two identical mode frequencies are found: 

𝑓1,2 = √𝜆1,2 = √
𝑘1
𝑚
,√
𝑘1
𝑚

(2.3. 11) 

Their mode shapes are found with the eigenvectors: 
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(
𝑘1
𝑚
|
1 0
0 1

| + (−𝑖√
𝑘1
𝑚
)

2

|
1 0
0 1

|) {
𝑥
𝑦} = {

0
0
} (2.3. 12) 

2
𝑘1
𝑚
|
1 0
0 1

| {
𝑥
𝑦} = {

0
0
} (2.3. 13) 

{𝛹}1,2 = {
1
0
} , {
0
1
} (2.3. 14) 

 Consider how this type of system would be studied in a hammer test.  In this experiment, 

accelerometers are attached to the upper-most and the right-most masses such that the motion 𝑥 

and 𝑦 are measured.  Furthermore, let it be so that the operator can only apply a hammer hit to 

the corner mass, not the upper-most or right-most masses. While it would be ideal to excite the 

two modes with hammer strikes such that each mode perfectly embodies the mode shapes, this is 

not always possible.  In this case, the corner mass would have to have energy deposited exactly 

along the vertical or horizontal directions for this to occur.   

To illustrate the significance of this point, let it be so that the operator was not able to 

strike the system ideally as described.  Under such conditions, the hammer hits will inevitably 

excite both modes simultaneously.  In the realistic but extreme example of this, both the upper-

most and the right-most masses are excited equally.  Such response could be represented 

leveraging Equation (2.3.7) as the 

following:

{|𝐻𝑖 (𝑓1 = √
𝑘1

𝑚
)|} = {

|𝐻1(𝑓1)|
…

|𝐻𝑛(𝑓1)|
} =

(2𝜋𝑓1)
2

|𝐹(𝑓1)|
{
1
1
} (2.3. 15) 
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The MAC calculation between the ODS vector {
1
1
} of this case and the first analytical mode 

shape {
1
0
} (or the second mode shape) will suffer. 

𝑀𝐴𝐶 =
|{1 1} {

1
0
}|
2

({1 1} {
1
1
}) ({1 0} {

1
0
})
= .5 (2.3. 16) 

 It is not the purpose of this example to describe a system with a pair of coincident modes 

(the modal coordinates described in Eq (2.1.15) would be of assistance in that case); rather, it is 

to demonstrate how serious the directional deposition of energy by the hammer is to this 

analysis.  This issue would be compounded if instead of the two accelerometers in the above test 

system, a whole group of accelerometers were spread across a system having more complex 

mode shapes and the energy imparted onto this system was not consistently applied.  Hammer 

hits are more chaotic than not; control over the directional deposition of energy onto the system 

is hard to establish.  In the above example, the ODS was considered above to be {
1
1
}, but a slight 

rotation of the hand could have resulted in {
1
. 9
} or {

. 9
1
}, leading to more problems in the MAC 

calculations.  This directional preference in the deposition of energy by the hammer and the 

noted unpredictability is a serious issue and would almost be grounds to not use the MAC.   

 To help deal with directional preferences associated with the deposition of energy by the 

hammer and the mathematical realization of the mode shapes, the MACs were calculated and 

studied on the mode shapes in the principal directions (X – broadside, Y – vertical, and Z – axial) 

of the test articles as shown in Figure 7.  This is an application of the Partial Modal Assurance 

Criterion (PMAC) as described by Allemang [30].  The whole-eigenvector MACs were 
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calculated, but the calculated values were found to be extraordinarily low even in cases where 

the Directional MACs were found to be quite high.  It was reasoned that this behavior was 

caused by the directional preferences described above and it was decided to not use the whole-

eigenvector MACs for this analysis but to leverage the Directional MACs instead. 

2.3.3 A Note on Data Reflections 

An additional artifact that these tests are studies of transient response in real systems is 

the presence of reflections in the data.  Specifically, consider the profile of the C100 cavity 

presented in Figure 7.  In many ways, it is symmetrical though there are differences in the 

geometry at the extremities.  Though this system is largely symmetrical, asymmetrical mode 

shapes (like that shown in Figure 5) were predicted in the FEA model and observed in the 

hammer test.  One curious observation with respect to the collected data was that these 

asymmetric mode shapes were at times observed exactly as predicted by the model and at other 

times found to be reflected longitudinally.  It was reasoned that the general symmetry of the 

configuration allowed this asymmetric mode shape to exist in both forms at the same frequency.  

If both forms of the mode shape can exist at the same frequency, it is reasonable to conclude that 

the data acquisition system used in this test would not be able to choose between the two forms, 

thus the reported mode shape would be somewhat arbitrarily chosen.  This was further 

compounded by the fact that it was found that the observed responses were not reflected in all 

axes at the same time.  For example, the horizontal and axial data could be found as predicted by 

the FEA model, but the vertical data was captured in a reflected form.   

To mitigate this issue, the reflected mode shapes needed to be un-reflected.  Since the 

sensors were placed in a longitudinally symmetrical configuration, the response can be corrected 
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by simply reversing the order of the responses.  To determine if a particular part of the data set 

needed to be un-reflected, the Directional MAC was calculated with both the original and 

reflected data set.  Whichever yielded the highest Directional MAC value was considered to be 

the correct form.   

 

 

 

Figure 7: Profile of a C100 Cavity (Image used Courtesy of Jefferson Lab) 

 

 

2.4 FEA Methods 

With respect to the broader question of resonance on the cryomodule while in use, it 

would be convenient to attach accelerometers onto the cavities, perform a hammer test or record 

pure noise, study the spectra, identify a clear problem area, and identify a clear solution.  

Unfortunately, the cryogenic environment around the cavities (achieving temperatures around 2 

K) is too extreme for sensors available at this time.  Because of this, it is not possible to get raw 
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acceleration (or any other form of deflection) data from the cavities.  Additionally, it would be 

convenient to study a cryomodule while it was partially assembled and perform the same 

analysis.  While this was done, there are several variables which must be considered:    

• The temperature variation from warm (~300K) to cold (~2K) is very large.  

Temperature has real effects on material properties.  There are many complex 

parts in a cryomodule and they are made of many different materials.  How does 

this temperature variation change resonance behavior in the cryomodule? 

• The study of resonance is convenient for studying the behavior of vibrational 

systems because resonance readily transforms applied energy into displacement.  

However, if there exists a strong enough off-resonant excitation, the system can 

become disturbed and adjusting resonance could become insufficient to solving 

the problem.  How can system response due to resonance and strong off-

resonance excitation be distinguished? 

 To answer these questions, one must have a model of the system.  While it is not possible 

to answer these questions through data collection on the system while in use, one can build an 

FEA model of the system and perform a modal analysis.  If the model can be shown to be 

accurate using warm material properties, it might be usable to make predictions using cryogenic 

material properties.  This can be used to predict the resonant behavior in the cryomodule when 

cryogenically cooled and to distinguish the responses from resonant behavior and strong off-

resonant excitation.  FEA models of the C100 SRF cavities and cavity string were developed for 

this purpose.  This section introduces the FEA methods that were used as a part of this effort and 

includes an introduction to element theory (Section 2.4.1); an introduction to shell and beam 

elements (Section 2.4.2); an introduction to Component Mode Synthesis (Section 2.4.3); an 
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introduction to symmetrical and asymmetrical boundary conditions; and a summary discussing 

the use of FEA for modal analysis (Section 2.4.4).   

2.4.1 Standard Elements and Methods 

 FEA models describe structures as a set of discrete parts called ‘elements’ through a 

process called ‘meshing.’  Each element is connected to adjacent elements at their corners called 

‘nodes.’  Each node represents one ‘subsystem’ in the vibrational system and the mesh of nodes 

represents the vibrational system itself.  Each node is connected to adjacent nodes using 

equations of motion for springs, masses, and dampers.  All of the equations from these 

connections are formed into the linear differential equation described in Equation (2.1.3) [31].  

Various methods for solving for the eigenvalues and eigenvectors are then employed to find the 

mode shapes and frequencies of the meshed geometry [31].   

 The primary objective of FEA modeling with respect to modal analysis is the correct 

description of mass and stiffness of complex geometry.  Mass is generally determined through 

material density and the geometry of the mesh.  Stiffness in an FEA model is derived from 

material properties, geometry of the mesh, and the composition of the mesh itself.  The effect of 

damping was not specifically addressed in this study though there do exist Damped Modal 

Analysis techniques [31].   

 For the sake of this thesis, the material properties were provided by Jefferson Labs and 

were assumed to be correct without further investigation.  This was done for two specific 

reasons: while the provided theoretical material properties and the real material properties might 

be slightly different, the variation in material properties – and therefore modal properties – 

between warm and cold conditions was assumed to be sufficiently accurate for analysis and that 
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the impact of the error in material properties was less damaging to the results than a bad mesh.  

Since the geometries of the cavities and components in the cryomodule were provided by 

Jefferson Labs, this too was considered to be accurate enough to not perform further adjustment.  

The variable that was adjusted in the model was the mesh.   

 The development of a mesh is the way that a modeler communicates to the solver what 

components in the system geometry are important.  For example, a ½" hole in the middle of a ⅛" 

x 1" x 4" bar might be considered significant due to loss of mass, stress concentration, local 

reduction in stiffness, etc.  On the other hand, a C100 cryomodule is a relatively large structure 

and it can be reasoned that the major contributions to stiffness and mass in these structures 

comes from the relatively large components (like the vacuum vessel, space frame, cavity string, 

etc.), not the relatively small objects (screws, nuts, bolts, washers, etc.).  The hole in the 

aforementioned bar – and sometimes the bar itself – can be neglected from a model of this size 

without serious impact to the results.  This process, called ‘defeaturing,’ gives the modeler 

flexibility in what is considered significant during the pursuit of an accurate model.   

 With respect to the mesh itself, there are ways to assess its quality regardless of the 

geometry.  Specifically, element quality is defined according to the following [32]:  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶 (
𝑎𝑟𝑒𝑎

∑(𝐸𝑑𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ)
2) (2.4. 1) 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶

(

 
𝑣𝑜𝑙𝑢𝑚𝑒

√[∑(𝐸𝑑𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ)
2
]
3

)

 (2.4. 2) 
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The value of C is specially defined for different element shapes.  These quantities provide an 

estimate of how skewed an element is.  For example, a hexahedral element which is highly 

elongated and sheared will have low quality due to the ratio of low volume to large edge lengths; 

conversely, a perfect cube will have the highest ratio between volume and edge length and thus 

high quality.  The minimum element quality is a helpful metric in that it provides a measure of 

the mesh overall.  With respect to this, the default Target Element Quality (minimum acceptable 

element quality) is .05 [32].  A spatial distribution of element quality can help the modeler 

identify regions in geometry which need to be re-meshed, defeatured, or removed.  

 The pursuit of a mesh with high element quality is often limited by node count.  While 

inundating a geometry with an extraordinary quantity of elements might improve element 

quality, the model matrices will increase significantly in size and result in a model which is time-

consuming, not runnable, or not any more valuable than a smaller model.  It then becomes the 

objective of the modeler to build a mesh which has a balance between a high quality, low node 

count, and acceptable model predictions.  This balance has brought about useful developments of 

FEA elements and methods discussed in the following sections. 

2.4.2 Beam and Shell Elements 

 Consider how one might model a piece of printer paper leveraging FEA.  Should one 

desire a mesh with perfect mesh quality using hexahedrons, all of the side lengths of the 

elements would have to be near the thickness of the piece of paper.  An incredible quantity of 

elements would be required to satisfy this requirement for only a single layer of elements.  This 

issue is further compounded should nonplanar loading and response be studied.  For example, a 

modeler would desire multiple layers of elements to describe bending which would further 
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shrink element size to provide the needed element quality.  Put simply, this is not a reasonable 

strategy.   

 Shell elements can be used to solve this issue.  Within Ansys® SpaceClaim [33], a 

modeler can simplify the geometry of a thin component into a surface body having a constant 

thickness.  These bodies can be meshed with shell elements which include information related to 

the shell thickness [34].  With this, a single layer of elements of a reasonable quantity and size 

can provide accurate results for nonplanar loading and response.  Similar problems and solutions 

exist for beams; a beam-like object, having significant length in comparison to other dimensions 

and having a constant cross-section, can be modeled as a line body and meshed with beam 

elements to the same effect [34].  

2.4.3 Condensed Geometry.   

 Within Ansys® Mechanical [35] is the ability to perform substructure analysis.  Once a 

system, being composed of a set of objects, has been properly meshed, a group of those objects 

can be selected to be represented as a substructure of the system.  By doing this, the elements 

within the substructure are replaced with a single superelement which will act as a mathematical 

equivalent to the nodes which interface to the replaced elements [31, 34].  This has many 

benefits, including a reduced model size, lower runtime, and the ability to study and calibrate 

models of substructures in isolation before the final analysis is done.    

 One particularly useful application of substructure analysis is Component Mode 

Synthesis (CMS) [31].  After a substructure has been made, a modal analysis up to a specified 

number of modes is performed on it.  Once this is done, the substructure is replaced by the 

superelement equivalent.  By doing so, the modal properties of the substructure will continue to 
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contribute to the overall modal behavior of the larger system even though the substructure 

elements have been replaced.  This makes it possible to perform modal analysis on large systems 

– say, a cryomodule – without having to compromise on the accuracy of critical subsystems – 

say, an SRF cavity.   

2.4.4 Symmetrical and Anti-symmetrical Boundary Conditions 

 When working with symmetrical models under symmetrical loading conditions, it is at 

times useful to leverage the symmetry of the situation to predict the behavior of that system, 

assuming that its behavior will also be symmetrical.  Ansys® Mechanical [35] has the ability to 

define and work with symmetrical and anti-symmetrical systems and configurations leveraging a 

type of boundary condition called a ‘symmetry region’.  For example, a symmetry region 

leveraging symmetry is defined across a plane such that “out-of-plane [nodal] displacements and 

in-plane [nodal] rotations are set to zero” [34].  This allows models to be divided in half thereby 

significantly reducing the node count, model size, and run time.  An example of a symmetry 

boundary condition is shown in Figure 8 where the plane of symmetry is shown in red.   
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Figure 8: Plane of Symmetry on the Cryomodule Model (Image used courtesy of ANSYS, Inc.) 

 

 

2.5 Design of Experiments 

2.5.1 Method Justification 

 The primary output of modal analysis is a description of the vibration modes: a 

simultaneous realization of a specific mode shape at a specific mode frequency.  For a modal 

model of a system in some configuration to be accurate, both shape and frequency must be 

predicted correctly.  For the purposes of calibration, it is necessary to quantify the error in the 

output of a model when compared to reality such that this error can be minimized.  A statistical 

method is therefore required with respect to mode shapes and frequencies for modal analysis.   

 One key idea presented in Section 2.1 is that the modal behavior of a system in a 

particular configuration is a property of that system in that configuration.  This implies that the 
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vibration modes should be the same no matter how they are brought about.  Specific to hammer 

tests, it is expected that the modal behavior of a structure does not change depending on the 

hammer hit location.  While this may be theoretically true, it is critical to verify that this is so.  

This section discusses statistical methods used to study these types of claims.  Section 2.5.2 

introduces least squares regression models and the Analysis of Variance (ANOVA).  Section 

2.5.3 describes metrics used to assess the quality of these models.  Section 2.5.4 describes how 

the modes can be used.   

2.5.2 Least Squares Regression Modeling and ANOVA 

 When working to characterize a system whose behavior is governed by certain 

treatments, it is valuable to develop a statistical model which describes the behavior of that 

system as a function of those treatment parameters.  One effective way of doing this is to develop 

a least squares regression model.  The following is a summary of a method described by 

Montgomery [36].  To begin, consider a linear statistical model in the form of an effects model 

[36]. 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗 {
𝑖 = 1,2, … , 𝑎
𝑗 = 1,2, … , 𝑛

(2.5. 1) 

In this model, 𝜇 represents the overall mean, 𝜏𝑖 is the 𝑖th treatment effect, 𝑦𝑖𝑗 is the 𝑗th 

measurement of the response 𝑦 under the 𝑖th treatment, and 𝜖𝑖𝑗 is the random error associated 

with 𝑦𝑖𝑗 [36].  It is desired to estimate the parameters 𝜇 and 𝜏𝑖 such that the error in this model is 

minimized.  To do this, the Least Squares Estimation technique begins by characterizing the 

error of the model 𝐿 as the sum of squares of the errors 𝜖𝑖𝑗 [36]: 
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𝐿 =∑[∑[𝜖𝑖𝑗
2]

𝑛

𝑗=1

]

𝑎

𝑖=1

=∑[∑[(𝑦𝑖𝑗 − 𝜇 − 𝜏𝑖)
2
]

𝑛

𝑗=1

]

𝑎

𝑖=1

(2.5. 2) 

In order to have an optimally accurate model, the error 𝐿 must be minimized with respect to the 

parameters 𝜇 and 𝜏𝑖.  A minimization implies that the partial derivative of 𝐿 with respect to these 

variables must be zero at the particular optimal values �̂� and 𝜏�̂�, that is [36]: 

0 =
𝜕𝐿

𝜕𝜇
|
�̂�,𝜏�̂�

= −2∑[∑[(𝑦𝑖𝑗 − �̂� − 𝜏�̂�)]

𝑛

𝑗=1

]

𝑎

𝑖=1

(2.5. 3) 

0 =
𝜕𝐿

𝜕𝜏𝑖
|
�̂�,𝜏�̂�

= −2∑[(𝑦𝑖𝑗 − �̂� − 𝜏�̂�)]

𝑛

𝑗=1

(2.5. 4) 

These equations can be simplified to become [36]: 

∑[∑[𝑦𝑖𝑗]

𝑛

𝑗=1

] = 𝑎𝑛�̂� + 𝑛∑[𝜏�̂�]

𝑎

𝑖=1

𝑎

𝑖=1

(2.5. 5) 

∑[𝑦𝑖𝑗]

𝑛

𝑗=1

= 𝑛(�̂� + 𝜏�̂�) (2.5. 6) 

These two represent 𝑎 + 1 equations called the ‘least squares normal equations’ [36].  

Unfortunately, these equations are not linearly independent and one more equation is required.  

A constraint that is often applied to overcome this issue is the following [36]:  

∑[𝜏�̂�]

𝑎

𝑖=1

= 0 (2.5. 7) 
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Leveraging this constraint, the following conclusions can be made [36]: 

�̂� =
1

𝑎𝑛
∑[∑[𝑦𝑖𝑗]

𝑛

𝑗=1

]

𝑎

𝑖=1

(2.5. 8) 

𝜏�̂� =
1

𝑎
∑[𝑦𝑖𝑗] −

1

𝑎𝑛
∑[∑[𝑦𝑖𝑗]

𝑛

𝑗=1

]

𝑎

𝑖=1

𝑛

𝑗=1

(2.5. 9) 

2.5.3 Assessment of Statistics Models 

 Now that a statistical model has been built, it is necessary to assess its quality and draw 

conclusions.  The 𝑅2 metric and its various instantiations are commonly used to assess the 

quality of such a model.  The standard definition of 𝑅2 is found [36]: 

𝑅2 =
𝑆𝑆𝑀𝑜𝑑𝑒𝑙
𝑆𝑆𝑇𝑜𝑡𝑎𝑙

(2.5. 10) 

This is an appropriate method of model assessment in that “it measures the proportion of total 

variability explained by the model” [36]  Another form used is the Adjusted 𝑅2 which is defined 

[36]: 

𝑅𝐴𝑑𝑗
2 = 1 −

𝑆𝑆𝑒
𝑑𝑓𝑒
⁄

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
𝑑𝑓𝑇𝑜𝑡𝑎𝑙
⁄

(2.5. 11) 

This metric is defined because this value decreases as insignificant terms are added.  As such, 

significant variability between 𝑅𝐴𝑑𝑗
2  and 𝑅2 is a good indicator that insignificant terms have been 

added [36].  Finally, the Predicted 𝑅2 is defined [36]: 
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𝑅𝑃𝑟𝑒𝑑
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
(2.5. 12) 

Note here that the Prediction Error Sum of Squares (PRESS) follows a very specific definition: 

 To calculate PRESS, we select an observation – for example, 𝑖. We fit the regression 

model onto the remaining 𝑛 –  1 observations and use this equation to predict the 

withheld observation 𝑦𝑖.  Denoting this predicted value �̂�(𝑖), we may find the prediction 

error for point 𝑖 as 𝑒𝑖 = 𝑦𝑖 − �̂�(𝑖).  The prediction error is often called the 𝑖th PRESS 

residual.  This procedure is repeated for each observation 𝑖 = 1, 2, … , 𝑛, producing a set 

of 𝑛 PRESS residuals 𝑒(1), 𝑒(2), … , 𝑒(𝑛).  Then the PRESS statistic is defined as the sum 

of squares of the n PRESS residuals as in: [36] 

𝑃𝑅𝐸𝑆𝑆 =  ∑[𝑦𝑖 − �̂�(𝑖)]
2

𝑛

𝑖=1

(2.5. 13) 

“A model with a small PRESS indicates that the model is likely to be a good predictor” [36] 

which indicates that a model with a high 𝑅𝑃𝑟𝑒𝑑
2  will be as well.   

2.5.4 Output of a Statistics Model 

 As mentioned, there are two driving desires behind this application of the Design of 

Experiments: to quantify the error in the FEA models and to demonstrate that the various 

treatments in this experiment did not significantly affect the modal behavior of the system.  Since 

the information studied here involves describing the modal behavior of a real system, it is 

necessary to quantitatively capture the error information on the mode shapes and frequencies of 
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that system in its configuration.  While this is simple to do with scalar quantities (like the mode 

frequency), the mode shape is a vector.   

 The FEA model can be used to make predictions with respect to a particular mode.  The 

predicted mode shape can be proposed as a reference and the Directional MACs can be 

calculated between this reference and the ODS shapes extracted from test data at peaks near the 

FEA-predicted mode frequency.  This allows the error in the mode shape to be quantified as a 

scaler, which can be imported into a statistics model.  Such a model would therefore make 

predictions related to the significance of the treatments in changing the observed mode shape 

away from the FEA-predicted reference.  If the FEA-predicted reference is a good match to 

reality, the statistics model should predict that the Directional MAC values would be above a 

desired tolerance (say, .8).  Mode frequencies are much simpler to explain: if the FEA-predicted 

mode frequency falls within the Prediction Interval (PI) of the observed mode frequencies, it can 

be argued that an acceptable match has been found.  If the regression models for a particular 

mode indicate that its mode frequency and all Directional MAC values indicate a sufficient 

match, the mode can be said to be sufficiently predicted.  To determine if the treatments had a 

significant effect on the modal behavior of the system, standard ANOVA techniques in Table 1 

can be applied [36]. 
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Table 1: ANOVA Table 

Source of 

Variation 

Sum of Squares Degrees of 

Freedom 

Mean 

Square 

F0 

Between 

Treatments 

𝑆𝑆𝑇𝑟𝑒𝑎𝑡 = 𝑛∑[𝜏�̂�
2]

𝑎

𝑖=1

 
𝑎 − 1 𝑀𝑆𝑇𝑟𝑒𝑎𝑡 𝐹0 =

𝑀𝑆𝑇𝑟𝑒𝑎𝑡
𝑀𝑆𝐸

 

Error (within 

treatments) 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑇𝑟𝑒𝑎𝑡 𝑛𝑎 − 𝑎 𝑀𝑆𝐸  

Total 

𝑆𝑆𝑇 =∑[∑[(𝑦𝑖𝑗 − �̂�)
2
]

𝑛

𝑗=1

]

𝑎

𝑖=1

 

𝑛𝑎 − 1   

 

 

Based on these definitions, it can be said that the treatments were significant to the modal 

behavior if [36]: 

𝐹0 > 𝐹𝛼,𝛼−1,𝑁−𝑎 (2.5. 14) 
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CHAPTER 3  

 

STUDIES 

 At its core, this thesis is an investigation into the significance of mechanical disturbances 

on the RF resonant frequency of the C100 SRF cavities such that problems caused by this effect 

can be mitigated.  If it can be demonstrated that RF detuning follows the behavior of mechanical 

resonance in the cryomodule, it can be argued that the mitigation of resonance would lead to a 

mitigation of RF detuning.  By studying the mode shapes and frequencies in the cryomodule and 

cavities, specific mitigation strategies to resonance can be proposed and targeted towards 

specific problem areas.  

 As a part of this thesis, modal analysis was used to study resonance in C100 SRF cavities 

and cryomodules to shed light in this area.  Specifically, FEA models were developed within 

Ansys® Mechanical [35] to estimate the vibration mode shapes and frequencies of the cavities 

and cryomodules.  Each FEA modeling effort was accompanied by a calibration leveraging a 

hammer test of a real system.  This was done to compare each model to reality and 

mathematically assess its accuracy.  Finally, a test which was designed to specifically measure 

RF detuning as caused by mechanical disturbances in a cryomodule while in use was conducted.  

This test was used to assess the effectiveness of the canisters developed by BNNT, LLC. that 

was proposed as a solution to the observed problems.   
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3.1 Study 1: Cavity Model 

3.1.1 Model Justification 

 There are tens of thousands of components within a C100 cryomodule, most of which are 

not significant to the study of its resonance.  However, the SRF cavities are especially important 

because the cavities can transform mechanical disturbances into RF detuning.  The deflection of 

the cavities caused by a disturbance – and the modal properties which characterize how those 

deflections are realized – is therefore a critical piece of knowledge in this puzzle.  To shed light 

on this, an accurate FEA model needs to be made and calibrated.   

3.1.2 Model Development 

 Though the cavities are composed of some irregular shapes, there are many geometrical 

simplifications which can be made.  Figure 9 shows a real C100 SRF cavity (#C100-01) in a 

hammer test configuration and Figure 10 shows the same cavity in the same configuration 

modeled in FEA.  These SRF cavities are largely made from metal sheets, yielding a geometry 

that resembles thin plates.  Shell elements were used for all components in this model except for 

some small parts of the Higher Order Mode (HOM) can assemblies which were left as solid 

elements.  In the end, this model had 41,686 nodes and 32,859 elements.   
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Figure 9: C100-01 SRF Cavity (Image used Courtesy of Jefferson Lab) 

 

 

  

Figure 10: Modeled C100 SRF Cavity (Image used courtesy of ANSYS, Inc.) 

 

 

The primary objective of this modeling effort to develop an accurate mesh.  Since the 

SRF cavities are approximately cylindrical, it is reasonable to expect that the mode shapes would 

generally be transverse and compression mode shapes.  To capture this motion in a hammer test, 



43 

 

it is desired to place the accelerometers on the cavity along its length as shown in Figure 9.  It is 

not possible to achieve this configuration while the helium vessel is installed; therefore, this test 

is not doable while the cavity is a part of a whole cryomodule.  To mitigate this constraint, the 

cavities were tested in isolation in a simply-supported configuration shown in Figure 9.  The 

FEA model developed in Ansys® Mechanical [35] was then used to predict the mode shapes of 

this configuration in order to develop an accurate mesh.  Modes up to 100 Hz were considered 

which includes the first seven modes.  These mode frequencies are listed in Table 2.  The nodes 

shown in Figure 11 were selected to represent the truncated analytical mode shape and were 

extracted for each mode.  

 

 

Table 2: Cavity Mode Frequencies 

Mode Mode Frequencies (Hz) 

1 17.367 

2 26.543 

3 35.838 

4 64.202 

5 68.075 

6 93.115 

7 108.31 
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Figure 11: Cavity Model Prediction of the Accelerometer Motion (Image used courtesy of 

ANSYS, Inc.) 

 

 

3.1.3 Model Calibration 

Once a model begins producing reasonable output, it is necessary to calibrate it.  It is first 

necessary to quantify the error between the model and reality.  This error can then be used in an 

experiment of sorts to vary the parameters within the model to minimize this error and produce a 

sufficiently accurate model.  Since the output of a modal model of a system is the mode shapes 

and frequencies of that system, it is necessary to quantify and minimize the error in both results 

in order to achieve calibration.  Since this model is a modal model, the methods described in 

Section 2.5 can be used.   

3.1.3.1 Test Configuration 

 As explained in Section 2.3, hammer tests are convenient for determining the modal 

behavior of a system.  To collect information related to the modal characteristics of a real cavity, 

a series of hammer tests was performed on a pair of C100-representative cavities (#C100-01 and 
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#PJN7-1).  The cavities were arranged in the simply-supported configuration on V blocks as 

shown in Figure 12.  Seven 3-axis accelerometers and two 1-axis accelerometers were affixed to 

the cavity and oriented according to the principal directions (X – broadside, Y – vertical, and Z – 

axial) as indicated by the blue coordinate cube.  Two sensor configurations were used as shown 

in Figure 12 (Top configuration) and Figure 13 (Side configuration).  Sets of data were collected 

by striking the cavity with a special hammer having a load cell placed behind its rubber tip that 

allows the analyst to study the frequency profile of the energy imparted by the hammer onto the 

cavity.  Five points on the cavity were chosen to be struck which were believed to sufficiently 

excite the modes of the cavities as shown in Figure 12.   

 

 

 

Figure 12: C100-01 Cavity Hammer Strike Points (Image used Courtesy of Jefferson Lab) 
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 To collect the data, the data acquisition device was programmed with a trigger on the 

hammer load cell such that it would start to record the accelerometer motion as soon as a force 

limit was met.  After a hit, the motion of the accelerometers was then captured for a preset 

amount of time as the cavity experienced unforced vibration as in Equation (2.3.3).  In so doing, 

the frequency response was captured and analyzed as described in Section 2.3.  A set of ten such 

recordings were done using a particular strike point and the spectra of these recordings were used 

to produce one averaged spectrum of the set.  It is important to note that this spectrum was of the 

form of a transfer function between the accelerometer motion and the hammer similar to that 

described in Equation (2.3.1).  Two such averaged spectra were generated per strike point; that 

is, each strike point was excited twenty times per cavity per sensor configuration. 

 

 

 

Figure 13: Accelerometers Affixed to the Side (Image used Courtesy of Jefferson Lab)  
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3.1.3.2 Data Analysis 

 With the data from the hammer test captured, it is necessary to extract the modal behavior 

of the system usable for calibration – that is, mode shapes and frequencies.  The method 

leveraging the Normal MIF (𝑀𝐼𝐹1) as described in Section 2.2.1 was used to identify where in 

the spectra modes could be found.  Each averaged spectrum (120 spectra total) was reviewed in 

this way.  The first seven observed resonant frequencies which were reasonably close to the 

seven mode frequencies predicted by the FEA model were selected (40 sets of 7 frequencies).  

Once the resonant frequency was selected, the truncated ODS shape was extracted as described 

in Equations (2.3.7) and (2.3.8).  These ODS shapes, being analogous to the model mode 

shapes, can be compared to the analytical mode shapes leveraging the methods described in 

Section 2.2.2 and Section 2.3.2.  Knowing this, the Directional MACs (XMAC, YMAC, and 

ZMAC) were calculated on each extracted ODS shape.  Once this was done, the error in the two 

response variables from the FEA model (mode shape and frequency) can be quantified for each 

mode in each averaged spectrum.  Since there was a great amount of data collected and this data 

was collected under a wide variety of conditions, it was necessary to statistically describe the 

data as a whole.   

 As described in Section 2.5, the Directional MACs can be used to quantitatively indicate 

where the FEA mode shapes match the experimentally ODS shapes at a selected resonant 

frequency with a scalar quantity.  One-dimensional descriptive statistics can be used to compare 

the modal behavior of a system to a model by looking at the statistical behavior of the 

Directional MACs and mode frequencies.  It can therefore be argued that a modal model of a 

system is accurate if the Directional MACs between the analytical mode shapes and the ODS 

shapes are on average above a chosen limit – say, .80 – and that the predicted mode frequencies 
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are representative of the observed resonant frequencies.  Once the estimates of the mode 

frequencies are found, the FEA models can be adjusted and the model can be said to be 

calibrated. 

A map of response types is provided in Figure 14.  There are four distinct regions formed 

by two boundary types.  The MAC limit is chosen by the analyst and represents the degree to 

which the predicted mode shapes are allowed to differ from the ODS shapes in the test data.  The 

region above this limit represents where the ODS shape was found to acceptably match the 

analytical mode shape; the region below this limit represents where it was not.  The Frequency 

Outlier Limit is determined after the observed resonant frequencies are statistically described and 

is derived from the definition of outliers as prescribed by the statistical distribution used.  The 

region within these limits represents the range of frequencies where the studied instance of 

resonance was found; the regions outside of these limits represents where it was not found.  The 

region bounded by both the MAC limit and the Frequency Outlier Limit represents where the 

analytical mode shape accurately represents the ODS shapes and the associated resonant 

frequencies were observed.  In short, it is a statistical description of the observed mode.   
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Figure 14: Map of Modal Calibration Data 

 

 

 While descriptive statistics would be convenient to use at this point, there are three 

independent variables that were adjusted over the course of the hammer tests: the hammer hit 

location, the cavity used, and the sensor configuration.  While the modal behavior of the C100 

SRF cavity geometry should theoretically be independent of these variables, they might have an 

impact in the real world.  To study how the modal behavior changed with these independent 

variables, an ANOVA data analysis technique was used.  An example of the modal calibration 

data map for Cavity Mode 3 in the X direction is provided in Figure 15 noting specifically trends 

in the cavity selected (differentiated by color) and sensor configuration (differentiated by shape).   
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Figure 15: Example of Frequency vs Directional MAC 

 

 

3.1.3.3 Statistical Methods 

 As conducted, this experiment lends itself to a factorial type of experiment design.  

Specifically, there are three factors of interest: hammer strike location (5-level categorical), 

cavity being tested (2-level categorical), and sensor configuration (2-level categorical).  Because 

two averaged spectra were found per strike point per cavity per sensor configuration, this is a full 

factorial design with two replicates.  A diagram of the experiment design is provided in Figure 

16.   
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Figure 16: Cavity Hammer Test Experiment Design 

 

 

 As mentioned above, an accurate modal model predicts both the mode frequencies and 

the mode shapes.  The Directional MAC values and the ODS frequencies were the experiment 

responses in this test (that is, three Directional MAC values and one frequency value per mode, 

seven modes per replicate, two replicates per design point, twenty design points in total, yielding 

28 response variables and 1,120 response values).  First-order regression models leveraging 

ANOVA within Design-Expert® Software [37] were developed based on the modal behavior of 

both cavities (C100-01 and PJN7-1) after removing all outliers for each of the 28 responses 

leveraging as many main effects and interactions as possible.  A summary of the usability of the 

models for prediction (𝑅𝑃𝑟𝑒𝑑
2 ), the average properties predicted by those models (mean), and a 

measure of the spread of the data (standard deviation) is provided for the ODS frequencies, 
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XMAC, YMAC, and ZMAC in Table 3, Table 4, Table 5, and Table 6 respectively.  For the 

regression models which had outliers removed, the significance/insignificance of the Lack of Fit 

(LoF) is also identified.   

 

 

Table 3: Statistical Summary of Frequency Regression Models 

Mode # Frequency (Hz) 

 
Mean StdDev 𝑅2 𝑅𝐴𝑑𝑗

2  𝑅𝑃𝑟𝑒𝑑
2  LoF 

1 18.36 0.120 0.948 0.929 0.901 Sig 

2 25.83 0.671 0.809 0.678 0.456 Sig 

3 32.83 0.128 0.988 0.979 0.955 Sig 

4 61.36 0.921 0.910 0.889 0.854 Insig 

5 70.24 2.739 0.830 0.668 0.320 
 

6 90.24 0.271 0.996 0.992 0.984 
 

7 97.42 0.407 0.960 0.922 0.840 
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Table 4: Statistical Summary of XMAC Regression Models 

Mode # XMAC 

 
Mean StdDev 𝑅2 𝑅𝐴𝑑𝑗

2  𝑅𝑃𝑟𝑒𝑑
2  LoF 

1 0.837 0.020 0.983 0.971 0.944 Insig 

2 0.861 0.041 0.950 0.916 0.856 Sig 

3 0.746 0.057 0.971 0.944 0.885 
 

4 0.403 0.064 0.947 0.911 0.851 Sig 

5 0.434 0.060 0.939 0.899 0.833 Sig 

6 0.621 0.031 0.994 0.988 0.976 
 

7 0.515 0.023 0.996 0.992 0.987 Sig 

 

 

 

Table 5: Statistical Summary of YMAC Regression Models 

Mode # YMAC 

 
Mean StdDev 𝑅2 𝑅𝐴𝑑𝑗

2  𝑅𝑃𝑟𝑒𝑑
2  LoF 

1 0.808 0.038 0.896 0.819 0.678 Insig 

2 0.789 0.080 0.871 0.747 0.482 
 

3 0.796 0.028 0.985 0.975 0.957 Sig 

4 0.634 0.068 0.875 0.791 0.637 Sig 

5 0.687 0.076 0.714 0.520 0.183 Insig 

6 0.468 0.042 0.920 0.844 0.680 
 

7 0.169 0.018 0.988 0.976 0.952 
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Table 6: Statistical Summary of ZMAC Regression Models 

Mode # ZMAC 

  Mean StdDev 𝑅2 𝑅𝐴𝑑𝑗
2  𝑅𝑃𝑟𝑒𝑑

2  LoF 

1 0.725 0.051 0.961 0.935 0.883 Sig 

2 0.144 0.050 0.950 0.916 0.859 Sig 

3 0.801 0.024 0.992 0.985 0.969   

4 0.360 0.032 0.988 0.977 0.952   

5 0.243 0.045 0.940 0.899 0.827 Insig 

6 0.712 0.022 0.991 0.982 0.963   

7 0.351 0.037 0.973 0.955 0.923 Sig 

 

 

 While these tables do not indicate the significance of the different effects on the 

responses, they identify the ranges of ODS frequencies and which ODS shapes were generally 

well captured.  Specifically, all three Directional MAC values for Mode 1 and Mode 3 are 

relatively high compared to the rest of the sets which demonstrates that these eigenvectors were 

the most accurately predicted mode shapes from the FEA model.  Additionally, the 𝑅𝑃𝑟𝑒𝑑
2  values 

for these MACs and mode frequencies are higher than the rest, indicating that these regression 

models are generally usable for explaining the data [36].  Since these predictions are that the 

average Directional MAC values for these modes will be near or above .8, these results indicate 

that these mode shapes were reasonably well captured by the FEA model for the purpose of this 

investigation. 
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Figure 17: FEA Model vs Prediction Intervals of the Mode Frequencies 

 

 

 With respect to the mode frequencies, the PI is used to estimate the range of acceptable 

values for each mode frequency in the C100-01 and PJN7-1 cavities.  Each PI is summarized in 

Table 7 and graphed in Figure 17.  These values were automatically calculated within Design-

Expert® Software [37] for each response.  Just as the 𝑅𝑃𝑟𝑒𝑑
2  was sufficient for the mode shapes, 

Table 7 indicates that the mode frequency estimates for Modes 1 and 3 are also usable for 

predictions.  In these cases, the regression models of the test data predict that these mode 

frequencies are reasonably close to the predictions made by the FEA model; while the analytical 

mode frequencies for Modes 1 and 3 are not within the PI, they are still within an acceptable 

range of error (<4 Hz) to be considered reasonable estimations for the purpose of this modeling 

effort.  Since the mode frequencies and modes shapes were found to be predictably well captured 
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by the FEA model for both modes, the model was considered to be calibrated for the purpose of 

this investigation. 

 

 

Table 7: Model vs Test Mode Frequencies 

Model vs Test Frequencies 

Mode 95% PI Low Predicted Mean 95% PI High 
FEA 

Model 
Percent Error 𝑅𝐴𝑑𝑗

2  𝑅𝑃𝑟𝑒𝑑
2  

1 17.90 18.18 18.45 17.367 -4.45% 0.929 0.901 

2 24.44 26.09 27.74 26.543 1.73% 0.678 0.456 

3 31.84 32.16 32.47 35.838 11.45% 0.979 0.955 

4 62.65 64.74 66.83 64.202 -0.83% 0.889 0.854 

5 61.75 68.75 75.75 68.075 -0.98% 0.668 0.320 

6 92.75 93.44 94.13 93.115 -0.35% 0.992 0.984 

7 96.77 97.81 98.85 108.31 10.74% 0.922 0.840 

 

 

 It is worthy to note that there were many outliers in this data.  To mitigate their impact, 

they were removed for each response variable individually so as to increase the 𝑅𝑃𝑟𝑒𝑑
2  values 

though this process caused the statistical power to vary from response to response and decrease 

from the ideal power of a full factorial experiment.  Outside of general sources of noise in 

experiments, there were also at least two sources of outliers in both frequency and in Directional 

MAC value which were caused by the way that the data collection process was done.   
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 After running an uncalibrated but reasonable model of the cavity, the model results were 

used to inform the search for modes using the 𝑀𝐼𝐹1 and peaks in the hammer test data.  While 

these functions should provide clear indicators of resonance in an ideal world, two deviations 

from the expectations established in the theory were observed: regions where only one peak was 

expected had many and regions where one peak was expected had none.  Since this selection 

process was done by hand, the best frequency was chosen based on the information available.  

An interesting result of this method being used is that if a mode frequency was difficult to 

identify in one replicate at a design point, it was often equally difficult to find it in the 

accompanying replicate because the hammer hit location – and therefore the accelerometer 

response – was the same.  Also, the two spectra from a hammer hit point were often close 

enough that if the selected frequency in one replicate resulted in an outlier, the other replicate 

often did as well, resulting – quite frequently – in pairs of outliers instead of isolated cases.  This 

was likely due to the fact that the affected modes were not sufficiently excited and the response 

observed at those frequencies was primarily governed by noise.  Unfortunately, this noise made 

the selection of the frequencies challenging as they were hard to predictably find.  As one would 

expect, this increased the PI and lowered 𝑅𝑃𝑟𝑒𝑑
2  for these responses. 

 Once the frequencies were selected per the process above, the Directional MAC values 

were calculated.  It is important to note the order of this process because the deflection shape of a 

vibrational system is predicted to be a combination of mode shapes at frequencies other than the 

mode frequencies as shown in Equation (2.1.18).  As such, errors in frequency could technically 

also result in errors in ODS shape and thereby lower the Directional MAC values.   

 With respect to the calculated Directional MAC values, it is important to note how good 

results are realized noting from Section 2.3.2 that test articles in a hammer test can be excited 



58 

 

along specific directions.  In an FEA model, some mode shapes inherently have more energy 

along specific directions, resulting in a similar issue.  Practically, this means that good 

Directional MAC values require that the FEA-predicted mode shape was modeled correctly, the 

predicted mode shape had clear motion in that direction, and that sufficient energy was deposited 

in that direction in the hammer test for the mode shape to be realized.  Any compromise on these 

requirements could diminish the Directional MAC value.   

With respect to the cavity, the data is still believed to be usable and that it is reasonably 

represented by the FEA model.  That said, it is noted as a learned lesson that the placement of the 

accelerometers should be such that the experiment can be conducted without adjusting their 

configuration.  Additionally, it is suggested that the hammer hit locations are chosen in oblique 

angles such that energy is deposited in as many axes as possible.  This would have the effect of 

strengthening the signals captured by the accelerometers, improving the clarity of the data for 

finding magnitude peaks and 𝑀𝐼𝐹1 dips, increasing the Directional MAC values, possibly 

removing the outliers, and improving experiment orthogonality.   

3.1.4 Summary 

 The most significant product of this model is a calibrated mesh of the C100 SRF cavity.  

As a part of this effort, an FEA model of the cavity was developed using provided material 

properties and geometries.  A mesh was developed and tested against a real cavity in a lab 

environment.  The mode shapes and frequencies of the cavity in this configuration were 

extracted from the test data and were demonstrated to be well captured by the model.  It is 

therefore concluded that this FEA model is calibrated.  Because of this, it is reasoned that the 
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behavior of this mesh leveraging application-representative boundary conditions and material 

properties will be accurate enough for predictions.    

3.2 Study 2: Cavity String Model 

3.2.1 Model Justification 

 With the C100 SRF cavity model built, it is necessary to determine what happens to the 

cavities when incorporated into the cryomodule.  This information is desired for many reasons, 

but especially because it is not yet possible to measure the mechanical deformation of the 

cavities while the cryomodule is in use.  Knowledge of the mode shapes and frequencies which 

significantly contribute to cavity deformation under these conditions would help identify 

solutions to cryomodule resonance.   

 One specific structure within the cryomodule which is believed to be particularly 

resonant is the cavity string.  The cavity string contains the cavities, helium supply and return 

plumbing, and tuner assemblies.  It is suspended by transverse nitronic rods and axial restraints 

which serve as a system of trusses.  It is easy to justify the potential significance of this structure 

on RF detuning considering that this type of system can be characterized as a massive, flexible 

beam supported by a truss network of springs and that any cavity string mode shapes would 

directly deflect the cavities.  To characterize its modal behavior, an FEA model was developed 

leveraging system representative geometry and the C100 SRF cavity model developed earlier.   

3.2.2 Model Development 

 The first part of this model development effort was to simplify the geometry of a full 

C100 cryomodule such that any assembly desired to be studied can be isolated and studied.  To 
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indicate the difference in scale of the task between simplifying a cavity and cryomodule, 

consider that the cavity model was an assembly of ~10 parts whereas the C100 cryomodule 

began with more than 22,000 (shown in Figure 18).  The approach adopted for this task began 

with multiple iterations of geometry simplification. 

 

 

 

Figure 18: Cryomodule Geometry, ~22,000 Parts (Image used courtesy of ANSYS, Inc.) 

 

 

 The first pass of simplification served to remove trivial parts (nuts, bolts, washers, 

screws, holes for bolts and screws, chamfers, fillets, wires, etc.) and was responsible for the 



61 

 

removal of more than 18,000 parts, leaving ~3,600.  A second pass of simplification served to 

make each remaining part meshable, which involved the further removal of ~600 parts, leaving 

~3000 parts.  Each of the remaining parts were simplified as much as needed for an efficient 

mesh without significant compromise on geometric representation: many parts were simplified 

leveraging shell and beam geometry, dimensions were adjusted such that adjacent parts were in 

contact, and groups of parts were identified to become condensed geometry for CMS.  Figure 19 

captures the final product of this effort.  With this done, parts of the cryomodule that an analyst 

wishes to study may be isolated and meshed to their benefit.   

 

 

 

Figure 19: Simplified Cryomodule Geometry, ~3,000 Parts (Image used courtesy of ANSYS, Inc.) 
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 In the case of this specific study, it is of interest to determine the modal behavior of the 

cavity string.  To do this, the model was further reduced to only include the cavities, helium 

vessels, helium supply and return plumbing, tuners, and everything that connects them.  This 

assembly is then suspended within the spaceframe using the 64 nitronic rods, connected to the 

vacuum vessel through the waveguides and tuners, and integrated with the helium circuit at the 

end cans.  In the interest of model simplicity, it was reasoned that acceptable model results could 

be obtained by studying the motion of the suspended cavity string alone; this assumption allowed 

for the argument that the spaceframe and vacuum vessel are relatively immobile.  The 

waveguides, end cans, and the nonvacuum assemblies which drive the tuners were removed as 

they were outside of the vacuum vessel.  Finally, a symmetrical/anti-symmetrical boundary 

condition was applied at the middle of the cavity string, thereby splitting the model in half.  

Figure 20 shows what was left.   

 

 

 

Figure 20: Cavity String Geometry,~902 Parts (Image used courtesy of ANSYS, Inc.) 
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 With the minimum geometry isolated, the mesh was developed (shown in Figure 21).  In 

the end, the model had 1,131,141 nodes; 585,396 elements; and a minimum mesh quality of 

.051.  The act of substructuring the four cavities had the effect of reducing the number of 

equations in the model by ~20%, but this was found to make motion of the cavities unphysical as 

the number of modes calibrated and used (seven modes) in the CMS representation was 

insufficient.  Nodes within the mesh were selected to represent the locations of accelerometers 

that were used during a hammer test.  The results of a Static Structural model leveraging the 

effects of gravity was supplied to a Modal Analysis model within Ansys® Mechanical [35].  The 

first six modes were computed and the displacement of the accelerometer nodes was used to 

represent the truncated modes shapes.  Note specifically that this model must be run twice to 

account for both the symmetrical and anti-symmetrical cases. 

 

 

 

Figure 21: Cavity String Model Mesh (Image used courtesy of ANSYS, Inc.) 
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3.2.3 Model Calibration 

 As this is a modal analysis, its calibration follows the exact same method as was 

performed on the cavities in Section 3.1.3.  As before, a representative system (a partially 

assembled C100 cryomodule, #C100-10R) was affixed with accelerometers in key places and hit 

with a hammer to excite the modes.  The same statistical analysis can be done to indicate the 

quality of the model leveraging the Directional MAC values and mode frequency distribution.   

3.2.3.1 Test Configuration 

The C100-10R cryomodule was used as the test article for the calibration of the cavity 

string model.  At the time that this test was done, it contained many of its crucial components: 

the cavities, helium vessels, tuners, helium supply and return pipes, nitronic rods, spaceframe, 

and thermal/magnetic shielding.  This assembly was supported underneath at points located a 

quarter of its overall length inwards from either side as shown in Figure 22.  Though the tuners 

were present, they were locked in place as shown in Figure 23 such that the tuners were not free 

to impact the cavities.  In this configuration, the cavity string was able to resonate within the 

spaceframe under the influence of its own axial and transverse flexibility while primarily 

retained by the transverse nitronic rods, axial restraints, and tuners.   
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Figure 22: Partially-Assembled C100-10R (Image used Courtesy of Jefferson Lab) 

 

 

 

Figure 23: Temporarily-Locked Tuners (Image used Courtesy of Jefferson Lab) 
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 The strategy behind this test was governed by two requirements: to capture the motion of 

the cavity string as a whole and to capture this information as closely to the cavities as possible.  

In this way, the modal properties of the cavity string can be identified while the significance of 

the transfer of mechanical energy from the various hammer hit points to each of the cavities can 

be estimated.  This helps to confirm that energy imparted from those points would contribute to 

the disturbance of these cavities and cryomodule RF detuning.  To achieve this goal, the 

accelerometers were placed on the outside pivot arm of each cavity tuner specifically just under 

the beam line as shown in Figure 24.  In so doing, the exaggeration of axial motion by the 

rotation of the pivot arm was kept to a minimum.  Also, note that the motion of the pivot arm is 

primarily used to stretch and compress the cavities.  The selected location for the accelerometers 

captures this motion and provides insight into how much the cavities themselves can become 

mechanically excited.   

 

 

 

Figure 24: Accelerometer on a Tuner Pivot Arm (Image used Courtesy of Jefferson Lab) 
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A total of 16 hammer hit points were selected on the cryomodule to effectively excite the 

cryomodule in each test as shown in Figure 26.  As with the cavity hammer tests, a set of 10 

hammer hits were averaged to generate one averaged spectrum, two such averaged spectra were 

collected for each of the 16 points.  Seven 3-axis accelerometers and two 1-axis accelerometers 

were used yielding 23 channels of responses and 736 spectra to review.  The configuration of 

these sensors is shown in Figure 25, noting that +Z points to the Return End Can side.  

 

 

 

Figure 25: Accelerometer Locations  
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Figure 26: Hammer Hit Locations 

 

 

3.2.3.2 Data Analysis 

 As done with the cavity during Section 3.1.3, the modal behavior of the cavity string 

must be determined from the hammer test data.  The same method leveraging the Normal MIF 

(𝑀𝐼𝐹1) as described in Section 2.2.1 was used to identify mode frequencies.  The clearest 

indicators of modes were found in the X direction when excited with Points 5 and 6 (Figure 27) 

at 7 Hz and 23 Hz; the Y direction when excited with Points 7 and 8 (Figure 28) 7.5 Hz, 11 Hz, 

and 23.5 Hz; and the Z direction when excited with Point 2 (Figure 29) at 13.13 Hz and 28.75 

Hz.  The ODS shapes were extracted at these frequencies.  Due to the number and size of the 

figures showing the ODS shapes, they are presented in the Appendix, Section A.   
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Figure 27: Magnitude and 𝑀𝐼𝐹1 from Horizontal Bending Hits 
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Figure 28: Magnitude and 𝑀𝐼𝐹1 from Vertical Bending Hits 
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Figure 29: Magnitude and 𝑀𝐼𝐹1 from Axial Hits  

 

 

3.2.3.3 Model Results 

 Unfortunately, the cavity string model was not found to accurately represent the test data.  

The predicted mode frequencies are far too high to represent the modes identified in the 

associated hammer test.  For example, Figure 30 shows that the first axial mode is predicted to 

occur at 27 Hz, though a similar mode shape was found in the test data to occur at 13 Hz.  To 

help identify why these mode frequencies were so high, the nitronic rods were replaced with a 

similar representation leveraging springs, the results were roughly similar.  Decreasing the spring 
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rate of the nitronic rods by some 50% was needed to get one horizontal mode close to the right 

frequency range, but this adjustment is not reasonable and the model output is not usable.  This 

indicates that the nitronic rods are not the source of error and that the problem likely lies in the 

cavity string itself.  FEA modal models make predictions generally based on stiffness and mass, 

both of which are governed in different ways by geometry, material properties, and mesh 

composition.  It is possible that adjusting the parameters within the existing model will resolve 

this problem; it is also possible that other assemblies (the space frame, magnetic shield, etc.) and 

their contribution to mass and stiffness will have to be added to achieve reasonable results.   

 

 

 

Figure 30: Mode 1 of the Cavity String Model, 27 Hz (Image used courtesy of ANSYS, Inc.) 
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In an effort to characterize the effects of material properties, the definition of 316L 

stainless steel – which was used to model most of the structural elements in the cavity string – 

was manipulated to have a 75% increase in density and 43% decrease in Young’s modulus.  

Even though these changes are unreasonably large, the model did not provide the desired results.  

Considering this evidence, it is concluded that the issue lies somewhere between the geometry 

and the mesh used to represent the cavity string and it is recommended that further work be done 

to develop them more carefully. 

 Even though the results need improvement, this model does have potential to become a 

modal model of the cavity string.  While the mode frequencies were not correct, the mode shapes 

are somewhat representative of what is seen in the test data.  Even though the model is large, it 

was able to run in a reasonable amount of time (~30 minutes) and consume a reasonable amount 

of hard disk space (<70 GB) on a suitably strong computer.  Additionally, the model itself 

leverages system-representative geometry, which – if calibrated correctly – could be used to 

study the effects of prototype solutions before they are tested in a lab environment.   

3.2.4 Summary 

 While it was desired to develop an FEA model of the cavity string leveraging system-

representative geometry, the model developed was not found to be accurate.  Even so, it is still 

possible to accomplish the objective of this effort: the resonance behavior of the cavity string 

was captured in the hammer test data.  While hammer testing does not necessarily provide a 

perfect picture of the modal behavior of the test article, the hammer tests performed on the 

partially-assembled cryomodule does strongly indicate several modes when excited in the 

principal directions.  The ODS shapes have been extracted at those resonant frequencies.  This 
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combination of ODS shape and frequency can be used in this investigation to describe the 

resonance behavior of the cavity string.     

3.3 Study 3: CMTF Test of the C100-10R Cryomodule 

3.3.1 Test Justification 

 The purpose of this test was to correlate mechanical resonance in the C100-10R 

cryomodule to RF detuning of the cavities while in use.  The theory of vibrations described in 

Section 2.1 indicates that vibrational systems will experience vibration modes at specific 

frequencies, resulting in resonance.  If some phenomenon is related to the resonance of a system, 

it is expected that it can be observed as the system experiences resonance – that is, unforced 

vibration initiated by a mechanical disturbance.  While it is not possible to measure the actual 

modal behavior of the cryomodule being tested, the vibration modes of critical systems within 

the cryomodule have been estimated with the hammer test in Section 3.2.3 leveraging the 

partially assembled cryomodule.  Evidence that mechanical resonances contribute to RF detuning 

should therefore be said to be found if peaks in the RF detuning spectrum are found to be 

coincident with the identified vibration modes.   

 There is another side to this experiment: BNNT, LLC has developed a set of canisters 

which have been designed to be a solution to microphonic disturbances.  These canisters are 

similar in form and function as automotive dampers in that friction is used to dissipate kinetic 

energy into heat.  Unlike other dampers, these canisters have samples of Boron Nitride 

Nanotubes (BNNT) which serve as the material which causes the necessary friction for damping.  

It was desired to assess the effectiveness of these devices while the system is in use; such an 

assessment was easily incorporated into the this test as a study into how these devices affect RF 
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detuning in the cryomodule.  The configuration of the canisters in the C100-10R cryomodule is 

shown in Figure 31 with the canisters highlighted with the red boxes.  

 

 

 

Figure 31: BNNT Canisters in the Cavity String (Image used Courtesy of Jefferson Lab) 

 

 

 As mentioned before, an appropriate test for resonance is a hammer test, but the RF 

detuning – not acceleration – is to be collected in response to the hammer hits.  For this test to 

accurately represent the conditions of the cryomodule while it is in use, liquid helium and high-

power RF must be supplied.  The helium is critical in that it drives the temperature of the cavities 

which changes their material properties and modal behavior.  The high-power RF is an 

application-representative signal that is detuned by the cavities.  As the detuning of this signal is 
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the measured output, this experiment will provide a picture of similar effects during real-world 

use.     

3.3.2 Experiment Design 

 A test of this arrangement was performed at the Jefferson Lab Cryomodule Test Facility 

(CMTF) between January 31 and February 1, 2023.  The CMTF is an environment which allows 

a cryomodule to be tested as if it were a part of a particle accelerator without an electron beam 

present.  Specifically, a cryomodule can be bolted to the floor, provided cryogenic helium, and 

fed high-power RF.  Additionally, the RF performance of the cryomodule can be captured using 

a set of installed RF sensors and an automatically actuated hammer is available for the 

performance of hammer tests in a potentially radioactive environment.  In short, this is an ideal 

facility to conduct this test.   

 To perform the hammer test, the automatic hammer was configured as shown in Figure 

32.  The hammer was used to impact the beam line on the Helium Return side and excite the 

cavity string.  Additionally, a set of eight enDAQ S3-D16 accelerometers were arranged at 

critical points along the cryomodule shown in orange in Figure 33.  These devices did not have 

integrated timing with the hammer; instead, these sensors were used to capture ambient noise at 

those points.   
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Figure 32: CMTF Hammer Configuration (Image used Courtesy of Jefferson Lab) 

 

 

 This test collected two types of information on RF detuning: ambient noise and dynamic 

response.  Ambient noise was collected by simply recording the RF signals for a period of 30 

seconds.  The dynamic response was collected in a similar form to that described in Section 2.3 

except that the response term 𝐴𝑖(𝑓) in Equation (2.3.1) is replaced with the RF frequency shift 

𝛥𝑓𝑅𝐹 of a particular cavity which is used to quantify the degree to which it is detuned.  The 

response function analogous to Equation (2.3.1) as applied here becomes: 

𝐻𝑖(𝑓) =
𝛥𝑓𝑅𝐹,𝑖(𝑓)

𝐹(𝑓)

[𝐻𝑧]

[𝑙𝑏𝐹]
 (3.3. 1) 

By studying the changes in this function when varying the resonance properties of the cavity and 

cryomodule, the effects of those changes on RF detuning can be quantified.   
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Figure 33: Locations of Accelerometers and Hammer 

 

 

3.3.3 Data Analysis Methods 

The values of 𝛥𝑓𝑅𝐹 were automatically calculated by the data acquisition system and was 

measured in each cavity one at a time.  This data was reported in the form of a frequency 

response function (
𝛥𝑓𝑅𝐹

𝐹
)
(𝑓)

 in which the spectrum of 𝛥𝑓𝑅𝐹 was normalized by the spectrum of 

the hammer hit forces.  Given this, the spectrum of (
𝛥𝑓𝑅𝐹

𝐹
)
(𝑓)

 provides an effects-based 

perspective of resonance based on direct measurements of RF detuning and impact forces.  

Evidence of resonance contributing to RF detuning can be said to be found if peaks in this 

spectrum coincide with the mode frequencies from the FEA model under cryogenic conditions 

and/or the hammer test data used to calibrate this model.   

  To assess the effect of the BNNT canisters on RF detuning, it is necessary to perform 

these resonance tests with and without them present.  While it is not feasible to fully remove 

them, it is possible to engage and disengage the canisters using the cavity tuners.  The tuners on 
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the cryomodule are driven by motors and serve to compress or stretch the cavities.  One benefit 

of this configuration is that the tuners can compress the helium vessel around the cavities to the 

extent that the BNNT canisters become disengaged.  By performing identical tests on the 

cryomodule under the engaged and disengaged configurations, the differences in the detuning 

response spectra can be studied and the effects of the canisters can be determined.   

 To find the differences between two spectra, one can simply subtract one spectrum from 

another.  In this case, the difference spectra between any two sets of data collected on a cavity 

was found to be rather noisy.  To help smooth the spectra such that trends could be observed, the 

difference in the spectra of RF detuning was integrated in a similar fashion as done with the 

Power Spectral Density: 

𝐼(𝑓) = ∫ [(
𝛥𝑓𝑅𝐹
𝐹
)
(𝑓)𝐸𝑁𝐺

− (
𝛥𝑓𝑅𝐹
𝐹
)
(𝑓)𝐷𝐼𝑆𝐸𝑁𝐺

]  𝑑 (log10 (
𝑓

1 𝐻𝑧
))

log10(
𝑓
1 𝐻𝑧

)

0

 
[𝐻𝑧 𝑅𝐹]

[𝑙𝑏𝐹]
 (3.3. 2) 

In the case of a random noise test where the applied forces are not measured: 

𝐼(𝑓) = ∫ [(𝛥𝑓𝑅𝐹)(𝑓)𝐸𝑁𝐺 −
(𝛥𝑓𝑅𝐹)(𝑓)𝐷𝐼𝑆𝐸𝑁𝐺]  𝑑 (log10 (

𝑓

1 𝐻𝑧
))

log10(
𝑓
1 𝐻𝑧

)

0

 [𝐻𝑧 𝑅𝐹] (3.3. 3) 

3.3.4 Preliminary Results 

 An example of the RF detuning spectra of a C100 cavity (C100-10R, Cavity 6) from a 

hammer test is shown in Figure 34.  In this graph, the red line represents the RF detuning of the 

cavity when the canisters are disengaged and the blue line represents the same but with the 

canisters engaged.   
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Figure 34: Comparison of RF Detuning Spectra from Hammer Hits 

 

 

It is worthy of note that the two identified peaks are consistently observed in all detuning spectra 

in for all cavities.  It is also observed that the frequencies change slightly between when the 

BNNT canisters are engaged and disengaged.  The average and standard deviation of the peak 

frequencies are presented in Table 8.   

 

 

Table 8: Summary of Peak Frequency Locations 

 
Lower, 

Engaged 

Lower, 

Disengaged 

Upper, 

Engaged 

Upper, 

Disengaged 

Average (Hz) 10.0 9.6 23.7 22.6 

Standard Deviation (Hz) 0.2 0.5 0.4 0.5 
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 One trend that can be studied to see if the canisters had a positive effect on RF detuning 

would be the decrease in magnitude of RF detuning between the two spectra.  This would be 

realized in the form of a generally negative difference spectrum found by subtracting the 

disengaged spectrum from the engaged spectrum.  In this example, this ‘difference spectrum’ is 

presented as the blue line in Figure 35.  Integrating this difference spectrum with Equation 

(3.3.2) would transform these negative values into negative slopes; improvements in RF 

detuning would therefore be found if this integral function generally trends downward.  

Improvement in RF detuning across a feature in the spectrum can be found if the integral 

function across the frequency range of the feature decreases.  The ‘integral spectrum’ in this 

example is shown as the red line in Figure 35.  The integral functions for all cavities studied is 

presented in Figure 36. 
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Figure 35: Difference and Integral Spectra from Hammer Hits 

 

 

 

Figure 36: All Integral Spectra from Hammer Testing 
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 These methods can also be applied to the ambient noise data, noting that ambient factors 

(all manner of disturbance inside and outside of the cryomodule, possibly including 

electromagnetic sources) are the sources of disturbances, not measurable hammer hit forces.  

Because of this, the spectra presented in this graph are not in any way normalized.  This data 

instead represents the response of a real system to its environment.  An example of the noise 

spectra (C100-10R, Cavity 6) with and without the canisters engaged is presented in Figure 37.  

The associated difference and integral spectra are presented in Figure 38.  All integral spectra 

tested are presented in Figure 39.   

 

 

 

Figure 37: Comparison of RF Detuning Spectra from Noise 
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Figure 38: Difference and Integral Spectra from Noise 

 

 

 

Figure 39: Integral Spectra from Noise for all Cavities Tested 
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 It is of critical importance to consider the presence of lurking variables when drawing 

conclusions from this data.  Due to the order of events, hammer tests and noise recordings with 

the BNNT canisters engaged were performed on January 31, 2023, and the same tests were done 

with the canisters disengaged on February 1, 2023.  Because of this, the main effect (the 

engagement of the canisters) is perfectly aliased with the day that the data was collected.  As 

such, it is possible that the variations observed could also be the result of variables that change 

day-by-day: the weather, the ground vibration profile, helium levels in the cryomodule, etc.  An 

example of how the environment changed can be seen in Figure 40.  These figures represent the 

averaged spectrum of acceleration captured by enDAQ accelerometer #5 during the two days of 

testing.  One can clearly see that the noise floor at this point changed between these two days, 

indicating that lurking variables were likely present.  A fully randomized run order would 

mitigate these issues.   

 

 

 

Figure 40: Noise Captured by Accelerometer #5 on January 31 (Left) and February 1 (Right) 
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 It is also worthy of note that the method used to disengage the canisters technically also 

introduces other sources of variation.  For example, tension and compression is known to 

influence the mechanical resonance properties of structures; the tuners were used to compress the 

cavity in order to disengage the canisters, which might have resulted in a shift in cavity modal 

behavior and/or its mechanical/RF coupling properties.  Additionally, it is possible that the tuner 

mechanism – being in a non-nominal configuration – was also affected in its ability to maintain 

low RF detuning.  It is therefore possible that the method used to disengage the BNNT canisters 

played a role in how each cavity brought about the measured RF detuning spectra.   

 Finally, it is worth noting that the hammer was placed on one location in this hammer test 

which likely deposited more energy on some cavities than others.  Because of this, some 

canisters might have been more effectively tested than others.  Table 9 provides a summary of 

the hammer test and noise test by interpreting the overall trends in the integral function.  Table 

10 provides a summary of the results of the hammer test by interpreting the trends in the integral 

function around the 9 Hz and 22 Hz peaks.   
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Table 9: Interpretation of General Trends 

Cavity Hammer Test Noise 

Cavity 1 Degraded N/A 

Cavity 2 Neutral Degraded 

Cavity 3 Improved N/A 

Cavity 4 Degraded Neutral 

Cavity 5 Improved Degraded 

Cavity 6 Improved Improved 

Cavity 7 Improved N/A 

Cavity 8 Improved Neutral 
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Table 10: Interpretation of Features in the Hammer Test Responses 

Cavity 9 Hz 22 Hz 

Cavity 1 Degraded Improved 

Cavity 2 Degraded Improved 

Cavity 3 Improved Improved 

Cavity 4 Degraded Degraded 

Cavity 5 Improved Improved 

Cavity 6 Improved Improved 

Cavity 7 Improved Improved 

Cavity 8 Improved Improved 
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CHAPTER 4  

 

RESULTS AND DISCUSSION  

4.1 Mechanical Resonance and RF Detuning 

 As a part of this study, it must first be established if resonance in the cryomodule 

contributes to RF detuning.  To do this, a correlation between modal behavior and RF detuning 

must be observed.  Hammer tests – which are appropriate tests for resonance – were performed 

on the C100-10R cryomodule while it was partially assembled and while it was installed in the 

CMTF once it was completed.  The former test yielded strong indicators of several mechanical 

modes in the cavity string; the latter test yielded strong indicators of consistent RF detuning 

peaks in the cavity responses.  While it was desired to use an FEA model to provide further 

evidence of the modal behavior of the cavity string when the cryomodule was completed and 

cryogenically cooled, the model built was not found to be accurate.   

 To show a correlation between RF detuning and mechanical resonance, the RF detuning 

peaks observed must be coincident in frequency with the mechanical modes.  For the sake of 

completeness, consider the cases where frequency coincidence is not observed.  In the case 

where an identified mode frequency is not coincident with a peak in RF detuning, it could be 

that: 

• The applied forces from the hammer in the CMTF RF detuning hammer test were small 

at that mechanical mode frequency, 
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• The applied forces did not effectively excite the cavity string mode,  

• The disturbed cavity string did not effectively disturb the cavities at that mechanical 

mode frequency, or 

• The disturbed cavities did not effectively cause RF detuning in that mechanical mode. 

In the case where a peak in RF detuning occurs where a mode is not predicted, it could be that:  

• The forces from the hammer in the RF detuning hammer test overcame the cavity string 

non-resonance, the cavity string effectively disturbed the cavities, and the cavities were 

sensitive to RF detuning at that peak frequency,  

• Resonance was excited, but not in the cavity string, or 

• The RF detuning observed in the CMTF hammer test was brought about by other means. 

However, if frequency coincidence is observed and the mechanical mode was excited effectively, 

a correlation between the cavity string modal behavior and RF detuning can be argued.   

 As shown in Section 3.3.4, the two peaks in the detuning spectrum in Figure 34 were 

found to be consistent features in the detuning spectra of all cavities.  To correlate RF detuning 

to mechanical resonance, modes in the cavity string would need to be shown to be coincident in 

frequency with 9-10 Hz and 22-23 Hz.  It is important to note that the completion of the 

cryomodule and the cryogenic cooling of the cavity string changed its modal behavior between 

the cavity string hammer test and the CMTF RF detuning hammer test.  In general, cooling has 

the effect of making components stiffer which raises mode frequencies.  While this frequency 

increase was not estimated or measured as a part of this thesis, it is noted that the observed mode 

frequencies likely changed from where they were originally observed in the hammer test.   
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Considering this, it is noted that the 7 Hz and 23 Hz horizontal mechanical modes and 7.5 

Hz and 23.5 Hz vertical mechanical modes are close to the observed RF detuning peak 

frequencies.  Knowing that the mechanical modes likely shifted in frequency, it is reasonable to 

believe that the mechanical modes shifted to the observed RF detuning peak frequencies at 9-10 

Hz and 22-23 Hz.  It could therefore be argued that these four instances of cavity string 

resonance correlate to RF detuning.  However, the lack of sure frequency shift estimation makes 

it impossible to confirm the exact changes that occurred in these four modes or to completely 

discount the significance of any others.  More in-depth research will need to be done to know for 

certain.   

4.2 BNNT Canister Effectiveness 

 With respect to the BNNT canisters, Figure 36 shows that five out of the eight cavities 

were improved by the engagement of the canisters during the CMTF hammer test.  While those 

five integral functions follow negative slopes overall, Cavity 1 and Cavity 4 show positive slopes 

and Cavity 2 holds a level slope.  With respect to the specific RF detuning peaks, Table 10 shows 

that the trends around the RF peak frequencies show improvement at the 9-10 Hz peak in five 

out of the eight cavities and at the 22-23 Hz peak in seven out of eight cavities.  This indicates 

that the canisters were sometimes – though not always – effective against these mechanical 

resonances.  These are promising results that the BNNT canisters could be used for this 

application.  

With respect to random noise, the overall trends in Figure 39 appear to show that one 

cavity was improved, two were not affected, and two were degraded by the engagement of the 

canisters during this test.  However, lurking variables in these two experiments – especially the 
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aliasing of the main effect with the day, any effect brought about from changes in cavity/tuner 

dynamics caused by canister disengagement, etc. – renders this test somewhat inconclusive.  To 

increase the certainty in this test, it is recommended to repeat this experiment leveraging a 

randomized run order in order to remove the aliasing from the environment.    
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 Resonance is a type of structural behavior in which the application of a small excitation 

at a specific frequency produces significant motion.  Prior research has been done which 

indicates that external mechanical disturbances – called microphonics – can cause RF detuning 

of the SRF cavities in cryomodules.  Resonance is therefore important to the study of 

microphonics as it characterizes how external disturbances can most effectively result in cavity 

motion, leading to RF detuning.  It is the purpose of this thesis to correlate mechanical resonance 

behavior in a C100 cryomodule with the RF detuning of its cavities leveraging FEA.   

 Modal analysis through finite element modeling was chosen to study the resonance of the 

C100 cavity and cavity string.  FEA techniques were used to ensure that the models of the cavity 

and cavity string were small enough to run yet accurate enough to use.  Hammer testing was used 

to experimentally determine the modal behavior of the cavity and cavity string using real 

systems.  A statistical method leveraging the Design of Experiments was developed to validate 

the FEA models leveraging the hammer test data collected.   

 Three studies were carried out: the development of a cavity FEA model, the development 

of a cavity string FEA model, and the hammer test of the C100-10R at the CMTF.  The cavity 

FEA model was developed using geometry provided by Jefferson Labs.  A quality mesh was 
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developed from this geometry and known material properties were applied.  The resulting model 

was found to accurately predict two out of seven modes of the cavity in a simply supported 

configuration.   

 Once done, a cavity string FEA model was developed leveraging the cavity FEA model.  

This also involved geometry provided by Jefferson Labs but was extensively defeatured and 

simplified.  A mesh of a sufficiently low node count but high quality was developed, though the 

resulting model was not found to accurately predict the modal behavior of a real cavity string.  

Even so, the modal behavior of a real cavity string inside the C100-10R cryomodule was 

captured during a hammer test while it was partially assembled and certain mode frequencies and 

shapes were identified.    

 To capture the impact of resonance on a real system, the C100-10R cryomodule was 

placed in the CMTF to characterize how the cryomodule becomes detuned.  The RF detuning 

spectra during hammer hits and background noise was captured.  The results of the hammer 

testing indicate two strong peaks at low frequencies (9-10 Hz and 22-23 Hz).  These two 

frequencies were found to be nearly coincident to four instances of mechanical resonance found 

during the hammer testing done on the partially-assembled C100-10R.  This evidence is offered 

to suggest that mechanical resonance from these two modes did contribute to RF detuning of the 

cryomodule.   

As a part of the CMTF test event, the effects of the BNNT canisters were captured.  This 

was done by performing an identical set of hammer tests and noise recordings on the cryomodule 

with and without the BNNT canisters engaged.  While these tests show promising results, the 

lurking variables in this experiment render these tests somewhat inconclusive.  
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5.2 Future Work 

 The first recommendation would be to continue improvement of the FEA models so that 

they can be used as a virtual test bed for prototype assessment.   

It is also recommended to rerun the test of the BNNT canisters as described in Section 

3.3 leveraging full run randomization.  This is primarily because the cryomodule can be affected 

by its environment and the environment is able to change.  Additionally, it has been 

recommended [38] to investigate the effects of the canisters on the quality factor Q of the 

cavities.   

 It would be recommended to identify other instances where resonance could lead to RF 

detuning.  For example, could other components that contain high-power RF (say, the 

waveguides) cause detuning before the RF arrives at the cavity? 

 A possibly helpful investigation would be to consider the effects of simple resonators.  A 

test of this nature has been performed at Jefferson Labs by Owen [39].  It may be possible to 

correlate RF detuning to the resonant frequency of simple resonators and that restricting their 

motion would yield improvement.   
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APPENDIX 

A. C100-10R Cavity String Mode Shapes 

A.1 Excitation at Point 5 

A.1.1 Motion at 7 Hz 

 

Figure 41: Cavity String ODS Shape, 7 Hz, Point 5 Excitation, X Direction 
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Figure 42: Cavity String ODS Shape, 7 Hz, Point 5 Excitation, Y Direction 
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Figure 43: Cavity String ODS Shape, 7 Hz, Point 5 Excitation, Z Direction 
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A.1.2 Motion at 23 Hz 

 

Figure 44: Cavity String ODS Shape, 23 Hz, Point 5 Excitation, X Direction 
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Figure 45: Cavity String ODS Shape, 23 Hz, Point 5 Excitation, Y Direction 



104 

 

 

Figure 46: Cavity String ODS Shape, 23 Hz, Point 5 Excitation, Z Direction 
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A.2 Excitation at Point 7 

A.2.1 Motion at 7.5 Hz 

 

Figure 47: Cavity String ODS Shape, 7.5 Hz, Point 7 Excitation, X Direction 



106 

 

 

Figure 48: Cavity String ODS Shape, 7.5 Hz, Point 7 Excitation, Y Direction 



107 

 

 

Figure 49: Cavity String ODS Shape, 7.5 Hz, Point 7 Excitation, Z Direction 
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A.2.2 Motion at 11 Hz 

 

Figure 50: Cavity String ODS Shape, 11 Hz, Point 7 Excitation, X Direction 
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Figure 51: Cavity String ODS Shape, 11 Hz, Point 7 Excitation, Y Direction 
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Figure 52: Cavity String ODS Shape, 11 Hz, Point 7 Excitation, Z Direction 
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A.2.3 Motion at 23 Hz 

 

Figure 53: Cavity String ODS Shape, 23 Hz, Point 7 Excitation, X Direction 
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Figure 54: Cavity String ODS Shape, 23 Hz, Point 7 Excitation, Y Direction 
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Figure 55: Cavity String ODS Shape, 23 Hz, Point 7 Excitation, Z Direction 
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A.3 Excitation at Point 2 

A.3.1 Motion at 13 Hz 

 

Figure 56: Cavity String ODS Shape, 13 Hz, Point 2 Excitation, X Direction 
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Figure 57: Cavity String ODS Shape, 13 Hz, Point 2 Excitation, Y Direction 
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Figure 58: Cavity String ODS Shape, 13 Hz, Point 2 Excitation, Z Direction 
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A.3.2 Motion at 29 Hz 

 

Figure 59: Cavity String ODS Shape, 29 Hz, Point 2 Excitation, X Direction 
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Figure 60: Cavity String ODS Shape, 29 Hz, Point 2 Excitation, Y Direction 
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Figure 61: Cavity String ODS Shape, 29 Hz, Point 2 Excitation, Z Direction 
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