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ABSTRACT 
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IN A SIMULATED FLIGHT TASK 

 
Kellie D. Kennedy 

Old Dominion University, 2021 
Director: Dr. Michelle Kelley 

 

 

Inattentional blindness (IB) is the failure of observers to notice the presence of a clearly 

viewable but unexpected visual event when attentional resources are diverted elsewhere. 

Knowing when an operator is unable to respond or detect an unexpected event may help improve 

safety during task performance. Unfortunately, it is difficult to predict when such failures might 

occur. The current study was a secondary data analysis of data collected in the Human and 

Autonomous Vehicle Systems Laboratory at NASA Langley Research Center. Specifically, 60 

subjects (29 male, with normal or corrected-to-normal vision, mean age of 34.5 years (SD = 

13.3) were randomly assigned to one of three automation conditions (full automation, partial 

automation, and full manual) and took part in a simulated flight landing task. The dependent 

variable was the detection/non-detection of an IB occurrence (a truck on the landing runway).   

Scores on the NASA-TLX workload rating scale varied significantly by automation 

condition. The full automation condition reported the lowest subjective task load followed by 

partial automation and then manual condition. IB detection varied significantly across 

automation condition. The moderate workload condition of partial automation exhibited the 

lowest likelihood of IB occurrence. The low workload full automation condition did not differ 

significantly from the manual condition. Subjects who reported higher task demand had 

increased pupil dilation and subjects with larger pupil dilation were more likely to detect the 



 
 

 
 
 

runway incursion. These results show eye tracking may be used to identify periods of reduced 

unexpected visual stimulus detection for possible real-time IB mitigation. 
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CHAPTER I 
 

INTRODUCTION 

“We pay attention to what we are told to attend to, or what we're looking for, or what we 

already know...what we see is amazingly limited.” ― Daniel Simons (Heffernan, 2011) 

Humans have a limited capacity for processing information. Selective attention enables 

humans to allocate these limited cognitive resources to process relevant stimuli and ignore 

irrelevant stimuli (Broadbent, 1958; Kahneman, 1973; Treisman, 1964). However, this process is 

imperfect, and we can fail to detect important and relevant stimuli. Inattentional blindness (IB) is 

defined as the failure of an observer to detect a clearly viewable but unexpected visual event due 

to diverted attentional resources (Hutchinson, 2019; Jensen et al., 2011; Mack & Rock, 1998; 

Simons & Chabris, 1999). The consequences of an IB occurrence can range from benign to 

disastrous depending on the importance of the undetected information. Consider the scenario of 

searching the house extensively for an object, such as car keys or a travel mug, only to find said 

object in an extremely conspicuous location. Expressions such as “right under my nose,” “if it 

were a snake, it would have bitten me,” and “look-but-fail-to-see,” all describe this kind of an 

experience. Another utterance, “I never even saw them” may follow a detection failure with 

more serious consequences such as in the aftermath of a car accident.  

Simons (2000) noted that outside of the laboratory setting, observers must be aware of 

objects in the environment to make volitional changes in behavior. For example, a driver 

prepares to make a left turn at an intersection, looks both ways, detects no on-coming traffic, and 

proceeds into the intersection. To the driver, proceeding forward into the intersection was an 

appropriate decision. Unfortunately, the driver failed to detect an oncoming motorcyclist and 

caused a collision. The driver did not detect the oncoming traffic and therefore had no reason to 
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deviate from the planned action of turning onto the roadway. Examples like this demonstrate 

cases when the failure to perceive critical objects can be deadly. The individual experiencing IB 

has incomplete information and generates an inaccurate representation of the external world, 

which limits the ability to aptly assess and execute subsequent decisions. This introduction is 

designed to provide a basic framework of this study. The next several chapters are dedicated to a 

more in-depth discussion of the relevant literature. 

Researchers have attributed errors and accidents to the IB phenomenon across nearly all 

task environments: medical (Lum et al., 2005), aviation (Fischer et al., 1980), nautical (Fraher, 

2010), and vehicular (Strayer & Drews, 2007; Strayer et al., 2003). Observers can fail to detect 

the appearance of an unexpected object within their field of view regardless of importance or 

relevancy to the task (Mack & Rock, 1998; Memmert, 2006; Simons & Chabris, 1999). IB can 

occur when stimuli are dangerous or highly unusual (Fraher, 2010; Hyman et al., 2010; Simons 

& Chabris, 1999).  

The danger of IB has been well-documented both in the laboratory and in real world 

operations; however, predicting IB prior to occurrence remains elusive. Identifying a relationship 

between eye tracking and IB might permit the use of eye tracking as a mitigation method or 

safety feature for operators during task performance in any environment that includes highly 

visual performance tasks or monitoring, such as aviation. Typically, measuring the eye gaze 

fixation point is considered an appropriate method to determine the location of visual attention in 

a visual field. However, in the case of IB, looking does not equate to seeing. IB researchers 

report eye fixation as insufficient to differentiate between detectors and non-detectors, finding 

that the amount of time subjects fixate on the critical stimulus is not significantly different 
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between those who detected and those who do not (Koivisto et al., 2004; Kuhn & Findlay, 2010; 

Memmert, 2006; Oktay & Cangöz, 2018).  

The complicated explanation behind why looking at an object does not necessarily equate 

to seeing an object may be found in the neurological underpinnings of IB (Dehais et al., 2020). 

When traditional precursors of degraded task performance are investigated as precursors to IB, a 

myriad of counter-intuitive and conflicting findings arise (Beanland & Chan 2016; Dehais et al., 

2020; Mack & Rock, 1998; Memmert, 2006; Wright et al., 2013). As described by Dehais et al. 

(2020), IB appears to sit at a neurophysiological intersection of cognitive function limitations 

and the biological limitations of the visual system. Although the outcome event is the same (an 

object is undetected), the conflicting findings in the IB literature may actually be related to the 

different underlying causes for IB. For example, a subject who experiences IB due to a visual 

system overload has little in common with a pilot landing at a quiet airport who fails to detect a 

maintenance vehicle sitting on the landing runway with flashing beacons (TAIC, 2010; Wright et 

al., 2013). Both individuals fail to detect visual information that is relevant, detectable, and 

within the useful field of view but because the underlying causes are different, the metrics 

required to measure the neurophysiological state may also be different.  

Eye tracking technology offers more information than just eye fixation. Eye tracking can 

be used to assess human cognitive state through measurements such as eye movement patterns, 

pupil diameter changes, and eyelid closures (Mohan et al., 2019; Peißl et al., 2018). Pupil 

dilation is an eye-based cognitive state measurement that can be collected passively and in real-

time without task interruption. Increased pupil dilation indicates greater workload (Recarte et al., 

2008). Wright et al. (2013) assessed IB using pupil dilation and found no significant relationship 

between detectors and non-detectors in effort or primary task performance. However, Wright et 
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al. focused on IB induced by increasing visual load using a desktop-based stimulus and a 

cluttered visual field detection task that was boring, repetitive, and did not allow free eye 

movement. As previously described a task that elicits IB using a densely packed visual field 

requires little in the way of higher order cognitive processes. Indeed, the generalizability of the 

evidence and the metric is related to the task chosen to elicit IB. 

Winn et al. (2018) published a comprehensive article on the mechanics of pupillometry 

data collection and identified numerous studies indicating that task-evoked pupil dilation was not 

a single simplistic response summed up in effort but is instead reflective of the intersection of 

many internal processes such as attention, engagement, arousal, anxiety, and effort. Following 

the neurophysiological basis, an experiment that uses pupillary response as a method to examine 

cognitive state conditions surrounding IB occurrences during task operation should use an 

experimental task that engages greater use of neurophysiological components likely to affect the 

pupil response, such as planning, decision making, and task engagement similar to those found in 

an operational environment. Therefore, the potential for pupil dilation as a predictor of IB may 

be better assessed using an engaging task with a naturalistic collection method.  

The current study examines the cognitive state conditions associated with an IB 

occurrence for an operationally relevant unexpected object to increase understanding of the 

predictors related to visual stimulus detection during complex task performance. The data in this 

study were obtained as part of a larger study examining the use of a specific type of EEG 

analysis to detect IB. The larger study included three IB flight simulation runs and two photic 

stimulation sessions featuring strobing lights. Portions of the larger study data were previously 

analyzed by the researcher and the results presented at two conferences (Kennedy et al., 2014; 

2017). The previous studies examined IB occurrences across automation conditions (Kennedy et 
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al., 2014), and the change in likelihood of IB occurrence across automation conditions with 

repeated induction of IB (Kennedy et al., 2017). The current examination expanded to include 

data on eye tracking to determine if those with greater pupil dilation during IB induction were 

more likely to detect the critical stimulus than subjects with smaller pupil dilation. This study 

also featured revised IB case inclusion based on additional participant self-report questions on 

the IB questionnaire. Data for the present study were derived from the first IB flight simulation 

run which occurred prior to any other variable exposure or strobing lights.  

In the present study, IB occurrences were assessed for an unexpected runway incursion 

during a simulated flight landing task across varied task load of three automation conditions 

(fully automated, partially automated, manual). The impact of automation condition was 

explored on subjective workload and subjective workload on IB. Pupil dilation was examined to 

determine whether pupil dilation is a successful discriminator between those who detected and 

did not detect the IB occurrence. The following chapters examine prior literature relevant to IB 

and aviation in greater detail. 
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CHAPTER II 
 

CHARACTERISTICS OF THE AVIATION OPERATIONAL ENVIRONMENT 
 

“Flying is hours and hours of boredom sprinkled with a few seconds of sheer terror.”  

― Major Gregory “Pappy” Boyington (Driskell et al., 2013) 

Major Boyington is just one of the many professional aviators to use this sentiment to 

describe the periods of underload and overload that occur in the flight deck. After nearly a 

century of aircraft technology improvements, the modern flight deck has become increasingly 

automated with systems that require varying levels of human interaction. The pilot operates 

primarily in phases of flight that are difficult or unsafe to automate, meaning the modern pilot 

frequently serves as either the final line of defense against error or as a monitor of highly reliable 

systems for an extended period of time with little aircraft engagement in between. Humans 

perform poorly in such circumstances; similar underload-rich environments are often used to 

elicit performance decrement during vigilance studies and similar overload situations are 

comparable to the stress experienced by surgeons (Neigel et al., 2020; Singh, 2009).  

These lows and highs are rife with opportunity for attentional errors. The flight deck is a 

mixture of automation, settings, and sounds designed to provide information. From the first flight 

lesson, new pilots are instructed that vision is the most important tool and controlling visual 

attention is of utmost priority. The periods of highest workload for pilots in normal flight 

operations are take-off and landing (Wilson, 2002). Prior to and during landing the pilot is 

engaged in the arrival checklist, the landing checklist, maintaining communication with Air 

Traffic Control, and monitoring the radio frequency for potentially important information such as 

weather disturbances or an aircraft go-around in the local airspace. Maintaining awareness to the 

environment both inside and outside the aircraft can induce a state of high workload filled with 
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task-critical information. Any failure to detect critical events can produce serious consequences 

in this setting.  

Aviation and Automation 

Several mitigating strategies have been investigated to solve performance failures in the 

flight deck. There are improvements to the pilot such as training, checklists, and communication 

techniques. There are improvements to the aircraft and the task such as automation, alarms, or 

visual interfaces. However, for the first and last several minutes during take-off and landing, the 

safety of modern flight still ultimately rests with the human pilots. In this period of high risk and 

high workload, the human information processing system can fail and the failure of an operator 

to detect an object or event during periods of high workload is intuitive. Less intuitive, however, 

is the failure of a human to detect an object or event in during a period of low workload.  

One popular method to reduce the likelihood for cognitive overload is through the use of 

automation. The goal is for the automation to relieve some of the task performance burden so the 

human operator can contribute more cognitive resources towards other elements of the task and 

to monitor the system. Unfortunately, the appropriate use of automation requires insight into the 

human state. The misapplication of automation can sometimes induce a worse performance 

outcome such as is the case in skill loss due to reduced task performance frequency or the failed 

detection of critical information due to automation complacency (Lee & See, 2004; Parasuraman 

& Riley, 1997; Scerbo et al., 2001).  

One method for detecting cognitive state is eye tracking. Di Nocera et al. (2007) 

examined eye behaviors in the flight deck and determined that eye fixations correlated with 

reduced workload of phases of flight such as cruise and suggest that eye tracking may provide 

valuable insight into operator state. However, eye fixations do not equate to seeing. In a review 
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of the literature on the impacts of automation on human complacency and bias, Parasuraman and 

Manzey (2010) noted that despite operator eye fixations containing salient and critical 

information about the automated task, this information may go undetected (IB) if operators do 

not allocate visual attention to the information. Specifically, they reported that attention is crucial 

for monitoring automated tasks and found a strong relationship between attention and the 

automation-induced phenomenon of automation complacency. Automation complacency refers 

to the degraded ability of a human to detect system malfunctions when a system is controlled by 

automation as compared to the system under manual control (Parasuraman & Manzey, 2010). 

This complacency describes the decline in performance that occurs when individuals shift from 

performing a task themselves to monitoring its automation (Bailey & Scerbo, 2007). Across the 

documented examples of in-task automation complacency, Parasuraman and Manzey (2010) 

identified task load, system reliability, and known failure rate were all associated with 

automation complacency. Bailey and Scerbo reported that highly reliable complex systems with 

infrequent and unexpected problems elicit reduced operator awareness of system states, 

particularly while monitoring as opposed to directly engaging with the system. Parasuraman and 

Manzey (2010) concluded that automation complacency most frequently occurs when an 

operator has a highly reliable automation system coupled with a high, multiple-task load, which 

easily describes the modern flight deck in the “hours and hours of boredom” that Major 

Boyington described. Indeed, Parasuraman and Manzey examined numerous aviation safety 

reports while defining automation complacency. 

Regardless of high or low cognitive workload, the key feature of an IB occurrence is that 

an object or event is not detected. Although the outcome is the same, the neuropsychological 

underpinnings (attention limitation or visual processing limitation) related to the detection failure 
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are different and require different mitigation strategies. The current standard of IB assessment is 

post-experimental retrospective report as documented by Mack and Rock (1998). Unfortunately, 

this method cannot mitigate or prevent the damaging impact of IB. 

Awareness of the human cognitive state in the minutes leading up to landing could 

provide an invaluable addition to safety if that automation system could predict compromised 

visual detection ability and engage a mitigation strategy (Fairclough et al., 2013; Pope et al., 

2014; Scerbo et al., 2003; Stephens et al., 2018). Greater awareness via passive observation 

systems can provide information regarding the human state of awareness that might hope to 

prevent an accident, an unnecessary alarm, or deploy an emergency procedure. In-task 

identification of sub-optimal human state would provide valuable insight and enable the 

deployment of potential mitigation strategies. For example, when flying, the co-pilot can easily 

see the nonverbal signs of a pilot that is at risk of falling asleep. The co-pilot can use this 

information to re-engage the pilot or even suggest taking over control of the aircraft. 

Automation, however, is currently blind to such information. The only awareness of the pilot 

available to the automation is when the pilot interacts with the system. In the event of an 

inattentive pilot, that interaction may be inaccurate, occur too late, or not happen at all. 

Digitizing signals associated with inattention could provide increased safety assurance through 

the engagement of advanced mitigations or interventions prior to an unwanted outcome.  

Runway Incursions 

The IB task chosen for the current study was a simulated runway incursion task. This 

type of task was chosen because many elements of modern flight have been automated; however, 

landing remains in the hands of the pilot. During landing, the pilots make the final determination 

that the aircraft will continue to touchdown. This decision requires both the aircraft to be 
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perceived as in a safe state to land and for the runway to be clear to land. Although there have 

been several technological interventions developed to increase the likelihood that a runway 

stated as clear to land actually is, the pilots make the final call. Interventions such as runway 

clear lights and taxiway procedures have decreased collisions related to runway incursions; 

however, a landing pilot may still fail to detect the warnings. Unfortunately, although the visual 

system is very good, visual attention failures do occur. In short, runway incursions remain one of 

the most dangerous events in the aerodrome and, failing all else, is a 100% visual detection task 

(detailed discussion below).  

 Early morning in 2010 at the Dunedin International Airport in New Zealand, a patrol 

officer equipped with flashing roof beacons was conducting his regular parameter scan of the 

fence around the airport (TAIC, 2010). A portion of the airport service road had partially flooded 

so he determined he would conduct his scan from the runway. He reported having looked in the 

direction of any landing aircraft, saw none, and entered the runway with a brief stop to adjust his 

lights. At this time, 6:08 am, he saw a Metroliner pass approximately 10 meters in front of his 

vehicle. He reported being unaware of the landing Metroliner until it passed in front of him. 

Curiously, the Metroliner pilots also failed to detect the vehicle on the runway. The pilots 

reported detecting the vehicle as they passed by the flashing lights on top of his patrol vehicle. 

The pilots reported that a collision would have been impossible to avoid if the vehicle had been 

further onto the runway. A third party, a security agent, reported no adverse visual conditions 

and saw both vehicles clearly. He reported both the aircraft landing lights and patrol car lights 

were clearly visible. The agent reported that he did not expect the patrol vehicle to continue onto 

the active runway. In this example, both parties expected the runway to be unoccupied and failed 

to detect any information otherwise, such as flashing roof beacons or landing lights. When these 
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people failed to detect the threat in the environment, they each made decisions that could have 

been deadly if but 10 meters in another direction. 

The Federal Aviation Administration lists runway incursions as “an occurrence at an 

aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected 

area of a surface designed for the landing and takeoff of aircraft” (FAA, 2020). Historically, 

fatalities due to runway incursions were common (National Transportation Safety Board, 2007). 

Safety improvements such as training, improved procedures, runway status lights, and airport 

surface detection equipment decreased runway incursions and associated fatalities but did not 

eliminate them altogether. At Logan International in 2009, a departing Airbus A320 narrowly 

missed striking a construction vehicle that crossed the active runway. Air Traffic Control 

reported knowing the truck was driving on the taxiway, but the driver unexpectedly failed to 

follow standard procedure to stop at the runway and request permission to cross. Runway 

incursion alarms gave the tower no time to react as the truck crossed the runway seconds before 

the landing aircraft. The driver reported that he thought the runway was closed.  

Data show that from 2008-2018, 11,544 runway incursions were reported across 520 

airports equipped with an air traffic control tower (FAA, 2020). The FAA reported 1,761 total 

runway incursions during the 2019 fiscal year. Runway incursions are separated into categories 

of causation with Operational Incidents, Pilot Deviations, and Vehicle/Pedestrian Deviations 

(FAA, 2012). A Pilot Deviation incident is a violation of any Federal Aviation Regulation caused 

by the pilot. The FAA classified 1120 (64%) of the 2019 incursions as Pilot Deviations. The 

FAA classified 323 (18%) as Operational Incidents wherein below-minimum aircraft separation 

with other aircraft, vehicles, obstacles, or closed runways was caused by an Air Traffic 

Controller action. The FAA classified 293 (17%) as Vehicle/Pedestrian Deviation incident 



 

 

12 

wherein pedestrians or vehicles entered any portion of the airport movement areas 

(runways/taxiways) without air traffic control authorization, and 25 (1%) were reported as Other.  

There are four categories of runway incursions ranging from A – D, with Category A being 

most severe and Category D being least severe (FAA, 2012). Category A is an incident with a 

narrowly avoided collision; a runway incursion that results in a collision is categorized as an 

accident. Category B is an incident with significant collision potential marked by a time-critical 

collision avoidance response. Category C is an incident without time and/or distance pressure for 

collision avoidance. Category D is a runway incursion incident without immediate threat.  

The current experimental scenario uses a runway incursion as the critical stimulus due to 

the clear and present danger presented to primary task performance and proximity to the 

anticipated subject fixation point. A Vehicle Deviation Category B runway incursion was 

selected in the form of a truck crossing the landing runway at the planned touchdown location. 

As the subject nears the landing runway, a yellow and white truck is visible and stopped on a 

taxiway that intersects the landing runway. The truck is positioned in a “hold short” orientation, 

meaning stopped behind the marked threshold at the entrance of a runway. When the subject 

reaches a specific distance from the runway, the truck begins to move and enters the landing 

runway. The route the truck proceeds along on the runway intersects with the planned aircraft 

touchdown location. To increase the detectability of the truck, the truck is a direct threat to 

landing performance, is in motion, brightly colored, and crosses the natural eye fixation point co-

located with the target landing zone. 
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CHAPTER III 

CHARACTERISTICS OF THE INATTENTIONAL BLINDNESS PHENOMENA 

A human cannot process the entirety of their sensory experience in exact detail due to 

limitations in attentional resources (Norman, 1968). Seminal attention studies afforded expansive 

research areas dedicated to examining the nuances of attention and information processing to 

understand and predict attentional limitations. For a review article please see Wickens and 

Carswell, 2012 (suggested original publications include Broadbent, 1977; Kahneman, 1973; 

Norman, 1968; Posner, 1980; Treisman, 1964; Wickens, 1980). In particular, selective attention 

enables allocation of these limited cognitive resources to process relevant stimuli and ignore 

irrelevant stimuli (Broadbent, 1958; Kahneman, 1973; Treisman, 1964). The ability to focus 

these limited resources to a specific stimulus or set of stimuli allows the human to conserve 

attentional resources while avoiding over-stimulation. However, this normally helpful process 

can occasionally filter out information that is relevant to task performance. Failures to detect 

critical information have been found across senses with visual, auditory, and tactile information 

examples (Mack & Rock, 1998).  

Types of Attentional Failures  

There are five major types of visual attentional phenomena that result in the missed 

detection of visual information, and each have specific parameters that define the circumstances 

related to the occurrence of that failure. Inattentional blindness (IB) occurs when observers fail 

to notice the presence of a clearly viewable but unexpected event when attentional resources are 

diverted elsewhere (Hutchinson, 2019; Jensen et al., 2011; Mack & Rock, 1998; Simons & 

Chabris, 1999). Change blindness occurs when an observer fails to detect changes in objects or 

scenes that occur during a break in visual information such as breaks caused by a saccade, blink, 
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or occlusion (Jensen et al., 2011; Simons & Levin, 1997). Repetition blindness is the failure to 

detect second occurrences of repeated words in visual presentation (Kanwisher & Potter, 1990). 

Visual target masking occurs when one visual stimulus, referred to as the “mask,” interferes with 

the perception of another visual stimulus, referred to as the “target” (Felsten & Wasserman, 

1980; Keysers & Perrett, 2002). The attentional blink occurs when subjects fail to detect the 

second of two presented targets when these targets occur within a short time window (180-

500ms; Beanland & Pammer, 2011; Shapiro et al., 1997).   

The current study focuses on IB. An IB occurrence is typically unexpected and difficult 

to predict due to the unusual nature of the observation (Mack & Rock, 1998; Simons & Chabris, 

1999). The hallmark of an IB occurrence is that observers fail to notice a visual object or event 

that is clearly visible and easily seen if attention is directed to it. This detection failure is the 

result of the observer’s attention engaged elsewhere and not from aspects of the visual stimulus 

itself, such as size or visual obstruction. Errors and accidents related to this phenomenon appear 

across numerous task environments ranging from medical (Lum et al., 2005), aviation (Fischer et 

al., 1980), nautical (Fraher, 2010), and vehicular (Strayer & Drews, 2007; Strayer et al., 2003). 

History of Inattentional Blindness (IB) Research 

 Mack and Rock (1998) coined the term IB. However, the phenomenon was identified 

many years prior. Neisser and Becklen (1975) were the first to detect IB when they attempted to 

produce a visual analog to Cherry’s auditory selective attention research. In 1953, Cherry 

examined the phenomena wherein an individual could be seemingly engaged in conversation but 

could detect their name spoken in a different conversation across the room. Cherry (1953) 

conducted a study on the “cocktail party effect” with a dichotic listening paradigm in which 

subjects were exposed to two streams of auditory information, one in each ear, and told to attend 
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to only one. Cherry sought to identify the level of processing that occurs in an unattended 

auditory stream. Cherry found that subjects could notice some sematic properties of information 

contained within the unattended ear, such as their name, and physical characteristics such as the 

tone. Neisser and Becklen’s experiment sought to demonstrate similar findings to that of Cherry 

for the visual system by developing a selective looking paradigm. Subjects observed a video 

showing two superimposed semi-transparent videos of people slapping hands or passing a ball. 

Subjects were instructed to attend only one of these scenes and ignore the other. During the trial, 

subjects in the unattended scene would commit an unusual behavior, referred to as the critical 

stimulus. This unusual behavior included handshakes instead of slaps, miming basketball passes, 

and substituting players with those of the opposite gender. The researchers found that subjects 

failed to detect this unexpected information contained in the unattended visual channel.  

In a follow-up study, Neisser (1979) examined a more obvious critical stimulus. In this 

study, subjects watched a video of two teams passing a basketball and were instructed to either 

simply watch the video or count the number of passes among members of a specific group. The 

critical stimulus was a woman walking through the scene carrying an umbrella (see Figure 1). In 

this study, 100% of subjects who simply watched the video reported seeing the woman. 

However, only 48% of subjects directed to count ball passes detected the woman with the 

umbrella.  
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In the 1980’s, Irvin Rock conducted numerous studies that investigated the relationship 

of visual perception and attention. Rock found that visual information was not automatically 

processed in the “preattentive” early stages of visual processing or prior to attention (see Mack & 

Rock, 1998 for full review). Rock reported that attention must play a larger role in perception to 

explain subjects unable to detect obvious stimuli or claiming to detect stimuli that were not 

present (Mack & Rock, 1998). Mack and Rock (1998) argued that the experimental design used 

to examine preattentive perception, or perception without attention, did not exclude potentially 

engaging attention. Perception without attention experimental tasks included search protocols 

such as finding targets within distractors and finding targets while concurrently performing a 

distraction task. Mack and Rock proposed that the subject is actively seeking the target, so these 

Note.  From Neisser 1979 as reproduced in “Gorillas in our midst: sustained inattentional 

blindness for dynamic events,” by D. Simons and C. Chabris, 1999, Perception, 28, p. 1063 

(DOI:10.1068/p2952). Copyright 1999 by Pion. Reprinted with permission. 

Figure 1  

Neisser (1979) basketball count task with critical stimulus: woman with umbrella. 
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techniques were assessing divided attention tasks rather than perception without attention. For 

these reasons, Mack and Rock (1998) developed a new experimental paradigm. In this new 

technique, the observer did not expect, and was not actively searching for, the critical stimulus. 

Rather, the critical stimulus occurred while the subject completed another task. Mack and Rock 

dedicated a decade to the resultant phenomenon.    

The main IB experiment featured multiple trials in which subjects viewed a cross shape 

displayed on a computer monitor and reported which cross arm was longer (see Figure 2).  The 

third trial was the critical trial in which a secondary shape appeared within the viewing area. 

Here, the researchers asked the subjects to report the longer arm and if any object other than the 

cross shape appeared during that trial. The fourth trial was a divided attention task trial. Subjects 

were instructed to attend to both the cross shape and the appearance of an additional object. The 

fifth trial was a control condition used as a comparison. For this control trial, the subjects were 

instructed to ignore the cross shape and only attend to the other object (Mack & Rock, 1998).  

 

Note. From “Inattentional Blindness: An Overview,” By A. Mack & I. Rock, 1998, Psyche, 

5(3), p. 7.  Copyright 1998 by MIT. Reprinted with permission. 

 
Note. From “Inattentional Blindness: An Overview,” By A. Mack & I. Rock, 1998, Psyche, 

5(3), p. 7.  Copyright 1998 by MIT. Reprinted with permission. 

 

Figure 3 

 Mack & Rock's (1998) initial experiment, the cross arm length task with critical stimulus.  
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Like Neisser (1979), Mack and Rock found that during the critical stimulus trial, 

approximately 25% of subjects failed to detect the unexpected object within their useful field of 

view, despite later reporting detection in both the divided attention task and control trial. Mack 

and Rock continued testing IB nuances by varying the critical stimulus features such as location, 

type, familiarity, and size and found this phenomenon to be robust. In 1998, they published a 

comprehensive account of this research and labeled the term inattentional blindness (see Mack & 

Rock, 1998 for review or Mack & Rock, 1999). 

Like Mack and Rock, Simons (2000) sought to explore the operational value of 

perception. Simons argued that perception should be examined with ecological validity and in 

terms of awareness and performance. He noted that outside of the laboratory setting, observers 

must be aware of objects in the environment to make volitional changes in behavior. Therefore, 

in the IB literature, perception is operationally defined as the conscious detection and 

identification of a stimulus such that the observer is capable of reporting the stimulus (Simons, 

2000). The most well-known IB example comes from the Simons and Chabris (1999) “gorilla” 

experiment (see Figure 3). A modernization of Neisser’s work, this experiment did not use semi-

transparent or superimposed images but instead showed a single video featuring two teams, 

identified by shirt color, passing a basketball to members of their own team. Researchers 

instructed subjects to count the passes made by a specified group. During the video, a woman in 

a gorilla suit walked into the gameplay area, paused, beat her chest, and then exited. Only 50% 

of the subjects detected this unusual event.  
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Complexities in Predicting IB  

From the beginning, the IB phenomenon proved to be easy to elicit but difficult to 

explain with several explanatory hypotheses that either failed to significantly discriminate 

between detectors and non-detectors or provided counterintuitive results. When discussing IB 

literature, the most common hypothesis is that subjects failed to detect the critical stimulus 

because they did not look at it. Overall, researchers found that eye fixation was insufficient to 

differentiate between detectors and non-detectors. Several studies examined fixation and found 

that looking does not equate to seeing nor does target proximity to fixation point (Becklen & 

Note. From “Gorillas in our midst: sustained inattentional blindness for dynamic events,” by 

D. Simons and C. Chabris, 1999, Perception, 28, p. 1063 (DOI:10.1068/p2952). Reprinted 

with permission. 

Figure 4 
 
Simons and Chabris (1999) basketball count task with critical stimulus: gorilla.  
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Cervone, 1983; Mack & Rock, 1998; Memmert, 2006; Simons & Jenson, 2009; Wood & 

Simons, 2019).  

Becklen and Cervone (1983) examined the impact of fixation on detection in the early 

days of the attention and perception using a selective looking paradigm. Becklen and Cervone 

used the paradigm of the woman with an umbrella who crossed directly through the subject’s 

fixation point. The fixation point is the area of a visual stimulus on which the subject focuses.  

Becklen and Cervone required one subject group to maintain focus on a fixation point and 

permitted the other to looking freely and found no differences in detection between the groups. 

Mack and Rock (1998) varied the location of the primary stimulus (the cross) and the critical 

stimulus. Mack and Rock presented either the cross or the critical stimulus at the fovea (co-

located with the centrally located fixation point) or in the parafovea (within 2.3º of the fixation 

point). In this instance, half the trials featured a critical stimulus that was co-located with the 

visual fixation point. The fixation point typically corresponds to area of the retina that offers the 

highest resolution vision (fovea). The parafovea is the area of the retina surrounding the fovea 

that features reduced visual acuity and increased motion detection. Moving the placement of 

critical stimulus presentation from parafoveal to foveal resulted in an IB increase from 25% to 

85% of the sample, despite the critical stimulus being co-located with visual fixation. Wood and 

Simons (2019) conducted three studies with moving stimuli and distractors and also concluded 

that detection was not related to the stimulus crossing the fixation point. They also found that 

increasing the length of time the stimulus was on screen did not improve detection.  

Memmert (2006) extended the work by Simons and Chabris by adding an eye tracker to 

examine fixation points. To reiterate, Simons and Chabris (1999) asked subjects to count the 

number of basketball passes among members of a particular team of individuals either wearing 
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black shirts or white shirts. Towards the end of the video, a person in a gorilla suit walked 

through the scene, paused, thumped her chest, and continued offscreen. Memmert replicated the 

ball count and detection findings by Simons and Chabris and also found that the time the subject 

was fixated on the critical stimulus (i.e., the gorilla) was roughly equivalent between those 

subjects who detected and those who failed to detect the presence of the gorilla. Other 

researchers also found the amount of time subjects fixated on the critical stimulus was not 

significantly different between those who detected the critical stimulus and those who did not 

(Koivisto et al., 2004; Kuhn & Findlay, 2010; Memmert, 2006; Oktay & Cangöz, 2018). Beyond 

the lack of significant differences in fixation time, the average amount of time a non-detector 

fixated on the critical stimulus (1 sec) was beyond that sufficient for visual detection. This 

collection of research demonstrates that spatial attention via eye fixation (looking) simply being 

co-located with an object or event is not sufficient to assume cognitive awareness (seeing) of that 

object or event.  

A second unsuccessful explanation for IB was that the critical stimulus could be easily 

missed. Perhaps the critical stimulus was partially hidden, not visible long enough for the 

observer to detect, or the stimulus moved too quickly. Most et al. (2001) found that 30% of 

subjects failed to detect drastically different critical stimuli such as a moving red cross in a field 

of moving black and white targets and distractors (i.e., T and L shapes). The cross was on screen 

for 5 seconds and differed by color, luminance, shape, and motion trajectory making 

dissimilarity to other features in the visual field insufficient to assume observer detection. 

Another failed hypothesis was related to the length of time the critical stimulus was 

available for detection; perhaps if the critical stimulus was presented for a longer time the 

observer would eventually detect. The gorilla of Simons and Chabris (1999) was on screen for 9 
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seconds. Beanland and Pammer (2011) found a critical stimulus could remain in the attended 

visual field for greater than 5 seconds without detection. Wood and Simons (2019) conducted 

three studies that varied the time (1.5, 2.67, or 5 seconds) the stimulus spent onscreen and found 

no statistical improvement in detection rate as a function of time the stimulus was presented on 

screen. Wood and Simons concluded that detecting the stimulus typically occurs within the first 

1.5 seconds presented or would not occur at all. They found that detection of critical stimuli in 

sustained IB tasks occurs early in the stimulus onset and is not a slow accumulation of 

information over time nor evenly distributed across time. Similarly, Simons and Jenson (2009) 

examined individual differences in the ability to track an object, that is, how fast the subject 

could track an object at a pre-determined accuracy level, and found that object tracking ability 

also failed to predict IB susceptibility. 

Another unsuccessful explanation for IB was related to the protocol using retrospective 

self-report to document detection. The standard protocol for IB requires a subject to experience 

an IB trial and then report if they detected and could identify the stimulus (Mack & Rock, 1999). 

Neisser (1979) investigated the hypothesis that subjects simply forgot having seen the object or 

event by the time they were required to report it. Neisser manipulated the amount of time 

between the critical stimulus occurrence and the detection self-report by adding a 30 second gap 

after the umbrella woman left the visual field. Neisser found no difference in participants who 

reported detecting the woman between those who had the 30 second delay and those who had no 

delay. If a subject saw the woman enough to report it, they could do so despite an additional 

delay. 

Yet another insufficient explanation was that the testing experiments involved simulated 

or prerecorded events, that an observer would detect the critical stimulus if observed in real life. 
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In fact, IB instances do occur for events presented in a real-world format, even when those 

events are highly unusual. Hyman et al. (2010) examined this question with a clown on a 

unicycle in a university square. Hyman staged a clown on a unicycle in the center of a university 

campus central square and placed researchers at the edges. The researchers asked students who 

had passed by the clown and were exiting the square if they had noticed anything unusual during 

their walk. Individuals just walking or talking with another student reported seeing the clown, 

but those students who were talking on a cellular phone did not (see Figure 4).   

 

 

Note. From “Did You See the Unicycling Clown? Inattentional Blindness while Walking and 

Talking on a Cell Phone,” By I. Hyman et al., 2010, Applied Cognitive Psychology, 24, p. 602. 

(DOI: 10.1002/acp.1638). Copyright 2009 by John Wiley & Sons, Ltd. Reprinted with 

permission.  

Figure 5 
 
Hymen et al. (2010) path navigation with critical stimulus: unicycling clown.  
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This culmination of findings imparts that IB can occur even for objects that intersect the 

exact location of visual fixation, are dissimilar to other objects in the visual field, are viewable 

for a long period of time, and are extremely unusual and non-simulated. The physical features of 

the stimulus are not the cause of IB. The next logical attempt to explain IB is to explore the 

interaction of the human and the task. 

IB in Task Operation 

The foundation of the threat of IB is that outside of the laboratory setting, observers must 

have conscious awareness of objects or events to make volitional changes in planning and 

behavior (Fischer et al., 1980; Mack & Rock, 1998; Simons, 2000; Simons & Chabris, 1999). IB 

researchers investigated the concept of perception without attention using two main types of 

tasks: the basic stimulus response paradigms in visual attention tasks used by Mack and Rock 

(1998), and the complex naturalistic stimulus tasks like those used by Neisser and Becklen 

(1975).  

IB can easily become deadly when critical objects in the world fail to reach conscious 

perception. Individuals rely on information received from their interactions with the environment 

to guide their decision making. An individual experiencing IB has incomplete information with 

which to generate their mental model. This missing information yields an inaccurate 

representation of the external world, which limits the individual’s ability to assess the accuracy 

and appropriateness of subsequent decisions. For instance, a pilot may continue to land if they 

fail to detect a vehicle on the landing runway. In a case such as this, the missed detection of 

critical stimuli can result in the loss of lives.   

In 1980, the National Aeronautics and Space Administration (NASA) examined the 

impact of a new simulated heads-up-display (HUD) on pilot landing behaviors with a dual crew 
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in a simulated flight study (Fischer et al., 1980). Fischer et al. explored if the HUD would 

improve landing performance by providing the Pilot Flying (the pilot responsible for landing the 

aircraft) with an out-the-window view and co-located instrument information. Researchers also 

examined runway incursion detection with this new system and placed a wide-bodied aircraft on 

the simulated runway. Regardless of HUD equipage, half of the Pilots Flying failed to detect the 

single exposure to a wide-bodied aircraft sitting on the landing runway and proceeded to land. 

This study raised the concern for display-induced attentional shifts in the flight deck (Fischer et 

al., 1980).  

Unfortunately, detection failures that occur in the real world have real consequences 

including physical damage and loss of life. In 2001, the submarine USS Greenville was to 

perform a demonstration for distinguished on-board visitors off the coast of Hawaii (COI, 2001; 

Fraher, 2010; NTSB, 2001). The Captain stated an intention to perform a more exciting 

demonstration than typical and planned to perform several drastic maneuvers culminating in an 

emergency ballast blow surface breach. There were several other vessels in the waters and their 

locations were being charted. Following the high-speed maneuvers, the sonar required a time 

period to reestablish connection with surface traffic. The Captain of the Greeneville did not wait 

the defined time period, he incorrectly assumed the last reported coordinates of the known 

surface traffic were accurate and no vessels presented a threat. He performed a periscope visual 

scan for surface traffic and reported no visual contacts. Unfortunately, the Captain failed to 

visually detect the Ehime Maru, a Japanese high school fishery training ship. The submarine 

surfaced directly under the Ehime Maru causing the vessel to sink, killing nine crewmembers. 

The Captain performed a visual search scan to identify any hazard for surfacing, paying 

particular attention to the locations of the expected surface traffic. However, due to numerous 
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mapping inaccuracies and protocol deviations, the expected location for the Ehime Maru was 

incorrect. Although the Captain was actively searching for surface traffic and he did visually 

scan the location of the surface traffic, the boat was in a different location than expected and was 

undetected. Here, IB occurred for a situationally relevant and extremely critical stimulus due to 

the competition for attentional resources, time pressure, and inaccurate expectation caused by 

multiple compounding errors.  

 Simply searching for a piece of information in the visual environment is enough to 

increase the risk of a detection failure for other threats in the environment. Most and Astur 

(2007) found expectation as a critical role in IB by demonstrating an increase in IB occurrences 

for non-target stimuli when operators are actively seeking stimuli. They directed subjects to 

follow either a blue or yellow navigational arrow found at intersections in a driving simulation 

(see Figure 5). At the critical intersection, a motorcycle appeared that either matched or did not 

match the navigational arrow color and turned directly in front of the subject. When the 

motorcycle color matched the navigational arrow color, only 7% of drivers hit the motorcyclists 

as compared to 36% when the color did not match. Furthermore, drivers in the ‘‘mismatch’’ 

condition applied the brakes 186 ms slower on average, and two drivers failed to brake at all. 

The risk of IB increases when operators are actively seeking other visual stimuli with expected 

features such as road signage or the expected location of the last known position, like in the case 

of the Captain of the USS Greenville discussed above and in the case of near collision outside 

the Moorabbin Airport described below.   
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A pilot and student had a near collision outside of Moorabbin airport in Australia when 

they mistook one aircraft for another and nearly flew into the missed aircraft. Aircraft 1, 2, and 3 

were preparing to land (see Figure 6) (ATSB, 2012). Each were told to visually space behind the 

preceding aircraft and maintain safe spacing. Aircraft 0 was slow to exit the landing runway. 

Aircraft 1 had to extend the base leg portion of the flight route to provide enough time for 0 to 

exit the runway. Aircraft 2 extended the base leg portion of his flight path to maintain a safe 

spacing from Aircraft 1 causing Aircraft 2 to be much further off the normal flight path than 

typical when landing on that runway (see Figure 6). Aircraft 3 made visual contact to establish 

spacing behind Aircraft 2. Unfortunately, the pilot of Aircraft 3 saw Aircraft 1 in the location he 

Note. From “Feature-based attentional set as a cause of traffic accidents,” By S. B. Most & R.S. 

Astur, 2007, Visual Cognition, 15(2), p. 125-132. (https://doi.org/c9sx27). Copyright 2009 

Taylor & Francis. Reprinted with permission.  

Figure 6 
 
Most and Astur (2007) colored navigational arrows in a driving task. 
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expected to be occupied by Aircraft 2 and misidentified Aircraft 1 as Aircraft 2. Aircraft 3 then 

attempted to space behind Aircraft “2” and nearly collided with the real Aircraft 2 (see Figure 6). 

Aircraft 3 contained a student pilot and instructor who both reported conducting three separate 

visual searches for traffic and only gained awareness of Aircraft 2 after the airspace incursion 

incident occurred. The image to the right in Figure 6 provides a still image taken from the video 

recorder of Aircraft 2 to show the unsafe proximity of Aircraft 3. The pilots were so close to the 

actual target aircraft that they not only could see it (as shown by the flight image) but they could 

have collided with it, and still, failed to detect. This case of mistaken identity highlights the role 

expectation plays on visual detection and the increased likelihood of IB to an unexpected event.  
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Figure 7 
 
Near collision outside of Moorabbin Airport.  
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Note. The image to the left shows the line of aircraft cueing to land with the normal approach 

path shown in blue. The center image shows aircraft 3 beginning to queue behind aircraft 1 

instead of aircraft 2. The image to the right shows a still image taken from the dash recorder of 

aircraft 2, showing the unsafe proximity of aircraft 3. From “Aircraft proximity event – two 

Cessna 172S, VH-EWE and VH-EOP,” By Aviation Occurrence Investigation, 2012, 

Australian Transport Safety Bureau.  
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Neuroergonomic Approach to IB Assessment 

 Researchers found that higher attentional demands impair task performance, reduce 

visual target detection, and increase the likelihood of IB occurrence (Bressan & Pizzighello, 

2008; Recarte et al., 2008; Strayer & Drews, 2007) including across modalities, such as auditory 

(Pizzighello & Bressan, 2008). However, the increased likelihood for IB occurrences were 

observed at both the low end and the high end of the task demand spectrum. In a two-part study, 

Simons and Jensen (2009) examined individual differences in task performance ability related to 

IB. They found that primary task demands influence IB occurrences even when the task 

difficulty is tailored to produce equivalent task performance for each subject. Bressan and 

Pizzighello (2008) found that the unexpected event influenced primary task performance but 

only for those subjects who failed to detect.  

 As discussed by Driskell et al. (2013), stress and performance are most often studied in 

terms of overload, with high arousal and high task demand leading to task performance deficits. 

The current study also identifies the importance of understanding the impact of underload 

featuring the low task demand and low arousal of boredom. In a simulated driving task 

conducted by Kennedy and Bliss (2013), subjects who reported higher mental demand while 

following automated navigational directives were less likely to experience IB to a task relevant 

critical stimulus than those subjects who reported lower mental demand. However, this task was 

relatively simple, thus, the high mental demand was within the classification range of moderate 

workload rather than high, an important difference. 

 Parasuraman and Rizzo (2008) defined the field of neuroergonomics as the study human 

brain and behavior in action during work performance. The Dynamic Adaptive Theory (DAT) by 

Hancock and Warm (1989) defines a steep decline in performance when task demands are very 
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low or very high. The DAT identified an optimal performance comfort zone resulting from 

moderate stress and instability of performance resulting from hyperstress or hypostress. The 

DAT model has been further supported in the neuroergonomics literature through the 

advancements of neurobiology and a better understanding of concentrations of neurotransmitters 

related to “optimal” executive functioning versus boredom and distress (see Dehais et al., 2020 

for an extended review).  

During normal flight operation, long periods of inactivity during cruise can create periods 

of hypostress while other flight periods, such as takeoff and landing, produce a hyperstress 

environment (Wilson, 2002). The process of landing contains numerous procedures, checklists, 

and communication interactions, coupled with the increased physical risk related to ground 

proximity. Simply by nature of the task, the hyperstress related to landing can reduce critical 

event detection and increase the likelihood of IB. Furthermore, the extended periods of 

hypostress provide an increased likelihood to succumb to automation complacency and mind 

wandering. 

Humans have a limited capacity for processing information (Broadbent, 1958; 

Kahneman, 1973). The inability to attend to all things simultaneously has been the focal point of 

numerous attention and performance models such as Broadbent's Filter Model (1958), Feature 

Integration Theory (Treisman & Gelade, 1980), Heuristics and Biases (Tversky & Kahneman, 

1974), Multiple Resource Theory (Wickens, 2002), and the Malleable Attention Resource 

Theory (Young & Stanton, 2002). Selective attention is the application of limited cognitive 

resources. Factors associated with the psychophysiological state of the operator determines how 

well that attention will be assigned. However, when traditional precursors of degraded task 

performance, such as effort or workload, are investigated as precursors to IB, myriad counter-
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intuitive and conflicting findings arise. For example, typical predictors such as age, working 

memory capacity, task workload, primary task performance, and expertise show no significant 

differences between detectors and non-detectors in one study but significant differences in 

another (Beanland & Chan 2016; Dehais et al., 2020; Mack & Rock, 1998; Memmert, 2006; 

Wright, Boot, & Morgan, 2013).  

Dehais and colleagues (2020) reported that mental workload represents an interaction 

between individual differences in capacity and task demands. As described by Dehais et al. 

(2020), the inconsistent findings in the IB literature may be because IB is not solely a product of 

cognitive function, but rather, IB appears to sit at the neurophysiological intersection between 

cognitive function and biological limitation of the visual system, with either having the potential 

to induce IB. The conflicting findings in the IB literature may actually be related to the task 

chosen to elicit IB triggering the same response (failure to detect) but caused by different 

underlying mechanisms. For example, a subject who experiences IB due to a visual system 

overload has little in common with a pilot landing at a quiet airport who fails to detect a 

maintenance vehicle sitting on the landing runway with beacons flashing (TAIC, 2010; Wright et 

al., 2013). And yet, both are examples of the failure to detect visual information that was 

relevant, detectable, and within the useful field of view.  

In this way of thinking, the task used to elicit IB has increased importance. One kind of 

IB task relies on a densely packed visual field but requires little in the way of higher order 

cognitive processes (e.g., Wright et al., 2013). This type of task engages the physiological 

limitations of the visual information processing system to produce the attentional malfunction 

resulting in IB. Findings from a study that solely used an overloaded visual field to induce IB 
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would generalize poorly to the cognitive complexities and task expectation found when a pilot 

fails to detect a maintenance vehicle with flashing beacons on the landing runway (TAIC, 2010).  

As underlying causes of IB can be different, the metrics required to successfully measure 

the neurophysiological state that produced that IB will also be different. As previously 

mentioned in the IB literature review, eye gaze fixation point is typically an appropriate method 

to determine the location of visual attention in a visual field; except in the case of an IB, in which 

looking does not equate to seeing. However, information gleaned from eye tracking is still 

valuable in IB research. Aside from confirming the subject’s eyes were open and oriented 

towards the location at the time the visual stimulus was present, eye tracking can also provide 

insight into the cognitive state of the operator. Eye tracking offers a way to passively measure 

eye movement patterns, pupil diameter changes, and eyelid closures which are all used to 

passively assess human cognitive state without interruption of task performance (Mohan et al., 

2019; Peißl et al., 2018).   

Pupil dilation is a cognitive state measurement that can be collected passively and in real-

time using eye tracking technology (Recarte et al., 2008). Dehais et al. (2020) reported IB to be 

positively related to fixation duration and negatively related to saccades and fixated areas of 

interest. Dehais and colleagues (2020) also reported that, although not IB, the related 

phenomenon of inattentional deafness was negatively related to pupil diameter. Identifying a 

relationship between eye tracking and IB might permit its use as an automation implementation 

method or safety feature for operators during task performance in any environment that includes 

highly visual performance tasks or monitoring, such as aviation.  

Wright et al. (2013) found pupil dilation did not predict IB, however, their study may not 

have had the appropriate design to do so. Wright and colleagues used a common IB induction 
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task to examine how subject effort and primary task engagement impacted IB. Subjects 

maintained visual fixation at the center of the computer screen and monitored a visual field that 

contained targets and distractors moving randomly around the field for 60 trials at 8.5s each. At 

the end of each trail, subjects indicated the number of times a target made contact with the edges 

of the computer screen. Wright et al. varied workload by number of distractors and by the 

similarity of the distractors to the target object to be counted in color or shape. Wright and 

colleagues operationalized effort in terms of pupil dilation and primary task engagement in terms 

of bounce count error rate. They found a significant negative correlation between pupil dilation 

and error rate supporting the low/high workload manipulation but found no significant 

relationship between IB and effort or primary task performance. However, this task contained 

little in the way of higher-level cognitive processes or decision making. Wright et al. found that 

reduced pupillary response negatively correlated with higher error rate and higher error rate 

reflected the higher workload manipulation, however, neither demonstrated a significant 

difference between the detectors and non-detectors. Wright et al. explained these findings by 

reporting the effort recruited for the primary task performance was unrelated to effort in noticing 

expected events.  

Wright et al.’s results might be more readily explained considering the 

neurophysiological conceptualization of IB. Wright et al. manipulated task workload by 

capitalizing on increased visual load, but the task was monotonous and repetitive, the protocol 

did not permit free eye movement, and no subjective measures of workload or effort were 

administered for comparison. Kahneman and Peavler (1969) found that the motivation of the 

subject impacts the magnitude of pupillary response. Franklin and colleagues (2013) reported 

that the mind will wander in the absence of a goal-directed task and that pupil dilation will also 
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occur in response to the mind wandering content, rather than content of the task and stimulus 

presentation. Beatty (1982) noted that a critical role of intentional attentional engagement was 

related to effort (reviewed in Beatty & Lucero-Wagoner, 2000). Ultimately, an unengaging task 

may lead to inconclusive pupil dilation results. In a task by Kang et al. (2009) found that subjects 

curious about the answer to a trivia question answer produced a small but detectable (8% vs. 4%) 

pupil dilation response (Kang et al., 2009).  

Mathôt (2018) indicated that pupil dilation is indeed reflective of cognitive state and 

found that a small-sized pupil was related to drowsiness, a moderate-sized pupil related to 

focused attention, and a large pupil characterized increased cognitive activation. Winn et al. 

(2018) identified that task-evoked pupil dilation was not a single simplistic construct summed up 

in effort, but instead is reflective of the intersection of many internal processes such as attention, 

engagement, arousal, anxiety, and effort. Therefore, the potential for determining the use of 

pupillometry in predicting IB may be better examined using an engaging flight paradigm with a 

naturalistic and unobtrusive collection method.  

Recarte and Nunes (2000, 2003) conducted a real-world driving study that included a 

secondary task and found pupil dilation varied with increased secondary task workload. Recarte 

and Nunes (2003) replicated the pupil dilation findings and correlated them with the subjective 

workload measure to support that pupil dilations were consistent with subjects’ perceptions of 

the effort applied to the task. In a follow-on, Recarte et al. (2008) reported that during complex 

task performance such as driving, the pupil dilation represents the entire mental workload 

experienced which included the workload associated with the current task operation and the 

workload associated with planning to complete upcoming tasks (e.g., passing another car, way-

finding).  
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Using neurophysiological conceptualizations, the use of pupil dilation as an indicator of 

IB-predisposing cognitive state conditions would be more appropriately assessed when coupled 

with a cognitively complex IB task. Meaning, an experiment that uses pupil response as a 

method to examine cognitive state conditions surrounding IB occurrences during task operation 

should use an experimental task that engages similar neurophysiological features as an 

operational environment, such as an aviation simulation.   

Purpose of Current Study 

Data for this study were obtained as part of a larger study examining the use of a specific 

type of EEG analysis to detect IB. These data came from the first IB flight simulation run and 

prior to any other experimental exposure. The other variables in this study included aircraft 

performance, eye tracking, subjective report questionnaires, NASA-TLX Workload Rating 

Scale, and overall operator state via psychophysiological assessment. Eye tracking, NASA-TLX, 

and subjective report questionnaires are reported herein. 

The current study examines the cognitive state conditions associated with an IB 

occurrence to an operationally relevant unexpected object. The goal of this study was to increase 

understanding of the predictors related to visual stimulus detection during complex task 

performance to provide increased insight into pilot readiness to respond to an unexpected event. 

Specifically, this study examined IB occurrences to an unexpected runway incursion during a 

simulated flight landing task across three automation conditions with varied task load (full 

automation, partial automation, and manual) to examine pupil dilation as a discriminator between 

detectors and non-detectors. This study examined the use of eye tracking to identify predictors of 

unexpected visual stimulus detection during simulated flight task performance to explore the 

potential for real-time IB mitigation opportunities.  
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The following hypotheses correspond to the preceding review of the IB literature:  

• H1. Subjective task demand scores on the NASA-Task Load Index (TLX) would vary 

significantly as function of automation condition. Specifically, subjects in the full automation 

condition would report the lowest overall task demand, subjects in the partially automated 

condition would report higher task demand than the automated condition but lower task 

demand than the manual condition, and subjects in the manual condition would report the 

highest overall task demand (Driskell, Driskell, & Salas, 2013; Hancock & Warm, 1989; 

Hart & Staveland, 1988; Recarte et al., 2008).  

• H2. The likelihood of IB occurrence would vary across automation condition such that the 

partial automation condition would have the lowest likelihood of IB occurrence as compared 

to the full automation and manual condition. The manual condition was expected to have 

higher likelihood of IB occurrence than partially automated condition due to higher cognitive 

load (Cartwright-Finch & Lavie, 2007). The full automation condition was expected to have 

higher likelihood of IB occurrence than the partially automated condition due to automation 

complacency and mind wandering (Bailey & Scerbo, 2007; Franklin et al., 2013; 

Parasuraman & Manzey, 2010).  

• H3. Subjects who indicated higher task demand (i.e., reported higher scores on the overall 

NASA-TLX) would exhibit greater pupil dilation as compared to subjects who scored the 

task as lower in demand (i.e., reported lower scores;). Task demand will be positively 

associated with pupil dilation, such that participants who report higher scores on the overall 

NASA-TLX will also exhibit greater pupil dilation (Recarte et al., 2008). 

• H4. Subjects with larger pupil dilation would have decreased likelihood of IB occurrence 

compared to those with smaller pupil dilation (Beatty & Lucero-Wagoner, 2000; Dehais et 
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al., 2020). Specifically, those subjects with larger pupil dilation were more likely to detect 

the critical stimulus than those subjects with smaller pupil dilation.   
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CHAPTER IV 

METHOD  

Subjects 

Subjects were 60 non-commercial aviation pilots (29 male, 31 female) with a mean age 

of 34.5 years (SD = 13.3 years, range = 20 to 64). Non-pilots were chosen for this initial study as 

the required sample size was cost prohibitive for a commerical pilot sample and to provide 

support for a future study with a certified pilot sample. A power analysis (as described in detail 

in the Data Analysis section below) indicated a required sample size of 22. Subjects were 

required to have normal or corrected-to-normal vision and hearing assessed via self-report on the 

demographic questionnaire. Most participants self-reported as right hand dominant (n=56), 2 

participants self-reported as left hand dominant, and 2 as ambidextrous. Mean computer usage 

per day was 5.5 hours (SD = 3.2 hours; range = 0 to 15), PC game use was reported as 6.9 days 

per month (SD = 9.7 days; range = 0 to 30). Twelve subjects reported playing simulated flight 

games during PC game usage at a mean of 7% of their total estimated gaming time (SD = 4.8%; 

range = 1% to 20%).   

As previously noted, these data were obtained as part of a larger study examining the use 

of EEG to detect IB. Due to the strobing lights used for the EEG photic stimulation portion of the 

full experiment, the participants were required to be over the age of 20 with no history of 

epilepsy or recent traumatic brain injury. The strobe frequencies were within the trigger range of 

photosensitive epilepsy and the age of onset is typically before the age of 20 (De Bittencourt, 

2004). 

Non-civil servants (n =59) were compensated with $50. Civil servants (1.66%, n = 1) 

participated in the research in their official capacity as Federal employees and were not 
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compensated as per NASA policy. Given that only one civil servant participated in this study, 

comparisons between the civil servants/non-civil servants were not possible. Subjects were 

recruited using the NASA Langley contractor tasked with human subject recruitment for studies. 

The recruitment was made by posting the opportunity on an online recruitment database 

available to the public (https://flight-research.larc.nasa.gov/) as well as a physical flyer posted in 

several common spaces at the research facility (see Appendix H). The participant recruiter 

matched participants to available schedule slots, obtained visitor badges for the participants to 

enter the research center, escorted the participants from the badge office to the research 

laboratory, and handled all aspects related to the participant payments.  

Prior to data collection, this study was approved by the Institutional Review Board at 

NASA Langley Research Center and two internal branch experiment reviews (preliminary 

experiment review, final experiment review). Both branch review formats included a 

presentation to a branch panel with an open audience and question and answer period. 

Completion of both branch reviews required approval of the team lead, the branch panel, and a 

member of branch management. Prior to participation, subjects read and signed an informed 

consent document (see Appendix A) and a Privacy Act Notice (see Appendix I) and were 

provided a copy of each to keep. Participation was entirely voluntary; participants gave consent 

with the understanding that they could end the study at any point. 

Brief Summary of Experimental Design 

Subjects were randomly assigned to one of three automation conditions. These 

automation conditions required subjects to monitor or operate the aircraft thrust and attitude 

controls as conceptually similar to autopilot (fully automated), auto-throttle (partially 

automated), and manual (manual) flight conditions. After three training sessions, subjects then 
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completed the final five minutes of a simplified landing scenario. The task was a simplified 

approach to an airport and included two holding speeds, one altitude-specific speed change, and 

orienting the aircraft to land on a specific runway. At approximately 10 seconds prior to 

touchdown, a truck (the critical stimulus) moved along a taxiway and onto the landing runway at 

the touchdown target location. The scenario was suspended, and the simulation displays were 

blanked just prior to touchdown (i.e., prior to collision with the vehicle). Subjects then completed 

the post-experiment IB questionnaire and NASA TLX.  

Materials 

 Subjects completed a background questionnaire that included relevant demographic 

information including age, sex, information about vision and hearing, and flight simulator 

experience (see Appendix B). Researchers then provided a description of the study, the flight 

simulator, the scenario, the automation condition, and experimental instructions.  

Experimental Manipulation. The experimental manipulation for this study was flight 

control automation. Subjects were randomly assigned to one of three automation conditions and 

remained in that automation condition for the entire experiment. The order of random assignment 

was pre-defined using a random sequence number generator prior to experiment launch to ensure 

equivalent category membership. Three automation conditions were chosen for the conceptual 

similarity to autopilot, auto-throttle, and full manual operation. The conditions were full 

automation, partial automation, and manual (i.e., no automation). Subjects in the full automation 

condition were instructed to monitor the automation-controlled flight path and speed and to 

report any deviations from expected flight parameters. Subjects in the partial automation 

condition manipulated the attitude of the aircraft and monitored the auto-throttle control of the 

speed changes. Subjects in the manual condition manipulated both the aircraft attitude and thrust. 
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Subjects performed three practice sessions within their assigned condition to achieve task 

proficiency. Training is discussed further in the procedure section below.  

System Description. The flight simulator used for this study was capable of varied levels 

of fidelity and flight control accuracy. This experiment utilized a simplified set of flight controls 

to accommodate non-pilot subjects. This simulator included force feedback sticks to enable both 

visual and tactile feedback related to the state of the aircraft control settings including those 

changes made by automation. The simulator visual environment provided an out-the-window 

view and a simplified primary flight display (see Figure 7).  

 

 

 

 

Figure 8 
 
Experimental set-up: out-the-window and primary flight display during speed change. 
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The out-the-window view consisted of three 60 Hz 65” Sharp LCD monitors placed in an 

arc 8 ft. from the subject with the two side screens turned towards the subject to provide 

equidistance viewing. The simulated environment featured a moderate-to-high definition 

resolution rendering of the Louisville International Airport and surrounding area. The primary 

flight display was placed on one 60 Hz 17” Dell monitor at a fixed distance of 26” from the 

subject. The primary flight display contained a simulated synthetic vision rendering of the out-

the-window image and a basic aircraft instrument package including flight path marker, speed, 

altitude, and heading information. The primary flight display included a virtual waypoint overlay 

represented by a three-dimensional red star located at the route coordinate at the target altitude of 

the required speed change (see Figure 7).  

The Task. The simulated aircraft flight dynamics model was a twin turbo-prop commuter 

plane Dash-8. The flight scenario consisted of daytime flight conditions, overcast, with 3 miles 

or greater of visibility. Turbulence was represented by a pre-recorded light wind created via a 

randomly generated seed and a sum of signs algorithm such that all subjects experienced the 

exact same conditions without a discernable pattern. 

 The flight task required subjects to experience the final five minutes of a simulated 

simplified landing scenario by either piloting or monitoring an aircraft to land on runway 29 at 

Louisville International Airport. The scenario initialized during mid-approach at approximately 5 

minutes before touchdown. The total run from starting point to touchdown point covered a 

Euclidean distance of 48,925 ft. Perfect performance of this scenario required continual descent 

from 4890 ft to 462 ft onto runway 29. The specified airspeed was 180 knots true airspeed 

(KTAS) until 2200 ft, then reduce speed to 150 knots true airspeed until touchdown. The 

simulation ended and the simulation displays were cleared prior to actual touchdown.  
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 Critical Stimulus. A runway incursion is defined as any occurrence at an aerodrome 

involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a 

surface designed for the landing and take-off of aircraft (FAA, 2012). There were seven vehicles 

in the proximity of the landing runway: three nonmoving, three moving, and one critical 

stimulus. These vehicles were in view for approximately 40 seconds and only the critical 

stimulus provided a conflict to landing. The three moving vehicles were on the two taxiways 

parallel to the active runway. Vehicular motion was activated when the subject reached a pre-

specified position in the scenario rather than based on time elapsed. These vehicles triggered at a 

Euclidean distance of 6510 ft from the target touchdown point and were in-motion for 

approximately 26 seconds.  

The critical stimulus took the form of a Vehicle Deviation runway incursion of an orange 

and white box truck crossing the landing runway at the touchdown target point. The critical 

stimulus was a Category B runway incursion because a trained pilot could avoid a collision by 

performing a go-around maneuver, once detected. The current study examined the detection of a 

stimulus and not the response actions to avoid the stimulus; meaning, this goal of this study 

related to whether or not the subject detected the vehicle on the runway, and not if the subject 

performed the right action following detection. Therefore, the non-pilot subjects were not 

expected to perform any avoidance maneuvers, were not trained to do so, and the simulation 

ended prior to the subject colliding with the vehicle (Mack & Rock, 1998). Any spontaneous 

avoidance maneuvers were simply recorded. The truck was positioned on an intersecting taxiway 

at a hold-short position immediately perpendicular to the landing runway. When the subject 

reached 2590.8 ft (Euclidean distance) from the touchdown point, the truck triggered into 

motion, entered the active landing runway and presented a direct collision threat to the landing 
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aircraft (see Figure 8). The path of the truck was designed to pass through the natural fixation 

point and simulate a parafoveal then foveal then parafoveal presentation. The truck was in 

motion until the end of the run which was approximately 10 seconds. The scenario ended and 

displays were cleared just prior to touchdown and the subject completed the post-experiment IB 

questionnaire.  

 

 

  

 

Out-the-Window 
 

Primary Flight Display 
 

Figure 10 
 
Out-the-window and primary flight display with Critical Stimulus.  

Note. Participant view of the critical stimulus in each flight display. 
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IB Questionnaire. Following the scenario, subjects completed via pencil and paper a 

hardcopy self-report questionnaire designed to elicit responses related to the scenario (see 

Appendix C). The established assessment of IB is the failure of a subject to consciously perceive 

the critical stimulus such that they are unable to report detection of the stimulus. Consistent with 

Mack and Rock’s (1998) IB paradigm, the post-experimental self-report questionnaire 

specifically prompted the subject to report detection of the critical stimulus. This technique is 

reproducible, supported, and accepted as the experimental paradigm for IB detection and 

assessment (Mack & Rock, 1998; Memmert, 2006; Most et al., 2005; Neisser & Becklen, 1975; 

Simons & Chabris, 1999; Varakin et al., 2004).  

This questionnaire provided these questions to assess IB: “Did you see anything on or 

above the landing runway? Yes or No” and “If so, please describe” for the subject to report 

detection. Subjects were considered as unable to detect the critical stimulus and classified as 

exhibiting IB if they indicated either a “no” to the post-experimental questionnaire or a “yes” but 

could not accurately describe the truck (Mack & Rock, 1998; Most & Astur, 2007). The 

dependent variable, detection or non-detection of the runway incursion, was measured 

dichotomously: 0 = detected (non-IB case), 1 = non-detection (IB case). To reduce data entry 

error, the completed questionnaires were digitized using the double entry method. The researcher 

and a laboratory assistant both independently entered these data into separate Excel sheets. These 

sheets were compared, and any data discrepancies were resolved through examination of the 

original completed questionnaire. 

To avoid conceptual cueing, the questionnaire contained other questions related to the 

preceding scenario such as speed/altitude changes, landing intentions, and visual scenery items. 

These non-IB fill-in-the-blank questions were examined for any subject statements that indicated 
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detection of the critical stimulus to ensure accurate IB/Non-IB categorization. The previously 

presented results of these data a response was categorized as detect if the subject accurately 

described the critical stimulus on the two specific IB questions listed above. In this study, a 

response was categorized as detect (non-IB; coded as 0) if the subject accurately described the 

critical stimulus in any answer space beyond just the two targeted IB items, and a non-detect (IB; 

coded as 1) if there was no indication on the questionnaire that they saw the stimulus. 

 NASA-Task Load Index (NASA-TLX). Hart and Staveland (1988) defined workload as the 

cognitive resources required for an individual to perform a task at a specific level. Subjects 

completed the NASA-TLX (see Appendix D) to provide a subjective rating of perceived 

workload. The NASA-TLX is a multi-dimensional scale of workload with six subscales that 

assess a different dimension of workload: mental demand, physical demand, temporal demand, 

performance, effort, and frustration level (Hart, 2006; Hart & Straveland, 1988). Recarte et al. 

(2008) identified the NASA-TLX as the best predictor of visual detection impairment when 

compared to eye blink and pupil dilation in dual-task conditions of visual and mental workload. 

Each subscale has a single item scored on a scale of 0-20 (see Appendix D). The NASA TLX has 

a test-retest reliability of r = .83 (Hart & Straveland, 1988) and a Cronbach’s a of 0.84 

demonstrating high internal consistency (Flägel et al., 2019). Rubio et al. (2004) reported high 

convergent and concurrent validity in mental workload, task performance, and predictive task 

performance with the TLX correlating above 0.97 to two other accepted measures of subjective 

workload: Subjective Workload Assessment Technique (SWAT) and the Workload Profile (WP) 

(Rubio et al., 2004).  

 After completing the simulated flight task, subjects indicated the individual magnitude of 

the six workload elements by marking a position along a corresponding line with 20 equally 
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spaced hash marks. For this study, the NASA-TLX had a high level of internal consistency and 

found the same Cronbach's alpha of 0.84 as reported by Flagel et al. (2019). The procedure 

outlined by Hart (2006) was used to produce the total TLX score by averaging the six subscale 

scores without the additional weighting scale of the original TLX. 

 Smart Eye™ Eye Tracking System. The Smart Eye Pro™ eye tracking system, version 

5.0, was installed in this simulator and used to capture eye behavior information, pupil dilation in 

particular. For detailed information and description of the eye tracker, eye tracker model, and eye 

tracking procedure please see Appendix J. The Smart Eye (SE) is a multi-camera head and gaze 

tracking system that enables naturalistic data collection and uses features of the head and face to 

calculate the head pose and gaze direction of subjects in a defined 3D space relative to the 

position of the tracking camera (Ahlström, Kircher, & Kircher, 2009; Ellis, 2009; Smart Eye, 

2008). The experimental system consisted of four 60 Hz Sony HR-50 6.0mm lens cameras 

connected by ethernet, two IR-diode flashers, a 3-dimensional virtual representation of the 

critical portions of the testing environment (world model), and a 3-dimensional virtual 

representation of the subject’s head (head model). The SE uses infrared diodes to provide 

consistent lighting across the subject’s face and to produce glints, or cornea reflections of the IR 

flashers, that the system uses to locate the eye center. Multiple studies demonstrated successful 

pupillometry conducted in real-world driving applications with normally occurring lighting 

variations and free head movement (Recarte & Nunes, 2000, 2003). In this study, the subject was 

able to move freely, therefore, an accurate head model across the expected gaze range of the 

environment was required for accurate pupil diameter measurements.  

Despite the best configuration, specific instances can preclude successful eye tracking 

such as extended eyelid closures, extreme head angles in any direction, exiting the eye tracking 
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location, characteristics of the iris/pupil, and characteristics of some glasses and contacts. An 

acceptable eye tracking profile was created for all subjects in this study. The pupil dilation data 

cleaning procedure is described in the results section below. 

Procedure 

In the original study, all subjects reviewed and signed the IRB-approved Informed 

Consent form and completed the background questionnaire. Subjects were provided a short 

experimental overview briefing regarding the flight task, the automation condition variations, 

and any physiological recording equipment used for workload response collection. Subjects were 

equipped with the physiological monitoring equipment and an eye tracking profile was created. 

Subjects were randomly assigned to one of three automation conditions. Subjects were fitted 

with physiological sensors, seated, and positioned in the simulator and began the Smart Eye head 

model protocol.  

To ensure adequate task performance competency with the equipment in the 

environment, after being randomized to one of the three automation conditions, the subject 

completed a simulator familiarization procedure and three training runs. The subject maintained 

the same automation condition throughout training and testing. The training sessions utilized the 

same experimental environment with a Northerly approach and landing on Louisville 

International Airport runway 35L with similar speed and altitude changes. The training runs 

consisted of three flights to landing, two flights with researcher assistance as needed and at least 

one solo final run. The guided training sessions permitted the researcher to provide verbal or 

physical guidance as needed to assist the subject while learning task operation. The final training 

run was completed entirely by the subject to demonstrate task proficiency. All subjects 

completed training to proficiency in three runs. All training scenarios ended just prior to 
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imminent touchdown. This was because the test run included a vehicle on the runway that would 

result in a runway collision if the subject was permitted to land. A runway collision would make 

the critical stimulus overtly obvious and likely eliminate any odds of a subject failing to detect. 

The subjects were told the scenario would end just prior to landing due to limitations of the 

virtual environment. No vehicles were on or near the runway during the training sessions. The 

eye tracking model was validated, and any necessary modifications were made.  

Next, subjects completed the experimental scenario and guided the aircraft down to 

Louisville International Airport runway 29 using a Westerly approach with the 

control/monitoring combination for the automation condition as trained. The scenario ended 

immediately prior to touchdown to avoid potential collision between the aircraft and the critical 

stimulus. Following the end of the the scenario, the subjects completed the post-experiment IB 

questionnaire and the NASA-TLX form. This portion of the testing session pertinent to the 

current study lasted approximately one hour. Subjects completed the remainder of the full 

experiment and were debriefed.  
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CHAPTER V 
 

RESULTS 

Power Analysis 

All power calculations were made using G*Power (Faul et al., 2007). The power analysis 

for the ANOVA was conducted using G*Power. Recarte et al. (2008) identified the overall 

NASA-TLX as a retrospective predictor of visual detection impairment in dual-task conditions of 

visual demand with an η2 = .566. For the ANOVA, G*Power ANOVA: Fixed effects, omnibus, 

one-way, F-test was conducted with a calculated effect size f of 1.14993, alpha of .05, power of 

.80, and number of groups of 3 to yield a required total sample size of 12.  

For the logistic regression analysis, G*Power logical regression z-test was conducted for 

two-tailed, odds ratio = 11, H0 proportion of .45, alpha of .05, power of .80, normal distribution, 

yielding a total required sample size of 22. IB literature was used to determine the required 

estimation of the predicted odds ratio and the smallest proportion of IB proportion of cases. The 

Cartwright-Finch and Lavie study (2007) was selected due to the similarity of cognitive load 

manipulation and IB. Cartwright-Finch and Lavie found 90% (18 of 20) of subjects experienced  

IB in the high cognitive load condition as compared to 45% (9 of 20) of subjects in the low 

cognitive load condition. This information is organized in the following diagram:  

 

 

The odds ratio formula (a*d)/(b*c) was populated using Cartwright-Finch and Lavie 

(2007) data from the table above as (18*11)/(9*2) and yielded an odds ratio of 11. This group 

difference is similar to that found by IB researchers (Simons & Chabris, 1999, Simons, & 

Jensen, 2009).   

 Case – IB Non-Case – Detect 
High Workload 18 2 
Low Workload 9 11 
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Pupil Dilation Data Cleaning  

All statistics and analyses were conducted using IBM SPSS Statistics version 25. The 

current study included four main hypotheses. Significance was determined by a p-value less than 

.05 level. The eye tracking metrics examined the eight seconds following critical stimulus 

activation (i.e., the truck starts to move) to ensure capture of the pupillary response after 

detection. Pupillary response ranges from 500ms to 1.5s and emerges, on average after 1s (Winn 

et al., 2018). As discussed in the introduction, subjects who detected an IB stimulus were likely 

to do so within the first 1.5 seconds (Wood & Simons, 2019).  

The critical stimulus was triggered to begin moving based on the distance of the subject 

to the runway rather than simulation time to ensure all participants experienced a similar threat to 

landing. Therefore, the simulation time for the critical stimulus onset was slightly different for 

each participant. The data were aligned using the critical stimulus onset as a shared zero point. 

The examination window included the zero point and the following 480 data points 

(approximately 8 seconds). This range was considered an acceptable time window to detect a 

possible response based on the time documented by Winn et al. (2018). 

The pupil diameter for the left and right eye was recorded in meters and was converted to 

millimeters (mm) for consistency in reporting. Next, the data from the left and right eye of each 

subject were each assessed for accuracy and completeness. This study design featured an applied 

setting with an interest in subject pupillary response during performance of a simulated aircraft 

landing scenario. To this end, subjects were permitted to look and move freely with the 

expectation that portions of subject data would likely require exclusion during the data cleaning. 

Accuracy was assessed using the expected range for pupil dilation and the Smart Eye data 

quality metric. The human pupil diameter ranges from approximately 2mm to 8mm (Mathôt, 
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2018). Pupil diameter measurements outside of 2 to 8 mm were considered outside of typical 

physiological range due to measurement error and excluded from analysis. For data quality, 

Smart Eye provides data from the pupils of each eye along with a quality metric that is 

normalized from a scale of 0.0 to 1.0 (Smart Eye 2008). Following the protocol by Ahlström et 

al. (2009), data with a quality rating lower than 0.25 were excluded from analysis.  

Next, the left and right eye data that were both a) within the defined pupil dilation range 

and b) had a data quality score greater than 0.25, were averaged to produce a single mean value. 

Missing data were expected due to eye blinks or measurement error. Using BioPack Student Lab 

v4.1, interpolation was used to replace missing data followed by a 10 Hz low pass filter as 

documented in the procedure for pupil dilation data cleaning documented by Winn et al. (2018; 

see Figure 9).  
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The data cleaning process for pupil dilation reduced the sample size for Hypothesis 3 and 

Hypothesis 4 from 60 participants to 50 participants. Data from 10 participants were excluded 

for the following reasons: data from 8 participants were excluded because more than 20% of 

their data were missing or categorized as measurement error (Winn et al, 2018), data from 2 

participants were excluded due to missing either the eye tracking data file or the critical stimulus 

onset information required for data alignment.  

Data Analysis 

Hypothesis H1. Subjective task demand scores on the NASA-Task Load Index (TLX) 

would vary significantly as function of automation condition. Specifically, subjects in the full 

automation condition would report the lowest overall task demand, subjects in the partially 

Note. 1) Raw pupil dilation data (black) with missing data, 2) remove transient excursions (red), 

3) interpolate gaps 4) lowpass filter data (green). From “Best Practices and Advice for Using 

Pupillometry to Measure Listening Effort” Winn et. al., 2018, Trends in Hearing, 22(1). 

https://doi.org/10.1177/2331216518800869. Permission not required for reprint.  

Figure 11 
 
Winn et. al., (2018) sequential steps of data processing for pupillometry data.  
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automated condition would report higher task demand than the automated condition but lower 

task demand than the manual condition, and subjects in the manual condition would report the 

highest overall task demand (Driskell, Driskell, & Salas, 2013; Hancock & Warm, 1989; Hart & 

Staveland, 1988; Recarte et al., 2008). 

A one-way ANOVA was conducted to determine if the subjective overall task load 

(overall TLX scores) was different across automation conditions (full automation, partial 

automation, manual). ANOVA has six assumptions. Three of these assumptions are related to the 

study design: one continuous dependent variable, one categorical independent variable with two 

or more independent groups, and independence of observations. The other three assumptions are 

testable with statistics: no significant outliers, approximately normal distribution, and 

homogeneity of variance. Outliers were assessed for the overall NASA TLX scores using 

boxplots. An observation greater than 1.5 interquartile ranges from the edge of the box was 

considered an outlier. No outliers were detected. Due to there being fewer than 50 subjects per 

condition, Shapiro-Wilk test for normality was used and found normal distribution (p > .05). 

Homogeneity of variance was confirmed, as assessed by Levene's test for equality of variances 

(p = .803).  

The subjective overall task load (TLX score) was lower in the full automation (M = 

25.33, SD = 16.55), then higher in the partial automation (M = 35.0, SD = 17.44), to highest in 

the manual (M = 40.08, SD = 18.81) automation condition groups (see Figure 10). Table 1 

provides the mean, standard deviation, confidence interval, and minimum/maximum observed 

scores for the overall NASA TLX means across automation conditions. The overall NASA TLX 

score was statistically significantly different for different levels of automation condition, F(2, 57) 

= 3.62, p = .033, η2 = .113.  
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Tukey post hoc analysis revealed the difference in overall NASA TLX score from full 

automation to manual (14.75, 95% CI [1.34, 28.16]) was statistically significant (p = .028). The 

difference in overall NASA TLX mean scores from the full automation to partial (9.7, 95% CI [-

3.74, 23.08]) conditions was not significant (p = .201) and from partial to manual (-5.1, 95% CI 

[-19.07, 8.91]) conditions was also not significant (p = .652). 

 

 

 

 

 

Note. N =20 per group, total = 60. 95% CI Error Bars. 

Figure 12 
 
Overall NASA TLX scores by automation condition: full auto, partial auto, manual. 
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Table 1 

Descriptive statistics for the Overall NASA TLX scores by Automation Condition.  
 

 

Note. N =20 per group, total = 60. CI = confidence interval; LL = lower limit; UL = upper limit. 

 

 

Hypothesis H2. The second hypothesis was that the likelihood of IB detection would 

vary across automation condition, with the partial automation condition exhibiting the lowest 

likelihood of IB occurrence as compared to the full automation and manual condition. The 

manual condition was expected to have higher likelihood of IB occurrence than partially 

automated condition due to higher cognitive load (Cartwright-Finch & Lavie, 2007). The full 

automation condition was expected to have higher likelihood of IB occurrence than the partially 

automated condition due to automation complacency and mind wandering (Bailey & Scerbo, 

2007; Franklin et al., 2013; Parasuraman & Manzey, 2010).  

A chi-square test was conducted between automation condition (full automation, partial, 

manual) and IB occurrences (detect or fail to detect). There are five assumptions associated with 

a chi-square test. The first four are related to study design and were met: one dependent 

dichotomous variable, one independent categorical variable with three or more categories, 

independence of observations, and a single observation using random assignment. The fifth 

assumption is that each expected cell has greater than 5 observations. This assumption was met 

 
Condition M SD 95% CI for Mean Min Max 
      LL UL     
Auto 25.33 16.55 17.59 33.08 0 56.67 
Partial 35.00 17.44 26.84 43.16 5.83 59.17 
Manual 40.08 18.81 31.28 48.88 10.83 79.17 
Total 33.47 18.39 28.72 38.22 0 79.17 
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as determined by a 2 x 3 crosstabulation providing a minimum expected cell count greater than 

five.  

Ultimately, 12 (60%) subjects in the full automation condition failed to detect the critical 

stimulus compared to 4 (20%) subjects in the partial automation condition and 8 (40%) subjects 

in the manual condition, which is a statistically significant difference in the proportion of IB, p = 

.036. To determine which of the three conditions significantly differ, the post hoc analysis z-test 

of two proportions was conducted using pairwise comparisons. The proportion of subjects who 

failed to detect the critical stimulus in the full automation condition was statistically significantly 

higher than the partial automation condition, p < .05. The proportion of subjects who failed to 

detect in the manual condition was not statistically significantly different from the full 

automation or partial automation, p > .05 (See Figure 11).  
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Hypothesis H3. Subjects who reported higher task demand (i.e., reported higher scores 

on the overall NASA TLX) were expected to have increased pupil dilation as compared to 

subjects who reported low task demand (Recarte et al., 2008). A linear regression was conducted 

between the NASA TLX and the pupil dilation scores.  

Prior to data analysis, the seven assumptions of linear regression were evaluated.  The 

first two assumptions are that the independent (predictor) and the dependent (criterion) variables 

were measured continuously. The next five assumptions were examined with statistical analysis: 

a linear relationship between independent and dependent variables, independence of 

observations, no significant outliers, homoscedasticity, and normal distribution of residuals.  

Figure 13 
 
Detect (no IB) vs Non-Detect (IB) by Automation Condition. 

Note. N =20 per group, total = 60. Count in table is number of subjects who experienced IB in 

that automation condition.  
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Linearity between variables was examined using scatterplot of overall NASA TLX (X-

axis) against average pupil diameter in mm. Visual inspection of this scatterplot indicated a 

linear relationship between the variables. Independence of observations was expected due to 

experimental design and independence of residuals was confirmed by a Durbin-Watson statistic 

of 1.82. No obvious outliers were identified in the scatterplot and none with standardized 

residuals ±3 were detected in the casewise diagnostics. Homoscedasticity was confirmed by 

visual inspection of the scatterplot of standardized residuals and standardized predicted values 

appearing to be randomly scattered. Normal distribution of residuals was assessed by visual 

inspection of a histogram and a normal probability plot.  

Results indicated that higher subjective perceived task demand as measured by the 

overall NASA TLX significantly predicted pupil dilation, F(1, 48) = 4.16, p = .047. Specifically, 

scores on the overall NASA TLX accounted for 8.0% of the variation in pupil dilation, adjusted 

R2 = 0.061 (see Table 2). Predictions were made to determine pupil diameter for those people 

who had an overall TLX score of 20, 50, and 80 using the regression equation: pupil dilation = 

3.178 + 0.009 x (NASA TLX score; see Figure 12). For a NASA TLX score of 20, pupil dilation 

was predicted as 3.35 mm, 95% CI [3.16, 3.54]; for a score of 50 it was predicted as 3.61 mm, 

95% CI [3.40, 3.82]; and for a score of 80 it was predicted as 3.87 mm, 95% CI [3.44, 4.31]. 

 
 
Table 2 

Regression Analysis Summary for NASA TLX predicting Pupil Dilation. 

 

Note. R2 adjusted = 0.061. CI = Confidence interval, LL = lower limit; UL = upper limit. 

 Variable B 95% CI for Mean b t p 
    LL UL       
(Constant) 3.18 2.86 3.96 

 
19.90 .000 

Overall TLX .009 .000 .017 0.47 2.04 .047 
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Hypothesis H4. Subjects with larger pupil dilation were expected to have decreased 

likelihood of IB occurrence compared to those with smaller pupil dilation (Beatty & Lucero-

Wagoner, 2000; Dehais et al., 2020). Specifically, subjects with larger pupil dilation were 

expected to be more likely to detect the critical stimulus than subjects with smaller pupil dilation. 

A logistic regression was conducted with the pupil diameter and IB.  

A previously discussed, there are seven assumptions for logistic regression. The first four 

are related to study design. The dependent variable is dichotomous (detect or fail to detect), the 

independent variable is measured on a continuous scale (pupil diameter in mm), independence of 

observations, and greater than 15 cases in each group. Linearity of the continuous variable with 

respect to the logit of the dependent variable was confirmed using the Box-Tidwell (1962) 

Figure 14  
 
Relationship between scores on the NASA TLX and pupil diameter in millimeters.  
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procedure, p > .05. Outliers were assessed using casewise standardized residuals and none were 

identified.  

A logistic regression analysis was performed to examine the effects of pupil dilation on 

the likelihood that participants experienced IB (failed to detect the runway incursion). The 

predictor variable, pupil dilation, in the logistic regression analysis was found to significantly 

contribute to the model: B = -1.40, SE = .64, Wald = 4.80, p = .028 (see Table 3). The model 

explained 14.5% (Nagelkerke R2) of the variance. The estimated odds ratio favored an increase 

of a subject experiencing IB (failing to detect a stimulus) by a factor of 4.03 (1 / .248 = 4.03) for 

each mm decrease in pupil dilation [Exp (B) = .025, 95% CI[0.07, 0.86]. The area under the ROC 

curve was .694, 95% CI [.542, .847], which is an acceptable level of discrimination. 

 

 

Table 3 
 
Logistic Regression Predicting Likelihood of Inattentional Blindness by Pupil Dilation. 
 

 

Note: Pupil dilation is in mm.   

 

 
b SE Wald df p Odds 

Ratio 
  

95% CI for Mean 
            LL UL 

Pupil Dilation -1.40 .64 4.80 1 .028 .248 .07 .86 
Constant 4.27 2.16 3.90 1 .048 71.36   
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CHAPTER VI 

DISCUSSION 

Inattentional blindness is the failure of observers to notice the presence of an unexpected 

but easily viewable event. IB often occurs when cognitive resources are diverted elsewhere. The 

present research examined how subjective level of task load, the degree of automation (fully 

automated, partial automation, and manual), and pupil dilation were associated with IB in a 

simulated flight landing task.  

Hypothesis 1 examined whether subjective task demand scores on the NASA-Task Load 

Index (TLX) would vary significantly as function of automation condition. (Driskell, Driskell, & 

Salas, 2013; Hancock & Warm, 1989; Hart & Staveland, 1988; Recarte et al., 2008).  Based on 

previous research (Driskell, Driskell, & Salas, 2013; Hancock & Warm, 1989; Hart & Staveland, 

1988; Recarte et al., 2008), it was expected that subjects in the full automation condition would 

report the lowest overall task demand, subjects in the partially automated condition would report 

higher task demand than the automated condition but lower task demand than the manual 

condition, and subjects in the manual condition would report the highest overall task demand.  

Partial support was found for Hypothesis 1. That is, overall NASA-TLX scores were 

significantly lower for the full automation condition as compared to the partial automation 

condition. Although in the expected direction, scores for the partial automation condition did not 

significantly differ from the manual condition. This finding is in line with a visual search 

impairment study conducted by Recarte et al. (2008) that used scores on the NASA-TLX to 

compare subjective perception of task load during performance of combinations of tasks that 

were visually demanding and/or cognitively demanding resulting in a η2 = .152 for the combined 

visual demand and cognitive task.  
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 In particular, findings from the present study reflect both visual demand and cognitive 

task, both of which vary by automation demands. The full automation task included monitoring 

the aircraft automation during an automated landing. The subject monitored that the aircraft 

maintained targeted speeds, reduced speed at a target altitude, and landed on the runway. 

Successful completion of this task required very little cognitive load which was confirmed by the 

data. The manual automation condition required physical control of both speed and heading in 

light winds through the same speed change at target altitude and to landing on the correct 

runway. The successful completion of the manual task necessitated higher workload to complete 

the task which was shown in the data. The partial automation condition required physical control 

of the heading but the speed was automated. This task necessitated moderate workload which 

was confirmed by the data. This finding also serves as a manipulation check that the automation 

conditions were subjectively experienced as low, moderate, and high task load.  

Results of Hypothesis 2 confirmed that the failure to detect the critical stimulus was 

significantly related to the automation condition. As predicted, the partial automation condition 

had the lowest likelihood of IB despite the full automation condition exhibiting the lowest task 

load. The increased likelihood of IB in full automation (low task load) within a similar range of 

manual operation (high task load) indicates that high task load should not be the only hazardous 

state of awareness considered in task planning. Ultimately, 12 (60%) subjects in the full 

automation condition failed to detect the critical stimulus compared to 4 (20%) subjects in the 

partial automation condition and 8 (40%) subjects in the manual condition.  

These results have practical implications. High task loading has a predictable detriment to 

task performance. In addition, low task loading also presents a concern. To aim for a task load 

that maintains a balance between too much and not enough, a method for assessing human 
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operator state during task operation is needed to both optimize tasking and to determine if the 

human has entered into a hazardous state of awareness. Stephens et al. (2018) provided a review 

on the use of biocybernetics loops for use in adaptive automation implementation. 

Physiologically adaptive automation involves detection of a transient cognitive state that induces 

a modification of a functional aspect of an external system such as triggering a warning or 

advanced controls system of an aircraft that then interacts or modifies with the human cognitive 

state (Stephens et al., 2018). 

It was hypothesized that subjects who reported higher task demand (i.e., reported higher 

scores on the overall NASA TLX) were expected to have increased pupil dilation as compared to 

subjects who reported low task demand (Recarte et al., 2008). Results indicated that subjects 

who indicated a higher task demand on the NASA TLX exhibited significantly increased pupil 

dilation as compared to subjects who indicated a lower task demand; however, the effect size 

was quite low, accounting for 8.0% of the variation in pupil dilation. This relatively low level of 

variance accounted for may be because the study design permitted subjects to move their head 

freely to increase realism of flight task performance, which may have increased the amount of 

noise in the eye tracking data. In addition, the author approached the pupil dilation data cleaning 

and removal of participant data conservatively to maintain sufficient sample size. Despite the 

low effect size, this finding is significant and demonstrates that the subjective workload 

documented on the TLX was in agreement with the pupil dilation in the expected direction. 

Specifically, participants who experience the task as high demand also exhibited increased pupil 

dilation. An important advantage of pupillary response over retrospective subjective report, i.e., 

the NASA TLX, as a predictor of IB occurrence is that pupil dilation can be measured passively 

and in real-time.  
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Hypothesis 4 explored if subjects with larger pupil dilation would exhibit a decreased 

likelihood of IB occurrence compared to those with smaller pupil dilation (Beatty & Lucero-

Wagoner, 2000; Dehais et al., 2020). The current study found support for this hypothesis and 

success using pupil dilation as a method to distinguish between individuals who exhibited IB 

(failed to detect the runway incursion) and those who did not. That is, subjects with larger pupil 

dilation had a decreased likelihood of IB occurrence compared to those with smaller pupil 

dilation. Specifically, those subjects with larger pupil dilation were more likely to detect the 

critical stimulus than those subjects with smaller pupil dilation. The relationship between the 

pupil dilation and IB was significant and explained 14.5% of the variance in IB.  

The established methodology for assessing the occurrence of IB is retrospective 

subjective reports (Mack & Rock, 1998; Simons & Levine, 1999). As discussed in the examples 

of IB occurring in daily life, collecting the statements after an accident can explain what 

happened but cannot intercede in real time.  In contrast, pupil dilation is a physiological 

response. The size of the pupil has been shown to indicate cognitive state, with larger dilation 

indicating increased workload. As expected, those participants with larger pupil dilation were 

more likely to detect the runway incursion. These findings are promising as they suggest that 

pupil dilation may be another tool to assist in understanding IB. This study supported the 

potential for utilizing a non-invasive, passive observation system in the form of an eye-tracker to 

gain real-time information related to pilot state via pupil dilation to identify periods of increased 

potential for an IB occurrence. 

Limitations and Future Research  

This study utilized non-pilots completing a complex task which was a version of a 

simulated aviation task designed for non-pilots. A future study should engage pilots in a realistic 
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flight simulation to examine pupil dilation and IB to runway incursions. Attention should be paid 

to the design of the simulation to include a pilot subject matter expert to ensure the realism and 

plausibility of both the increased cognitive workload and the runway incursion. Elements of 

nominal task performance (e.g., complex approach plates, emergencies, unexpected equipment 

failures, and radio communications) can be combined to produce a realistic and believable 

scenario with increased complexity sufficient to increase the likelihood of an IB event. Related 

to the sample limitations, race representativeness should be considered in future studies.  

 The difficulties working with pupil dilation data are not inconsequential. Unlike the 

majority of pupil dilation studies, the subjects in this study were permitted to perform the flight 

task with free movement of their head and eyes in an attempt to maintain relevance to the applied 

task. This free movement increased the amount of noise in the data, despite capitalizing on the 

state eye tracking at the time. The author chose a conservative approach to removing pupil 

dilation data. Future studies with free motion designs should increase the sample size to allow for 

more liberal removal of subject data with non-optimal pupil dilation data. The restriction of head 

movement is one option but if the exploration of IB occurrences during an operational task is the 

key interest, the movement restrictions may reduce the generalizability of the IB findings. 

In addition, eye tracking technology has increased exponentially even in the short time 

since data for this study were collection. Aided by improvements in miniaturization and battery 

technology, issues such as head angle, tracking model, exiting the tracking box, and an obscured 

view are now longer a concern for the smaller, faster, head-worn eye trackers. Cumbersome 

external computers and time-intensive calibration (as detailed in Appendix J) are also no longer a 

problem with these next generation eye tracking systems now available. For example, the eye 

tracker used in this system contained four cameras and two infrared flashers mounted in fixed 
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locations in front of the subject. This version of the eye tracker required detection of the eye in 

two of the four cameras. With this setup, subject data were unusable if the subject tilted their 

head too much or moved out of the head box which could happen by slouching over time or 

leaning very far forward. Current head-worn systems have high benefit against studies permitting 

free range of movement. Several data quality issues experienced in this study would be greatly 

reduced if the study were replicated using a head-worn glasses-style eye tracker. Future research 

should be conducted with updated technology and an increased sample size to permit continued 

freedom of head/eye movement and enable liberal data cleaning criteria. Nevertheless, despite 

these limitations, the results from this study suggest pupil dilation may be a method for 

successfully predicting periods apt for increased IB occurrences. 
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CHAPTER VII 

CONCLUSIONS  

Deadly consequences can occur when an operator fails to detect to an object or event 

relevant to task performance, but little capability exists regarding the real-time detection of IB 

prior to an incident. Understanding the conditions that increase the likelihood of a person to have 

an IB occurrence can facilitate the development of real-time mitigation strategies. Scores on the 

NASA-TLX varied significantly by automation condition with the full automation having the 

lowest subjective task load followed by partial automation and then manual with the highest. IB 

detection varied significantly across automation condition; however, the moderate workload 

condition, in which there was partial automation, exhibited the lowest likelihood of IB 

occurrence. The low workload full automation condition had a similar likelihood of IB as the 

manual condition.  

 Eye tracking is one psychophysiological assessment technique that is unobtrusive and 

can operate passively. Eye tracking can be deployed to monitor an operator in situ to identify 

periods of increased likelihood for attention lapses. Based on the neurophysiological 

conceptualization of attention and IB by Dehais et al. (2020), the current study examined pupil 

dilation as a method to differentiate between those who detected a runway incursion and those 

who did not during a simulated flight landing task across three levels of automation. Subjects 

who reported higher task demand had increased pupil dilation and subjects with larger pupil 

dilation were more likely to detect the runway incursion. Support was found that pupil dilation 

was able to significantly discriminate the detectors from those who failed to detect. Specifically, 

those who detected the critical stimulus had increased pupil diameter as compared to those who 
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failed to detect. This final result suggests eye tracking may provide a real-time IB mitigation 

opportunity to identify when unexpected visual stimulus detection is reduced. 
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APPENDIX A 

HUMAN SUBJECTS INFORMED CONSENT STATEMENT 

 
Title of Research: “A study of inattentional blindness and steady state visually evoked 

potentials using cortical/physiological and self-report measures.” 
Principal Investigators:  
Kellie Kennedy   NASA LaRC   757-XXX-XXXX  
Ralph Williams   NASA LaRC   757-XXX-XXXX 
Chad Stephens   NASA LaRC   757-XXX-XXXX 
Alan Pope   NASA LaRC   757-XXX-XXXX 
 
Federal regulations require researchers to obtain signed consent for participation in research involving 
human subjects.  After reading the information and the Statement of Consent below, if you wish to 
consent, please indicate so by signing this form. 
 
I. Statement of Procedure: 
Thank you for your interest in this research.  Experimental rationale and procedures have been discussed 
with you in detail.  You will find a summary of the major aspects of the test and associated research, 
including the risks and benefits of participating in the following sections.   
Please read the following information carefully.  If you wish to participate in this study, sign your name 
and date the form in the space provided.  Any information you provide will be kept in strict confidence to 
protect your privacy 
 
II. I understand that: 
• This is a research experiment and I will be one of approximately 20 subjects. 
• I understand that screening data (including self-reported health status) will be collected and stored 

confidentially, scored, and used by the Principal Investigators to determine whether I am selected to 
participate in the experiment. 

• I may voluntarily discontinue or be asked to discontinue participation in this study at any time 
without penalty or loss of benefits to which I am otherwise entitled. 

• This experiment will be performed in the Human and Autonomous Vehicle Systems (HAVS) 
laboratory facility (in building XXXX) at NASA Langley Research Center. 

• The duration of my participation will include one session lasting approximately 1 hour.  I may take a 
break at any time, though I am encouraged to complete each scenario before taking a break. 

• I will be participating in an experiment designed to identify the parameters of hazardous states of 
awareness and steady state visually evoked potential. 

• I will receive a briefing of and training for the operation of the equipment. I will be allowed time to 
familiarize myself with the software/equipment prior to starting the experiment. I will also participate 
in a debriefing at the end of the experimental session. 

• I will be asked to perform a variety of simulated instrument procedures in a part-task, fixed-base 
simulator.  These procedures will reflect current and potential future operations. 

• During the course of the experiment, I will provide my impressions and assessments by providing 
verbal inputs, as well as completing written/computerized questionnaires and surveys.  

Subject:       Condition:    M  P   A Date: Start Time:  End Time: 
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• The evaluation scenarios may include non-normal or failure conditions in addition to normal 
operation.  These non-normal situations may not be announced prior to the evaluation to avoid 
prejudice or expectation on my part. 

• Records of my participation will be kept confidential by encoding them with a subject identification 
number. 

• Prior to the start of the experimental task I will be connected and calibrated to physiological recording 
equipment: electroencephalogram (EEG), electrocardiogram (ECG), and respiration (RESP). 

• My physiological responses to the task as measured by EEG, ECG, and RESP will be monitored and 
recorded. 

• I understand that the data files recorded during my participation in this experiment will be shared with 
other researchers and that these files will be identified only by the subject number assigned by the 
experimenter.  I do voluntarily consent to sharing the data files recorded during my data collection 
session, as long as my identity is not disclosed.  Furthermore, the results identified by subject number 
may be published in the form of conference papers, journal articles, and formal NASA reports. 

• A video and audio recording of my person during the session will be made with a closed-circuit video 
camera for post hoc behavioral analysis. The video recording is intended to provide a visual record of 
my interaction with the automation interfaces.  The video will not be released or shown to anyone 
other than the Principal Investigators identified above except it will be shared as outlined below, but 
only if I grant my explicit permission by signing “Approve”, as set forth below.  This permission is in 
addition to my consent to participate in this research that I will grant by signing on this form.  The 
audio record may be distributed to other researchers in addition to the Principal Investigators or 
published in reports and shared with others outside NASA after it has been transcribed to text and any 
personally identifying remarks or information that may be associated with me will be removed. 

• Eye tracking/pupillometry (ET) data will be collected during this experiment. The SmartEye Eye 
Tracking system is a non-evasive infrared (IR) camera-based eye tracking unit. This system will 
record both still and video images of my person while participating in this study. 

• I consent to allow still and/or moving images of my person captured with a closed-circuit video 
camera and the SmartEye Eye Tracking system and audio recordings of my voice to be shared with 
other researchers within in outside NASA during analysis and disseminated in reports of this work.  
These other researchers are in addition to the Principal Investigators identified above. I understand 
that if I approve sharing still and/or moving images of my person with other researchers during 
analysis and dissemination of still and moving images of my person and audio recordings of my voice 
in published reports of this work, my participation in this research will no longer be anonymous and 
someone with whom the still and or moving images are shared may recognize me and, whether or not 
I am recognized, my participation in this research will be known to others in addition to the Principal 
Investigators identified above.  

(Sign One ONLY): 
 

APPROVE _____________________________ 
 

DISAPPROVE _____________________________ 
 

Volunteer Subject Signature 
 

Volunteer Subject Signature 

Signing “Approve” indicates that I consent to have 
still or video images of my person and audio of my 
voice recorded and shared with other researchers 
outside and within NASA during analysis and 
disseminated in reports of this work. I understand that 
the other researchers are in addition to the Principal 
Investigators identified above.   
 

Signing “Disapprove” indicates that I do not consent 
to sharing still or moving video images of my person or 
audio recordings of my voice or any other potentially 
personally identifying information with anyone other 
than the Principal Investigators identified above. I do 
not consent to still or moving video images of my 
person or audio recordings of my voice in text being 
disseminated in reports of this work. 
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• All data recorded during this experiment will be stored under lock and key in a different filing cabinet 
from informed consent forms in the Building XXXX, Room XXXX. All electronic data and still and 
moving video images and audio recordings of my voice recorded during this experiment will be saved 
in a manner that does not associate me with the data, still images, or video images, unless I approve 
of release of such data, as set forth above.  It will then be stored on a password protected computer in 
Building XXXX, Room XXX.  The password will only be known by the Principal Investigators. 

• I may contact the investigators listed above if I have any questions regarding this experiment before, 
during, or after my participation. 

 
 
III. Confidentiality: 
 
Records of my participation will be kept confidential by encoding them with subject identification 
numbers.  Any data published as a result of this research will not include any personally identifiable 
information that could be linked to or associated with me; however, if I have approved of release of still 
and or moving video images of my person and audio recordings of my voice, as described above, it is 
possible someone will recognize my person, and, whether or not someone recognizes me, such images 
and recordings will associate my likeness with having participated in this research. 
 
IV. Compensation 
 
Civil servant volunteers who participate in the research do so in their official capacity.  A civil servant 
injured during the course of this research may file for compensation through the Federal Workers 
Compensation System.  For additional information, participants may contact the LaRC Office of Human 
Resources at 757-XXX-XXXX. 

As a non-civil servant, I will receive no form of compensation.  
 
For non-civil servants, insurance coverage is provided to each research subject volunteer under the NASA 
Langley Teams II contract.  For additional information, I may contact X at 757-XXX-XXXX. Non-civil 
servant volunteers injured as a result of participating in the research may also file a claim under the 
Federal Tort Claims Act by filing Standard Form 95.  For additional information, participants may contact 
the LaRC Office of Chief Counsel at 757-XXX-XXXX. 
 
V. Potential Risks 
• Participating in this research will not create any foreseeable risks to my health.  No physical 

discomforts are expected in this test other than those normally associated with operating a fixed-based 
simulator, such as fatigue or eye strain.  

• An aspect of this research employs flashing lights in the form of strobe lights.  Some individuals with 
photosensitive epilepsy are known to suffer seizures when exposed to certain flashing lights; 
however, photosensitive epilepsy is most common in children and adolescents under age 20.  
Nevertheless, in very rare instances, individuals with no history of epilepsy have suffered seizures 
when exposed to flashing lights like strobe lights. 

• In the unlikely event that you are injured or otherwise experience discomfort while at NASA Langley, 
you may visit the on-site Occupational Health Clinic.  The Clinic has hours of operation from 7:00 
a.m. to 3:00 p.m.  The clinic number is 757-XXX-XXXX.  Emergency medical personnel and 
ambulance service is also available to transport you to nearby health care providers.  

• If you have questions about the research and your rights should you experience any injury, you may 
contact the principal investigators listed at the beginning of this document. 
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VI. Potential Benefits 
• You will derive no direct benefit from your participation in this study.  
• The results of your participation may improve the safety of commercial air travel for a broad class of 

aircraft. 
 
VII. Voluntary Participation 
Taking part in this study is voluntary.  You may withdraw from participating or be asked to withdraw 
from participating at any time.  Such a decision that will not result in any penalty or loss of benefits to 
which you may otherwise be entitled.   
 
VIII. Safety 
As a voluntary test subject participating in this research, I understand that: 
• NASA is committed to ensuring my safety, health, and welfare plus the safety and health of all others 

involved with this research. 
• I should report any accident, injury, illness, and changes in my health condition, hazards, safety 

concerns, or health concerns to the above listed investigators.  If I am unable to reach the above 
named individuals or am not satisfied with the response I receive, I should contact the LaRC Safety 
Office at 757-XXX-XXXX or the Chairperson of the LaRC Institutional Review Board, Mr. XXX 
XXXXXXXXX, at 757-XXX-XXXX. 

• If I detect any unsafe condition that presents an imminent danger to me, or others, I have the right and 
authority to stop the activity or test.  In such cases the Principal Investigator and associated research 
personnel will comply with my direction, stop the activity, and take action to address the imminent 
danger. 

 
IX. Statement of Consent: 
• I certify that I have read and fully understand the explanation of procedures, benefits, and risks 

associated with the research herein, and I agree to participate in the research described herein.  My 
participation is given voluntarily and without coercion or undue influence, and I also voluntarily 
consent to sharing the data files recorded during my data collection session, as long as my identity is 
not disclosed.  I understand that I may discontinue participation at any time.  I have been provided a 
copy of this consent statement.  If I have any questions or modifications to this consent statement, 
they are written below. 
 

________________________________________ 
Participant Printed Name  
 
________________________________________ 
Participant Phone Number 
 
________________________________________ 
Participant Street Address 
 
________________________________________________________________________________ 
Participant City, State, & ZIP 
 
________________________________________________________________________________ 
Participant Signature     Date 
 
________________________________________________________________________________ 
Witness Signature     Date 

__ Participant has been provided with a Privacy Act Statement meeting the requirements outlined in 14 CFR 
1212.602  
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APPENDIX B 
 

DEMOGRAPHIC FORM 
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APPENDIX C 

IB QUESTIONNAIRE 
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APPENDIX D 

NASA TLX WORKLOAD RATING SCALE 
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APPENDIX E 

EXPERIMENT PROTOCOL 

• 15 minutes: Introduction to experiment and subject informed consent. 
 
• 30 minutes: Connecting subject to cortical/physiological monitoring equipment. Calibration 

of cortical/physiological monitoring equipment and SmartEye. 
 
• 30 minutes: Completion of pre-experimental questionnaires (Appendix A and B). 
 
• 5 minutes: Break 
 
• 30 minutes: Training 

 
o Subjects will experience one of three automation conditions (full, partial, none) while 

landing a simulated aircraft in 3 pre-experimental training runs to familiarize subject 
with landing the simulated aircraft. More training is acceptable to ensure training to 
proficiency. 
 

o 10 min: After the final training run, subjects will complete a post-training 
questionnaire to indicate understanding of the speed and altitude changes required. 
 

 
• 20 minutes: Testing 

 
o 10 min: Subjects will remain in the same automation condition as in training (full, 

partial, none) while landing a simulated aircraft at the same airport with very similar 
speed and altitude changes as training (simulation takes exactly 5 minutes). 
 

o 10 min: Subjects will complete the IB questionnaire (Appendix C) following Part 1. 
 

o 10 min: Subjects will complete the NASA-TLX (Appendix D) following Part 1. 
 

• 10 minutes: Subject will be debriefed and disconnected from the cortical/physiological 
monitoring equipment. 
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APPENDIX F 

PICTURE OF EXPERIMENTAL SETUP 

 
  

Experimental set-up depicting Out-the-Window and Primary Flight Display visuals during a 
speed change.  
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APPENDIX H 

RECRUITMENT FLYER 
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APPENDIX I 
 

PRIVACY ACT NOTICE 

COLLECTION OF INFORMATION TO DETERMINE ELIGIBILITY TO PARTICIPATE IN 
RESEARCH AS A SUBJECT VOLUNTEER 

 
GENERAL 

 
This information is provided pursuant to Public Law 93-579 (Privacy Act of 1974), December 31, 1974, 
for individuals supplying information for inclusion in a system of records. 
 

AUTHORITY 
 
The authority to collect the information requested from you in the informed consent associated with A 
study of inattentional blindness and steady state visually evoked potentials using 
cortical/physiological and self-report measures while performing a simulated flight task across 
different levels of automation in which you may participate is derived from one or more of the following: 
Title 14, Code of Federal Regulations, Sections 1212 and 1230; Title 42, United States Code, Section 2451, 
as amended. 

PURPOSES AND USES 
 
The information you supply will is necessary to obtain your consent to participate in this research and to 
determine your eligibility to participate as a volunteer subject in the A study of inattentional blindness 
and steady state visually evoked potentials using cortical/physiological and self-report measures 
while performing a simulated flight task across different levels of automation.  The information you 
provide will be evaluated by NASA employees and contractors overseeing and conducting the research.  
Your personal identifying information will not be shared outside of NASA and contractor and intern 
researchers working with NASA who are associated with this particular research.  Your personal identifying 
information will be maintained under secure conditions (locked file), and only the Principal Investigator(s) 
(PI) overseeing your research will have access to your personal identifying information contained within 
the file.   
 
The information will be maintained in a NASA System of Records: Human Experimental Research Data 
Records (NASA 10HERD).  The information supplied is confidential and will be maintained under secure 
conditions as described above but is subject to routine uses for such information that are identified in 
System of Record Notice for Human Experimental Research Data Records published at 72 Federal 
Register 55812 on October 1, 2007.  Release of such information is not permissible where your consent is 
required. 
 

EFFECTS OF NONDISCLOSURE 
 
Disclosure of the personal identifying information sought is voluntary; however, failure to furnish the 
information could exclude you from being able to participate as a volunteer in the research.  
 
                                                                                                                                        
Signature of Interviewer    Signature of Volunteer 
 

Date:                                        
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APPENDIX J 

EYE TRACKER SET UP AND PROCEDURE 

All information reported herein pertains to Smart Eye Pro version 5.0 used for data 

collection as other versions have different or updated processes. The experimental system 

consisted of four 60 Hz Sony HR-50 6.0mm lens cameras (see Figure 10a at the end of the 

section) connected by ethernet, two IR-diode flashers, a 3-dimensional virtual representation of 

the critical portions of the testing environment (world model), and a 3-dimensional virtual 

representation of the subject’s head (head model). The SE uses infrared diodes to provide 

consistent lighting across the subject’s face and to produce glints, or cornea reflections of the IR 

flashers, that the system uses to locate the eye center. Multiple studies demonstrated successful 

pupillometry conducted in real-world driving applications with normally occurring lighting 

variations and free head movement (Recarte & Nunes, 2000, 2003). Smart Eye (2008) 

documentation states that this method improves gaze direction accuracy and reduces sensitivity 

to errors in head pose estimation as compared to eye center detection using head modeling alone. 

Glint detection reduces the gaze direction error related glint distortion due to ocular globe 

curvature changes and head pose estimation inaccuracies caused by large head movements or 

distorted facial expressions. SE stated these flashers were in compliance with the international 

standard IEC 62471 for “Photo-biological safety of lamps and lamp systems” and listed as 

having a 300-fold safety margin relative to the Maximum Permissible Exposure (MPE). 

The Smart Eye system utilizes a 3D world model along with the 3D head model to detect 

gaze intersections with objects in the environment. The eye is an orb with a round pupil. An 

oblique viewing angle such as those garnered from peripheral cameras, can make a round pupil 
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appear to be an oval and record a smaller diameter than the pupil would read if faced head-on. A 

system with an accurate head model with gaze direction awareness can help mitigate this error.   

The researcher created 3D model representations of the four visual planes (3 out-the-

window, 1 primary flight display) in the experimental environment at mm accuracy. The 

simulator utilized a four-camera system the width of the environment of interest and provide 

greater overlap of facial features viewed in each camera. The location of each camera and flasher 

was optimized by view of the subject eye and facial features in various head orientations and 

recorded in the Smart Eye environment demonstrating the location of the four 6.0mm cameras 

and two IR flashers placed on the frame of the simulator. From the subject position, all areas of 

interest were contained within a visual angle of 40º.  

Positional requirements for the camera included remaining below the dominant gaze 

position, each eye visible in two or more cameras at any given time and proximity to each eye 

sufficient to produce a high-resolution image. Positional requirements for IR flashers included 

ensuring even lighting on the face and reduction of shadows. Pupillometry data required the 

flashers positioned least 10 centimeters from the optical axis. An example of this positioning is 

shown in Figure 10b. During operation, the simulator seat was fixed to maintain a constant 

distance of 26 inches from the center of the primary flight display screen defined as the point of 

origin for the eye tracking system.  

Eye Tracking Procedure. First, the cameras were calibrated to each other using the 

predefined calibration process. The seat height was adjusted to position the subject into the 

appropriate vertical location by aligning the nose tip in the center of the Smart Eye software 

virtual head box. Each subject required a personalized 3D head model. First, the researcher 

would assess any need for focus and aperture adjustment for each Smart Eye camera as 
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determined by continuous bars (see Figure 10c). Achieving optimal brightness was determined 

by maximizing a continual gray value histogram indicator on the display. This modification was 

rarely required as the room lighting and camera positions were fixed.  

Next, the researcher captured a series of “snapshots” or images captured simultaneously 

across all four cameras with the subject oriented in specific gaze positions. These positions were 

representative across the expected gaze environment and worked from left to right across out-

the-window and then repeated for primary flight display: 40º and 20º horizontally left, center, 

then 20º and 40º right of center. The subject looked straight ahead with the same gaze and head 

direction. Two additional positions were used to define the iris center and were captured with the 

subject gaze direction in the center of a camera while the head direction was oriented towards the 

center of the primary flight display.  

Next, the researcher created a 3D head model by manually tagging prominent eye, ear, 

nose, and mouth features in each snapshot by pose and camera. Then, each head model was 

assessed overall and by pose and marker for accuracy in pixels (see Figure 10d). Error less than 

3.0 pixels were color green and considered acceptable, orange was 3.0 - 5.0, and red was greater 

than 5. All profiles were corrected to produce a full green profile.  

Finally, the head model was calibrated. Subjects oriented to fixation points placed on the 

out-the-window screens and the primary flight display co-located in the physical environment 

and virtual environment. The deviation between the physical orientation and virtual orientation 

was assessed with less than 2.0º accuracy error for each subject (see Figure 10e).  
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Note. From “Smart Eye Pro 5.0 - User Manual,” By Smart Eye (2008). A. A smart eye camera 

with flasher. B. Smart Eye example of a two-camera tracking setup depicting eye feature 

marking with 3D head and world model. C. A Smart Eye example of the aperture and focus 

continuous scale and saturated pixel histogram guidance. D. A Smart Eye example of error 

information for each pose and feature marked in that pose.  

  

C.  
 

B.  
 

A.  
 

D. E. 

Figure 15 
 
Examples of the Smart Eye setup and calibration procedure steps.  
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