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ABSTRACT 

DATA-DRIVEN PREDICTIVE MODELING TO ENHANCE SEARCH 

EFFICIENCY OF GLOWORM-INSPIRED ROBOTIC SWARMS IN MULTIPLE 

EMISSION SOURCE LOCALIZATION TASKS  

 

Payal Nandi 

Old Dominion University, 2023 

Director: Dr. Krishnanand N. Kaipa 

 

 

In time-sensitive search and rescue applications, a team of multiple mobile robots broadens 

the scope of operational capabilities. Scaling multi-robot systems (< 10 agents) to larger 

robot teams (10 – 100 agents) using centralized coordination schemes becomes 

computationally intractable during runtime. One solution to this problem is inspired by 

swarm intelligence principles found in nature, offering the benefits of decentralized control, 

fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm 

optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses 

on searching for multiple targets. This thesis presents GPR-GSO—a modification to the 

GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven 

predictive modeling—to improve the search efficiency of robotic swarms in multiple 

emission source localization tasks. The problem formulation and methods are presented, 

followed by numerical simulations to illustrate the working of the algorithm. Results from 

a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the 

benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, 

and travel distance.      
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CHAPTER I 

INTRODUCTION 

1.1 Background and Motivation 

Autonomous mobile robots are increasingly being deployed in search and rescue missions, 

especially those involving significant risk to humans, in recent years [1]. Examples of such 

critical tasks include humanitarian demining [2], handling nuclear waste [1], and localizing 

sources of emissions such as chemical, gas, and nuclear leaks [2]. Such time-sensitive 

applications can benefit from a team of multiple mobile robots to broaden the scope of 

operational capabilities. The search task considered in this thesis consists of localizing a 

group of multiple emission sources randomly distributed in a physical two-dimensional 

space. Missions demanding simultaneous searches over landscapes covering vast areas 

require scaling the size of multi-robot systems (< 10 agents) to larger robot teams (10 – 100 

agents). Centralized control and coordination schemes do not scale well to such large teams 

as they become computationally intractable during the runtime of the search mission. One 

solution to address this problem is inspired by swarm intelligence [14] principles found in 

nature, offering the benefits of decentralized control, fault tolerance to individual failures, 

and self-organizing adaptability [8-9]. Glowworm swarm optimization (GSO) is unique 

among swarm-based algorithms as it simultaneously focuses on searching for multiple 

targets [4-7]. However, GSO is a model-free algorithm in that the decision-making of the 

members in the swarm does not rely on the underlying model of the landscape of the 

emission sources. Instead, movement-decisions of each member are strictly based on the 

measurement of the emission at its location and measurements communicated by other 

members in a local neighborhood.  
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1.2 Thesis Contributions 

One of the primary contributions of this thesis is based on the premise that the search 

efficiency of a robotic swarm can be enhanced by real-time modeling of the emission 

landscape based on the information gathered (measurements made) by the swarm members 

as they move along the search process. Consequently, this thesis presents GPR-GSO—a 

modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) 

based data-driven predictive modeling—to improve the search efficiency of robotic swarms 

in multiple emission source localization tasks. The problem formulation and methods are 

presented, followed by numerical simulations to illustrate the working of the algorithm. 

Results from a comparative analysis show that the GPR-GSO algorithm exceeds the 

performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search 

completion time, and travel distance. 

1.3 Related Work: Robotic Algorithms for Multiple Emission Source Localization 

Related to the topic of robotic algorithms for multiple emission source localization, 

researchers have tackled a broader problem in the field of multimodal optimization, where 

the goal is to locate all local optima of a function without knowing its gradient [2]. This 

complexity becomes even more pronounced in the context of robotic multisource 

localization, where practical limitations such as communication constraints, sensing 

capabilities, data storage, and robot platform design significantly impact the computational 

complexity of potential strategies. Moreover, the nature of the emission sources plays a 

critical role in determining the search performance, as different emissions, such as 

chemicals, light, sound, RF waves, and radioactivity, exhibit distinct emission profiles 

affected by the environment [2]. Research in this area has led to the development of general 
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solutions to the multisource problem, considering various approaches. One group of 

algorithms draws inspiration from classical hill climbing or gradient ascent techniques [2], 

while another is inspired by the behavior of biological systems like bacterial colonies or 

swarms [27]. A third family employs probabilistic methods, including Bayesian occupancy 

grids and Bayesian filtering techniques [28,29]. These general solutions aim to address the 

challenge of allocating network resources to simultaneously find an unknown number of 

emission sources in a given environment, distinguishing this task from traditional target 

observation scenarios where known targets are tracked. 

It is worth noting that the strategies employed for coverage exploration and 

environmental monitoring with mobile robotics systems are related to multisource 

localization but do not offer a complete solution, as they often deal with sensing regions and 

limited spatial information. The survey presented by McGill and Taylor [2] discusses 

relevant works [30-40] that contribute to this evolving field, exploring methods that enable 

real-time modeling of the emission landscape based on information gathered by the swarm 

members during the search process. The survey’s findings and insights from other related 

research collectively advance our understanding of decentralized control and coordination 

principles inspired by swarm intelligence, offering benefits such as fault tolerance, 

adaptability, and improved performance in challenging and time-sensitive applications like 

search and rescue missions involving multiple emission sources. 

The techniques developed in this thesis were primarily motivated by the success of 

the Bayes Swarm algorithm in decentralized path planning for autonomous vehicles [8] [9]. 

In this research, authors investigated the potential of the Gaussian process model (GPM) to 

enhance the performance of the Glowworm Swarm Optimization (GSO) algorithm for path 

planning in underwater environments. The authors investigated Bayes Swarm [8] [9] 
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algorithm to understand its strengths and showed that it outperforms traditional algorithms 

such as random walk. The Bayes Swarm is a decentralized algorithm that extends Gaussian 

process modeling and integrates physical robot constraints and other robots' decisions to 

perform informative path planning while mitigating knowledge uncertainty. Additionally, 

the authors simulated a parallelized implementation of Bayes Swarm to allow asynchronous 

search planning over complex multi-modal signal distributions. Their experimental results 

showed that Bayes Swarm outperforms GSO, prompting us to incorporate GPM for 

predictive modeling in GSO and analyze its performance. 

In the realm of swarm robotic systems (SRSs) [1], search and tracking algorithms 

play a pivotal role in efficiently locating and monitoring targets. As discussed in the survey 

article [1], two main categories of algorithms have been explored: those inspired by swarm 

intelligence (SI) and those based on other methods. The SI algorithms exhibit a natural fit 

for SRSs due to their emphasis on decentralized local control, local communication, and the 

emergence of global behavior through self-organization. Consequently, many existing 

search and tracking algorithms for SRSs have been derived from prominent SI algorithms. 

One such algorithm that finds application in both SI and swarm robotic systems is the 

Particle Swarm Optimization (PSO) [15], [16], [17]. Initially developed to simulate flocking 

behavior in birds, PSO models potential solutions as particles that move through a search 

space towards positions where optimal results are achieved. In the context of swarm robotics 

[12], [13], each robot is mapped to a particle, and distributed methods are employed to 

approximate global solutions due to real-time constraints and NP-completeness of 

optimization problems. PSO has been successfully adapted for multi-modal problems by 

utilizing multiple swarms, such as the Species-based PSO (SPSO) [18] and Niching PSO 

(NichePSO) [19], which locate multiple optimal solutions for multi-modal optimization 
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problems. One notable search algorithm for multi-target localization is the Multi-Robot 

Particle Swarm Optimization (MR PSO) proposed in [23]. The algorithm is designed to find 

a known number of stationary targets within an indoor environment. Each target is equipped 

with a mobile phone emitting RF signal, and robots are equipped with sensors to detect these 

signals. At the beginning of the search, each robot is assigned to a specific target, forming 

subswarms that stay in their local neighborhood throughout the search. These subswarms 

exchange the best detection positions with each other. The algorithm also uses an adaptive 

Received Signal Strength (RSS) weighting factor in the velocity calculations to slow down 

the robot as it approaches the target, reducing overshooting. 

Another notable algorithm, the Bees Algorithm (BA) [24], models the foraging 

behavior of a bee colony to locate the richest and closest food sources. Gaussian Process 

Regression versions of the BA, such as the Distributed Bees Algorithm (DBA) [25, 26], 

have been designed for multi-target search and coverage in unknown areas. In the DBA, 

robots in the swarm distribute themselves based on target fitness, where higher quality 

targets attract more robots. The DBA overcomes the centralization and lack of collective 

component issues in the original BA by employing a distributed approach, allowing robots 

to communicate and calculate their utilities with respect to different targets. The survey 

article provides valuable insights into various search and tracking algorithms for swarm 

robotic systems, addressing different challenges such as multi-modal optimization and 

target search in unknown environments. By drawing connections between SI algorithms and 

swarm robotic systems, researchers have been able to adapt and apply these algorithms 

effectively to address complex search and localization tasks. The exploration of such 

algorithms offers promising avenues for enhancing the search efficiency of robotic swarms 

in multiple emission source localization tasks as discussed in [22] and other relevant works 
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referenced in the survey.  

Another algorithm, the Clustering PSO (CPSO), is presented in [20]. It is aimed at 

addressing dynamic optimization problems were locating and tracking multiple changing 

optima over time is essential. CPSO starts from an initial swarm, the "cradle swarm," and 

uses a hierarchical clustering method to create subswarms. Each subswarm is assigned to 

different promising subregions, and the number of subswarms is adaptively adjusted based 

on the number of targets and automatically calculated for each subswarm. Though CPSO 

has not been implemented on a robotic system, it shows promise to be adapted into an SR 

algorithm. 

Bacterial Foraging Optimization (BFO) was proposed as a multimodal function 

optimization algorithm inspired by the chemotactic behavior of bacteria such as E. coli in 

environments with nutrients [21]. BFO has been applied to chemical concentration map 

building, where a multi-robot system (MRS) searches an unknown area to find the region 

with the highest chemical gas concentration and build the concentration map. The algorithm 

has proven effective for multiple target tracking and has been tested on moving peaks 

benchmark problem [1]. 

Overall, these algorithms show promise for swarm robotic systems' search and 

tracking tasks, with each having its strengths and weaknesses. Further research on this topic  

will continue to improve their effectiveness and efficiency in real-world applications. 

Informed by a thorough survey of the literature in swarm robotic algorithms for search tasks, 

we investigated the proposed modification to the Glowworm swarm optimization (GSO) 

algorithm, called GPR-GSO, that incorporates Gaussian Process Regression (GPR) based 

data-driven predictive modeling, and its potential to improve the search efficiency of robotic 

swarms in multiple emission source localization tasks.  
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CHAPTER II 

PROBLEM FORMULATION 

2.1 Cooperative Search Task: Multiple Emission Source Localization by a Robotic 

Swarm 

The search task considered in this thesis consists of using a swarm of mobile robots to carry 

out a coordinated search and localize a group of multiple emission sources randomly 

distributed in a physical two-dimensional space. The different aspects—emission sources, 

robot movement models, and search/coordination strategies—of the problem can be 

formalized as follows.   

2.1.1 Emission Sources  

Examples of emission sources in potential applications include light, sound, 

chemical/nuclear leaks, origins of fires, etc. [2]. In particular, the emission sources 

considered in this thesis have the following properties:  

1. Each source is assumed to emit (radiate, release, discharge, etc.) a signal (light, 

odor, chemical, etc.) and generate an emission landscape such that the intensity of 

the signal is maximum at the source and decays monotonically with distance from 

the source. 

2. The number of emission sources spread in the environment are unknown. 

3. The sources are randomly distributed in the search space. Therefore, the inter-

source distances are assumed to be unknown. 

4. It is assumed that there are no external disturbances (wind, obstacles, etc.), 

distorting the profile of the emission landscape. Therefore, the emission source 

landscapes considered in this thesis can be mathematically modeled by continuous 
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multimodal functions. One example is the Peaks function [63] MATLAB also 

provides a predefined function for the same: 

 

 

Figure 1. Properties of emission sources 

 

2.1.2 Robotic Swarm Model 

The robotic swarm is assumed to consist of a collection of N mobile robots that move in 

two-dimensional (2D) space. The kinematics and dynamics associated with real mobile 

robots deployed in a practical scenario are ignored, since the thesis is primarily focused on 

investigating the role of robots’ decision-making mechanism in enhancing the search 

efficiency of the swarm. Accordingly, a simple point robot model is used to model the 

movements of robots in the swarm. In particular, the following assumptions are considered 

in the point-robot model: 

• Each robot is free to move in any direction in a two-dimensional space R2   
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• A robot’s movements are discrete in nature. That is, each robot moves a fixed 

distance s at each step or iteration of the search process. 

2.1.3 Search and Coordination Strategies  

After a thorough literature survey of swarm robotic algorithms that have been developed for 

multiple emission source localization tasks, the glowworm swarm optimization (GSO) is 

chosen as the baseline algorithm to generate the search and coordination strategies of robots 

in the swarm. The choice of GSO is primarily motivated by its ability to address the problem 

of source multiplicity directly via adaptive splitting of swarm into subswarms.   

2.1.4 Data-driven Modeling to Enhance Search Efficiency of the Robotic 

Swarm 

Note that GSO is a model-free algorithm in that the decision-making of the members in the 

swarm does not rely on the underlying model of the landscape of the emission sources. 

Instead, movement-decisions of each member are strictly based on measurement of the 

emission at its location and measurements communicated by other members in a local 

neighborhood. Consequently, one of the primary contributions of this thesis is based on the 

premise that the search efficiency of the robotic swarm can be enhanced by real-time 

modeling of the emission landscape based on the information gathered (measurements 

made) by the swarm members as they move along the search process.  

2.2  Specific Aims 

The goal of this thesis is to use data-driven modeling to enhance the search efficiency of 

swarm robotic algorithm used for localization of multiple emission sources.  

▪ Specific Aim #1. Devise a modification to the glowworm swarm optimization 

algorithm architecture to incorporate a real-time data-driven modeling of the 
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emission landscape and leverage such estimated information to guide the 

movement-decisions of the swarm members during their search for multiple 

emission sources.  

▪ Specific Aim #2. Investigate the efficacy of the Gaussian Process Regression 

glowworm swarm optimization (GPR-GSO) algorithm by performing a 

comparative analysis with GSO as the baseline algorithm using metrics of swarm 

size, search completion time, and travel distance of robots.   
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CHAPTER III 

METHODS 

As described in Chapter II, the primary thesis objective is to investigate the search efficiency 

of the GSO algorithm modified by incorporating data-driven modeling to guide the 

movement decisions of a swarm of robots deployed to localize a set of multiple emission 

sources. The proposed approach of modeling the emission source landscape in real time as 

the swarm members move along the search process is implemented using the Gaussian 

Process Modeling (GPM) technique. As the GSO algorithm serves as the baseline swarm 

search and coordination technique, a summary of the algorithm follows next.   

3.1. GSO Algorithm 

 In GSO, a swarm of Glowworms are initially randomly distributed in the search space. 

Glowworms are modeled after glowworms. Accordingly, they carry a luminescent quantity 

called luciferin along with them. The glowworms emit a light whose intensity is proportional 

to the associated luciferin and interact with other Glowworms within a variable 

neighborhood. In particular, the neighborhood is defined as a local-decision domain that has 

a variable neighborhood range bounded by a radial sensor range 𝑟𝑠(0 < 𝑟𝑑
𝑖 ≤ 𝑟𝑠). A 

glowworm i considers another glowworm j as its neighbor if j is within the neighborhood 

range of i and the luciferin level of j is higher than that of i. The decision domain enables 

selective neighbor interactions and aids in formation of disjoint sub-swarms. Each 

glowworm is attracted by the brighter glow of other glowworms in the neighborhood. 

Glowworms in GSO depend only on information available in their neighborhood to make 

decisions.  
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3.2. GPR- GSO Algorithm 

The core idea behind the GPR-GSO algorithm is that members of the swarm can leverage 

the information (e.g., emission intensity measurements) they gather at visited sites to guide 

their movements in a manner that helps them localize the emission sources faster than is 

possible with a model-free approach, where members use their individual measurement and 

purely local information obtained from neighbors to decide their movements. In particular, 

the information gathered by the swarm members can be data-mined to generate a surrogate 

of the underlying multimodal function profile of emission landscape, which holds 

knowledge of approximate number of emission sources and their locations in the two-

dimensional environment. Such information can assist swarm members in refining their 

search by biasing their movements with estimated directions to nearby emission source 

locations. The emission source direction estimates can be noisy during the initial phase of 

the search process. However, the accuracy of the modeled emission landscape improves 

with increase in the data accumulated by the swarm members as they travel from one site to 

another, resulting in increasingly better guidance of the member movements toward the 

emission sources. The proposed approach of modeling the emission source landscape during 

runtime as the swarm members move along the search process is implemented using 

Gaussian Process Models (GPMs) that are trained on data comprising input/output pairs of 

swarm member locations and their emission source measurements at their locations. This 

training data serves as the set of discrete observations of the prior unknown continuous cost 

function, underlying the physical landscape of emission sources. The MATLAB Peaks 

function 𝑧 = 3 ∗ (1 − 𝑥).2 .∗ exp(−(𝑥.2 ) − (𝑦 + 1).2 ) − 10 ∗ (
𝑥

5
− 𝑥.3− 𝑦.5 ) .∗

exp(−𝑥.2− 𝑦.2 ) − (
1

3
) ∗ exp(−(𝑥 + 1).2− 𝑦.2 ) is considered as the cost function for the 
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study in this thesis. The GPM provides a surrogate (estimate) of the cost function with a 

certainty bound of 95%. This estimated cost function can be used to generate a continuous 

mean function, which consists of all the estimated local and global peaks. The local and 

global peaks can be extracted using a local max filter. The extracted peaks information is 

exploited by each swarm member to locally compute a source-direction vector, which 

represents a unit direction vector toward its nearest estimated emission source. At every 

iteration of the GPR-GSO algorithm, each swarm member now moves in a direction that is 

obtained as a weighted sum of the unit direction vectors provided by GSO (surrogate local 

gradient vector) and GPM (source-direction vector) computations, respectively. Swarm 

members guided by such modified directions are expected to enhance their search process 

and converge to the nearby emission sources rapidly. A summary of the GPM technique is 

described next.  
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Figure 2. Schematic of GPR-GSO algorithm 

 

A Gaussian process (GP) is a probabilistic model that defines a distribution over functions, 

where the goal is to make predictions or estimates based on observed data. The training 

Gaussian process involves two main steps: specifying a prior and updating the model with 

observed data to obtain a posterior distribution. 

3.2.1 Gaussian Process Models (GPMs) 

A Gaussian process (GP) is a probabilistic model that defines a distribution over functions, 

where the goal is to make predictions or estimates based on observed data. The training of 

a Gaussian process involves two steps:  

1) Specifying a prior model distribution. A prior is defined by specifying a mean 

function and a covariance function (also called as kernel function). In our method 

we used a squared kernel function. The mean function represents the expected value 

of the function at any given input point. It is typically set to zero or a constant value. 
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The covariance function determines the similarity between function values at 

different input points. It quantifies the correlation between observations based on 

their input locations. 

2) Updating the model with observed data to obtain a posterior distribution. 

Given a set of observed input/output pairs {[𝑥𝑖(𝑡),  𝑦𝑖(𝑡),  𝑧𝑖(𝑡)]:  𝑖  =

 1,  2,  . . ,  𝑛}, where 𝑧𝑖(𝑡) is the emission intensity measurement made by 

robot 𝑖 at its location  (𝑥𝑖(𝑡),  𝑦𝑖(𝑡)) at iteration 𝑡 . The goal is to update the 

prior distribution to obtain a posterior distribution that incorporates the 

observed data. The posterior distribution is computed using Bayes' rule, 

which involves multiplying the prior distribution by the likelihood of the 

data. The likelihood is determined by assuming that the observed data points 

are drawn independently from a Gaussian distribution with a mean predicted 

by the GP and a noise parameter. The posterior distribution of a GP is also a 

Gaussian distribution, and it can be fully characterized by its mean and 

covariance functions. Once the GP is trained, it can be used for prediction or 

estimation. Given a new input point, the GP provides a predictive distribution over 

the corresponding output value, which is typically, a Gaussian distribution centered 

around the predicted mean with a variance that represents the uncertainty of the 

prediction.   

3) Local Max Operator 

The local max operator offers a numerical approximation method to identify a peak within 

a specified local neighborhood of an objective space. It is applied to identify all the peak 
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estimates of the predicted cost function generated by the GPM. The method works by 

considering a discrete 2D grid of the objective space and setting a grid point as a local peak 

if the function value at that point is greater than equal to that of all its eight neighboring grid 

points (two grid point neighbors along 𝑥 axis, two grid point neighbors along the 𝑦 axis, and 

four grid points neighbors along the diagonals). Mathematically, let's consider a function 

𝑓(𝑥). The local maximum occurs at a point 𝑥  =  𝑐  if the following conditions are satisfied: 

• 𝑓(𝑐)  ≥  𝑓(𝑥) ∀ 𝑥  ∈  (𝑐 − 𝛿,  𝑐 + 𝛿) where δ is a small positive number. 

• 𝑓′ (𝑐)  =  0  or 𝑓′ (𝑐) is undefined. 

• 𝑓′(𝑥)  <  0 for 𝑥  <  𝑐  and 𝑓′(𝑥)  >  0 for x      
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Figure 3. Workflow of GPM 
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Figure 4. Predicted plots with uncertainty and trained data 
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Figure 5. Local max function 

 

3.3. Evaluation Metrics 

A comparative analysis was performed using the original GSO as the benchmark algorithm. 

The metrics used to evaluate the algorithmic performance are defined below:  

• Iterations for Convergence is defined as the number of iterations taken by an 

Glowworm to travel from its initial location and converge at one of the emission 

source locations.  

• Path Length-to-Euclidian Distance Ratio. Given the initial and final locations of 

a glowworm, let the Euclidean distance 𝒅∈ represent the shortest distance between 

them. Let path length 𝒅𝒑 of a glowworm be defined as the distance traveled along 

its path from its initial location to final location. Now, the path length-to-Euclidean 

distance ratio is given by 𝝆  =  
𝒅𝒑

𝒅∈
. Note that for comparison purpose. Glowworms 

in both algorithm implementations of GSO and GPR-GSO, the initial locations of 

all glowworms are kept same.   

• Source Localization Error. To analyze the accuracy of the predicted location of 

each emission source, the estimated source locations were sorted based on the 

respective local peak intensity values and matched with the nearest true peaks 

(emission source locations). Peaks at the edges were eliminated as the emission 

sources are assumed to be located interior of the search space. Now, the source 
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localization error of each estimated source location is computed as its Euclidean 

distance from the location of the nearest true emission source.   

• Swarm Size is defined as the minimum number of glowworms needed to find all 

the emission sources for a specified accuracy defined in terms of the source 

localization error. 
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CHAPTER IV 

EXPERIMENTAL VALIDATION 

In this chapter, I present results from a series of numerical simulations conducted to validate 

the techniques developed in this thesis. In particular, experiments are performed in support 

of accomplishing the specific aims formulated in Chapter II. First, experimental results are 

presented to illustrate the algorithmic steps of GSO that serves as a benchmark technique to 

carry out the task of multiple emission source localization. Second, experimental results are 

presented to illustrate the algorithmic steps of GPR-GSO to perform the same localization 

task. Third, results from a comparative analysis are presented in which the performance of 

GPR-GSO is compared with that of GSO on various metrics (e.g., swarm size, number of 

iterations for convergence, Euclidean distance-path length ratio, etc.) developed as a part of 

methods in Chapter III.    

4.1 GSO for Multiple Emission Source Localization Tasks 

The experiments in this section illustrate the working of GSO by showing its algorithmic 

steps in the context of a multiple emission source localization task. The MATLAB Peaks 

function is chosen to represent the landscape of the multimodal emission source profile. 

Note that the function profile consists of three emission sources (local peaks) at the locations 

-0.0093,1.5814, 1.2857,0.0048, and -0.46, -0.6292, respectively. Hereafter, Glowworms in 

GSO are referred to as glowworms. Figure 5 shows the paths traced by fifty glowworms as 

they navigate from their initially deployed locations, search through the landscape, and 

eventually converge to the emission sources. Next, the evolution of the path traced by one 

of the glowworms (A07), as shown in Fig. 6, is described to illustrate the algorithmic steps 

(e.g., formation of adaptive neighborhoods, movement directions of individual glowworms, 
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etc.) of GSO. Figure 6 depicts the path taken by Glowworm A07 in the Glowworm Swarm 

Optimization (GSO) algorithm. from its initial position to the goal. The figure illustrates the 

movement and navigation capabilities of Glowworm A07, highlighting its trajectory 

towards the desired objective within the landscape.  

Figure 7b showcases the deployment of Glowworm A07 in the GSO algorithm, with 

a highlighted red circle representing its radial sensor range. Figure 7c showcases the 

beginning of next iteration of Glowworm A07, with two red circles representing its 

increased radial sensor range. Figure 7d showcases the vectors joining Glowworm A07 to 

the neighbors. 
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We can observe that Glowworm A07 successfully reaches emission source 01 after 

approximately 140 steps. Each iteration of GSO consists of three steps. Figure 7b shows 

the first step of iteration-zero, comprising the initial deployment of Glowworm A07, its 

initial radial neighborhood, and the location of emission sources in the landscape. In the 

figure, the initial position of Glowworm A07 is shown as a red-colored star and the source 

locations are shown as red-colored circles, and the radial neighborhood is shown as a pink-

colored circle. Note that there is a glowworm (black dot) present in the neighborhood of 

Glowworm A07. 

Figure 6. Glowworm Swarm Optimization (GSO) 
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Figure 7. Path taken by Glowworm A07 in the GSO algorithm 

  

However, it fails to meet the criteria of a neighbor based on luciferin value. Since, A07 is 

neighbor-less at initial deployment, the remaining two steps of the first GSO iteration are 

not executed. As a result, Glowworm A07 remains stationary. In a similar manner, all other 

glowworms without any neighbors remain stationary. Figure 6c illustrates the first iteration 

in which the neighborhood of Glowworm A07 expands and two new neighbors (blue-

colored stars) are found as a result. Figure 6d shows Glowworm A07’s movement direction 

toward its leader, which corresponds to one of its neighbors N02. The leader glowworm's 

movement direction is indicated by the blue arrow, while Glowworm A07's movement 
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toward N02 is represented by a red arrow. Figure 7 shows Glowworm A07 taking a step to 

its leader. 

 

 

 

Figure 8. Movement of Glowworm A07 as it takes a step toward its leader 

 

In Figure 8, Glowworm A07 in the GSO exhibits a new sensor radius (8a) 

showcasing its adaptive nature; the vectors joining Glowworm A07 to its neighbors are 

shown in 8b, and 8c shows Glowworm A07 moving into position P2, following the 

completion of Step 1 in this iteration.   

As a result, the neighborhood range (Rd_3) of Glowworm A07 increases, expanding 

its perception of the surrounding landscape. This expanded neighborhood range enables 

Glowworm A07 to identify a new neighbor (N03), which is depicted as a blue star. Figure 
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9a marks the beginning of the second iteration. At this stage, Glowworm A07 increases its 

radial sensor radius (Rd_3), extending its reach to a wider area of the landscape. The figure 

highlights the adaptive nature of the GSO algorithm, as the sensor radius dynamically 

adjusts based on the number of neighbors detected in the previous iteration. In this iteration, 

Glowworm A07 detects a new neighbor (N03) within the expanded range, as shown by the 

blue star. In Figure 9b, the lines connecting Glowworm A07 to all its neighbors represent 

the evaluation of potential movement directions. Glowworm A07 evaluates the luciferin 

values of its neighbors to determine the most favorable direction for movement shown in 

Figure 4.4b. Among the three neighbors, Glowworm A07 selects the direction towards 

neighbor N02, which concludes the second iteration of Glowworm A07. Figure 9c presents 

a comprehensive overview of the details discussed above, showcasing the completion of the 

iteration and the movement of Glowworm A07 towards its intended source. This iteration 

demonstrates the progress made by Glowworm A07 in reaching its optimal peak, as guided 

by the GSO algorithm. By observing the movement of Glowworm A07 and its convergence 

towards the intended source, we gain valuable insights into the effectiveness of the 

algorithm in navigating the landscape and finding optimal solutions. 
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Figure 10 illustrates the beginning of the third iteration. At Step 1, Glowworm A07 remains 

in position A07P4, the location it reached in the previous iteration. Glowworm A07 now 

focuses on increasing its neighborhood radius, allowing for a broader perception of the 

landscape. The increment in the neighborhood radius is proportional to the number of 

neighbors detected in the previous iteration, as explained in Chapter 3. This adaptive 

adjustment ensures that Glowworm A07 can gather more comprehensive information about 

its surroundings, potentially uncovering new neighbors that were previously beyond its 

reach.  

Figure 9. Glowworm A07’s steps toward the lead neighbor 
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Figure 11. Glowworm A07 exhibits a new sensor radius, showcasing its adaptive nature 

at the beginning of Iteration 3 

Figure 10. Glowworm A07 in the GSO showcases movement toward the lead neighbors. 

Positions of neighbors are depicted in the middle-zoomed section in blue. Positions of 

Glowworm A07 are highlighted in red in the last section. 
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In Figure 11 Glowworm A07 in the GSO showcases movement towards the lead neighbors. 

Positions of neighbor towards N04 are depicted in the middle-zoomed section in blue. 

Positions of Glowworm A07 is highlighted in red in the last section. The zoomed-in section 

of the figure provides a clear view of the position changes occurring at each iteration, 

allowing for a detailed analysis of Glowworm A07's progress. We also, observe all the 

possible new movement directions that Glowworm A07 can take. This figure showcases the 

exploration and evaluation of different movement options based on neighboring 

glowworms.  The figure provides a comprehensive visual representation of the evaluation 

process, highlighting the diverse options available to Glowworm A07 and emphasizing the 

algorithm's ability to adapt and consider multiple paths towards optimal solutions. By 

zooming in on the movement of Glowworm A07 and its neighbors, the figure provides a 

detailed view of the incremental steps taken by Glowworm A07 and the corresponding 

adjustments made by other neighboring glowworms. This visualization allows us to track 

the convergence process and observe the interplay between Glowworm A07 and its 

surroundings, indicating the algorithm’s progress in converging towards optimal peaks.  

Moving on to Figure 12a Glowworm A07 initiates another iteration. At Step 1, while 

remaining at position A07P4, Glowworm A07 once again increases its sensor radius to 

expand its perception of the landscape. However, in this particular iteration, we observe 

only a slight increase in the radius, which is proportional to the number of neighbors 

detected in the previous iteration. This adaptive adjustment in the sensor radius ensures that 

Glowworm A07 can strike a balance between the exploration of new areas and the 

exploitation of already identified peaks. The figure provides an overview of Glowworm 

A07's position and sensor range, setting the stage for further exploration and potential 

discoveries in subsequent steps. The figure also illustrates all the possible movement 
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directions available to Glowworm A07 for Step 3, which involves selecting the movement 

direction based on the highest luciferin value among the available neighbors. By evaluating 

the luciferin values associated with each potential movement direction, Glowworm A07 can 

make an informed decision about the most promising direction to pursue. Figure 12b 

presents the fourth iteration, focusing on Step 3. Glowworm A07 continues moving towards 

N04, as observed in the previous iterations. The figure highlights the movement of 

Glowworm A07 and its neighbors, allowing us to observe their incremental steps towards 

convergence. For simplicity, only the motion of neighbors and the time when they were 

identified as neighbors are tracked, while the other glowworms are represented as black dots 

are shown at Position 5, which indicates the completion of Iteration 4. This visualization 

provides insights into the algorithm's progress in narrowing down the search space and 

converging towards optimal peaks, highlighting the coordinated movements of Glowworm 

A07 and its neighbors as they approach the desired solutions. By providing a detailed 

analysis of each figure, we gain a comprehensive understanding of the GSO algorithm's 

progression and convergence towards optimal solutions.  
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4.2 GPR-GSO   

Figure 13 provides a comprehensive view of the movement of all 50 glowworms over 100 

iterations using the GPR-GSO algorithm. By referring to Figure 13, we can observe a pattern 

shift compared to the GSO algorithm, as discussed in Section 3.2. This figure allows me to 

analyze the differences in the paths followed by glowworms in both algorithms.  

 

Figure 12. a) Glowworm A07 in the GSO exhibits a new sensor radius, showcasing its 

adaptive nature. A total of five circles increasing the radius, along with a line joining the 

neighbors, b) movements toward the lead neighbor 
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The starting deployed positions are the same as in GSO, generated using the rng function 

[43], enabling a detailed comparison. The algorithm ran for 140 iterations, providing 

insights into the convergence and exploration capabilities of the GPR-GSO algorithm, 

which will help to analyze the difference between the paths followed in both algorithms.  

 

Figure 13. Pathway of all agents demonstrating the work of the Gaussian Process 

Registration Glowworm Swarm Optimization (GPR-GSO) algorithm through a graphical 

representation of its algorithmic steps. This is a visual overview of how glowworms move. 
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Figure 14. The path taken by Glowworm A07 in the GPR-GSO algorithm from its a) initial 

position to the goal illustrating the movement and navigation capabilities of Glowworm 

A07, highlighting its trajectory towards the desired objective within the landscape, b) the 

deployment of Glowworm A07 in the GPR-GSO algorithm, with a highlighted red circle 

representing its radial sensor range, c) the beginning of next iteration of Glowworm A07, 

with two red circles representing its increased radial sensor range, and d) the vectors 

joining Glowworm A07 to the neighbors. 

 

 

Figure 14 displays the path traced by Glowworm A07 using the GPR-GSO. The algorithm 

ran for 140 iterations. But the glowworm converged earlier around 75 steps which was 

achieved by taking a more directed route. Here we can see that the Glowworm A07 in Figure 

14a traversed the path reaching source peak 03, example such as this helps distinguish the  
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subtle but important difference of behavior in the algorithm and how it helps to reach 

convergence with fewer steps.   

Figure 14 represents the initial state of the algorithm, where Glowworm A07 gets 

deployed and scans the surrounding area with the default radial sensor perimeter. In this 

iteration, Glowworm A07 detects one glowworm neighbor, but it fails to meet the criteria 

for considering it as a neighbor. As a result, no movement takes place, and Glowworm A07 

remains stationary. This figure illustrates the initial step of the algorithm, emphasizing the 

importance of neighbor detection and selection in subsequent iterations. Moving to Figure 

14c, we observe Glowworm A07 remaining in its previous position as the first iteration's 

Step 1 begins. Glowworm A07 updates its sensor radius Rd_1 and successfully detects two 

neighbors. This figure showcases the initial steps of the algorithm, highlighting the neighbor 

detection process and the expansion of Glowworm A07's awareness of its surroundings. 

Figure 14d focuses on Step 2 of the first iteration. In this step, Glowworm A07 evaluates all 

the possible directions to move based on the information gathered in the previous step. This 

figure visually represents the exploration of movement options, providing a comprehensive 

view of the potential paths Glowworm A07 can take in its search for optimal peaks.  
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Moving forward to Figure 15a, we delve into Step 3 of the first iteration. This step involves 

considering the information derived from the GP model and a local maxima finding 

algorithm. The figure represents this information as an informed vector, which points 

towards the bottom of the landscape and away from the known peaks' locations. This 

behavior arises from the GP model's training, where the glowworms are initially deployed 

Figure 15. Glowworm A07 in the Gaussian Process Regression Glowworm Swarm 

Optimization (GPR-GSO) algorithm, a) the informed vector guiding its movement 

towards the nearest peaks, as well as the connection lines representing its 

neighboring agents, b) Glowworm A07 moves along weighted resultant vector, c) 

in the beginning of next iteration a third sensor is visible, and d) the lines joining 

the neighbors. 
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at a distance, and the covariance is proportional to the data's position. As the figure depicts, 

the prediction improves in subsequent iterations, leading to more accurate informed vectors. 

Figure 15b showcases the final step (Step 4) of the first iteration. Glowworm A07 can be 

seen moving a unit distance between N02 and the informed vector in the direction of 

weighted resultant vector highlighted in purple. The algorithm aims for Glowworm A07 to 

be equally influenced by the informed vector while also considering its leader. The weight 

of influence is determined based on the required situation and can be defined using 

convexity. This figure provides insights into the movement strategy of Glowworm A07 and 

its coordination with neighboring Glowworms. In Figure 15c, the second iteration begins 

with Glowworm A07 increasing its radial sensor perimeter Rd_02 from its new position, 

A07P2. The increment in the sensor radius is relatively smaller compared to the previous 

iteration. As Glowworm A07 already had two neighbors, the first step successfully identifies 

a new neighbor, N03. This figure emphasizes the adaptive nature of the algorithm, where 

the sensor radius dynamically adjusts based on the number of neighbors detected in the 

previous iteration. Figure 15d focuses on Step 2 of the second iteration. In this step, again 

the Glowworm A07 evaluates all the possible movement directions based on the available 

information. The figure represents the exploration of movement options, providing an 

overview of the potential paths Glowworm A07 can consider for its subsequent movement.  
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Figure 16. a) Glowworm A07 in the GPR-GSO algorithm, depicting the informed vector, 

as well as the connection lines representing its neighboring glowworms, b) movement 

towards the WRV, c) beginning of new iteration, d) lines joining the neighbors. e) the 

updated informed vector, and f) depicting the movement toward the WRV. 
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In Figure 16a, Step 3 of the second iteration takes place. Glowworm A07 considers the 

information provided by the informed vector, which points towards the peaks nearest to its 

current position. This time, the estimation has significantly improved compared to the 

previous iteration, indicating the effectiveness of the training process taking into global 

information. This figure highlights the integration of prediction information into the 

decision-making process of Glowworm A07. 

The final step (Step 4) of the second iteration is showcased in Figure 16b. 

Glowworm A07 decides to move between the direction of N03 and the informed vector, 

following the new updated weighted resultant vector aiming to approach the nearest peak. 

This figure represents the coordinated movement of Glowworm A07 and emphasizes the 

iterative nature of the algorithm in reaching optimal solutions. Figure 16c initiates another 

iteration, where Glowworm A07 remains in position A07P4 and repeats Step 1. The sensor 

radius increment in this iteration is relatively small, and while the step is partially successful, 

no new neighbors are identified, and the previous neighbors remain the same. This figure 

demonstrates the dynamics of neighbor detection and the influence of the sensor radius 

increment on the algorithm’s behavior. Step 2 of the third iteration begins as shown in Figure 

16d. Glowworm A07 decides on the paths to follow based on the available information, 

exploring potential movement directions. The figure provides an overview of the movement 

options considered by Glowworm A07. Figure 16e focuses on Step 3 of the third iteration. 

Glowworm A07 determines Neighbor N01 as the leader glowworm based on the highest 

probability of luciferin value at that situation. Glowworm A07 also considers the updated 

informed vector, which now points accurately towards the peaks after three rounds of 

training. This figure highlights the coordination between Glowworm A07 and its leader, as 

well as the integration of prediction information derived from the GP model. The final step 
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(Step 4) of the third iteration is depicted in Figure 16. Glowworm A07 moves a unit distance 

equally between N01 and the informed vector, which can also be referred to as the ascent 

area. This figure illustrates the movement of all the glowworms from their previous 

positions to their current positions.  

 

 

Figure 17. a) Glowworm A07 in the GPR-GSO algorithm, the beginning of new iteration, 

b) the connection lines representing its neighboring glowworms, c) the informed vector, d) 

the updated informed vector and the movement towards along the WRV. 

 

Figure 17a presents an additional iteration to validate the accuracy of predictions 

using the GPM. As Glowworm A07 moves to position A07P4, Step 1 of the fourth iteration 

begins. Like previous iterations, the glowworm’s movement starts with a small increment, 
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and while it is successful in identifying two new neighbors, no new neighbors are detected. 

Figure 17b highlights the continuous neighbor detection process and the algorithm's 

adaptability based on the sensor radius increment. Next, during the second step of the fourth 

iteration, Glowworm A07 evaluates the luciferin values of the five neighbor glowworms 

and selects N01 as the leader. This figure emphasizes the leader selection process and its 

influence on Glowworm A07's movement decisions. The third step of the fourth iteration 

takes place in Figure 17c. Glowworm A07 considers the updated informed vector, which 

has been trained using the emission values sensed by all glowworms at their positions visited 

during the previous iterations. The figure illustrates an improved accuracy of the informed 

vector in pointing towards the nearest peaks from Glowworm A07’s current position. This 

highlights the improved prediction capabilities of the GP model as it receives more training 

data. Finally, in Figure 17d the movement of Glowworm A07 between the lead neighbor 

N01 and the informed vector is depicted. Glowworm A07 follows the guidance provided by 

the leader glowworm and integrates it with the prediction information to navigate towards 

the nearest peak. This figure illustrates the coordination between Glowworm A07, its leader, 

and the informed vector, emphasizing the iterative nature of the algorithm in achieving 

convergence. These figures collectively provide a visualization of the movement and 

decision-making process of Glowworm A07 and all glowworms in the GPR-GSO 

algorithm. They showcase the algorithm’s adaptive capabilities, exploration strategies, and 

convergence behavior over multiple iterations, highlighting the effectiveness of the 

algorithm in reaching optimal peaks. 
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4.3 Efficiency Analysis 

4.3.1 Path Traces of All Glowworms 

Figures 18 and 19 are crucial in understanding. and comparing the paths taken by 

glowworms in the two algorithms of GSO and GPR-GSO, respectively. These figures 

provide visual representations of the glowworm movements and distribution until the 

estimated peaks are reached. By examining the paths taken by glowworms in both 

algorithms, we can discern the differences in their approaches and assess the impact on 

overall algorithm efficiency. Furthermore, the analysis of glowworm distribution sheds light 

on the variations between GSO and GPR-GSO and how these differences contribute to 

enhanced performance, while gaining valuable insights into the distinct characteristics and 

benefits of utilizing the GPR-GSO algorithm for optimizing peak exploration and 

exploitation. Figure 18 illustrates the paths traveled by all glowworms using the GSO 

algorithm until the estimated peaks are reached. 
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Figure 18. GSO Movements 

  

Comparing this Figure 18 and 19 enables a visual analysis of the disparities between the 

GSO and GPR-GSO methodologies. The variances in glowworm distribution and 

movement patterns provide insights into the potential enhancements in GSO algorithm 
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performance. Notably, the luciferin values derived from neighboring glowworms' estimated 

peaks influence the distribution of glowworms, resulting in a greater number of glowworms 

gravitating towards the peak with the highest value, thereby delaying convergence. These 

figures offer valuable insights for comprehending the advantages and distinctions associated 

with the implementation of the GPR-GSO algorithm in peak optimization tasks. It is worth 

noting that the GP model reaches a high level of accuracy below 0.005 around the 12th to 

13th iteration, and the Weighted Random Vector (WRV) provides more precise directional 

information, hence a diversion can be observed around the region where probability to move 

to either of the peaks nearly equal in terms of distance. Additionally, the way glowworms 

Figure 19. GPR-GSO movements 
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distribute themselves is purely a consequence of the WRV based on their initial deployment 

distance from the estimated peaks, which plays a significant role in enhancing the 

algorithm's efficiency. Notably, the deployment distance from the estimated peaks 

influences the redistribution of glowworms, leading to more effective and efficient 

convergence. These figures provide valuable information for understanding the benefits and 

distinctions of employing the GPR-GSO algorithm in source localization tasks. 

4.3.2 Number of Iterations to Convergence  

The test was run with 50 glowworms both for GSO and GPR-GSO untill all the glowworms 

converge. The GSO algorithm took about 150 iterations for all glowworms to converge, and 

GPR-GSO took about 119 iterations for all 50 glowworms to converge. It also observed that 

as early as 38th iteration, convergence starts taking place in GPR-GSO. In contrast first 

convergence occurs at 58th iteration in GSO. This analysis shows us on an average how 

many iterations were required for 50 glowworms to reach within the 0.1 diameter of the 

respective peaks. Here too, GPR-GSO outperfoms GSO by an average of 23 iterations or it 

is 17.69 % faster than GSO. Mean and standard deviation values are listed in Table 1. 

 

 

 

 

 

Table 1. Mean and Standard Deviation of the GSO and GPR-GSO 

 GSO GPR-GSO 

Mean 92.6800 69.6200 

Std 18.8749 26.2538 
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Similarly, the convergence at distance .04, .06, .08 was also evaluated for a group of fifty 

and hundred glowworms group size, respectively. The convergence of more than fifty 

percent in a group is highlighted in red. Even in case of hundred glowworms, almost fifty 

of them reached the intended location within 30 iterations whereas for GSO alone, it took 

20 steps further to reach the intended location. This again highlights the importance of the 

global information in path planning of the glowworms that can significantly impact search 

performance. Here, both the local and global information are weighted equally. However, 

there is a possibility to leverage the global information to decide the next waypoint that can 

improve performance, while returning to equal weightage as the distance from intended 

source is shorter than 10%, in which case the local information will be more reliable.  

Table 2. Target Radius of GSO and mGSO 
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4.3.3 Path Length 

Figure 21 Path Length Average 

The path traveled by glowworms was analyzed in both GSO and GPR-GSO. The distance 

traveled by each glowworm was calculated by multiplying the number of steps taken to 

converge with the step-length. The glowworms are assumed to converge when they are 
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within 0.01-0.03 units of the emission source for the first time. As mentioned earlier, each 

step is of uniform length. A step size of 0.03 is defined, which means it travels 0.3-unit 

length before identifying a new leader to follow. This parameter can be increased or 

decreased depending how frequently sampling is required. Various step size has been 

experimented starting from 0.9 to 0.01 to understand the impacts of how frequently it needs 

to update and identify a new leader, large step size leads to failure of identifying all the 

peaks and too small step size leads to redundant sampling data, so 0.03 is an optimum step 

size to consider as in our case the search space is -3 x 3. The glowworms landed far away 

from the sources traversed almost equal distance in both cases, but glowworms landed in 

the surroundings and converged quickly in GPR-GSO. The average length of all the 

glowworms in GPR-GSO the traveled is shorter path (define in magnitude and percentage) 

and have a higher possibility to move towards the nears peaks from its deployed location. 

The number of glowworms converged at different iterations which also shows a trend which 

is significantly better than GSO. 

4.3.4 Individual Glowworms traces (path length vs straight line distance)  

The ratio of the distance of the deployed locations of the glowworms to their respective 

peaks over the path length traveled following GSO and GPR-GSO is calculated. The 

closeness to one defines the straightness of the path, and if the ratio is far lesser than one, 

then the lengthier the path was taken to reach the goal. This is based on convergence 

respective to the individual glowworms to their targets, the figure below demonstrates the 

same. 
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Figure 22. Euclidean Distance to Path-length Ratio 

 

 

Figure 23 Average of Euclidean Distance to Path-length Ratio 
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It is clear that the paths traversed by glowworms in GPR-GSO are closer to a straight line, 

while the paths traversed by glowworms are longer in GSO. There are cases where the 

glowworms converge to different target sources in GSO and GPR-GSO. Some of such 

examples are displayed below. 

a. Different target cases 

The figure on the left demonstrates Glowworm A02’s path in GPR-GSO. The figure on the 

right shows Glowworm A02’s path followed in GSO; we can see the glowworm chose to 

move towards Peak 02 initially.  
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Figure 24. Different Targets 
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b. Same target cases 

 

Figure 25. Same Targets 

 

In the case where the glowworm moved towards the same target both in GSO and GPR-

GSO, the path followed by GSO is more curvy as it was influenced by the local neighbors 
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alone, in turn it took longer routes to converge, where it is clearly visible when the global 

information was incorporated, the path was more directed to the intended peak and hence 

required less exploration, and shorter routes and faster convergence was achieved.  

4.3.5 Cumulative vs. Non-cumulative (Number of Iterations) 

The GPM needs to be trained using input-output pairs to find the optimal number of data 

points needed to find the best predicted cost function, which is the multimodal function 

profile spread across the search space of the glowworms. As swarm size is directly related 

to number of samples at each iteration, different swarm size was tested to compute the 

predicted peaks error over different iterations. It is observed that with a swarm size of 100, 

the error is minimized to 0 after the first iteration, but it also increases the sample data size 

which makes it computationally heavy. Bringing the swarm size down to 80, the error went 

down to same percent as 100 s glowworms after 5 iterations. Although there was an increase 

of error, it established after 10th iterations and stays that way. As the size of the glowworms 

was reduced to 50, the error was initially high, but it sharply drops to the levels of 100 

swarm size after 15 iterations. So, the optimum swarm size was 50 glowworms. This is the 

case where all the previous data was used to train the GPM. Training data set size is given 

by 𝑁 ∗  𝑖, where N is the number of glowworms and i is the number of iterations.  

 The glowworms’ location information and their luciferin values constitute the 

input/output pair {[𝑥, 𝑦], [𝑧]}. For N = 100, at each iteration, we have 100 new data points. 

Therefore, the number of data points increases as 100, 200, 300, and so on. The other method 

devised is to only collect the data at current locations, which never drives error to zero. This 

is because, as the glowworms start moving near to the peaks, the data are less scattered and 

more concentrated over a small area of the search space and it leads to high deviation in rest 
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of the search space, and hence the predicted model fails to provide useful information to the 

glowworms. Figure 24 demonstrates the same in all cases of 100, 80, 50 swarm sizes.  

 

 

 

Figure 26. Cumulative and non-cumulative swarm sizes 
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Estimated Peaks Error 

 

Figure 25a represents all the estimated peaks at different resolution and iterations before 

local max filter is applied to the GPM derived cost function. The figure on the right 

demonstrates the varying estimated peaks as the GPM gets trained with each iteration, we 

have observed that estimation errors is down to 0.001 by the 15 iterations, which also gives 

an idea for approximate sample size needed to train the GPM.  

 

 

 

Figure 27. Estimated peaks at different resolutions and iterations before Local Max 

Filter is applied to the GPM Derived Cost Function 
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4.4 Reduction in Deviation using GPR-GSO  

 

 

 

In the context of deriving the deviation as a cost function, the GPM is trained using a set of 

train data pairs. The GPM learns the underlying patterns and correlations in the data, 

allowing it to make predictions for unseen inputs. These predictions are not only point 

estimates but also come with associated uncertainties. The GPM provides not only the 

predicted mean values but also the variance or uncertainty associated with each prediction. 

 

 

 

 

 

Figure 28. Reduction in Deviation using GPR-GSO 
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Figure 29. Iterations 10, 30, and 50 

 

The deviation can be obtained by considering the range within which the predicted values 

are likely to fall with a 95% level of confidence. By calculating the width of these prediction 

intervals, the 95% deviation can be determined. This deviation serves as a measure of the 

spread or uncertainty in the predictions and can be used as a cost function in various 

optimization tasks. This bound is converted as a deviation matrix for the search space which 

is used as a cost function in the GPR-GSO. Initially the bounds are small around presence 

of glowworms. As the iterations increase, the glowworms try to move to peaks which 

represents the high deviations. As the iterations progress, the cost function is updated as the 

deviations are changed as the glowworms are displaced.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

This thesis presented techniques for search and rescue at disaster sites using autonomous 

robotic swarms, with a specific focus on the task of multiple emission source localization. 

The GPR-GSO algorithm, which combines properties of the original GSO algorithm and 

Gaussian Process Regression (GPR) based data-driven predictive modeling, was developed 

to improve the search efficiency of robotic swarms. The problem formulation, methods, and 

illustrative numerical simulations were presented. Results from a comparative analysis were 

presented to show that the GPR-GSO algorithm exceeds the performance of the benchmark 

GSO algorithm on evaluation metrics of swarm size, search completion time, and travel 

distance. Future work includes further experimental evaluation of the GPR-GSO algorithm 

by varying parameters like swarm size, initial swarm deployment distribution, number of 

emission sources and their placements, and other algorithmic parameters of GSO and GPR 

methods. A comparative analysis with other benchmark swarm robotic search algorithms 

can also be conducted in the future. This work can also be extended by the physical 

implementation of the GPR-GSO algorithm in a swarm of mobile robots for applications in 

two- and three-dimensional environments.   

 

 

 

 

  



67 

REFERENCES 

[1] Couceiro, Micael S., et al. “Benchmark of Swarm Robotics Distributed Techniques 

in a Search Task.” Robotics and Autonomous Systems, vol. 62, no. 2, Feb. 2014, 

pp. 200–13. 

[2] McGill, K. and Taylor, S. 2011. Robot algorithms for localization of multiple 

emission sources. ACM Comput.Surv. 43, 3, Article 15 (April 2011), 25 pages.  

[3] Senanayake, Madhubhashi, et al. “Search and Tracking Algorithms for Swarms of 

Robots: A Survey.” Robotics and Autonomous Systems, vol. 75, Jan. 2016, pp. 

422–34. 

[4] Krishnanand, K.N., Ghose, D. Glowworm swarm optimization for simultaneous 

capture of multiple local optima of multimodal functions. Swarm Intell 3, 87–124 

(2009). 

[5] Krishnanand, K. N., and D. Ghose. “Theoretical Foundations for Rendezvous of 

Glowworm-Inspired Glowworm Swarms at Multiple Locations.” Robotics and 

Autonomous Systems, vol. 56, no. 7, July 2008, pp. 549–69.,  

[6] Krishnanand, K. N., and D. Ghose. “Detection of Multiple Source Locations Using 

a Glowworm Metaphor with Applications to Collective Robotics.” Proceedings 

2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., IEEE, 2005, pp. 84–

91. 

[7] Krishnanand, K. N., et al. “Glowworm-Inspired Robot Swarm for Simultaneous 

Taxis towards Multiple Radiation Sources.” Proceedings 2006 IEEE International 

Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 

958–63. 

[8] Ghassemi, Payam, and Souma Chowdhury. “An Extended Bayesian Optimization 

Approach to Decentralized Swarm Robotic Search.” Journal of Computing and 

Information Science in Engineering, vol. 20, no. 5, Oct. 2020, p. 051003. 

[9] Ghassemi, P, & Chowdhury, S. "Decentralized Informative Path Planning with 

Balanced Exploration-Exploitation for Swarm Robotic Search." Proceedings of the 

ASME 2019 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference. Volume 1: 39th 

Computers and Information in Engineering Conference. Anaheim, California, 

USA. August 18–21, 2019. V001T02A058. ASME.   

[10] Ghosh, Sumit. “Understanding Complex, Real-World Systems through 

Asynchronous, Distributed Decision-Making Algorithms.” Journal of Systems and 

Software, vol. 58, no. 2, Sept. 2001, pp. 153–67. 

[11] Srinivas, Niranjan, et al. “Information-Theoretic Regret Bounds for Gaussian 

Process Optimization in the Bandit Setting.” IEEE Transactions on Information 

Theory, vol. 58, no. 5, May 2012, pp. 3250–65. 

 



68 

[12] G. Beni, From swarm intelligence to swarm robotics, in: E. Şahin, W.M. Spears 

(Eds.), Swarm Robotics, in: Lecture Notes in Computer Science, vol. 3342, 

Springer, Berlin Heidelberg, 2005, pp. 1–9. 

[13] A.J.C. Sharkey, Swarm robotics and minimalism, Connect. Sci. 19 (3) 

(2007)245–260. 

[14] G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in: Proceed. 

NATO Advanced Workshop on Robots and Biological Systems, 1989. 

[15] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: 

Proceedings of the Sixth International Symposium on Micro Machine and Human 

Science, 1995. MHS’95, 1995, pp. 39–43. 

[16]  J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International 

Conference on Neural Networks, 1995. Proceedings, vol. 4, 1995, pp. 1942–1948. 

[17]  R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications 

and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 

2001, vol. 1, 2001, pp. 81–86. 

[18] X. Li, Adaptively choosing neighbourhood bests using species in a particle 

swarm optimizer for multimodal function optimization, in: K. Deb (Ed.), Genetic 

and Evolutionary Computation, GECCO 2004, in: Lecture Notes in Computer 

Science, vol. 3102, Springer, Berlin Heidelberg, 2004, pp. 105–116. 

[19] R. Brits, A.P. Engelbrecht, F.V.D. Bergh, A niching particle swarm optimizer, 

in: Proceedings of the Conference on Simulated Evolution and Learning, 2002, pp. 

692–696. 

[20] S. Yang, C. Li, A clustering particle swarm optimizer for locating and tracking 

multiple optima in dynamic environments, IEEE Trans. Evol. Comput. 14 (6) 

(2010) 959–974. 

[21] K. Passino, Biomimicry of bacterial foraging for distributed optimization and 

control, IEEE Control Syst. Mag. 22 (3) (2002) 52–67.  

[22] Marques, L., Nunes, U., And De Almeida, A. T. 2006. Particle swarm-based 

olfactory guided search. Auton. Robot. 20, 277–287. 

[23] K. Derr, M. Manic, Multi-robot, multi-target particle swarm optimization search 

in noisy wireless environments, in: 2nd Conference on Human System 

Interactions, 2009. HSI’09, 2009, pp. 81–86. 

[24] D. Karaboga, An idea based on honey bee swarm for numerical optimization, 

Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering 

Department, 2005, Oct. 

[25] A. Jevtić, P. Gazi, D. Andina, M. Jamshidi, Building a swarm of robotic bees, 

in: World Automation Congress (WAC), 2010, 2010, pp. 1–6. 

[26]  A. Jevtić, A. Gutierrez, D. Andina, M. Jamshidi, Distributed bees algorithm for 

task allocation in swarm of robots, IEEE Syst. J. 6 (2) (2012) 296–304. 



69 

[27] Pang, s. And farrell, J. A. 2006. Chemical plume source localization. IEEE 

Trans. Syst.Man Cybernet.—Part B: Cybernet. 36, 5, 1068–1080. 

[28] OLFATI-SABER, R. 2006. Flocking for multi-agent dynamic systems: 

Algorithms and theory. IEEE Trans. Aut. Contr. 51, 3, 401–420. 

[29] OLFATI-SABER, R. 2007. Distributed tracking for mobile sensor networks 

with information-driven mobility. In Proceedings of the American Control 

Conference. 4606–4612. 

[30] Qun Meng,Songhao Wang, Szu Hui Ng(2021) Combined Global and Local 

Search for Optimization with Gaussian Process Models. Informs Journal on 

Computing 34(1):622-637.  

[31] Gaussian Process Models Simple Machine Learning Models Capable of 

Modelling Complex Behaviours 

[32] Berns, F., Hüwel, J. & Beecks, C. Automated Model Inference for Gaussian 

Processes: An Overview of State-of-the-Art Methods and Algorithms. SN 

COMPUT. SCI. 3, 300 (2022)  

[33] Havenstrøm, Simen Theie, et al. “Deep Reinforcement Learning Controller for 

3D Path Following and Collision Avoidance by Autonomous Underwater 

Vehicles.” Frontiers in Robotics and AI, vol. 7, Jan. 2021, p. 566037 

[34] Odonkor, Philip, et al. “Distributed Operation of Collaborating Unmanned 

Aerial Vehicles for Time-Sensitive Oil Spill Mapping.” Swarm and Evolutionary 

Computation, vol. 46, May 2019, pp. 52–68. 

[35] Kennedy, J., and R. Eberhart. “Particle Swarm Optimization.” Proceedings of 

ICNN’95 - International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 

1942–48.  

[36] Song, D., Kim,C.-Y.,andYi,J.,2012,“Simultaneous Localization of Multiple 

Unknown and Transient Radio Sources Using a Mobile Robot,” IEEE Trans. 

Rob.,28(3),pp.668–680. 

[37] Mondada, F., Bonani, M., Raemy, X., Pugh,J.,Cianci,C.,Klaptocz,A., 

Magnenat,S.,Zufferey,J.-C., Floreano,D.,and Martinoli, A.,2009,“The E-Puck,a 

Robot Designed for Education in Engineering,” Proceedings of the 9th Conference 

on Autonomous Robot Systems and Competitions,Vol.1, Castelo Branco, Portugal, 

May 7, pp.59–65. 

[38] Lei, Bowen, et al. “Bayesian Optimization with Adaptive Surrogate Models for 

Automated Experimental Design.” NPI Computational Materials, vol. 7, no. 1, 

Dec. 2021, p. 194. ef) 

[39] Wang, J. 2020. “An Intuitive Tutorial to Gaussian Processes Regression.,” Tut 

ArXiv. /abs/2009.10862 

[40] Automatic Model Construction with Gaussian Processes David Kristjanson 

Duvenaud University of Cambridge.  

[41] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine 

https://pubsonline.informs.org/action/doSearch?text1=Meng%2C+Qun&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Wang%2C+Songhao&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Ng%2C+Szu+Hui&field1=Contrib


70 

Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute 

of Technology.  Gaussian Processes for Machine Learning.  

[42] H. Sit. "A Quick Guide to Understanding Gaussian Process Regression (GPR) 

and Using scikit-learn’s GPR Package." Towards Data Science, Jun 19, 2019. 

Online. Accessed: July 23, 2023. 

[43] Akifumi Wachi University of Tokyo wachi@space.t.u-tokyo.ac.jp  Yanan Sui 

and Yisong Yue Calfornia Institute of Technology fysui, yyueg@caltech.edu 

Masahiro Ono Jet Propulsion Laboratory, California Institute of Technology Safe 

Exploration and Optimization of Constrained MDPs using Gaussian Processes 

[44] C. Brecque. "The Intuitions behind Bayesian Optimization with Gaussian 

Processes." Towards Data Science, Sep 26, 2018. [Online]. 

https://towardsdatascience.com/the-intuitions-behind-bayesian-optimization-with-

gaussian-processes. Accessed: July 23, 2022. 

[45] Tiger, Mattias, and Fredrik Heintz. “Gaussian Process Based Motion Pattern 

Recognition with Sequential Local Models.” 2018 IEEE Intelligent Vehicles 

Symposium (IV), IEEE, 2018, pp. 1143–49. 

[46] Gaussian Process Regression Flow for Analysis of Motion Trajectories Kihwan 

Kim Dongryeol Lee Irfan Essa fkihwan23, dongryel, irfang@cc.gatech.edu 

Georgia Institute of Technology, Atlanta, GA, USA  

[47] Arulampalam, M. S., Maskell, S., Gordon, N., And Clapp, T. 2002. A tutorial on 

particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. 

Signal Proc. 50, 2, 174–188. 

[48] Bachmayer, R. And Leonard, N. E. 2002. Vehicle networks for gradient descent 

in a sampled environment. In Proceedings of the 41st IEEE Conference on 

Decision and Control. 1–6. 

[49] Barlow, G. J., Choong, K. O., and Smith, S. F. 2008. Evolving cooperative 

control on sparsely distributed tasks for UAV teams without global 

communication. In Proceedings of the Genetic and Evolutionary Computation 

Conference. 177–184. 

[50]  Baudoin, Y., Acheroy, M., Piette, M., and Salmon J. P. 1999. Humanitarian 

demining and robotics. J. Mine Act. Foc. Mach. Assist. Demin. 3, 2, 433–435. 

[51] Bell, W. J. and Tobin, T. R. 1982. Chemo-orientation. Biolog. Rev. Cambridge 

Phil. Soc. 57, 219–260. 

[52] Borah, D. and Balagopal, A. 2004. Localization and tracking of multiple near-

field sources using randomly distributed sensors. In Proceedings of the 38th 

Asilomar Conference on Signals, Systems, and Computers. 1323–1327. 

[53] Cortes, J. and Bullo, F. 2009. Non smooth coordination and geometric 

optimization via distributed dynamical systems. SIAM Rev. 51, 1, 163–189. 

[54] Cortes, J.,Martinez, S.,Karatax, T., and Bullo, F. 2004. Coverage control for 

mobile sensing networks. IEEE Trans. Robot. Automat. 20, 2, 243–255. 

mailto:wachi@space.t.u-tokyo.ac.jp
mailto:yyueg@caltech.edu
https://towardsdatascience.com/the-intuitions-behind-bayesian-optimization-with-gaussian-processes
https://towardsdatascience.com/the-intuitions-behind-bayesian-optimization-with-gaussian-processes
mailto:irfang@cc.gatech.edu


71 

[55] Cui, X., Hardin, C. T., Ragade, R. K., and Elmaghraby, A. S. 2004a. A swarm 

approach for emission sources localization. In Proceedings of the 16th 

International Conference on Tools with Artificial Intelligence. 424–430. 

[56] S.J. Benkoski, M.G. Monticino, J.R. Weisinger, A survey of the search theory 

literature, Naval Res. Logist. 31 (4) (1991) 469–494. 

[57] M. Dorigo, E. Sahin, Swarm robotics—special issue, Auton. Robots 17 (2004) 

111–113. 

[58] J. Pugh, A. Martinoli, Multi-robot learning with particle swarm optimization, in: 

Proceedings of the Fifth International Joint Conference on Autonomous 

Glowworms and MultiGlowworm Systems, 2006. 

[59] O. Michel, Webots: professional mobile robot simulation, J. Adv. Robot. Syst. 

1(2004) 39–42. 

[60] W. Jatmiko, K. Sekiyama, T. Fukuda, Modified particle swarm robotic odor 

source localization in dynamic environments, Int. J. Intell. Control Syst. 11 (2) 

(2006) 176–184. 

[61] Peaks Function - MATLAB Peaks. 

https://www.mathworks.com/help/matlab/ref/peaks.html. Accessed 23 July 2023. 

[62] Control Random Number Generator - MATLAB Rng. 

https://www.mathworks.com/help/matlab/ref/rng.html. Accessed 23 July 2023. 

  



72 

 

VITA 

Payal Nandi 



73 

 


	Data-Driven Predictive Modeling to Enhance Search Efficiency of Glowworm-Inspired Robotic Swarms in Multiple Emission Source Localization Tasks
	Recommended Citation

	tmp.1696263874.pdf.gmmY2

