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Nanosecond pulsed electric fields increase antibiotic 
susceptibility in methicillin-resistant Staphylococcus aureus
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ABSTRACT Staphylococcus aureus is the leading cause of skin and soft-tissue infections 
(SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. 
aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. 
In this study, we measured MRSA inactivation by nanosecond pulsed electric fields 
(nsPEF), a promising new cell ablation technology. Our results show that treatment with 
120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating 
cellular damage. We anticipated that the perturbation created by nsPEF could increase 
antibiotic efficacy if nsPEF were applied as a co-treatment. To test this hypothesis, we 
used three antibiotics approved to treat SSTI, daptomycin, doxycycline, and vancomycin, 
and compared the cytotoxic effects of these antibiotics administered either before or 
after nsPEF. Co-treatment with nsPEF and daptomycin greatly potentiated the effects of 
each monotherapy regardless of their order. Conversely, the sensitivity of MRSA to both 
doxycycline and vancomycin was increased only when nsPEF preceded the antibiotic 
incubation. Finally, MRSA cells grown in biofilms were efficiently killed by co-treatment 
with nsPEF/vancomycin, suggesting that their mutual enhancement is maintained even 
when treating sessile communities known for their inherent antimicrobial resistance. 
Altogether our results show that MRSA perturbation by nsPEF potentiates the effect of 
multiple antibiotics and that the order of the combined treatment can have a major 
impact on efficacy. Since SSTIs are accessible for physical interventions such as nsPEF 
stimulus, combinatorial treatments could be used to increase the efficacy of antibiotics 
used to treat such infections.

IMPORTANCE We have found that treatment with short electric pulses potentiates 
the effects of multiple antibiotics against methicillin-resistant Staphylococcus aureus. By 
reducing the dose of antibiotic necessary to be effective, co-treatment with electric 
pulses could amplify the effects of standard antibiotic dosing to treat S. aureus infections 
such as skin and soft-tissue infections (SSTIs). SSTIs are accessible to physical intervention 
and are good candidates for electric pulse co-treatment, which could be adopted as a 
step-in wound and abscess debridement.

KEYWORDS electroporation, skin infection, MRSA, Staphylococcus aureus

T he Gram-positive opportunistic pathogen Staphylococcus aureus (S. aureus) is the 
leading cause of skin and soft-tissue infections (SSTIs) in the United States (1, 

2). Patients with ulcers, commonly resulting from advanced complications of injuries, 
recent surgery, or indwelling medical devices, are particularly at risk. SSTIs range 
from superficial infections such as impetigo, cellulitis, simple abscesses, and furuncles 
to deeper and more severe infections such as necrotizing infections, infected ulcers, 
infected burns, and major abscesses. Moreover, diabetic foot infections are similar to 
SSTIs in pathophysiology, microbiology, and treatment and can be seen as a subset of 
SSTIs (3). SSTIs are common in ambulatory and inpatient settings, accounting for more 
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than 14 million outpatient visits and 850,000 hospitalizations annually in the United 
States alone (4). Between 7% and 10% of hospitalized patients have SSTIs, which are 
often hospital-acquired infections that complicate treatment of the original ailment (5, 
6).

Treatment of SSTIs varies based on clinical severity, patient comorbidities, admission 
status, and diagnosis. Uncomplicated SSTIs are treated with topical or oral antibiot
ics, while severe SSTIs require early aggressive surgical debridement accompanied 
by antibiotic interventions (7). The history of S. aureus treatment is marked by the 
development of resistance to each new class of antimicrobial drugs, including penicil
lin, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy (8). 
Methicillin, which inhibits bacterial cell wall synthesis, was once a front-line treatment for 
S. aureus infections but this resulted in the development of methicillin-resistant strains 
of S. aureus (MRSA) (9). First reported in the 1960 s (10), MRSA has become increasingly 
prevalent since the 1980 s (11, 12) and is now endemic in many hospitals and even 
epidemic in some, with methicillin resistance present in approximately 30% of all S. 
aureus infections in the United States (12). Vancomycin is the only antibiotic that can 
consistently successfully treat MRSA (13). However, the emergence of S. aureus infection 
with intermediate resistance to vancomycin in the United States suggests that S. aureus 
strains are constantly evolving, and full resistance may develop (14). Novel approaches to 
tackle this problem are urgently required.

Recently, the potential use of physical methods as an aid to antibiotics in the battle 
against bacterial pathogens has received greater attention: photodynamic therapy (15, 
16), ultrasound therapy (17–19), thermotherapy (20), and weak electric currents (21–25) 
are all being tested as treatment modalities against pathogenic microorganisms. The 
major drawback of these methods is their low therapeutic index due to high levels of 
heating (26) or production of reactive oxygen species, both of which can damage the 
tissues in and around the target area (27). Moreover, these methods usually require 
a prolonged exposure time and, for photodynamic therapy, a photosensitizer. As of 
today, none of the above-mentioned methods has matured into an approved treatment 
modality against bacterial pathogens.

Pulsed electric fields (PEF) are successfully used in a wide range of clinical applica
tions from cancer therapy to cardiac ablation (28, 29). The application of PEF disrupts 
cell plasma membranes in mammalian and bacterial cells and has been used for 
decades to promote bacterial uptake of exogenous DNA in laboratory settings (30, 
31). This disruption of membrane barrier function, called electroporation, leads to 
multiple cytophysiological effects, including calcium (Ca2+) overload, efflux of ATP and 
other metabolites, and disturbances in transmembrane ion gradients (Na+, K+, and Cl-) 
required for the maintenance of membrane resting potential and for osmotic and cell 
volume regulation (32–40). The biological effects of PEF can be tuned by adjusting pulse 
parameters such as pulse number, duration, and amplitude. In most protocols, the rate of 
energy deposition is controlled so that the concurrent Joule heating, the process where 
the energy of an electric current is converted into heat as it flows through a resistance, 
does not cause thermal damage (36, 41–44). When the electroporative damage exceeds 
the cell repair capacity, PEF treatments cause cell death. The ability of PEF to inactivate 
microorganisms has been known for over 60 years (45). Indeed, PEF are among the most 
promising microbial inactivation methods for liquid food (46), and wastewater (47, 48). 
Moreover, due to the physical nature of the main underlying mechanism—formation 
of aqueous pores in the plasma membrane—bacteria cannot easily develop genetically 
encoded resistance against it.

Recent research has extended PEF treatments to the nanosecond duration range 
(nsPEF). Because nsPEF use much shorter pulses (as low as 10 ns), higher voltages can 
be applied with minimal thermal effects. Compared to micro- and millisecond pulses, 
permeabilization by nsPEF does not rely on charge movement or capacitive charging, 
resulting in a much more uniform/less localized poration pattern, or so-called “supra-
electroporation” (49, 50). Moreover, nanosecond pulses permeabilize not only the outer 
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membrane of the cell but also the intracellular membranes of eukaryotic organelles, 
such as the endoplasmic reticulum and the mitochondria (38, 39, 51–54). nsPEF create 
nanopores with cross-sections less than 1.5 nm with resulting cell permeabilization 
lifetimes on the order of seconds or minutes (37, 55, 56). These nanopores allow efflux 
of cellular contents but can also increase the uptake of exogenous substances such as 
drugs (57–59). Finally, the treatment of human tissues with nsPEF minimizes neuromus
cular stimulation. Pulses in the micro- to millisecond duration range trigger neuromuscu
lar excitation, which causes severe pain and involuntary muscle contractions (60–65). 
In silico models show that standard 100 µs electric pulses excite nerves at an electric 
field strength ~1,000-fold lower than that needed for ablation (66). While anesthesia 
and muscle relaxants offer a partial solution, the optimal solution is to minimize nerve 
excitation in the first place. Both theoretical and experimental research demonstrate that 
shortening the pulse duration into the nanosecond range decreases the neuromuscular 
response to PEF (65–72). Specifically, Pakhomov’s group recently published that 200 ns 
pulses can cause a 1,000-fold reduction of tissue stimulation compared to 100 μs pulses 
(72).

In this study, we measured MRSA inactivation by nsPEF alone and in combination 
with antibiotics approved to treat SSTIs, namely vancomycin, doxycycline, and dapto
mycin. Previous studies were limited to testing the bacterial susceptibility to various 
antibiotics only after nsPEF were delivered (57–59). Here, we directly compared the 
efficacy of multiple antibiotics administered either before or after the pulse treatment. 
Our results show that treatment duration and order (nsPEF-antibiotics and antibiotics-
nsPEF) are essential in determining the most effective result, findings that will guide 
experimental design for future in vivo studies of the interaction between nsPEF and 
antibiotics to treat SSTIs.

RESULTS

Sensitivity of planktonic MRSA to nsPEF treatments

Our initial experiments sought to establish optimal laboratory growth conditions for the 
planned experiments. MRSA growth in liquid culture was assessed in different growth 
media commonly used to culture MRSA (data not shown). We found that MRSA grows 
rapidly and consistently in LB broth and reaches a stationary optical density of 1.2–1.4 
within 12 h (Fig. 1A). Twenty-four hours was sufficient time for the growth of robust 
MRSA biofilms on plastic surfaces (Fig. 1B).

FIG 1 S. aureus growth in LB broth. (A) Planktonic MRSA cultures were diluted using a 1:20 ratio in LB broth in sterile 96-well plates. Plates were incubated at 

37.0°C for 24 h in a microplate reader, which was set to constantly shake at medium intensity, and the optical density was recorded at 630 nm every 30 min. 

(B) Planktonic MRSA cultures were diluted 1:10 in LB broth in sterile 12-well plates. Plates were incubated at 37.0°C for 48 h before crystal violet staining was used 

to measure biofilm production. Shown are the means and standard deviations of nine samples. ****P < 0.0001.

Research Article Microbiology Spectrum

January 2024  Volume 12  Issue 1 10.1128/spectrum.02992-23 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

06
 F

eb
ru

ar
y 

20
24

 b
y 

12
8.

82
.2

53
.1

43
.

https://doi.org/10.1128/spectrum.02992-23


Inactivation by nsPEF of planktonic MRSA in the exponential growth phase was 
initially measured using two different pulse durations, namely 300 ns, the shortest 
duration our generator can produce, and 600 ns (0–1,000 pulses, 28 kV/cm, 1 Hz). 
Our results show that while MRSA was moderately affected by both pulse durations 
(Fig. 2), 600 ns pulses were more efficient. Specifically, 250 pulses of 300 ns each 
caused a very modest 0.2 log10 reduction in viability, and increasing the number of 
pulses to 500 or 1,000 only increased the killing effect to 0.3 and 0.5 log10 reductions, 
respectively (Fig. 2A). Meanwhile, 60 pulses of 600 ns each caused a 0.4 log10 reduction 
in viability and increasing the number of pulses to 120 or 250 pulses increased the 
killing effect to 0.5 and 1.1 log10 reductions, respectively (Fig. 2B). PEF treatments are 
intended to be a non-thermal method to inactivate microorganisms. However, it is 
well-known that an increase in temperature due to Joule heating can be associated 
with high pulse doses. Table 1 shows that the highest 600-ns pulse dose used in this 
study (250 pulses) increased the sample temperature from 24.4°C ± 0.3°C to 38.7°C ± 
0.3°C, while 60 and 120 pulses increased the temperature to 28.6°C ± 0.1°C and 33.1°C 
± 0.2°C, respectively. Although S. aureus can grow over a wide range of temperatures 
(6.5°C–46°C) with an optimal range between 30°C and 37°C (73), we could not exclude 
the possibility that a rapid 14°C rise in temperature during treatment could affect the 
electroporation phenomenon and/or initiate stress responses. Therefore, to minimize 
the effect of heating, the condition utilizing 250 pulses at 600 ns pulse duration was 
discontinued so that all data would be collected within the optimal temperature range 
for S. aureus growth. All subsequent experiments used 60 or 120 pulses with the 600 ns 
pulse duration, as indicated.

nsPEF pre-treatment or post-treatment increases the antimicrobial effect of 
limited daptomycin exposure

Next, we asked whether nsPEF treatments could sensitize MRSA to transient exposure to 
the SSTI-approved antibiotic daptomycin. Daptomycin is a lipophilic peptide that inserts 

FIG 2 Effect of nsPEF on planktonic S. aureus viability. Cells in the exponential phase were treated with the indicated numbers of either (A) 300 or (B) 600 

ns pulses. All pulses were 28 kV/cm, 1 Hz. Treated samples were plated in 10-fold dilutions on LB agar plates and colony-forming units were quantified 40 h 

post-treatment. Inactivation is quantified as log(CFU/mL)sham – log(CFU/mL)nsPEF and is individually calculated for each sample. Shown are the means and 

standard deviations of at least three independent samples. n.s., not significant. * P < 0.05, **P < 0.01, and ***P < 0.001, one-sample t-test for the difference from 

untreated control (0).
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into the bacterial cell membrane, causing rapid membrane depolarization and potassium 
ion efflux (74). We found that 4 µg/mL daptomycin inhibits MRSA growth for at least 
16 h, while lower doses slow growth kinetics slightly but do not prevent cultures from 
reaching maximal density within 16 h (Fig. S1A). We hypothesized that the membrane 
defects created by daptomycin would increase the efficacy of nsPEF treatment. To test 
this hypothesis, we first measured the ability of daptomycin to reduce the number of 
viable cells in exponentially growing MRSA cultures. As expected, daptomycin exposure 
reduced the number of colony-forming units per milliliter in a dose-dependent manner, 
with a 90-min exposure to 8 µg/mL daptomycin, the highest concentration tested, 
leading to 3.3 log10 reduction in viability (Fig. 3A). Next, we measured the effect of 
combining daptomycin with nsPEF (Fig. 3B). Cells were preincubated for 90 min with 
different sub-lethal doses of the antibiotic (0.5, 1, and 2 µg/mL), then treated with nsPEF 
(0, 60, and 120 pulses 600 ns, 28 kV/cm, 1 Hz), and immediately plated on LB agar 
plates without antibiotic (for a schematic diagram of the experimental workflow see 
Fig. S2A). Our results show that pretreatment with daptomycin significantly increased 
MRSA sensitivity to nsPEF (Fig. 3B). Combining 2 µg/mL of daptomycin with nsPEF 
caused nearly 3 log10 reduction, comparable to the effect of 8 µg/mL of antibiotic 
alone. Similarly, at all of the antibiotic concentrations tested, antibiotics combined with 
pulses reduced culture viability significantly more than pulses alone (Fig. 3B). Next, 
we investigated whether the order in which the combined treatments were applied 
affected our results. Samples were either pretreated with 0.5 µg/mL of daptomycin for 
90 min and then exposed to the nsPEF (600 ns, 28 kV/cm, 1 Hz) or exposed to nsPEF 
and then incubated with the antibiotic for 90 min. Our results show that regardless of 
the administration order, the co-treatment inactivates MRSA culture more strongly than 
either daptomycin or nsPEF alone (Fig. 4). Each of the monotherapies reduced culture 
viability by less than 1 log10, while prior exposure to daptomycin allowed 60 or 120 
pulses to reduce viability by 1.5 and 1.9 log10, respectively. Pretreatment with 60 or 120 
pulses sensitized the cells to daptomycin, allowing culture inactivation by 2.0 and 2.3 
log10, respectively (Fig. 4).

Only nsPEF pre-treatment sensitizes MRSA to doxycycline

Next, we asked whether nsPEF treatment would also enhance the effects of antibiotics 
with different mechanisms of action. Doxycycline inhibits bacterial protein synthesis by 
reversibly binding to the 30S ribosomal subunits, blocking the binding of the aminoacyl 
tRNA to the mRNA (75, 76). We found that 2 µg/mL doxycycline partially suppressed 
MRSA growth over 16 h, while 4 µg/mL treatment completely suppressed it (Fig. S1B). 
Unlike daptomycin, doxycycline must enter the cell to have an effect; the thick cell wall 
of Gram-positive pathogens such as MRSA can impede this. We therefore hypothesize 
that the damage created by nsPEF could increase MRSA permeability to doxycycline. 
As with daptomycin, we first measured the sensitivity of exponentially growing MRSA 
to doxycycline monotherapy. Interestingly, all tested doses (0–32 μg/mL) only mildly 
affected MRSA viability, suggesting that the 90-min contact time was not sufficient to 
cause significant bactericidal effects (Fig. 5A). Next, we measured the effect of combining 
doxycycline with nsPEF. Cells were incubated for 90 min with 4 µg/mL doxycycline either 
before or after treatment with nsPEF (0, 60, and 120 pulses 600 ns, 28 kV/cm, 1 Hz) 
and immediately plated on LB plates without antibiotic. Our results show that pretreat
ing MRSA with doxycycline did not increase cells’ sensitivity to nsPEF, while nsPEF 

TABLE 1 Temperatures measured immediately after the delivery of the indicated number of 600 ns pulses 
(28 kV/cm, 1 Hz)

No. of pulses Temperature (oC)

0 24.4 ± 0.3
60 28.6 ± 0.1
120 33.1 ± 0.2
250 38.7 ± 0.3
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significantly potentiated MRSA susceptibility to consequent doxycycline incubation (Fig. 
5B). Pre-treatment with doxycycline caused a small but significant enhancement to 
the effects of pulses, increasing the inactivation effect from 0.4 log10 in the presence 
of doxycycline alone to 0.6 when doxycycline is followed by 60 or 120 pulses. Pulses 
sensitize MRSA to doxycycline much more strongly, as pre-treatment with 60 pulses 
increases culture inactivation by doxycycline from 0.6 to 1.3, and pre-treatment with 120 
pulses increases it further to 1.5 (Fig. 5B). While the effect of the pulses on cells previ
ously exposed to doxycycline was not significant compared to that of the pulses alone, 
pulses followed by doxycycline exposure are much more lethal to the MRSA cultures 
than pulses alone (Fig. 5B). These results suggest that cell permeabilization by nsPEF 
enhances doxycycline penetration into the bacterial cytoplasm, while pretreatment with 
the antibiotic has no effect on the cellular response to nsPEF.

nsPEF does not strongly affect the efficacy of a transient exposure to 
vancomycin

Vancomycin is a glycopeptide antibiotic that exerts its bactericidal effect by inhibiting 
the polymerization of peptidoglycans in the bacterial cell wall and is broadly effective 
against Gram-positive bacteria (77). Vancomycin is often clinically used to treat MRSA 
infections (78). The vancomycin MIC90 for MRSA has previously been reported as 2 µg/mL 
(79). We found that 2 µg/mL vancomycin partially suppressed MRSA growth for 16 h, 
with complete inhibition at 4 µg/mL (Fig. S1C). We hypothesized that the destabilization 
of the cell wall by vancomycin could enhance osmotic cell swelling and consequent 
cell death in electroporated MRSA. Like doxycycline, incubation with all tested doses 
of vancomycin for 90 min was not enough to measure substantial cytotoxic effects 
against exponentially growing cultures (Fig. 6A). Treatment with 4 µg/mL of vancomycin 
followed by treatment with nsPEF (0, 60, and 120 pulses 600 ns, 28 kV/cm, 1 Hz) had no 
significant effect on bacterial inactivation, while nsPEF treatment with 60 pulses followed 
by antibiotic exposure modestly increased inactivation from 1.3 to 1.9 log10 for 60 pulses 

FIG 3 Pretreatment with daptomycin increases nsPEF cytotoxic effect. (A) Inactivation of exponentially growing MRSA cultures by 90 min of incubation with the 

indicated doses of daptomycin. Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)daptomycin and is individually calculated for each sample. Treated 

samples are compared to 0 (untreated control) by one-sample t-test. Numbers shown represent the means and standard deviations of at least three independent 

samples. (B) Inactivation of samples treated with the indicated concentrations of daptomycin for 90 min before exposure to 0, 60, or 120 pulses (600 ns, 28 kV/cm, 

1 Hz). Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated and is individually calculated for each sample. Black asterisks: samples treated with 

daptomycin and pulses are compared to those treated with daptomycin alone by one-way ANOVA. Gray asterisks: samples treated with daptomycin and 60 

pulses are compared to those treated with pulses alone by one-way ANOVA. Orange asterisks: samples treated with daptomycin and 120 pulses are compared to 

those treated with pulses alone by one-way ANOVA. Numbers shown represent the means and standard deviations of four independent samples. n.d., no drug; 

n.s., not significant; *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001.
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(Fig. 6B). Treatment with 120 pulses increased inactivation by vancomycin from 1.6 to 
2.1 log10, but the results were not statistically significant (Fig. 6B). Pre-treatment with 60 
pulses followed by vancomycin exposure was the only combinatorial therapy to exhibit 
any significant enhancement over nsPEF monotherapy (Fig. 6B). Under our experimental 
conditions, it appears that antibiotic destabilization of the cell wall does not exhibit the 
same mutual enhancement with nsPEF treatment as antibiotic destabilization of the cell 
membrane.

nsPEF treatment sensitizes cells to prolonged antibiotic exposure

Because both doxycycline and vancomycin alone had only modest effects on MRSA 
viability after 90 min of exposure, we decided to test the effect of increased contact 
time with these antibiotics. To do this, we employed dilution plating on plates contain
ing these antibiotics. After nsPEF treatment (0, 60, and 120 pulses 600 ns, 28 kV/cm, 
1 Hz), 10-fold serial dilutions of treated and untreated cells were spotted onto LB 
plates containing antibiotics (Fig. 7). In samples with reduced viability, fewer dilutions 
are needed before no visible growth is detected after 24 h. Both doxycycline and 
vancomycin visibly reduced MRSA cell density on a serial dilution plate (compare yellow 
rectangles in Fig. 7A and C). The effect of nsPEF treatment alone was apparent on the 
dilution plates in the absence of antibiotics (Fig. 7A and C, see blue rectangles). However, 
the difference between nsPEF-treated and untreated cells was much more pronounced 
on plates containing antibiotics (Fig. 7A and C, red rectangles). The trends observed on 
the doxycycline plates were not statistically significant (Fig. 7B), but nsPEF combined 
with sustained vancomycin exposure inactivated MRSA significantly more than either 
treatment alone (Fig. 7D).

FIG 4 Daptomycin and nsPEF mutually enhance each other regardless of the order of application. Exponentially growing MRSA cultures were either pre-incuba

ted with 0.5 µg/mL daptomycin for 90 min and then exposed to 0, 60, and 120 pulses (Dap + nsPEF) or exposed to nsPEF and then incubated with the antibiotic 

(nsPEF +Dap). Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated. Black asterisks: samples treated with daptomycin and pulses are compared 

to those treated with daptomycin alone by one-way ANOVA. Gray asterisks: samples treated with daptomycin and 60 pulses are compared to those treated 

with pulses alone by one-way ANOVA. Orange asterisks: samples treated with daptomycin and 120 pulses are compared to those treated with pulses alone by 

one-way ANOVA. Numbers shown represent the means and standard deviations of at least four independent samples. n.s., not significant; *P < 0.05; **P < 0.01; 

and ***P < 0.001.
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Plating nsPEF-treated MRSA on daptomycin plates led to inconclusive results as 
prolonged incubation of cells with this antibiotic caused either no effect or complete 
growth inhibition at all tested concentrations (Fig. S3).

Genetic resistance to methicillin is not affected by nsPEF treatment

Next, we asked whether treatment with nsPEF affected MRSA resistance to methicillin. 
Cells were exposed to nsPEF (0, 60, and 120 pulses 600 ns, 28 kV/cm, 1 Hz) and imme
diately plated on plates containing 32 µg/mL methicillin, a concentration which can 
slow but not prevent MRSA proliferation (Fig. S1D). We found that methicillin had no 
impact on MRSA culture inactivation by nsPEF (Fig. 8). These results can be explained by 
the fact that methicillin resistance depends on cytoplasmic penicillin-binding proteins 
with reduced affinity for methicillin (80), a resistance mechanism which is unlikely to be 
modulated by nsPEF-induced plasma membrane perturbation.

Effect of nsPEF/antibiotics combined treatment of MRSA biofilm viability

Because S. aureus living within biofilms is more resistant to antibiotics than planktonic 
bacteria (81), we investigated the effect of combining nsPEF with either doxycycline or 
vancomycin on MRSA biofilms’ viability. Biofilms were washed and adherent cells were 
manually scraped from the plastic growth surface and resuspended into sterile LB broth. 
Cells were dispersed by vortexing and aliquoted into electroporation cuvettes. After 
nsPEF treatment (0, 60, and 120 pulses 600 ns, 28 kV/cm, 1 Hz), samples were plated 
on LB plates containing 1 µg/mL of either doxycycline or vancomycin and colonies were 
counted in 40 h (Fig. 9). nsPEF treatment alone had very little effect on biofilm-grown 
cells, with 60 and 120 pulses reducing culture viability by less than 0.3 log10 (Fig. 9). 
Doxycycline alone only reduced culture viability of 0.4 log10, while pre-treatment with 60 
or 120 pulses allowed doxycycline to impact the biofilm-grown cells by 0.5 and 0.6 log10 
(Fig. 9A). The effects of the co-treatment were significantly enhanced compared to either 
treatment alone, but their overall impact was modest. Vancomycin treatment had more 
of an impact on the biofilm-grown cells, reducing viability by 1.1 log10. Pre-treatment 

FIG 5 Pre-treatment with doxycycline does not increase nsPEF efficacy but nsPEF sensitizes MRSA to doxycycline. (A) Inactivation of exponentially growing 

MRSA cultures by 90 min of incubation with the indicated doses of doxycycline. Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated and is 

individually calculated for each sample. Treated samples are compared to 0 (untreated control) by one-sample t-test. Numbers shown represent the means 

and standard deviations of at least three independent samples. (B) Inactivation of exponentially growing MRSA cultures either pre-incubated with 4 µg/mL 

doxycycline for 90 min and then exposed to 0, 60, and 120 pulses (doxy + nsPEF) or exposed to nsPEF and then incubated with the antibiotic (nsPEF + doxy). 

Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated. Black asterisks: samples treated with doxycycline and pulses are compared to those 

treated with doxycycline alone by one-way ANOVA. Light fuchsia symbols: samples treated with doxycycline and 60 pulses are compared to those treated with 

pulses alone by one-way ANOVA. Dark fuchsia symbols: samples treated with doxycycline and 120 pulses are compared to those treated with pulses alone by 

one-way ANOVA. Numbers shown represent the means and standard deviations of at least three independent samples. n.s., not significant. *P < 0.05, **P < 0.01, 

***P < 0.001, and ****P < 0.0001.
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with 60 or 120 nsPEF pulses increased this effect to 1.8 and 1.9 log10 (Fig. 9B). nsPEF 
enhancement of vancomycin treatment alone did not achieve statistical significance, but 
did trend upward, suggesting that investigation of vancomycin penetrance and efficacy 
in intact biofilms subjected to nsPEF treatment could be a promising area of future 
investigation.

MATERIALS AND METHODS

Bacterial strains and growth conditions

All assays were conducted with S. aureus Xen 31 MRSA strain (Perkin Elmer, Waltham, 
MA, USA). Bacterial colonies were maintained on LB plates containing 17 g/L agar (Fisher 
Scientific, Waltham, MA, USA). Bacteria were grown in Luria Bertani Miller (LB-Miller; 
Fisher Scientific) broth at 37°C until they reached exponential phase (optical density 
of 0.4–0.7 at 600 nm) in a shaking incubator (New Brunswick Scientific, Edison, NJ, 
USA) at 250 rpm. Bacterial growth was measured using the DU 730 spectrophotometer 
(Beckman Coulter, Inc., Chaska, MN, USA).

Growth curves

MRSA cultures were prepared by inoculating single colonies into 2 mL of LB broth 
and grown for 16 h at 37°C with constant shaking at 250 rpm. The overnight cul
tures were diluted 1:20 into fresh LB broth, grown until they reached the exponential 
phase (OD600nm: 0.4–0.7), and diluted 1:10 into a sterile 96-well plate (Fisher Scientific) 
containing a range of antibiotic concentrations in LB broth. The antibiotics that were 
used were: vancomycin (VWR, Suwanee, GA, USA), doxycycline (Cayman Chemicals, Ann 
Arbor, MI, USA), daptomycin (Fisher Scientific), and methicillin (Fisher Scientific). Plates 
were incubated at 37.0°C for 24 h in a BioTek synergy microplate reader, which was set 
to constantly shake at medium intensity and absorbance was recorded at 630 nm every 
30 min.

FIG 6 Vancomycin and nsPEF treatment do not strongly enhance each other. (A) Inactivation of exponentially growing MRSA cultures by 90 min of incubation 

with the indicated doses of vancomycin. Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated and is individually calculated for each sample. 

Treated samples are compared to 0 (untreated control) by one-sample t-test. Numbers shown represent the means and standard deviations of at least three 

independent samples. (B) Inactivation of exponentially growing MRSA cultures either pre-incubated with 4 µg/mL vancomycin for 90 min and then exposed to 

0, 60, and 120 pulses (van + nsPEF) or exposed to nsPEF and then incubated with the antibiotic (nsPEF +van). Inactivation is quantified as log(CFU/mL)untreated 

– log(CFU/mL)treated. Black symbols: samples treated with vancomycin and pulses are compared to those treated with vancomycin alone by one-way ANOVA. 

Light blue symbols: samples treated with vancomycin and 60 pulses are compared to those treated with 60 pulses alone by one-way ANOVA. Dark blue symbols: 

samples treated with vancomycin and 120 pulses are compared to those treated with 120 pulses alone by one-way ANOVA. Numbers shown represent the 

means and standard deviations of at least three independent samples. n.s., not significant; * P < 0.05; **P < 0.01; and ***P < 0.001.
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Pulsed electric field exposure methods

MRSA cultures were prepared by inoculating single colonies into 2 mL of LB broth 
and grown for 18 h at 37°C with constant shaking. Starter cultures were diluted 1:20 
into LB broth to reach the exponential phase (OD600 = 0.4–0.7), and 90 µL samples 
of this suspension were loaded into 1 mm gap electroporation cuvettes (BioSmith, 
Vandergrift, PA, USA). Samples in electroporation cuvettes were exposed to nsPEF in 
LB broth with a conductivity of 1.73 S/m at room temperature. Trapezoidal pulses of 
300 or 600 ns duration were produced by a CellFX generator (Pulse Biosciences Inc, 
Hayward, CA, USA). The output stage of the pulse generator was optimized for the 
10-ohm impedance presented by the cell suspensions in a 1 mm electroporation cuvette. 
The pulse amplitude and shape were monitored at the cuvette using a LeCroy Wave
Surfer 3034z oscilloscope (Teledyne Lecroy, Chestnut Ridge, NY, USA). A picture of the 
experimental setup and the waveform are shown in Fig. S2B and C. Temperature changes 
were measured immediately after nsPEF using a thermocouple thermometer (Physitemp, 
Clifton, NJ, USA). The nsPEF-treated cells underwent a serial dilution in LB broth before 
being plated on LB agar plates. The plates were incubated at 37°C for 40 h before the 
number of colonies was counted. All experiments included an untreated “sham” control 
that was prepared the same way as the experimental sample but not subjected to nsPEF.

FIG 7 Effect of nsPEF and extended incubation with doxycycline (A) and vancomycin (B) on MRSA viability. In panels A and C, a replica plating device was 

used to reproducibly spot 10-fold serial dilutions onto agar plates. Shown are representative images of eight serial 10-fold dilutions of exponentially growing 

MRSA treated with 0, 60, or 120 pulses (600 ns, 28 kV/cm, 1 Hz) and then plated either on control LB plates (A and C left images) or plates containing 1 µg/mL 

doxycycline (A, right image) or vancomycin (C, right image). Yellow and blue rectangles highlight the effect of the monotreatment with antibiotics and nsPEF, 

respectively. Red rectangles show the effect of the combined treatment (see text for details). In panels B and D, a quantification of the effects seen in panels A 

and C was done for one optimal dilution. Inactivation is quantified as log(CFU/mL)untreated – log(CFU/mL)treated. Black symbols: samples treated with antibiotics 

and pulses are compared to those treated with antibiotics alone by one-way ANOVA. Light fuchsia symbols: samples treated with daptomycin and 60 pulses are 

compared to those treated with pulses alone by one-way ANOVA. Dark fuchsia symbols: samples treated with daptomycin and 120 pulses are compared to those 

treated with pulses alone by one-way ANOVA. Light blue asterisks: samples treated with vancomycin and 60 pulses are compared to those treated with 60 pulses 

alone by one-way ANOVA. Dark blue asterisks: samples treated with vancomycin and 120 pulses are compared to those treated with 120 pulses alone by one-way 

ANOVA. Data shown represent the mean and standard deviation of at least three samples. n.s., not significant and **** P < 0.0001.
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Antibiotic treatments

A schematic diagram of the experimental workflow is shown in Fig. S2A. For short 
antibiotic incubations either pre- or post-nsPEF treatment, MRSA cultures in the 
exponential growth phase (OD600 = 0.4–0.7) were treated with a range of concentra
tions for each of the antibiotics: 0–8 µg/mL daptomycin, 0–32 µg/mL doxycycline, 
and 0–32 µg/mL vancomycin. Antibiotic exposure lasted 90 min at 37°C with constant 
shaking at 250 rpm. For prolonged antibiotic exposures, samples were exposed to nsPEF 
as described above, diluted, and spread on LB-agar plates containing the indicated 
concentrations of antibiotics. Plates were incubated at 37°C for 40 h before the number 
of colonies was counted.

Replicate plating

Exponential phase cultures were exposed to 600 ns pulses (0, 60, and 120 pulses) and 
serially diluted in a sterile 96-well plate (ThermoFisher Scientific). A sterile replica plater 
(“frogger”) for a 96-well plate (Sigma Aldrich) was used to stamp the desired samples 
onto LB ± antibiotic agar plates. The plates were incubated at 37°C for 24 h before being 
scanned on a ChemiDoc MP Imaging System (BioRad).

Biofilm formation, visualization, and quantification

A 12-well tissue culture-treated plate (Fisher Scientific) containing 1.8 mL of fresh LB 
broth in each well was inoculated with 200 µL of MRSA exponential phase cultures. The 
plate was then incubated at 37°C for 24 h. To quantify the biofilms, the supernatant from 
each well was removed by pipetting, and the adhered biofilms were washed with 1 mL 
of 1× phosphate-buffered saline (PBS) solution. The washed biofilms were then stained 
for 30 min with 1 mL of 0.1% crystal violet (Sigma Aldrich) and washed two additional 
times with 1× PBS. The adhered and stained biofilms were suspended in 70% ethanol. 
The plate was placed in the Bio-Tek synergy microplate reader (Marshall Scientific), which 
recorded the OD570, after shaking the plate at medium intensity.

FIG 8 Treatment with nsPEF does not sensitize MRSA to methicillin. Inactivation of exponentially growing MRSA cultures exposed to 0, 60, and 120 pulses (600 

ns, 28 kV/cm, 1 Hz) and then incubated with 32 µg/mL methicillin for 40 h. Inactivation is quantitated as log(CFU/mL)untreated – log(CFU/mL)treated. Samples 

treated with methicillin and pulses are compared to those treated with pulses alone by one-way ANOVA. Numbers shown represent the means and standard 

deviations of at least three independent samples. n.s., not significant.
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nsPEF and antibiotic treatment of biofilm-derived cells

To treat the biofilms, the supernatant was removed, biofilms were washed with 1× PBS, 
and adherent cells were manually scraped off the plastic surface with pipette tips and 
suspended in 1 mL of fresh LB broth. The sample was then vortexed to disrupt the 
biofilm structure. A 90-µL aliquot of this sample was transferred to an electroporation 
cuvette for nsPEF as described above. After the nsPEF treatment, the sample was plated 
on LB ± antibiotic (1 µg/mL doxycycline or 1 µg/mL vancomycin) agar plates. The plates 
were incubated at 37°C for 40 h before the number of colonies was counted.

Determination of inactivation rates

Immediately after pulsing, 900 µL of LB broth was added to each cuvette and mixed by 
pipetting. The resulting 1 mL samples were serially diluted up to 10−7, 100 µL of each 
sample was plated on duplicate LB agar plates, and colonies were counted after 40-h 
incubation at 37°C. Only counts between 0 and 300 CFU per plate were considered. 
Inactivation rates are expressed as log10 (CFU/mLsham − CFU/mLtreated).

Statistical analyses

Data are presented as mean ± SD for n independent experiments. Statistical calculations, 
including data fits, and data plotting were accomplished using Prism (GraphPad). All 
quantitative experiments were performed in duplicate and repeated a minimum of three 
times.

DISCUSSION

S. aureus is a natural component of the commensal skin microbiota but can become an 
opportunistic pathogen when the skin, the first line of immune defense, is breached 
(82–84). Treatment of the resulting SSTI is complicated by the high prevalence of 
methicillin resistance among S. aureus strains (85). Many S. aureus infections, both 
methicillin-sensitive and methicillin-resistant, are currently treated using doxycycline, 
vancomycin, or daptomycin, alone or in tandem with physical debridement methods 
(86). However, resistance has also developed to these antibiotics (87–89). Effective 
methods of treatment are necessary to reduce the burden of S. aureus in healthcare 
settings (90).

FIG 9 Effect of nsPEF on antibiotic susceptibility of biofilm-derived cells. MRSA cells scraped out of biofilms were homogenized in solution and treated with 0, 

60, or 120 pulses before serial dilution plating on either control LB plates or plates containing 1 µg/mL doxycycline (A) or 1 µg/mL vancomycin (B). Inactivation is 

quantified as log(CFU/mL)untreated – log(CFU/mL)treated and is individually calculated for each sample. Black asterisk: samples treated with antibiotics and pulses 

are compared to those treated with antibiotics alone by one-way ANOVA. Light fuchsia asterisks: samples treated with doxycycline and 60 pulses are compared 

to those treated with pulses alone by one-way ANOVA. Dark fuchsia asterisks: samples treated with doxycycline and 120 pulses are compared to those treated 

with pulses alone by one-way ANOVA. Light blue asterisks: samples treated with vancomycin and 60 pulses are compared to those treated with 60 pulses alone 

by one-way ANOVA. Dark blue asterisks: samples treated with vancomycin and 120 pulses are compared to those treated with 120 pulses alone by one-way 

ANOVA. Data represent the means and standard deviations of at least five independent samples. n.s., not significant and *P < 0.05.
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This study makes use of nsPEF in combination with antibiotic treatments to inactivate 
MRSA. Pulsed electric fields used for bacterial inactivation are traditionally of microsec
ond duration and have been seen to impact bacterial viability with a range of pulse 
amplitudes (46, 91). Numerous studies have demonstrated that bacteria, when exposed 
to PEF, show both membrane and cell wall damage as well as subsequent cell death 
(92–94). Additionally, resistance to this treatment type has not been detected before 30 
generations (95). While these studies are promising, few have investigated the synergistic 
effects of shorter nanosecond duration pulses in combination with antibiotics (58).

Our study shows that MRSA in the exponential growth phase is mildly inactivated 
when treated with 300 or 600 nanosecond pulses with an electric field strength of 28 
kV/cm, the maximum field we could reach with our setup. The inactivation observed is 
in line with previously completed studies on other Gram-positive bacterial species (57, 
58). A previous study investigating the effects of 300 ns pulses on S. aureus viability 
showed an inactivation amount of 0.2 log10 reduction using 1,000 pulses at 20 kV/cm 
(58). These published results in addition to our own support the well-established notion 
that bacteria are more resilient to PEF than mammalian cells. Additionally, our results 
indicate that MRSA biofilms are more resistant to nsPEF than planktonic bacteria. 
This was expected as bacteria in a biofilm structure are well protected due to the 
surrounding extracellular polymeric matrix (EPS). EPS protects encased bacteria from 
the host immune response and prevents antimicrobials from effectively permeating 
into the biofilm structure (96). Previous work on another skin pathogen, Cutibacterium 
acnes, indicated that biofilm-grown cells and intact biofilm were more susceptible to 
inactivation by PEF than free-living planktonic cells (97). This result did not replicate 
with MRSA. This could be due to the bacterial species having different EPS components 
that are more or less conducive to electrical currents or could be due to a more robust 
staphylococcal genetic response to cell envelope damage. The S. aureus biofilm matrix 
is composed largely of polysaccharides and proteins, although the components vary 
over time and differ depending on the nature of the biofilm substrate (98–100). To our 
knowledge, its conductive capacity has never been assessed. Similarly, this organism’s 
transcriptional responses to stresses, including heat shock, cold shock, starvation, DNA 
damage, and oxidative stress, have been documented (101, 102), but to our knowledge, 
the transcriptional response to PEF has not been documented in this or any other 
prokaryotic organism.

When planktonic MRSA is treated with both nsPEF and sub-lethal concentrations 
of clinically relevant antibiotics, we see more robust bacterial killing by the combinato
rial treatment than by either treatment administered as monotherapies. In the case 
of daptomycin, the relative order of nsPEF and antibiotic application is unimportant, 
as prior nsPEF treatment sensitizes cells to antibiotics, and prior antibiotic treatment 
appears to sensitize cells to nsPEF. This is consistent with a model in which nsPEF and 
daptomycin are both primarily active at the cell membrane, such that their effects 
reinforce each other regardless of which stress the cell encounters first. Excitingly, 
combination with nsPEF gives 2 µg/mL of daptomycin the same efficacy as 8 µg/mL 
of daptomycin applied alone. Doxycycline was modestly enhanced by combination with 
nsPEF, although the efficacy of dual therapies depended on the order of administration. 
nsPEF treatment modestly sensitized MRSA to doxycycline but the antibiotic did not 
substantially sensitize the bacteria to subsequent nsPEF exposure. Similarly, pre-treat
ment with vancomycin did not sensitize MRSA to nsPEF but a prolonged exposure to 
the antibiotic after nsPEF greatly increased the efficacy of the combined treatment. Our 
results also show that nsPEF did not sensitize MRSA to methicillin, suggesting that nsPEF 
will not stimulate a response to an antibiotic to which the bacteria are already resistant. 
However, mechanisms of resistance involving membrane proteins such as efflux pumps 
may be impacted by permeabilization of the cell plasma membrane by nsPEF.

Our results suggest that nsPEF administered to surface-accessible SSTIs could lower 
the effective dose of antibiotics needed to treat an infection, allowing more effective 
treatment without increasing the dose of antibiotic administered and risk of amplified 
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side effects. By reducing the dose of antibiotic necessary to be effective, co-treatment 
with nsPEF could amplify the effects of standard antibiotic dosing to treat S. aureus 
infections, reducing the risk that tolerant persister cells could survive treatment and 
cause recurrent infection.

Future research will focus on testing the efficacy of nsPEF in vivo in a mouse model 
of SSTI. A range of PEF amplitudes and durations will be tested to minimize damage 
to healthy tissue and muscle contraction. If these results are replicated in animal and 
human studies, nsPEF co-treatment could allow the treatment of suitable infections 
with lower antibiotic doses, reducing drug side effects. SSTIs are accessible to physical 
intervention and are good candidates for nsPEF co-treatment, which could be adopted 
as a step-in wound and abscess debridement. Notably, the CellFX pulse generator used 
in our experiments has already received clearance from the FDA, Europe, and Canada for 
the treatment of benign skin lesions.

Much more work will be needed before such possibilities can be realized, but here 
we report that nsPEF in combination with antibiotic treatments not only increases 
bacterial inactivation but also reduces the concentration of antibiotics necessary for 
disinfection. Additionally, this is the first time that it has been shown that the order of 
antibiotic/PEF administration is important in bacterial inactivation, which will influence 
future treatment design.
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