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ABSTRACT 

MACHINE LEARNING APPROACH TO ACTIVITY CATEGORIZATION IN  
YOUNG ADULTS USING BIOMECHANICAL METRICS 

 
Nathan Q.C. Holland 

Old Dominion University, 2023 
Director: Dr. Stacie I. Ringleb 

 
 
 

Inactive adults often have decreased musculoskeletal health and increased risk factors for 

chronic diseases. However, there is limited data linking biomechanical measurements of 

generally healthy young adults to their physical activity levels assessed through questionnaires. 

Commonly used data collection methods in biomechanics for assessing musculoskeletal health 

include but are not limited to muscle quality (measured as echo intensity when using ultrasound), 

isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement 

assessments using motion capture systems. These assessments can be time consuming for both 

data collection and processing. Therefore, understanding if all biomechanical assessments are 

necessary to classify the activity level of an individual is critical. The aims of the study were to 

determine the relationships between biomechanical measurements used in ascertaining skeletal 

muscular health using statistical methods, to determine if various machine learning techniques 

can distinguish between low to moderately active and highly active asymptomatic young adults, 

and if processing data using machine learning can decrease the number of measurements needed 

to differentiate between activity levels. The results showed that fundamental statistics alone 

could not establish connections to all biomechanical variables. Upon employing machine 

learning, the Support Vector Machine algorithm met minimum performance metrics and was the 

only method able to differentiate between minimally and highly active adults. Feature reduction 

was performed, aiming to minimize the number of required biomechanical measurements. The 



Support Vector Machine algorithm proved successful performance when applied to the reduced 

set of necessary biomechanical variables, reducing features from 15 to 11. The feature reduction 

allowed for the elimination of both muscle activity and strength measurements, eliminating the 

need for two pieces of equipment in the data collection process yields reduced data collection 

and processing time. Future work would transition these methods into a clinical setting to inform 

clinicians and educate patients about the impact of inactivity on their musculoskeletal health. 



iii 

Copyright, 2023, by Nathan Q.C. Holland, All Rights Reserved. 

 



iv 

This dissertation is dedicated to those who dare to believe despite the obstacles.  
Be encouraged and press forward. 

 

A special dedication to my children: Benjamin, Jared, Gabrielle, Danielle, and Angela.  
Remember, the sky, space, nor the Milky Way are your limits.  

Keep rising and spread hope wherever you go



v 

ACKNOWLEDGMENTS 
 
 

I want to express my gratitude to the One who orchestrated this life. I have been under the protection and 

guidance of Your hand well before I could ever be conscious of it. You are love. Soli Deo Gloria. 

I acknowledge Dr. Ringleb, my advisor, for connecting and helping to guide my research journey. Thank 

you for your understanding, advising, editing, feedback, and friendship. I also acknowledge the supportive 

mentors of my dissertation committee. Dr. Bawab has been influential from the start of my program and has 

been a friend and advocate. Dr. Bennett and Dr. Hou have each made a significant impact with offerings of 

time and intellectual discourse. 

I extend my gratitude to Ms. Diane Mitchell, whose help navigating my program was invaluable. 

I thank my lab mates: Abed Khosrojerdi, Victoria Jolliff, and my dear brother, Isaac Kumi, for their 

conversations, laughter, and knowledge-sharing. 

I acknowledge my parents' love, time, and patience during my adolescence and into my adult years that 

helped secure my future; I honor their sacrifices.  

I thank my "Pop," who believed in me, and our extended TODF-POC family who lifted me up.  

My wife, April L. Holland, PhD, is a source of inspiration and support. Her prayers, encouragement, and 

unwavering presence filled the gaps. I love you. You are my blessing. To our children, our legacy: 

Benjamin, Jared, Gabrielle, Danielle, and baby Angela, you reflect God’s love toward me. 

To all who shared, gave, sacrificed, or advised, whether directly or indirectly, in big or small ways to this 

milestone, I acknowledge each of you. Even if unnamed, your contributions are no less important; you are 

not forgotten. I am deeply thankful.



vi 

TABLE OF CONTENTS 
 
 

LIST OF TABLES ....................................................................................................................... viii 
LIST OF FIGURES ....................................................................................................................... ix 
 

Chapter 

1: INTRODUCTION ...................................................................................................................... 1 

1.1. MUSCLE QUALITY, HEALTH, AND STRENGTH EXPLORATION ACROSS 
DIVERSE DEMOGRAPHICS .......................................................................................... 2 

1.2. INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE ........................ 5 

1.3. MUSCLE QUALITY ............................................................................................... 6 

1.4. MUSCLE ACTIVATION ........................................................................................ 8 

1.5. ISOKINETIC DYNAMOMETRY AND MOTION CAPTURE ............................. 9 

1.6. COUNTERMOVEMENT JUMP ........................................................................... 11 

1.7. MACHINE LEARNING ........................................................................................ 12 

1.8. SPECIFIC AIMS .................................................................................................... 15 
 

2: EVALUATION OF BIOMECHANICAL RELATIONSHIPS IN YOUNG ADULTS: A SEX-
STRATIFIED FUNDAMENTAL STATISTICAL APPROACH ................................................ 17 

2.1. INTRODUCTION .................................................................................................. 17 

2.2. METHODS  ........................................................................................................ 21 

2.3. RESULTS  ........................................................................................................ 25 

2.4. DISCUSSION  ........................................................................................................ 31 
 

3: MACHINE LEARNING BASED CLASSIFICATION OF PHYSCAL ACTIVITY IN 
YOUNG ADULTS FROM BIOMECHANICAL METRICS ...................................................... 36 

3.1. INTRODUCTION .................................................................................................. 36 

3.2. METHODS  ........................................................................................................ 40 

3.3. RESULTS  ........................................................................................................ 49 

3.4. DISCUSSION  ........................................................................................................ 56 
 

 

 



vii 

Page 

4: STREAMLINING BIOMECHANIAL METRICS FOR YOUNG ADULT PHYSICAL 
ACTIVITY CLASSIFICATION .................................................................................................. 60 

4.1. INTRODUCTION .................................................................................................. 60 

4.2. METHODS  ........................................................................................................ 61 
4.3. RESULTS  ........................................................................................................ 62 

4.4. DISCUSSION  ........................................................................................................ 64 
 

5: SUMMARY AND CONCLUSION ......................................................................................... 66 
 

REFERENCES ............................................................................................................................. 70 
 

APPENDICES .............................................................................................................................. 91 

A - INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE DIRECTIONS 92 

B - INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE ......................... 94 
 

VITA ........................................................................................................................................... 97 

  



viii 

LIST OF TABLES 
 

Table Page 

1. Descriptive statistics for uncorrected Echo Intensity (EI), correcte EI, jump height, and 

Subcutaneous Fat (SCF) thickness for the cohorts combined and for the cohort stratified 

by biological sex ............................................................................................................... 28 

2. Descriptive statistics of features ............................................................................................... 52 

3.  Results from running Machine Learning Models .................................................................... 57 

4.  Support Vector Machine performance metrics ........................................................................ 65 

  



ix 

LIST OF FIGURES 
 

 

Figure Page 

1. Model summaries and scatterplots with linear regressions for the whole cohors stratified with 

boxplots on the axes representing whole cohort distributions. Relationships examined 

were (a) EI and SCF thickness, (b) corrected EI and SCF thickness, (c) jump height and 

EI, (d) jump height and corrected EI, (e) jump height and SCF thickness ....................... 29 

2.   Images demonstrating bone landmarks: Greater trochanter and lateral epicondyle in anterior 

and posterior view and the rectus femoris of the quadriceps (OpenStax College, 2013, 

2017). ................................................................................................................................ 43 

3.   Ultrasound image, where rectus femoris is identified and the approximate location where 

subcutaneous fat thickness is determined above the rectus femoris. Results are used to 

determine corrected and uncorrected echo intensity, subcutaneous fat thickness ............ 44 

4.   A diagram of landmarks for maker placement as outlined Vicon lower body plug-in gait 

(OpenStax College, 2016) ................................................................................................. 47 

5.  Bar graphs demonstrating distributions of the features. .......................................................... 53 

6.  Correlation heatmap of the features ......................................................................................... 54 

7.  Cross-validation demonstrated................................................................................................. 55 

8.  Scatterplots for a) cross validation accuracy, b) test set accuracy, c) precision, d) recall and e) 

F1 bar graphs of performance for each machine learning model ..................................... 56 

9. Scatterplots of accuracy, presicion, recall, and FI Support Vector Machine learning model. 

The Support Vector Machine model perfomance with feature reduction, where 11 

features was optimal. ........................................................................................................ 64 



1 

CHAPTER 1 

INTRODUCTION 
 

The World Health Organization underlines that physical activity is still a foremost 

priority in public health (World Health Organization, 2022a). Physical activity is generally 

described as movement produced by the musculoskeletal system which necessitates energy 

expenditure; this indicates that a range of activities and intensity levels could characterize 

physical activity (Department of Health Human Services, 2018; World Health Organization, 

2022c). The World Health Organization recommends regular physical activity as it is identified 

as a direct contributor to the physical health of an individual. For adults under 60, it is suggested 

that a minimum of 150 to 300 minutes of moderate-intensity aerobic activity and at least 2 days a 

week of muscle strengthening activity be achieved weekly (World Health Organization, 2022a). 

Alternatively, 75-150 minutes of vigorous-intensity aerobic activity or equivalent combination of 

moderate and vigorous intensities would also meet the recommendation for aerobic activity 

(World Health Organization, 2022c). 1.4 billion (27.5% of the world’s adult population) adults 

do not meet recommendations, which is equivalent to only one in four adults meeting the 

suggested amount of physical activity.  

Morbidity and mortality are results of noncommunicable diseases associated with 

inadequate activity level. Chronic conditions including coronary heart disease, hypertension, 

type-2 diabetes, and the risk for several cancers could be reduced, prevented, or managed by 

meeting recommended levels of physical activity (World Health Organization, 2022c). 

Musculoskeletal health (i.e., muscle function, bone quantity, quality, and strength) benefits 

significantly from physical activity (Fiatarone, 1990; Hawley et al., 2014; World Health 

Organization, 2022a). A deterioration in musculoskeletal health can give way to wide-spread 
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bodily pain, disease, and conditions that result in impaired mobility and a reduction in quality of 

life (World Health Organization, 2022b). Inactivity is a risk factor for musculoskeletal conditions 

such as osteoarthritis (Urquhart et al., 2008), osteoporosis (Carter & Hinton, 2014), muscle 

atrophy (Evans, 2010). Therefore, it is important to monitor the impact of inactivity on the 

physiology of the musculoskeletal system.  

 

Muscle Quality, Health, and Strength Exploration Across Diverse Demographics 

A thorough assessment is crucial for understanding the impact of inactivity, particularly 

on the muscles of the lower extremities in the musculoskeletal system. Examining lower 

extremity muscle condition has been used as an important assessment tool in literature. An 

example of assessing lower limb muscle ability is illustrated in a study involving firefighters, as 

firefighters require leg strength and the ability to move at fast velocities to meet the demands of 

their work. Firefighters are categorized in some literature as not meeting the recommended 

fitness levels that their occupation necessitates (Clark et al., 2002; Li et al., 2017; Poston et al., 

2011). Gerstner et al. (2018) reports on lower body strength and performance by evaluating the 

relationship between ultrasound derived muscle quality and percent decrease in peak torque (i.e., 

strength) between slow and fast velocities. The results of this study were that muscle quality and 

strength had a significant positive relationship when adjusting for age or age and body mass 

index in this demographic. It was suggested from this result that strength of muscle at different 

velocities may be related to the composition of the muscle tissue of the firefighter, which is 

consistent with findings from studies conducted beyond the firefighter population (Choi et al., 

2016; Evans & Lexell, 1995; Gerstner et al., 2017; Rahemi et al., 2015). 
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  Older populations are often prioritized in lower extremity research. The elderly are 

prone to falls, which could be the result of musculoskeletal system maladaptation (Iwamoto et 

al., 2017; Lo et al., 2017). To reduce the risk of falls and maintain stability, older individuals 

tend to increase lower limb muscle co-contraction (Iwamoto et al., 2017; Lo et al., 2017). Thus, 

increased muscle co-contractions and possibly muscular fatigue are thought to be possible 

predictors to falls (Helbostad et al., 2010; Lo et al., 2017). In other research, kinematics, kinetics, 

and electromyography are utilized to understand the lower extremities of the elderly in 

comparison to young populations during gait for varying surface conditions (Holcomb et al., 

2022). Lower extremity strategies that young adults employ to navigate challenging surfaces 

could better inform clinicians on suitable interventions for seniors (Holcomb et al., 2022).  

A valuable addition to research would involve exploring methods to enhance task 

performance in young adults. This demographic engages in a wide array of activities, some that 

may require strenuous physical exertion or high physical demand (Naimo et al., 2021). Like 

older populations, understand their abilities to maintain balance to support an upright position is 

important. One study explored ankle range of motion and lower-extremity muscle strength on 

balance control for young adults for example (Kim & Kim, 2018). This study used a 

dynamometer and goniometer to access muscle strength and range of motion of the ankle and 

determined that lower extremity muscle strength and ankle plantarflexion range of motion 

affected static balance control in young adults. It was concluded that that both contractile and 

non-contractile structures were important to static balance control. The study examined previous 

research on ankle range of motion and sway and found that there was a majority focus on the 

elderly as opposed to young adults. Such studies concluded that weakened balance control was 
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due to a limitation in dorsiflexion range of motion limitation for the elderly, although opposing 

results could be found in literature.  

Obesity and its effects on lower extremity walking mechanics and center of mass control 

have often been explored in biomechanics. A study (Kim et al., 2023) highlighted how force 

generation in the lower extremity contributes to center of mass control for the overweight and 

non-overweight. The experimental protocol involved the collection of ground reaction force from 

force plates in combination with three-dimensional motion capture. The research concluded that 

different demands were required of lower extremity muscles of the overweight group when 

replicating similar whole-body center of mass trajectories of the non-overweight group. Gait 

patterns are affected and risk of degenerative diseases of the joint like osteoarthritis are increased 

for the overweight when attempting to correct for center of mass sway (Kim et al., 2023). 

Literature has provided support for the utilization of certain biomechanical measurements 

across diverse demographics. For example, ultrasound derived muscle quality and percent 

decrease in peak torque between slow and fast velocities for male firefighters (Gerstner et al., 

2018).  Determining and understanding relationships that exist between lower limb muscular 

biomechanical measures could be useful for clinics and laboratories with limited assets. 

Resources of time and cost can be minimized if one biomechanical variable could inform on 

another without requiring more specialized equipment. Musculoskeletal biomechanical research 

of the lower extremity has proven to be a useful tool for a myriad of applications and 

demographics, so this study prioritizes the research of lower extremity muscular health for an 

asymptomatic, non-athletic, young adult cohort with varying activity level effects. 
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International Physical Activity Questionnaire  

Physical activity level is typically evaluated with accelerometers and pedometers, or 

questionnaires. Although subjective, questionnaires are practical because they are low-cost and 

simple to use. The International Physical Activity Questionnaire was developed to standardize 

population level surveillance of adherence to World Health Organization recommendations for 

physical activity (Craig et al., 2023; Healey et al., 2020). It is not recommended for small-scale 

intervention studies but is used regularly in neuromuscular disease research. The free 

questionnaire is intended for adults aged 15 to 69 and can be conducted by self-administration or 

by interview. The International Physical Activity Questionnaire has a long and short form 

version. The International Physical Activity Questionnaire short form has seven items where the 

participant indicates the number of days in the past week along with hours and minutes per day, 

they were engaged in vigorous intensity physical activity, moderate intensity physical activity, 

walking, and sitting (sedentary behavior). The Ainsworth Compendium (Ainsworth et al., 2000) 

is used to convert walking, moderate, and vigorous scores to metabolic equivalents in minutes 

per week, which is then categorized into low, moderate, and high-level activity. Automatic 

scoring templates are available to determine results (Healey et al., 2020). 

International Physical Activity Questionnaire was first reported to be reliable and valid 

(Craig et al., 2003). However, recent literature questions its validity (Hagströmer et al., 2006; 

Kurtze et al., 2008; Lee et al., 2011; Roberts-Lewis et al., 2022). One systematic review showed 

an overestimation of physical activity and low to moderate validity due to inaccuracies in recall 

and social desirability (Healey et al., 2020). It was suggested that real-time response guidance for 

the administration of International Physical Activity Questionnaire could reduce self-reporting 

errors. Combing approaches where objective monitoring is included is another approach that 
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leans towards acceptability of the questionnaire (Healey et al., 2020; Roberts-Lewis et al., 2022).  

The questionnaire is widely used despite competing ideals. 

 

Muscle Quality 

Muscle quality is an umbrella term for indexing muscle function (Fragala et al., 2015; 

Naimo et al., 2021). It includes force production, contraction and relaxation, metabolism, and 

electrical conduction amongst other physiological functions (Naimo et al., 2021). Muscle quality 

is defined as the amount of non-contractile tissue relative to total muscle size (Radaelli et al., 

2021) or the measure of strength normalized to muscle mass (Fragala et al., 2015). For the 

purposes of this dissertation, muscle quality will be used to describe the amount of non-

contractile tissue relative to total muscle size.  

Muscle imaging can be used to find muscle quality. Muscle quality is assessed using 

radiological density for magnetic resonance imaging and computed tomography imaging.  For 

ultrasonography imaging it is determined with echo intensity. Although the muscle quality 

measures will be dependent on the method used, results are reported as being reliable across 

different populations (Naimo et al., 2021). Muscle quality is thought to improve with aerobic and 

anaerobic exercise  (Naimo et al., 2021; Watanabe et al., 2013).  

Ultrasound is considered noninvasive, low-cost, portable, accessible, and safe (since it 

does not emit radiation) for evaluating muscle quality. Ultrasonography has been acknowledged 

as a valid and reliable tool for obtaining echo intensity (Fragala et al., 2015). The importance of 

ultrasonography standardization of rest position prior to employment is emphasized as it can 

result in measurement discrepancies due to hydrostatic blood pressure and distribution and 

morphological changes in the muscle (Varanoske et al., 2019). Compression of body tissue is 
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also a concern with this method as it can influence the ability of fluid to filtrate from the 

capillaries, ultimately changing the size of the muscle (Varanoske et al., 2019).  

Echo intensity is typically found through use of image-processing software. The pixel 

intensity of an ultrasound image is found by selecting a region of interest while not including 

subcutaneous fat or bone. The region is typically evaluated on a scale of 0 (black) to 255 or 256 

(white) with an intensity closer to 0 representing better muscle quality as there is less fibrous and 

adipose tissue. Echo intensity is based on the idea that intramuscular content effects muscle 

performance (Wong et al., 2020).  

Several concerns center around the use of ultrasound to evaluate echo intensity. One 

study mentions that investigators should consider the subtleties in orientation when probing over 

structures of the body as a slight tilting of the probe at all angles is said to result in significant 

changes in echo intensity results which in turn impacts test-retest reliability (Dankel et al., 2020; 

Stock & Thompson, 2021). However, ultrasound has been determined to be valid and reliable for 

establishing echo intensity (Fragala et al., 2015). Single assessors for a study are therefore 

recommended in addition to standardization of acquisition protocols. There is a debate on 

whether to correct for subcutaneous adipose tissue thickness (Stock & Thompson, 2021). 

Corrections are used as women typically have more adipose tissue compared to men. 

Racial/ethnic differences in results need to be evaluated as well, which is evidenced when 

evaluating black and white college football players (Stock & Thompson, 2021).  This article 

discusses how for research involving these football players (Melvin, Smith-Ryan, Wingfield, 

Ryan, et al., 2014) there was a non-significant difference with black players having a lower echo 

intensity than white players. When looking outside of football, at overweight subjects, there was 
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significance demonstrated for the black cohort having lower echo intensity than the white cohort 

(Melvin, Smith-Ryan, Wingfield, Fultz, et al., 2014). 

 

Muscle Activation 

Surface electromyography is used to detect activation patterns from skeletal muscles and 

so aids in the understanding of human movement. Impaired muscular activation is associated 

with poor movement performance and incapacity (Disselhorst-Klug & Williams, 2020). By 

placing electrodes over the skin, electrical activity of the muscle is detected. Many fields benefit 

from its use including biomechanics, rehabilitation, sports medicine, and kinesiology as it 

provides a pain-free and ready-to-use way to take measurements (Disselhorst-Klug & Williams, 

2020; Merletti et al., 2008).  

Surface electromyography is commonly used in research environments and limited in use 

for clinical applications (Felici & Del Vecchio, 2020). This problem may be influenced by the 

need to be able to correctly interpret signals which are a summation of motor unit action 

potentials that reach the muscle over time (Felici & Del Vecchio, 2020). This issue in 

interpretation of the signal is worsened by having many interwoven influences that affect signal 

output. Extrapolations of muscle force is clouded by including non-isometric contractions. 

Specifically, muscle length, contraction velocity of the muscle, lever arm of the muscle, 

contraction type, and the redundancy of the musculoskeletal system influence force and torque 

output (Disselhorst-Klug & Williams, 2020). Electromyography is found to be more readily 

interpreted when information about movement (movement cycle intervals, joint positions, 

movement velocities, and external forces) execution is supplied for non-isometric conditions as 

typically applied in gait analysis. 
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Many musculoskeletal disorders that can be treated with rehabilitation are known to 

result in modification of soft tissues and develop abnormalities in the joint which cause 

biomechanical changes in the body (Disselhorst-Klug & Williams, 2020). An advantage of 

surface electromyography is its ability to distinguish pathologically altered muscle activations 

(e.g., stroke, paraplegia, cerebral palsy) and physiological control of muscles through application 

of primitive muscle synergies (Disselhorst-Klug & Williams, 2020). 

 

Isokinetic Dynamometry and Motion Capture    

 Muscle strength can be expressed in terms of its ability to produce joint torque. Joint 

stability, assistance, posture, and human mobility can be attributed in part to joint torque. Muscle 

strength measures are vital to determining the influence of aging and/or illness on its condition or 

to evaluating the success or failure of training or rehabilitation (de Araujo Ribeiro Alvares et al., 

2015). Isokinetic dynamometry is the benchmark used in training, rehabilitation, and evaluation 

of the musculoskeletal system by computing torque of a muscle contraction moving through a 

circular motion. The desired angular velocity is specified by the operator and regulated through 

resistance, while the user undergoes a range of motion. Studies involving dynamometry have 

spanned both biological sexes and all age groups and has included varying disorders including 

musculoskeletal ailments (de Araujo Ribeiro Alvares et al., 2015). 

One concern of isokinetic dynamometer use is that the equipment can contribute to 

performance changes due to seat and lever arm padding deformity, equipment comfort, or the 

straps used to restrain the subject (de Araujo Ribeiro Alvares et al., 2015). These are the possible 

concerns but does not appear to have restricted its widespread acceptance in assessing strength. 
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Information gathered from motion analysis could be helpful in diagnosis of 

musculoskeletal conditions and the design of treatment and prevention strategies (Roggio et al., 

2021). When assessing functional activity, it creates pathways to for personalized diagnostics 

and treatment as the data is related to the inherent traits of the individual. Motion can be captured 

with a two-dimensional or three-dimensional system (Roggio et al., 2021). 

Three-dimensional motion systems specialize in analyzing movement on multiple planes. 

Roggio et al. (2021) notes that optoelectronic stereophotogrammetric multi-camera motion 

capture with reflective markers on the body is the gold standard for motion capture. Kinetic, 

kinematic, as well as spatiotemporal movement data with high accuracy and precision can be 

produced with its use due to the tracking of joint movement in time and space. Markers placed 

on anatomical landmarks aid in the approximation of joint centers (Roggio et al., 2021).  

Challenges with motion capture include the ability to properly find anatomical 

landmarks. Issues are amplified if the same researcher is not recruited for marker placement 

throughout a study or if a study has multiple sessions; this especially affects transverse plane 

(horizontal plane through the body, separating upper and lower portions) markers (Roggio et al., 

2021). Protocol also varies across literature, which creates variability, notably for sagittal plane 

(vertical plane through the body from head to toe, dividing left and right halves) placements. 

Dependability of results can be reduced as an outcome of these challenges (Roggio et al., 2021). 

However, serval studies underscore the reliability and validity of motion capture for inter-

laboratory studies (Bates et al., 2017; Dao et al., 2023; Paul et al., 2016). 

. 
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Countermovement Jump  

Countermovement jump is an effective physical movement that has three phases. In the 

first phase, called the eccentric phase, the hip and knee are bending. The hip moves down 

towards the feet. The next phase, the concentric phase, involves the hip and knee in extension. 

The hip moves away from the foot in preparation for takeoff. There is an option whether to 

include arm swing in this phase (Bosco & Komi, 1979; de Villarreal et al., 2009; Lees et al., 

2004b). In the last phase, one is in flight. The hip and knee move together in a coordinated 

direction (Raffalt et al., 2016) and if using arms, the arms are extended.  It should be noted that 

terms and methods for countermovement jump phases have been defined in many different ways 

across literature (McMahon et al., 2018). Countermovement jump is used by clinicians to assess 

movement performance and execution. Countermovement jump is a tool that can help clinicians 

understand injury risk and rehabilitation status (Teufl et al., 2019).  

Advantages of accessing countermovement jump is that it is a discrete task with a distinct 

start and end that requires bilateral coordination of the limbs in conjunction with precise 

positioning of the upper body for balance. Including arm swing is noted to increase takeoff 

velocity and the overall height of the jump (Feltner et al., 2004; Harman et al., 1990; Lees et al., 

2004a, b). Outside of athletics that involve countermovement jump, adults do not train for its 

execution. Testing the countermovement jump on persons that do not oft use this task could give 

better insight into developed whole-body coordination. Opportunities are then presented to 

evaluate biomechanical features such as knee-hip joint coordination and flexion range of the 

knee during the task (Raffalt et al., 2016). Force-time curves can also be analyzed from 

performing countermovement jump to give comprehensive insight into neuromuscular function 

(McMahon et al., 2018). 
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Machine Learning 

Machine learning can be descried as a tool that incorporates computer science, 

mathematics, and statistics to convert raw data into valuable insights (Sabharwal & Miah, 2022). 

It has also been defined as a technique enabling the exploration of multi-dimensional parameter 

spaces (Nichols et al., 2018). Regardless of the accepted definition, it is said to be the central 

focus of modern biomedical research because it continuously adapts to challenging datasets, has 

exponential processing power, and can handle large datasets irrespective to complexity or pattern 

abnormality (Sabharwal & Miah, 2022).  

The framework for machine learning involves three key components: feature engineering, 

model selection and training, and then model testing (Halilaj et al., 2018). Feature engineering is 

the conversion of the raw high-dimensional data in to a lower-dimensional representation which 

can be accomplished through several techniques: manual extraction, automated, principal 

component analysis, etc. Data is then split into a training and testing set, where the testing will be 

used for performance evaluation during model testing (Halilaj et al., 2018). Model selection and 

training then occurs alongside feature selection and hyperparameter tuning, if decided. The first 

allowing for only key features or measures to be included in the model and the latter for 

determination of parameters to be included in the model. Each is stated to possible improve 

model performance and reduce the possibility of overfitting (i.e., analysis which corresponds too 

closely or exactly to a particular set of data (Oxford University Press, 2023)). Testing data is then 

incorporated to determine preferred performance metrics (e.g., accuracy, etc.) (Halilaj et al., 

2018).  

According to Edwards et al. (2021)when determining the appropriate model to employ 

one should determine if the data is labeled or not. If the data is labeled, then a supervised 
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learning experience should be employed; if not labeled, an unsupervised (explanatory variables 

are labeled but not the response variables) learning should be used. A supervised approach is said 

to have the advantage of having data that is labeled before analysis; The implementer 

understands the aims and properties of the data. Results are easily interpreted as well. An 

advantage of note is the ability for the implementer to understand how a chosen algorithm learns 

relationships between the input and response variable. An additional advantage of is being able 

to determine the number of classes due to the data being labeled (Edwards et al., 2021). 

Disadvantages include a chance for misclassification of new inputs, seeing that algorithms are 

trained on given data. A lot of computational time may be needed for large datasets. 

Classification of features cannot be done by the algorithm since features are predefined. Overall, 

having predefined domains and structures for the data can limit information and insight 

(Edwards et al., 2021). 

In a supervised approach, it should be determined if the response (i.e., target) variable is 

numerical or not (Edwards et al., 2021). Response variables that are numerical should employ a 

regression type algorithm. Regression involves the determination of a relationship between input 

and output variables and using input variables to predict numerical target variables. Non-

numerical response variables should employ a classification type algorithm. Classification 

involves the determination of a relationship between input and out variables, where input 

variables predict response variables (Edwards et al., 2021). There are several classification type 

algorithms, but a few of note are Random Forest, K-nearest neighbors, and Support Vector 

Machine. Edwards et al, describes Random Forest as a technique that employs many randomly, 

uncorrelated decision trees in which the prediction is decided from the average vote from the 

trees of the forest. K-Nearest Neighbors searches through a dataset for similar instances (i.e., 
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neighbors) and summarizes the response variable using the neighbors (Edwards et al., 2021). 

Finally, Support Vector Machine creates a boundary in a transformed space to separate different 

classes. The goal is to maximize this space or margin as much as possible between the classes 

and the boundary. The desire is to move the closest points in each group as far away from the 

boundary as possible (Shmilovici, 2005). 

  Machine learning has a number of strengths and limitations (Edwards et al., 2021). One 

strength is the ability to easily find patterns and trends that would otherwise not be apparent to 

humans or through traditional statistical methods. Machine learning can handle multidimensional 

data and variety of data types. Algorithms continue to increase in accuracy and efficiency with 

experience, which results in faster and more correct predictions as data volume increases. 

Limitations can include interpretation of results due to patterns not having biological context or 

reasonableness. Determined patterns can also be overinterpreted and have no practical context or 

application. Models require substantial amounts of data for training to ensure accuracy and 

reduce overfitting. Results also may not be reproducible without robust validation (Edwards et 

al., 2021). 

Machine learning has been implemented in several biomechanical studies. One example 

includes research that employed machine learning to estimate lower extremity muscle and joint 

loading during daily activities. The researchers report success in the ability to predict the 

mechanics of their patients (Burton et al., 2021). Another study employed machine learning to 

determine the accuracy of predicting lower limb joint kinematics, kinetics, and muscle forces 

derived from wearable sensors (Moghadam et al., 2023). The results of this study demonstrated 

that Random Forest and a Convolutional Neural Network outperformed Support Vector 
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Machine, which results in lower prediction errors and lower computational cost (Moghadam et 

al., 2023).  

When examining running biomechanics, a systematic review including twenty-four 

articles determined that using machine learning models to extract running measures from 

wearable sensors as a growing trend, but noted that not all studies validated their models and that 

attention to this shortcoming should be prioritized for future research (Xiang et al., 2022). For 

instance machine learning is increasingly used in biomechanics for classification of pathological 

movements (Halilaj et al., 2018), in diagnosis of cardiovascular disease and prediction (Madani, 

2019), in assessment of running strategies (Xiang et al., 2022), approximate musculoskeletal 

dynamic changes (Smirnov et al., 2021), and identification of relationships between wearable 

sensors and biomechanical variables (Nurse et al., 2023). Machine learning implementation 

illuminates relationships that cannot typically be gleaned from traditional statistical measures.  

Specific Aims 

The principal goal of this research is to employ machine learning to categorize activity 

levels using a reduced set of common lower extremity biomechanical measurements (i.e., 

features). This objective is divided into three aims. 

 

Specific Aim 1: Determine relationships between biomechanical measurements used in 

ascertaining musculoskeletal health using traditional statistical methods (e.g., scatterplots, linear 

regression, Pearson’s correlations).  

Hypothesis 1: Traditional statistical methods will not be able to determine correlations for 

all biomechanical measurements of interest. Literature acknowledges that human movement is 

intricate, dynamic, multidimensional, and highly non-linear (Phinyomark et al., 2018).  
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Specific Aim 2: Determine if various machine learning techniques can distinguish 

between low to moderately active and highly active asymptomatic young adults aged 18 to 30.  

Hypothesis 2:  An ability to differentiate between low to moderately active and highly 

active asymptomatic young adults will be achievable based upon applicable machine learning 

performance metrics. Machine learning has been successfully employed in biomechanics to 

categorize complex relationships (Halilaj et al., 2018).  

 

Specific Aim 3: Determine if a reduced number of biomechanical measurements will be 

able to differentiate between activity levels using machine learning.  

Hypothesis 3: A reduced number (n < 15) of biomechanical measures will be found and 

able to distinguish active and inactive groups. A successfully minimized combination of 

biomechanical metrics will be able to demonstrate for clinics and laboratories with limited 

resources, the ability to approximate a category of activity without the associated burden of cost 

or time from specialized equipment. 
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CHAPTER 2 

EVALUATION OF BIOMECHANICAL RELATIONSHIPS IN YOUNG ADULTS: A 
SEX-STRATIFIED FUNDAMENTAL STATISTICAL APPROACH 

 

To gain insights into the status of lower extremity skeletal muscular health, certain 

metrics, specifically, echo intensity, subcutaneous fat thickness, and countermovement jump 

height, have proven to be invaluable indicators (Bartolomei et al., 2021; Kitagawa et al., 2023; 

Stock et al., 2018). The assessment of skeletal muscular health is significant, as it plays a central 

role in human locomotion, overall functionality, balance and stability, promoting joint health, 

injury prevention, and the enhancement of the quality of life (Argiles et al., 2016; McCuller et 

al., 2023; McLeod et al., 2016). Several studies underscored the significance of skeletal muscular 

health by establishing a link between declining lower limb muscle strength and an increased risk 

of falls among older individuals (Rubenstein, 2006). Another study emphasized the importance 

of skeletal muscular health by correlating insufficient lower limb muscle strength to the inability 

to perform routine daily activities (Muehlbauer et al., 2015). However, studies have not given 

much attention to young adult populations. 

The link between echo intensity and physical performance among older adults (Mateos-

Angulo et al., 2021) and muscle strength in middle-aged and elderly individuals (Fukumoto et 

al., 2023) have been well-established. When combined with measurements of muscle thickness 

and strength, echo intensity has shown a strong correlation with physical performance (Wu et al., 

2022). Numerous studies have used brightness mode (b-mode) ultrasound to determine the echo 

intensity value, utilizing the mean gray-scale within a specified image region as an indicator of 

muscle quality (Fukumoto et al., 2023; Mateos-Angulo et al., 2021; Naimo et al., 2021; Song et 

al., 2021; Wu et al., 2022). 
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B-mode ultrasound has also proven valuable for assessing subcutaneous fat, serving as an 

indirect tool to gauge skeletal muscular health (Störchle et al., 2018). Subcutaneous fat, which 

represents the adipose tissue between the skin layer and underlying muscles (Pausova, 2014), 

offers insights into both echo intensity correction, mitigating the effects of ultrasound  wave 

attenuation (Canever et al., 2022), and changes in skeletal muscular health resulting from shifts 

in overall body composition and well-being (Ryan et al., 2016).   

While countermovement jump is a simple assessment tool for evaluating lower limb 

skeletal muscle condition and does not necessitate ultrasound, it is often assessed alongside other 

methods such as ultrasonography, electromyography, or dynamometry for a comprehensive 

muscle evaluation. Countermovement jump involves multiple joints and requires precise motor 

coordination throughout its various phases of standing position, push-off, toe-off, flight, and 

landing. It is useful for determining strength and power of lower extremity muscles (Petrigna et 

al., 2019). Researchers frequently utilize countermovement jump height as a performance metric, 

as it closely correlates with explosive muscle strength and the generation of mechanical power 

(Linthorne, 2021; Petrigna et al., 2019). 

 There is still limited information on how the metrics of echo intensity, subcutaneous fat 

thickness, and countermovement jump height are used to evaluate lower limb skeletal muscular 

health in young adult female populations. Examples are the previously mentioned studies that 

discussed the relationship of echo intensity to lower extremity health; they focused on middle-

aged and elderly individuals (Fukumoto et al., 2023; Mateos-Angulo et al., 2021). In another 

investigation, echo intensity and its relationship to force production differences of a quadricep 

muscle for career male firefighters was examined, which is a very specialized population and 

renders no information on female performance (Gerstner et al., 2018). Another looks at bilateral 
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landings from a jump and encompasses males and females, though with an average age close to 

30 years old (Pappas et al., 2007). Addressing the lack of young female populations in 

biomechanical research is essential to comprehensive and inclusive understanding of human 

biomechanics, even as it pertains to lower limb skeletal muscular health. Neglecting female 

populations in research could lead to incomplete understanding of human biomechanics, a lack 

of tailored interventions for musculoskeletal disorders or injury prevention strategies, and 

contribution to biased findings. Consequently, studies should consider inclusion of both 

biological sexes and incorporate younger populations to promote equitable and insightful 

biomechanical research. 

Fundamental statistics provides essential insight into the data. Key information can be 

obtained such as the dispersion of data and its variability through descriptive statistics. It offers 

the utility of graphical representation which when combined with statistical summaries can 

enhance the comprehension of patterns and differences within the data. Direct comparisons and 

the ability to establish the strength and direction of relationships is easily determined with this 

methodology. Lastly, fundamental statistics utilizes tools that are often the groundwork for more 

advanced techniques allowing for the understanding of data distribution and detection of outliers 

which is often preliminary steps required for preparing the data for more complex modeling. 

The purpose of this study is to examine both female and male populations, to access 

lower extremity muscular health through the indicators of echo intensity, subcutaneous fat 

thickness, and countermovement jump height with fundamental statistics. It is hypothesized that 

there might be some discernible relationships between some of the metrics. 

For subcutaneous fat thickness and countermovement jump height, prior studies have 

shown promising evidence of a connection. For instance, Kerns (2013) focused on NCAA D1 
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female soccer players and found that as percent body fat increased, countermovement jump 

height decreased, indicating a possible association. Additionally, Lisón (2022) explored 

subcutaneous fat thickness above the rectus femoris in adolescent basketball club players and its 

correlation with countermovement jump height. However, it is worth noting that factors such as 

body size and countermovement jump technique may potentially confound such relationships, as 

suggested by Markovic et al. (2014). 

Similarly, in the case of echo intensity and countermovement jump height, the researcher 

anticipates a potential relationship. While one systematic review didn't reveal a strong influence 

of skeletal muscle architecture on vertical jumping performance across a wide age range and 

limited female participants (Ruiz-Cárdenas et al., 2018), another study on middle school boys 

found a significant correlation between echo intensity and countermovement jump height (Mota 

et al., 2016), hinting at the possible influence of age on muscle architecture and performance. 

Lastly, regarding echo intensity and subcutaneous fat thickness, there are varying 

viewpoints in the literature. One study suggested that subcutaneous fat thickness might play a 

role in ultrasound attenuation but found no association between subcutaneous fat thickness and 

muscle echo intensity for a mixed-gender population across a wide age range (Paris et al., 2022), 

and another suggested a potential impact of glucose impairment on results in older males (Paris 

et al., 2021).  

This study intends to test these hypotheses through the employment of fundamental 

statistical methods to confirm or refute associations between the metrics of echo intensity, 

subcutaneous fat thickness, and countermovement jump height. 
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Methods 

Forty-one asymptomatic individuals aged 18-30 years participated in this study. The 

average age, height, mass, and body mass index (BMI) of the nineteen females was 24.8 ± 3.2 

years, 1.67 ± 0.06 m, 70.3 ± 17.8 kg, and 25.3 ± 5.7 kg/m2, respectively. The twenty-two males 

recruited averaged 23.8 ± 3.6 years, 1.81 ± 0.08 m, 84.9 ± 18.4 kg, and 25.9 ± 5.02 kg/m2, 

correspondingly. The Institutional Review Board at Old Dominion University (ODU) gave their 

approval to conduct this study. Informed written consent was obtained from each participant. A 

questionnaire was administered to each subject as well to determine biological sex and establish 

medical history. Exclusion criteria for the study was having undergone surgery in the past 12 

months or having had a recent injury in the past three months to the lower extremity that caused 

immobility or limited function for two or more days. Additional exclusion criteria were a “yes” 

indication to any question of the medical history section of the questionnaire or to the statement 

of having an implanted electronic device (e.g., cardiac pacemaker, electronic infusion pump, 

implanted stimulator). More than a minimal risk of injury was posed for individuals who met any 

of the exclusion criterion. Subject testing was performed during a single session in the 

Biomechanics Laboratory at ODU. For the session, participants were asked to wear fitted 

spandex shorts and given standardized laboratory shoes (UA Charged Gemini Running Shoes, 

Under Armour, Baltimore, MD, USA). 

Participants lay supine on an examination table with knee joints in full extension and hip 

and ankle joints in the neutral position for 10 minutes, which allowed for fluid redistribution and 

minimized ultrasound imaging error (Cerniglia et al., 2007). ultrasound imaging of the rectus 

femoris midbelly was done on the dominant limb, which was established as the ipsilateral side 

corresponding to the participant's dominant hand. The rectus femoris was located at half the 
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distance between the greater trochanter and the femoral condyle (Kleinberg et al., 2016). This 

location was marked on the leg.  

Ultrasound 

A portable brightness mode (B-mode) ultrasound imaging device, GE Logiq e BT12  

(GE Healthcare, Milwaukee, WI, USA), was put into logic view (i.e., panoramic mode). The 

ultrasound imaging device utilized a multi-frequency linear-array probe (12 L-RS, 5–13 MHz 

frequency, 39-degree field of view; General Electric Company) to capture images. The 

ultrasound settings were 68 dB for gain, 6.0 cm for depth, and 10 MHz for frequency; the depth 

being adjusted from literature references to accommodate seeing the whole rectus femoris 

(Kleinberg et al., 2016). Aquasonic 100 Ultrasound Transmission Gel (Bio-medical Instruments, 

Inc., Clinton Township, MI, USA) was applied to the skin and probe to enhance acoustic 

coupling and reduce near-field artifacts (Rosenberg et al., 2014). The probe was moved slowly 

and continuously while perpendicular to the skin and in the transverse plane (lateral to medial 

panoramic) with minimal pressure applied to the skin (i.e., no muscle compression) at the 

marked location (Kleinberg et al., 2016). 

Echo intensity of the rectus femoris ultrasound image was found using FIJI (Fiji is Just) 

ImageJ (2.3.0/1.53q version, National Institutes of Health, Bethesda, MD, USA). The straight-

line function in combination with the set scale feature was used to convert image measurements 

from pixels to centimeters. The polygon function was used to select the rectus femoris. When 

selecting the muscle, selection of the surrounding fascia was minimized. The measure function 

was used to determine a mean grayscale value between 0 and 255 arbitrary units (black = 0; 

white = 255) for the image (Rosenberg et al., 2014). It has been determined that ultrasound 

visualization for deeper tissue is more difficult to measure due to reduced attenuation of sound 
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waves because of reflection(s) or absorption. To accommodate for attenuation reduction due to 

subcutaneous fat thickness a correction factor was applied to the echo intensity (Young et al., 

2015). 

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑬𝑬𝑬𝑬 =  𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 𝑬𝑬𝑬𝑬 +  (𝑺𝑺𝑺𝑺𝑺𝑺 ×  𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓)   (Equation 2-1) 

 

where EI stands for echo intensity and SCF for subcutaneous fat. Subcutaneous fat thickness was 

determined by using the straight-line function to draw a line from the skin to the superficial 

aponeurosis; this was done at approximately half the distance between the medial and lateral 

borders of the rectus femoris muscle. The measure tool was then used to find the length of the 

line. The logged measurement was then taken from the results window which was then used as 

the subcutaneous fat value in the corrected echo intensity equation.  

The plug-in gait lower body model based on the Newington-Helen Hayes gait model 

(Kadaba et al., 1990) was implemented in this study. Reflective markers were placed bilaterally 

at the following anatomical landmarks: anterior and posterior superior iliac spines, femur lateral 

epicondyles, fibula apex of lateral malleolus, calcaneus, and second metatarsal heads. Additional 

markers were positioned bilaterally on the lateral side of the thigh and tibia.  

The 12-camera motion capture system was calibrated, and force plates zeroed. A static 

trial was collected for post-hoc processing tasks of the motion capture. Five trials of the subject 

performing a maximum effort countermovement jump was recorded after a demonstration and 

practice jump(s) to ensure proper form. The subject used arm-swing while dropping to a 

countermovement depth of choice before takeoff. The participant jumped as high as possible 

with their hip, knee, and ankle joints and arms fully extended.  
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Jump height was determined using the participant’s time in air. Force plate data was 

reviewed for locations where the force plate read zero during the participants countermovement 

jump. The difference of these frame values was taken and divided by the sample frequency, 

which provided the participant’s time in flight (t). Jump height was then calculated by using a 

reduced version of the projectile (vertical) motion, 𝑦𝑦 = 𝑦𝑦0 + 𝑣𝑣0𝑦𝑦𝑦𝑦 −
1
2
𝑔𝑔𝑡𝑡2, in a gravitation field 

(g), where g was taken to be constant on Earth, 9.81 m/s2. 

𝒉𝒉 = 𝟏𝟏
𝟐𝟐
𝒈𝒈 �𝒕𝒕

𝟐𝟐
�
𝟐𝟐

=  𝒈𝒈𝒕𝒕
𝟐𝟐

𝟖𝟖
  (Equation 2-2) 

Statistical Analysis 

A statistical analysis was carried out using SPSS (IBM SPSS Statistics for Windows, 

Version 28.0, IBM Corp, Armonk, NY). Descriptive statistics were computed for the overall 

sample population and separately for each sex across all variables. Scatterplots were generated 

with regression lines for the combined female and male samples, as well as for each sex 

individually. Additionally, the scatterplots included box plots for both independent and 

dependent variables for the combined female and male sample population. Pearson correlation 

(R) and significance (p) were also determined. R was categorized as follows: strong if it was 

above 0.8, moderate between 0.6 and 0.8, fair between 0.3 and 0.5, and poor if less than 0.3 

(Akoglu, 2018; Chan, 2003). The variables investigated were echo intensity and uncorrected 

echo intensity versus subcutaneous fat, countermovement jump versus echo intensity and 

uncorrected echo intensity, and countermovement jump versus subcutaneous fat. A minimum 

two-tailed confidence level of 95% (α = 0.05) was required. 
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Results 

Descriptive statistics are provided for the combined and stratified cohorts (Table 1). 

Utilizing descriptive statistics in conjunction with boxplots, the analysis of scatterplots for the 

combined female and male cohort indicates a positive skew in subcutaneous fat, characterized by 

a prolonged right tail. The mean of the subcutaneous fat values is approximately greater than the 

median. subcutaneous fat has two outliers in the female cohort. echo intensity and corrected echo 

intensity both approach a normal distribution. Jump height also tends to approximate a normal 

distribution, although it exhibits a longer right tail.  

The results indicate a significant (p < 0.001, α = 0.01) strong negative linear correlation 

(R = -0.837) between echo intensity (EI) and subcutaneous fat (SCF) for the female cohort 

(Figure 1a). With the outliers removed this relationship remained (R = -0.807, p < 0.001, α = 

0.01). A significant (p < 0.006, α = 0.01) fair negative linear relationship (R = -0.426) is 

observed for the cohorts combined; the relationship is poor and no longer significant with the 

removal of the outliers (R = -0.277, p = 0.088, α = 0.01).  

For corrected echo intensity versus subcutaneous fat, the male cohort exhibits a 

significant (p = 0.014, α = 0.05) fair positive linear relationship (R = 0.517; Figure 1b). For the 

cohorts combined, a significant (p = 0.014, α = 0.05) moderate positive linear relationship (R = 

0.603) is found; this relationship exists even when outliers are removed (R = 0.550, p < 0.001, α 

= 0.01) with fair to moderate strength. 

No significant relationship was found for the female, male, or cohorts combined for jump 

height and echo intensity (Figure 1c). A significant fair to moderate (R = -0.535) negative linear 

relationship (p = 0.010, α = 0.05) is found for the male cohort when analyzing the relationship 

between jump height and corrected echo intensity (Figure 1d). A significant moderately strong 



26 

negative linear correlation (R = -0.750) is found for the sexes combined (p < 0.001, α = 0.01). 

With removal of the outliers, this relationship remains moderately strong (R = -0.728, p < 0.001, 

α = 0.01). 

A significant moderate (R = -0.743) negative linear relationship (p < 0.001, α = 0.01) 

found for the male cohort when analyzing the relationship between jump height and 

subcutaneous fat (Figure 1e). The sexes combined also showed a significant moderate  

(R = -0.717) negative linear relationship (p < 0.001, α = 0.01). This remains when eliminating 

outliers (R = -0.741, p < 0.001, α = 0.01).  

No other significant correlations were found among the variables (Figure 1a-e). 
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Table 1  

Descriptive statistics for uncorrected Echo Intensity (EI), corrected EI, jump height, and 
Subcutaneous Fat (SCF) thickness for the cohorts combined and for the cohort stratified by 
biological sex 

  N Range Minimum Maximum 

Mean 
Std. 

Deviation 
Variance 

Statistic 
Std. 

Error 

Female + Male 

EI  41 109.99 58.35 168.34 120.88 4.14 26.51 702.75 

Corrected 

EI 

41 120.03 101.40 221.43 160.51 4.69 30.05 902.78 

Jump 

Height 

41 0.36 0.15 0.51 0.29 0.02 0.11 0.01 

SCF 41 3.12 0.14 3.26 0.98 0.11 0.73 0.53 

Female 

EI  19 109.99 58.35 168.34 125.69 7.55 32.92 1083.70 

Corrected 

EI 

19 70.52 150.91 221.43 184.15 4.21 18.36 337.17 

Jump 

Height 

19 0.17 0.15 0.32 0.21 0.01 0.04 0.00 

SCF 19 2.63 0.63 3.26 1.44 0.18 0.76 0.58 

Male 

EI  22 74.69 83.13 157.82 116.72 4.10 19.25 370.62 

Corrected 

EI 
22 94.67 101.40 196.07 140.09 4.71 22.10 488.49 

Jump 

Height 
22 0.31 0.20 0.51 0.36 0.02 0.09 0.01 

SCF 22 1.31 0.14 1.45 0.58 0.08 0.37 0.14 
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Figure 1  

Model summaries and scatterplots with linear regressions for the whole cohorts and cohorts stratified with boxplots on the axes 
representing whole cohort distributions. Relationships examined were (a) EI and SCF thickness, (b) corrected EI and SCF thickness, 
(c) jump height and EI, (d) jump height and corrected EI, (e) jump height and SCF thickness 

  

 

  
(a)           (b) 
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Figure 1 (continued) 

 

 
 

 

 

 
(c)          (d) 
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Figure 1 (continued) 

 

 

 

 
(e) 
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Discussion 

 It was hypothesized that discernible connections between the metrics of echo intensity, 

subcutaneous fat thickness, and countermovement jump height could possibly be established 

using fundamental statistical methods. This was determined by limited available research; all that 

which did not specifically target the same populations or variables used in this study. Such 

research typically focused on males and elderly, athletic, and adolescent populations.  

The combined cohort demonstrated normal distributions for all the variables except 

subcutaneous fat thickness. Note that the combined cohort was comprised of forty-one 

individuals, which eliminated the concern for violating normality assumption and confirmed the 

ability to use parametric testing, given that the sample size exceeded thirty (Ghasemi & 

Zahediasl, 2012). When reviewing the stratified cohorts of female and male, there were nineteen 

and twenty-two persons, respectively. A violation of the normality assumption is apparent if 

considering the variables when stratified by biological sex. It should be noted, that Pearson’s 

correlation does not have specific assumptions, although this has been the subject of significant 

debate  (Schober et al., 2018).   

The female cohort demonstrated a negative relationship between subcutaneous fat and 

echo intensity. A decline in echo intensity with increasing thickness might be attributed to 

greater attenuation of soundwaves (Young et al., 2015). Thus, a correction factor could be 

advantageous when applied to female populations; as in one study (Young et al., 2015) group-, 

gender-, and muscle-specific equations were derived for echo intensity measurements. It is also 

widely reported and accepted that females typically have larger subcutaneous fat thickness than 

males (Chang et al., 2018; Gavin & Bessesen, 2020). Seeing that subcutaneous fat thickness is 

typically larger in females than males, the correlation of subcutaneous fat thickness to a decrease 
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in echo intensity is likely the reason it is pronounced in this cohort. Not to say it is not necessary 

for the cohort overall, but it only has a fair association in this case.  

Examination of the male cohort showed a positive relationship between subcutaneous fat 

and corrected echo intensity index. When considering this correlation, an increase in 

subcutaneous fat would normally demonstrate an increase in corrected echo intensity value, 

which would be attributed to increase attenuation. Because the behavior of this relationship 

contrasts with what would be logically expected, it could be assumed that a correction factor is 

not necessary in the case of males. It should be reiterated that this relationship was only of fair 

strength. No immediate conclusion could be drawn from the moderate positive relationship being 

evidenced for the cohort overall; it could imply the need for no correction needed when 

considering young adult female and male cohorts together but seems unlikely.  

When examining countermovement jump height and corrected echo intensity, the male 

cohort showed that for increases in corrected echo intensity, a decrease in countermovement 

jump height. This was observed for the cohort overall as well. This association would seem to be 

due to first correcting for attenuation to be able to observe the relationship and secondly to 

possible poorer muscle morphology or health attributing to the inability for increased jump 

height. An example is one study (Mangine et al., 2014) demonstrating that vertical jump 

performance was related to vastus lateralis architecture in young adults. When looking at athletic 

adolescent boys with an average age of 12 years, a significant correlation was found between 

vastus lateralis echo intensity and countermovement jump height (Stock et al., 2017). These 

studies help substantiate the results for the males and combined cohort. It should be reiterated 

that the male cohort only had fair strength while overall had a strong association. 



33 

Countermovement jump height and subcutaneous fat thickness showed that for increasing 

subcutaneous fat thickness that there was a decrease in jump height for the male and combined 

cohorts, with moderate strength. The observation seems appropriate when considering that 

increased subcutaneous fat thickness could be indicative of overall health in the body to include 

body fat percentage, which could possibly attribute to jumping ability. There is limited research 

on this topic, but it was determined in one study, (Lisón, 2022) that subcutaneous fat thickness 

was predictive of physical performance (e.g.,  countermovement jump height) for adolescent 

basketball club players.  

It is not always clear why some correlations are established in some cases amongst a 

stratified cohort but found within the groups combined; the phenomenon is thought to be the 

product of complex relationships between the variables that are not immediately apparent when 

using fundamental statistical methods alone; some relationships are non-linear (van Emmerik et 

al., 2016) . It should not be omitted that possibly more intrinsic relationships could exist for one 

biological sex when compared to another when examining the influences of variables amongst 

one another. Outliers in the female cohort require additional investigation as well. It could be 

representative of a special sub cohort or the effect of random error during data collection. 

There are several limitations to the study. First, as with nearly all human subjects 

research, recruitment was from a population of convenience; in this study, many were students or 

locals associated with the university. Having many subjects from this demographic may have 

restricted generalizations determined in the results. Increasing the sample size could have 

enhanced the strength of the study and confirm the results more. Data collection presented a few 

concerns of note. Additionally, during post-hoc analysis of the ultrasound images, it was not 

always clear where to differentiate the selection of the RF from the surrounding fascia or where 
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the subcutaneous fat layer began or ended above the RF. Accuracy could have been impacted as 

a result. Due to operator error, dynamic range was altered for one subject, but the discrepancy 

was deemed negligible with further analysis. Not all subjects were able to perform the 

countermovement jump in the manner demonstrated and requested, even after multiple attempts. 

It is worth noting that some countermovement jump protocols involve arm swing, while others 

do not; this study opted for arm swing. Some participants also had difficulty with controlling 

their mechanics to land precisely on the force plate. Lastly, when examining subcutaneous fat in 

the female cohort, there were outliers which could have influenced the analysis. Further 

inspection would be required to determine if the outliers were associated with a specific 

subgroup in that cohort. It should also be highlighted that the study did not explore distributions 

among the individual cohorts. Researchers recommend that samples come from random or 

representative grouping and that both variables exhibit continuous and bivariate normal 

distribution (Schober et al., 2018). Upon visually inspection of the scatterplots for each 

biological sex, the data points do not seem to closely fit a curve, suggesting compliance with the 

bivariate normal distribution recommendation (Schober et al., 2018). 

There are a few suggestions for future work. Adding other biomechanical variables to 

determine additional relationships to support results obtained in this study may prove 

advantageous. For instance, a qualitative component could allow for a better connection to the 

statistical relationships that were observed. One example would be to survey physical activity 

and the effect on measures for echo intensity and subcutaneous fat thickness. Incorporating other 

muscle groups for echo intensity analysis or for determine subcutaneous fat thickness above 

would allow for expanded comparisons. Although the rectus femoris is commonly imaged, it is 

markedly weaker than the vastus lateralis and is biarticular, contributing to hip flexion, which is 
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antagonistic to the hip extension required for jumping tasks. More diversification of the sample 

or cohorts with consideration to factors such as age, ethnicity, or having a pathology could be 

insightful.  

In conclusion, the findings therefore confirm the hypothesis. There were some limitations 

to this study such as recruitment and subject jump mechanics, and a scope of future work 

suggested such as increasing the sample size, this study establishes discernable correlations 

between echo intensity, subcutaneous fat thickness, and countermovement jump height for 

evaluating lower limb skeletal muscular health. Generally, this research topic is limited, so the 

associations presented offer more insight into lower extremity skeletal muscle health, especially 

as it pertains to young adult female populations. The continued vitality of fundamentals 

statistical methods was demonstrated through this study although there is a chance for increased 

understanding by examining all of correlations with more complex methodologies. 
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CHAPTER 3 

MACHINE LEARNING BASED CLASSIFICATION OF PHYSCAL ACTIVITY IN 
YOUNG ADULTS FROM BIOMECHANICAL METRICS 

 

Physical activity is widely acknowledged and accepted as a major influence to shaping 

the overall well-being and quality of human life (American Health Association, 2023; Mahindru 

et al., 2023). Specifically, some of the documented benefits of physical activity include weight 

management, improved cognitive function, reduced risk of depression and anxiety, improved 

sleep, and increased muscle and bone strength. Additionally, physical activity reduces the risk of 

chronic diseases such heart disease, diabetes, and some cancers (Centers for Disease Control, 

2023a, 2023b; Mayo Clinic, 2023). It is recommended that an individual engage in at least 150 

minutes of moderate-intensity aerobic activity each week and at minimum two days per week of 

muscle-strengthening activities to realize these advantages (Bull et al., 2020). Although the 

importance of physical activity is widely reported, many adults fail to meet such requirements. 

This trend was outlined in 2020  where it was reported that only approximately 1 in 4 adults 

worldwide met aerobic guidelines; preventative measures were advised as there seemed to be no 

improvements forecasted for coming years (Bull et al., 2020). More preventatives are needed to 

educate adults and to encourage physical activity. 

There are some uncertainties and challenges with accurately differentiating between 

active and inactive individuals when using survey tools such as the International Physical 

Activity Questionnaire. The International Physical Activity Questionnaire was developed nearly 

twenty-five years ago by the International Consensus Group. It has long form and short form 

versions and is intended to be administered through interviewing or self-administration. 

Respondents are intended to reference their last 7 days or a typical week when reporting their 
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physical activity (Craig et al., 2003). Specifically, in the International Physical Activity 

Questionnaire short form version, the amount of vigorous, moderate, walking, and sitting activity 

is expected to be detailed correspondingly. The International Physical Activity Questionnaire 

short form was originally validated on a 12-country sample and in additional studies established 

as suitable assessment tool (Craig et al., 2003). Later studies demonstrated a significant 

underestimation of sedentary behavior and over estimation of physical activity (Grimm et al., 

2012; Lee et al., 2011). A systematic review found that when the International Physical Activity 

Questionnaire is compared to objective measures of activity or fitness (e.g., anthropometric 

measurements, device body motion monitoring, etc.) that there were low correlations in many 

studies (Lee et al., 2011). Some studies demonstrated high variability in correlations when 

comparing vigorous or moderate activity sections of the International Physical Activity 

Questionnaire to such an objective standard, while the questionnaire still met minimal acceptable 

standards (Lee et al., 2011). Despite some of the limitations, International Physical Activity 

Questionnaire is widely used, and the short form version has been tested in various populations 

with varying results. For example, a study involving older adults (Lenz et al., 2012) and another 

examining adolescent boys (Rääsk et al., 2017), International Physical Activity Questionnaire 

was deemed unsuitable while another that involved individuals with chronic obstructive 

pulmonary disease, the questionnaire appeared to be valid (Flora et al., 2023).  

In the field of biomechanics, various metrics have been utilized to investigate the 

physical well-being and capability of a given demographic. Anthropometrics like weight, height, 

and body mass index are often utilized in support of ascertaining the physical ability of humans 

and in the design of spaces and tools for analyzing human biomechanics. Echo intensity, a mean 

gray scale measure for a given region in an ultrasound image, has been employed in several 
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biomechanical studies to determine muscle quality (Fukumoto et al., 2023; Mateos-Angulo et al., 

2021; Naimo et al., 2021; Song et al., 2021; Wu et al., 2022). One study demonstrated that echo 

intensity could be linked to physical performance in the elderly (Fukumoto et al., 2023). In 

combination with muscle attributes like architecture and strength, countermovement jumping 

was found to be a strong indicator of physical ability (Wu et al., 2022). Countermovement jump 

has been proven to be a great assessment tool for evaluating the physical condition of the lower 

extremity and has been found to be even more informative when evaluated alongside tools such 

as electromyography (Padulo et al., 2013) or dynamometry (O'Malley et al., 2018). Investigating 

the impact of physical activity on biomechanical measures may offer insight into the link 

between physical fitness level and the ability for one to perform in everyday tasks and activities. 

Machine learning can be described as a technique used for exploring multi-dimensional 

parameter spaces (Nichols et al., 2018). Biomechanics and human mobility have inherent 

complexities, which often possess many parameters. Machine learning serves as a useful tool for 

using these parameters to predict clinical outcomes or to facilitate biomechanical analysis. 

Machine learning can be understood and does not have to be an incomprehensible entity, its 

operation can be transparent and explained (Nichols et al., 2018). In supervised machine 

learning, data is split into training and testing sets, where machine learning algorithms are 

employed to determine classifications from the given data. Specifically, the collected training 

data is used to generate features in which decision boundaries are formed. The machine “learns” 

from this data and takes the collected testing data with generated features and creates boundaries 

for which the data is classified. The use of machine learning in biomechanical research may 

prove to be useful in unraveling correlations and meaningful connections between physical 

activity and overall physical health and ability.  
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A detailed investigation into the various machine learning algorithms could improve 

understanding of their effectiveness in analyzing biomechanical measures toward determining 

the physical condition of an individual. In addition to algorithm capabilities, potential limitations 

could be highlighted as well. In supervised classification techniques, methods such as k-nearest 

neighbors, random forest, and support vector machines might be useful. Each has a goal of 

creating boundaries for data to be classified, but the approaches are unique (Nichols et al., 2018).  

K-nearest neighbors essentially classifies data based on its k (a specified number, usually 3, 5, or 

7) closest neighboring trained examples (Taunk et al., 2019). Random Forest utilizes an arbitrary 

set of features and divides the features using decision trees. Essentially, features are found in a 

root node and various conditional statements create a threshold for how to classify features. 

Many trees are formed and through majority vote a final classification is determined (Nichols et 

al., 2018). Support Vector Machines utilizes a max margin classifier. Boundaries are formed for 

the features through the use of lines or curves with the intent to ensure the maximum separation 

between different classifications of features (Nichols et al., 2018). Each algorithm has been 

employed in various biomedical studies to detect or identify pathologies or diseases (Hasan et al., 

2018; Jagadev & Virani, 2017; Shimpi et al., 2017; Wu et al., 2017).  

The aim of this study is to determine the effectiveness of a specific combination of 

biomechanical measurements in differentiating low to moderate from highly physically active 

asymptomatic young adults. Classification is attempted through three machine learning 

algorithms: K-nearest neighbors, Random Forest, and Support Vector Machine. The accuracy of 

these algorithms using the supplied biomechanical metrics is reviewed to identify which is the 

most effective, while also ensuring that minimum performance criteria is met. Ultimately, this 
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work intends to either confirm or disprove the validity of the International Physical Activity 

Questionnaire short form as an effective assessment tool as well. 

Methods 

Forty-one asymptomatic adults (22 males) between the ages of 18 and 30 inclusive were 

recruited to participate in this study. Correspondingly, the mean age, height, mass, and body 

mass index of these individuals was 24.7 ± 3.4 years, 1.74 ± 0.1 m, and 78.2 ± 19.4 kg, and 25.7 

± 5. 3 kg/m2. The Institutional Review Board at Old Dominion University authorized this 

investigation. Informed written consent was obtained from each person prior to data collection. 

An individual was permitted to participate in the study if they had not undergone surgery in the 

past 12 months or had an injury in the past 3 months to the lower extremities that rendered them 

immobile or reduced their mobility for 2 or more days. If an individual responded “yes” to any of 

the medical history questions or had an implanted electronic device such as a cardiac pacemaker, 

electronic infusion pump, or implanted stimulator, they were excused from participating. Having 

irritated skin or an open wound where an electromyography electrode would have been applied 

or a known allergy to silver, as the electrode contacts were made of silver, were also criterion for 

prohibiting involvement.  

Subjects were tested in a single session and requested to wear fitted spandex shorts and 

standardized laboratory shoes (Under Armour Charged Gemini Running Shoes, Under Armour, 

Baltimore, MD, USA). A questionnaire was completed by each participant to determine their 

biological sex, race/ethnicity, medical history, and level of physical activity as determined by the 

International Physical Activity Questionnaire – short form (Craig et al., 2003). Weight and 

height for each subject was also measured and recorded. 
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To ascertain echo intensity, the participant was requested to lie quietly and supine on the 

examination table for 10 minutes, which allowed for fluid redistribution and minimized 

ultrasound imagining error (Cerniglia et al., 2007). The mid-belly of the rectus femoris was 

determined by marking half the length of the femur, from the greater trochanter to the articular 

cleft (femoral condyle) of the knee (Kleinberg et al., 2016; Figure 2). A portable brightness mode 

US imaging device, GE Logiq e BT12 (GE Healthcare, Milwaukee, WI, USA) is put into logic 

view (panoramic mode) and is used in combination with a multi-frequency linear-array probe (12 

L-RS, 5–13 MHz frequency, 39-degree field of view (General Electric Company)) to capture 

images. The ultrasound was set to 68 dB for gain, 6.0 cm for depth, and 10 MHz for frequency 

(Kleinberg et al., 2016). Aquasonic 100 Ultrasound Transmission Gel (Bio-medical Instruments, 

Inc., Clinton Township, MI, USA) was applied to the skin and probe, enhancing acoustic 

coupling, and reducing near-field artifacts (Rosenberg et al., 2014). The probe was moved 

gradually, perpendicular to the skin while in the transverse plain, medial to lateral. Consideration 

was taken to minimize muscle compression (Kleinberg et al., 2016).  

Echo Intensity was determined using FIJI (Fiji is Just ImageJ;.3.0/1.53q version, National 

Institutes of Health, Bethesda, MD, USA) which is an open-source image processing software 

that is an extended distribution of ImageJ. The scale was set to convert image measurements 

from pixels to centimeters. The polygon function was employed to select the rectus femoris and 

caution exercised to minimize including the surrounding fascia. The area of the rectus femoris 

was recorded. A mean echo intensity value with a range between 0 (black) to 255 (white) 

arbitrary units was determined using the measure function (Rosenberg et al., 2014). This 

uncorrected echo intensity value was recorded but a corrected value was ascertained to adjust for 

subcutaneous fat thickness, which was noted to have an independent influence on echo 
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Figure 2  
 
Images demonstrating bone landmarks: Greater trochanter and lateral epicondyle in anterior 
and posterior view and the rectus femoris of the quadriceps (OpenStax College, 2013, 2017). 

 

 
 
 
 

intensity estimates due to reduced sound wave attenuation (Young et al., 2015). The corrected 

echo intensity equation used was  

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑬𝑬𝑬𝑬 =  𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 𝑬𝑬𝑬𝑬 +  (𝑺𝑺𝑺𝑺𝑺𝑺 𝒙𝒙 𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓)   (Equation 3-1) 

where EI was echo intensity and SCF was subcutaneous fat thickness. Subcutaneous fat 

thickness was measured as the straight-line expanse between the superficial aponeurosis at 

approximately half the distance between the medial and lateral borders of the muscle. This 
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distance was logged and used as the SCF value for the corrected echo intensity equation. See 

Figure 3. 

 

 

Figure 3  
 
Ultrasound image, where rectus femoris is identified and the approximate location where 
subcutaneous fat thickness is determined above the rectus femoris. Results are used to determine 
corrected and uncorrected echo intensity, subcutaneous fat thickness 

 

 

 

A 16-channel EMG system (2000 Hz, Delsys Trigno, Delsys Inc., Natick, MA, USA) 

was used to collect muscle activations from the rectus femoris during strength assessment. 

Placement of wireless surface electrodes followed prescribed guidelines (Cram et al., 1998), 

which included shaving hair as needed, abrading, and cleaning of the skin above the palpated 

muscle belly prior to electrode placement. The electrode was secured with sports wrap (Mueller 

Sports Medicine, Prairie du sac, WI) and then with athletic tape (Collins Sports Medicine, 

Raynham, MA). 
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An isokinetic strength assessment was performed on a calibrated HUMAC Norm 

dynamometer (Computer Sports Medicine, Inc., Stoughton, MA, USA). The subject was seated 

with their dominant leg secured to the dynamometer lever arm using a padded strap (90 mm 

width) placed proximal to the lateral malleolus of the ankle. The dynamometer axis of rotation 

was aligned with the lateral epicondyle of the dominant leg’s femur. Restraining straps were 

placed over the chest, pelvis, and thigh; participants utilized the left and right handlebars of the 

chair during testing. The range of motion for the muscle actions were set to allow for full 

extension; a minimum of one hundred degrees of flexion was required. 

Before strength testing, participants performed a warm-up(s) of submaximal isokinetic 

voluntary contractions at 50–75% of their perceived maximal effort. Each participant then 

completed five maximal voluntary isokinetic muscle actions of the leg extensors at 1.05 and at 

2.09 rad/s with a 1-minute rest between reps for each testing velocity. Strength testing and EMG 

signals from the rectus femoris were recorded simultaneously. Over the duration of each muscle 

action, participants received verbal encouragement during extension and flexion (Gerstner et al., 

2018).  HUMAC reported all torque values in foot-pounds. Isokinetic peak torque percent 

decrease was calculated using the equation: 

% 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒊𝒊𝒊𝒊 𝑷𝑷𝑷𝑷 = 𝑷𝑷𝑷𝑷 𝒂𝒂𝒂𝒂 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗−𝑷𝑷𝑷𝑷 𝒂𝒂𝒂𝒂 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗
𝑷𝑷𝑷𝑷 𝒂𝒂𝒂𝒂 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

 𝒙𝒙 𝟏𝟏𝟏𝟏𝟏𝟏   (Equation 3-2) 

where PT is an abbreviation for peak torque. Peak torque for each speed was the maximum of 

two trials where in each trial 5 repetitions of peak torque during extension were averaged 

together. 

Reflective markers were placed in accordance with Vicon Nexus 2.15.0x64 (Vicon 

Industries, Inc., Hauppauge, NY) plug-in gait for the lower body (Vicon Motion Systems, 2023) 
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which is based on the Newington-Helen Hayes gait model (Kadaba et al., 1990). Specifically, 

markers were placed bilaterally at the anterior and posterior superior iliac spines, fibula apex of 

lateral malleolus, femur lateral epicondyles, calcaneus, second metatarsal heads and lateral sides 

of the thigh and tibia. See Figure 4. 

A 12-camera motion capture system was calibrated (Vicon Vantage cameras), and the 

force plates (FP-4060, Bertec Corporation, Columbus, OH, 2000 Hz) were zeroed. A static trial 

was collected, ensuring marker visibility by all cameras. The subject performed five trials of 

countermovement jumping at maximum effort after a demonstration and practice jump(s). 

Subjects used arm-swing while dropping to a countermovement depth of choice. The subject 

jumped as high as possible and fully extended the hip, knee, and ankle joints and arms. Jump 

height was determined using the participant’s flight time. Force plate data was used for 

confirming time in flight; this corresponded with the force plate reading zero force. The 

difference of the ending and beginning frames where the fore plates read zero were taken and 

divided by the sample frequency, which provided the participant’s time in flight (t). Jump height 

was then calculated by using a reduced version of the projectile (vertical) motion, 

𝒉𝒉 = 𝟏𝟏
𝟐𝟐
𝒈𝒈 �𝒕𝒕

𝟐𝟐
�
𝟐𝟐

=  𝒈𝒈𝒕𝒕
𝟐𝟐

𝟖𝟖
   (Equation 3-3) 

where h was the jump height in meters, g was taken to be gravitational field on Earth, 9.81 m/s2, 

and t time in air in seconds. 
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MATLAB (MathWorks, R2021a. Natick, MA; 2023) was used to filter and process raw 

electromyography signals. All signals were detrended then band-passed at 5-450 Hz, high-pass 

filtered at 20 Hz with a recursive second order Butterworth filter. Full-wave rectification of the 

signal was applied, then a low-pass filter at 5 Hz using a recursive 2nd order Butterworth filter to 

create a linear envelope (Medved, 2000). The maximum recorded amplitude for the rectus 

Figure 1  
 
A diagram of landmarks for maker placement as outlined Vicon lower body plug-in gait 
(OpenStax College, 2016) 
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femoris muscle activation for each speed during strength assessments on the dynamometer was 

recorded.  

All collected parameters were recorded in an Excel (Microsoft Excel for Microsoft 365, 

Microsoft Corporation, Redmond, Washington) worksheet for machine learning implementation. 

A Python script was written to build and evaluate three machine learning classification 

methods. The techniques evaluated were Random Forest, K-Nearest Neighbors, and Support 

Vector Machine. The script was executed in Google Colaboratory, where the Google Drive was 

mounted to access the required data. Several Python libraries were imported to facilitate data 

analysis, visualization, and machine learning implementation. A comma-separated values file 

containing tabular data of anthropometric measures: sex, age, height, weight, BMI, and limb 

dominance, and biomechanical measures: rectus femoris muscle area, subcutaneous fat thickness 

above the muscle, uncorrected and corrected echo intensity, % peak torque difference, 

countermovement jump height, max amplitude of electromyography isometric 60 degrees/second 

and 120 degrees/second, and physical activity score was used.  

To prepare the data, the target variable, Physical Activity Score, was removed from the 

feature set. Categorical variables of the feature set (i.e., sex, race, and dominance) were 

converted into numerical features through ordinal encoding. Preliminary data analysis was 

conducted by displaying statistics and histograms for the numerical features. A correlation 

matrix heatmap was also created to visualize feature correlations. The initial analysis allowed for 

the assessment of the quality of the data and for deciding if any further preprocessing was 

needed. 
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The three algorithms were created and hyperparameter grids created for each model. For 

K-Nearest Neighbors, parameters such as n_neighbors (3, 5, and 7) and weight ('uniform' or 

'distance') were tested. In the case of Random Forest, estimators (100, 200, and 300) and max 

depth (‘None’, 10, and 20) were explored and for the Support Vector Machine ‘C' values (0.1, 1, 

and 10) and kernels (‘linear’ and ‘rbf’). ‘C’ is a regularization parameter which prevents 

overfitting by controlling trade-off of obtaining a low training error and low testing error, and the 

kernel takes the shape of decision boundary. For Random Forest, having a depth limit of ‘none’ 

implied that a node of a tree could be expanded until all the leaves were pure or all leaves 

contained less than the minimum number of splits at an internal node, which had a default of 2 

(scikit-learn developers, 2023a). 

70% of the subjects were reserved for training and the remaining 30% for testing. In the’ 

GridSearchCV,’ cross-validation focused on hyperparameter tuning,  

The data was normalized using ‘OrdinalEncoder’ function for K-Nearest Neighbors and 

Support Vector Machine models. The data was split into 70% (n= 28) training and 30% (n=13) 

testing sets. A loop was created to go through each technique and perform hyperparameter tuning 

with the ‘GridSearchCV’ function and evaluate how each model performed in terms of accuracy. 

‘GridSearchCV’ systematically works through all combinations of the hyperparameters and uses 

cross-validation in determining the best hyperparameter combination that yields the highest 

performing model. Twenty-three subjects were trained on, five were held out for testing. This 

split was repeated 5 times, each time changing the testing points. Figure 7 visually demonstrates 

what is occurring in the code. An evaluation of cross-validation accuracy with standard 

deviation, test accuracy, precision, recall, and F1 score are evaluated for each model. Accuracy 

was defined as the proportion of observations that were classified correctly, precision , recall, 
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and F1 score being a harmonic mean between precision and recall which uses the equation 

TP/(TP+FP), where T, F, P, N stand for True, False, Positives, and Negatives respectively 

(Bailly et al., 2022). The mean performance metrics for each model are found and plots of 

performance across folds and models created. Visualization of metrics is created in the code for 

easy comparisons. 

Results 

The variables of interest (units) included Sex, Age (years), Height (m), Weight (kg), body 

mass index (BMI, m/kg²), Uncorrected echo intensity (EI, AU), area of the rectus femoris Area 

(Area, cm²), central subcutaneous fat thickness above the rectus femoris (C, cm), Corrected EI 

(AU), % Peak Torque (%PT) difference, Jump Height (m), Isometric (Iso) 60 rectus femoris (RF, 

V), electromyography (EMG) Iso 120 RF (V), and Physical Activity Score.   

Descriptive statistics are provided in Table 2. Values significantly below Q1 or above Q3 

were considered possible outliers. Specifically, a lower outlier threshold is Q1 - 1.5 * (Q3 - Q1), 

and the upper outlier is Q3 + 1.5 * (Q3 - Q1). Area, C, % PT, Weight, BMI, Jump Height, EMG 

ISO 60 RF, and EMG ISO 120 RF had outliers. 

To complement the descriptive statistics, bar graphs demonstrating the data distribution 

are found in Figure 5. Sex, Age, and Dominance follow binomial distributions. The remaining 

variables appear to be non-symmetric, skewed, having long tails, except for Uncorrected and 

Corrected EI, which tend more toward normal distributions. From visual inspection, outliers are 

confirmed for Area, BMI, EMG Iso 60 RF, and EMG Iso 120 RF.  

Correlations were determined for the 16 features. They can be visually determined in the 

correlation heatmap. Strong to moderate correlations were determined to be the magnitude of 
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values approximately 0.6 and higher. Variables determined to have this relationship were Sex 

and Height (R = -0.72), Sex and C (R = 0.6), Sex and Corrected EI (R = 0.74), Sex and Jump 

Height (R= -0.74),  Weight and Area (R = 0.6), Weight and BMI (R = 0.88), BMI and 

Uncorrected EI (R = -0.59), C and Jump Height (R = -0.72), C and Corrected EI (R = 0.6), 

Corrected EI and Jump Height (R = -0.75), and EMG Iso 60 RF and EMG Iso 120 RF (R = 0.89)  

The best hyperparameters for K-Nearest Neighbors was having 7 neighbors and a 

uniform weight. For Random Forest, hyperparameters of a max depth of none and having 100 

decision tree estimators rendered the best performance. For Support Vector Machine it was a C 

of 10 and a linear kernel. 

Results demonstrated that across folds, K-Nearest Neighbors had a cross validation 

accuracy of 0.65 ± 0.16, accuracy of 0.69, precision of 0.7, recall of 0.675, and F1 of 0.675.  

Random Forest respectively had 0.68 ± 0.16, 0.54, and 0.29, 0.44, and 0.35 for these 

performance metrics. Support Vector Machine scored 0.72 ± 0.16, 0.69, 0.58, and 0.51, 

respectively. Between .70 - .90 are desired scores. The Support Vector Machine performed the 

best in cross-validation accuracy for the final model. The Support Vector Machine and K-

Nearest Neighbor algorithms performed equally as well in the remaining metrics and better than 

Random Forest. Reference Table 3 for model performance and Figure 8 for visual demonstration 

of the performance of each model. 



51 

Table 2 Descriptive statistics of features 

  N Mean Std. Deviation Minimum Q1 (0.25) Q2 (0.5)  Q3 (0.75) Maximum 

Age (years) 41 24.27 3.40 18.00 22.00 23.00 28.00 30.00 

Height (m) 41 1.74 0.10 1.59 1.65 1.75 1.80 1.96 

Weight (kg) 41 78.18 19.35 50.90 65.83 76.55 85.66 138.37 

BMI (m/kg^2) 41 25.66 5.30 16.93 22.08 24.68 27.76 38.36 

Uncorrected EI (AU) 41 120.88 26.51 58.35 100.47 123.51 135.57 168.34 

Area (cm^2) 41 8.29 3.21 3.41 5.90 7.69 10.25 19.77 

C (cm) 41 0.98 0.73 0.14 0.44 0.77 1.31 3.26 

Corrected EI (AU) 41 160.51 30.05 101.40 146.77 154.66 185.53 221.43 

% PT difference 41 28.64 19.20 2.75 13.27 24.21 40.00 82.61 

Jump Height (m) 41 0.29 0.11 0.15 0.20 0.27 0.37 0.51 

EMG Iso 60 RF (V) 41 1.64 x 10^-04 1.01 x 10^-04 4.30 x 10^-05 9.86 x 10^-05 1.36 x 10^-04 1.90 x 10^-04 5.49 x 10^-04 

EMG Iso 120 RF (V) 41 1.61 x 10^-04 1.23 x 10^-04 2.96 x 10^-05 8.06 x 10^-05 1.40 x 10^-04 1.84 x 10^-04 5.94 x 10^-04 
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Figure 5  

Bar graphs demonstrating distributions of the features. 
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Figure 6  

Correlation heatmap of the features 
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Figure 7  

Cross-validation demonstrated 
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Figure 8  

Scatterplots for a) cross validation accuracy, b) test set accuracy, c) precision, d) recall and e) F1 bar graphs of performance for 

each machine learning model 
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Table 3  

Results from running Machine Learning Models 

  
Cross-
Validation 
Accuracy 

Test Set 
Accuracy Precision Recall F1 

KNN  0.65 ± 0.16 0.69 0.675 0.675  0.675  

Random 
Forest  0.68 ± 0.16 0.54 0.29  0.44  0.35  

SVM  0.72 ± 0.16 0.69 0.675 0.675 0.675 

 

 

Discussion 

Data quality is viewed as important for machine learning, yet literature typically fails to 

address how to identify and improve it; more specifically, statistical analysis is usually not 

employed for investigating distributions and possible outliers. Outliers in the data has been 

viewed as having a significant risk to skewing models. This is especially important for medical 

diagnosis (Dai et al., 2018). One study employed statistics to determine control limits, but also 

incorporated the central limit theorem, which assumes a normal distribution for a sample size of 

30 or more (Dai et al., 2018). Descriptive statistics and distributions were reported as a point of 

inspection should none of the algorithms perform well. The sample size was greater than 30 for 

this study which implies that an assumption of normal distribution can be used despite outliers 

and skewed distributions. 

The Support Vector Machine model outperformed Random Forest outperformed and K-

Nearest Neighbors. This supports one study that determined that the Support Vector Machine 

algorithm was more robust than random forest for limited medical data, but included the caveat 

that the most robust model does not mean the best performing (Althnian et al., 2021). Additional 



57 

work would be needed to see if the Support Vector Machine technique could be more robust than 

the other models in this study. In other words, a determination would be needed to see if Support 

Vector Machine would perform well on training data that includes some noise or imprecise data 

(Pang et al., 2022). Properties of the models may have had an influence on their performance for 

instance Support vector machines have demonstrated an ability to detect disease, but are said to 

be disadvantaged by having no optimization or enhancement and in cases limitation on the 

number of hyperplanes that can be utilized for predicting classes (Ruchi et al., 2020). K-Nearest 

Neighbors has been praised for its accuracy, particularly when optimized, and in its effectiveness 

in detection of disease, even scenarios involving large datasets. It is also commended for its lack 

of complexity, accuracy, and ability to be quickly executed when used in combination with 

feature selection. It has been reported in some studies as impossible with large datasets or having 

significantly reduced accuracy with such data and generally having a poor convergence rate 

(Ruchi et al., 2020). Random Forest has been reported in literature aimed at medical diagnosis as 

being a highly efficient model, with high reliability, precision, and/or accuracy for disease 

detection, though it has been criticized for lacking the ability to be optimized or enhanced, which 

would be helpful for achieving improved results. Random forest has been reported as not having 

good performance for large datasets too (Ruchi et al., 2020).  

    The International Physical Activity Questionnaire-short was validated as the machine 

learning was able to accurately categorize to self-reported physical fitness levels. This finding is 

notable as systematic reviews found issues such as underestimations of sedentary behavior and 

overestimations of physical activity and low correlations to measures found with body motion 

monitoring (Grimm et al., 2012; Lee et al., 2011).It is possible that subjects for this study 

reported their physical fitness levels within a minimal margin of error that allowed for patterns 
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amongst features to be identified. Future work could incorporate accelerometer data as an 

additional feature or in place of International Physical Activity Questionnaire-short 

categorizations. Further investigation may be required to determine the International Physical 

Activity Questionnaire-short validity in the young adult population while it was found invalid for 

certain studies that had involved older adults (Lenz et al., 2012) and adolescent boys (Rääsk et 

al., 2017), respectively. One perspective is that older adults and adolescent boys may have found 

it more difficult to recall their typical physical activity with an appropriate accuracy. 

A limitation of this study was that there was a small number of data points (or subjects). 

One study suggested that although there has been an attempt to establish measures for the 

minimum number of samples that there is no recognized definition for what represents a small 

dataset (Althnian et al., 2021) . The study instead compared related works to determine what 

constitutes a small versus large dataset. When comparing to the categorization used in that study, 

it is confirmed that the dataset used for this study is small. It should be noted that there are few 

concerns surrounding small datasets (Althnian et al., 2021). There is possibility for decreased 

performance from the classification algorithm because fewer details could restrict the algorithm 

from generalizing patterns in the training set. There is also the possibility of over-fitting, which 

affects both the training data and the validation set (Althnian et al., 2021).  This does not appear 

to have been an issue as possibly the performance was based on the distribution of the dataset as 

opposed to its size. Another issue was that there was an imbalance of classification types in the 

dataset. Using a ‘balanced’ class weight model parameter allowed for maintain of the same class 

distribution as the original dataset. Future work could include targeted recruiting to improve the 

balance the classifications. An additional limitation of this study was that only three machine 

learning classification algorithms were attempted in this study. Other supervised classification 
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algorithms include Naïve Bayes classifier and Logistic Regression (Edwards et al., 2021). Future 

work could include these models for additional comparisons on training performance. 

The most immediate feature future work for this study includes optimizing the Support 

Vector Machine algorithm by determining the minimum number of features needed for an 

acceptable outcome. This is desired as computation time and storage space can be reduced and 

“essential characteristics” of the data can be ascertained. Accuracy is also thought to be 

influenced by dimensionality (Jia et al., 2022). In successfully being able to distinguish between 

active and inactive individuals, for real-world scenarios, this should be achieved with minimal 

data collection equipment. This would conserve financial resources and time. The work 

presented appears to be novel and underscores the potential for improved interventions for 

inactive persons for suggestions for sustaining. 
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CHAPTER 4 

STREAMLINING BIOMECHANIAL METRICS FOR YOUNG ADULT PHYSICAL 
ACTIVITY CLASSIFICATION 

 
INTRODUCTION 

Acquiring a deeper understanding of human biomechanics could be crucial in developing 

preventative measures and personalized care. Biomechanics of human locomotion is complex 

(Lu & Chang, 2012) and the integration of machine learning models could help in interpretability 

(Bisele et al., 2017; Phinyomark et al., 2018). Specifically, the use of the Support Vector 

Machine algorithm may prove helpful in the implementation of machine learning and in 

understanding results. The Support Vector Machine algorithm is lauded for several 

characteristics including the ability to render reliable results even when there is not enough 

information that can be gathered from the data. It is also known for its ability to work well with 

unstructured data (Akkaya & Çolakoğlu, 2019). It is known for its ability to solve complex 

problems with kernel implementation. Also it noted to be perform relatively well at scaling high 

dimensional data (Akkaya & Çolakoğlu, 2019). Akkaya et al, notes that the algorithm also has 

several disadvantages. One such example is difficulty in selecting the appropriate kernel. For 

large datasets, training time can be prolonged. Interpretability of results can be difficult due to 

variable weighting. Each variable’s contribution to the decision boundary is variant, also 

compounding issues with understanding results (Akkaya & Çolakoğlu, 2019). 

Innovation can be achieved with feature reduction, contingent upon the method by which 

features are reduced, because key information is more easily understood due to having a 

simplified model (Jia et al., 2022).  With feature reduction, redundant information is eliminated, 

and models run more efficiently due to a decrease in training time or computational burden. 

Concerns with overfitting are addressed because the measures used for training are more 
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streamlined (and independent/orthogonal). Overall, the curse of dimensionality, the phenomenon 

that as dimensionality increases, the volume of data becomes sparse, is thwarted (Jia et al., 

2022). Increases in dimensionality of data requires an increase in data to maintain performance 

in tasks (Venkat, 2018). The result of high dimensionality is increased computational effort  and 

decreased visualization of results (Venkat, 2018). 

Methods 

In the previous chapter, K-Nearest Neighbors, Random Forest, and Support Vector 

Machine learning models were used to categorize self-reported physical activity from the 

International Physical Activity Questionnaire short form among forty-one asymptomatic adults 

aged 18 to 30. Their mean age, height, mass, and body mass index were determined to be 24.7 ± 

3.4 years, 1.74 ± 0.1 meters, 78.2 ± 19.4 kilograms, and 25.7 ± 5.3 kg/m², respectively. 

In addition to these basic metrics, anthropometric and biomechanical data were gathered 

including sex, race, limb dominance, echo intensity (both uncorrected and corrected), rectus 

femoris area, subcutaneous fat thickness, percent peak torque difference, jump height, and peak 

amplitudes of electromyography signals during isokinetic leg extension at speeds of 60 and 120 

degrees per second. These measurements were acquired using surveys, ultrasound, a 

dynamometer, electromyography, and motion capture combined with a force plate. Many of 

these measures required additional effort after data collection.  

With the employment of machine learning the best model and hyperparameters were 

determined. This process identified the Support Vector Machine with C: 10 and a linear kernel as 

the top performer meeting minimum standards. 
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 In this chapter, continued work is done on the Support Vector Machine model. 

Specifically, a univariate (one-variable) feature selection technique is used. The ‘SelectKBest’ 

function is used to determine the relationship of each individual feature to the target variable and 

scores the feature using the ‘f_classif’ function. The ‘f_classif’ function computes the ANOVA 

F-value, an analysis of variance, for the feature in respect to the target variable and the p-value 

associated with each F-value. Large F-values indicate that a feature is more informative in 

distinguishing classes. The specified top features are then selected (scikit-learn developers, 

2023b, 2023c). Once the training data is fitted, a transform method is used convert the original 

feature set into a reduced set of only the selected features for the test and train set. The Support 

Vector Machine model is defined with a C:10 and linear kernel and class weights are balanced. 

Cross-validation is done with the hyperparameters. The Support Vector Machine model is 

trained with the selected features and the hyperparameters. Accuracy, precision, recall, and F1 

score are then reported. 

Results 

The performance metrics of the original Support Vector Machine model from Chapter 1 

are shown in Table 4-1. The resulting cross-validation accuracy, test set accuracy, precision, 

recall, and F1 scores are respectively 0.72 ± 0.16, 0.69, 0.675, 0.675, and 0.675. Feature 

reduction was not implemented for this model. 

In the process of feature reduction, optimal performance with the least number of features 

is achieved at 11 features. These features are sex, age, race, height, body mass index (BMI), 

dominance, uncorrected echo intensity (EI), area, subcutaneous fat thickness (C), corrected echo 

intensity (EI), and countermovement jump height.  The performance metrics were determined to  
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be 0.79 ± 0.21, 0.69, 0.675, 0.675, and 0.675. Table 4 summarizes the scores.  

 

Figure 9  
 
Scatterplots of accuracy, precision, recall, and F1 Support Vector Machine learning model. The 
Support Vector Machine model performance with feature reduction, where 11 features was 
optimal 
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Table 4  

Support Vector Machine performance metrics 

   

Cross-
Validation 
Accuracy 

Test Set 
Accuracy Precision Recall F1 

Support Vector Machine, 0.72 ± 
0.16 0.69 0.675 0.675 0.675 

 original model 

Support Vector Machine, 0.79 ± 
0.21 0.69 0.675 0.675 0.675 

(feature selection = 11) 

 
 

 

Discussion 

Results from the previous chapter did not incorporate feature reduction, necessitating the 

use of all 15 biomechanical measures (features) to execute the final Support Vector Machine 

algorithm. Using feature reduction with the Support Vector Machine algorithm for this study not 

only reduced computational time but made ultrasound and motion capture with force plates the 

only equipment necessary for determining the final features Electromyography and 

dynamometry were ultimately eliminated. A significant reduction in data collection and 

processing time would occur in a clinical setting as, on average, the laboratory testing required 2 

hours to collect all biomechanical measures. 

As mentioned in the previous chapter, a small dataset was utilized for this study and 

concerns arise with such. A possible decrease in classification performance and the possibility of 

over-fitting (Althnian et al., 2021) should be considered.  

Future work includes using Naïve Bayes classifier and Logistic Regression, which are 

other supervised classification algorithms (Edwards et al., 2021) that were not attempted. 
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Attempting to improve Random Forest and K-Nearest Neighbor results beyond the scope of the 

previous chapter.  Substantial benefits may be realized with additional refinement and 

advancement of these algorithms, as K-Nearest Neighbors performed nearly as well as the 

Support Vector Machine model. This should be highlighted as K-Nearest Neighbors is noted to 

be easier to implement and understand, can be applied to multi-class classification problems with 

ease, and is said to have a quick response to changes in input when used in real-time (Akkaya & 

Çolakoğlu, 2019).  

Additional research could include simplifying the data collection procedure. Obtaining 

jump height without the use of motion capture and a force plate would further reduce data 

collection efforts. Seeing how the algorithm performs when this metric is not collected as 

precisely would be advantageous and more reflective of what would be desired in a clinical 

setting. Automatizing the segmenting of the ultrasonography image to determine corrected and 

uncorrected echo intensity, muscle area, and subcutaneous fat could also beneficial toward time 

saving. The main objective of this work would be prompt physical activity assessment and to 

allow clinicians to offer patients personalized recommendations. Future aim would include 

exploring the potential for predicting acceptability to chronic disease and conditions based on the 

current assessed level of physical activity. 
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CHAPTER 5 

SUMMARY AND CONCLUSION 
  

The objective of this research was to employ machine learning to categorize activity 

levels of young adults using a reduced set of biomechanical measurements that would commonly 

be used for lower extremity assessment. To accomplish this, an analysis of some key 

biomechanical measurements was conducted using traditional statistical methods. It involved the 

incorporation of scatterplots, boxplots, linear regression, and Pearson’s correlation to ascertain 

relationships. Human movement is often described as multi-dimensional and non-linear, so it 

was thought that fundamental statistical methods would not be able to fully describe existing 

relationships amongst the biomechanical variables of interest. Next, K-Nearest Neighbors, 

Random Forest, and Support Vector Machine were employed to investigate if low to moderately 

active and highly active asymptomatic young adults could be categorized correctly with the 

biomechanical features investigated. Seeing that machine learning has been successfully 

employed to categorize complex relationships in other studies, it was hypothesized that this 

could be done with success. The next goal was to take the best performing algorithm and to 

reduce the number of biomechanical measures (or features) needed for categorization. It was 

believed that this could be accomplished. All hypotheses were confirmed for each aim. To the 

knowledge of the author, there is limited existing research that explores the range of lower-limb 

biomechanical features presented and their impact in categorizing physical activity levels of 

young adults.  

 The statistical method approach revealed that there was not a relationship for every 

biomechanical variable combination; this statement was demonstrated whether assessed across 

the entire cohort or stratified based on biological sex. Echo intensity and subcutaneous fat 
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thickness showed a strong negative correlation for females and fair negative correlation for the 

cohorts combined. In the case of corrected echo intensity and subcutaneous fat thickness, the 

male cohort demonstrated a fair positive relationship and the combined cohort a moderate 

positive one.  Corrected echo intensity and countermovement jump demonstrated a fair negative 

relationship for males and moderate negative correlation for the combined cohort.  Major take 

aways if discussing gender-specific observations was that the female cohort had a decrease in 

echo intensity with increase subcutaneous fat thickness, which was an implication for using 

corrected echo intensity. The male cohort saw an increase in corrected echo intensity with 

subcutaneous fat thickness, which was an implication for not using corrected echo intensity. The 

male cohort demonstrated decreased countermovement jump height with increasing echo 

intensity, which seems appropriate that decreased muscle quality would result in decreased jump 

height. It was noted that the study was not without its limitations which included recruitment and 

demographic limitations, concerns with data collection and its possible impacts on results, 

inconsistencies with how countermovement jumps were performed, and outliers in the female 

cohort which was determined through review of the data distribution. Ideas for study 

improvement involved adding additional biomechanical variables, incorporating qualitative 

components, and diversifying the sample and demographic, and including interventions or 

longitudinal studies.  The study enriches understanding on the lower limb skeletal muscular 

system; however, it underscores the need for additional analysis using advanced statistical 

methods or intricate methods to unravel the complexities of human locomotion and the interplay 

between various biomechanical variables.  

 Machine learning was employed to categorize physical activity for young adults, but the 

study first began with a review of the data quality as it could have an impact on the success or 
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failure of the machine learning. It was noted that literature has generally failed to address how to 

identify and to improve imperfect data.  This is especially important since outliers can affect 

medical diagnosis. K-Nearest Neighbors, Random Forest, and Support Vector Machine are 

compared in the study. Literature review discussed properties and limitations of each model, but 

a point of note was Support Vector Machine being identified as robust especially when compared 

to other models. The study validated the International Physical Activity Questionnaire short form 

for young adult populations despite mixed reviews of its legitimacy. Limitations were 

acknowledged for the study, such as having a small dataset and the fact that its size can result in 

reduced algorithm performance and increase risk for overfitting. There was an imbalance among 

the classes; however, a solution was implemented to address this concern. Future work involves 

optimizing the Support Vector Machine algorithm by determining the minimum number of 

features needed for an acceptable outcome. By doing so, the goal of reducing computational time 

and storage by utilizing a streamlined featured set is met. Additionally, the possibility of 

improved accuracy through decreased dimensionality may be experienced. There has been 

limited exploration of machine learning classification using the proposed feature set to classify 

activity levels. The Support Vector Machine algorithm was successfully employed and met the 

objective of this study. It appears that work demonstrated here is novel for the area of 

biomechanical focus. The research highlights the potential for improved interventions for 

inactive individuals and provides avenues for sustainable future research. 

 The last study addressed the absence of feature reduction as the original Support Vector 

Machine algorithm utilized 15 biomechanical measures. The implementation of feature reduction 

not only had an impact on computational time but equipment requirements. Having a significant 

reduction in data collection and processing time in a clinical setting offers a distinct advantage. 
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Feature reduction in this application allowed for sole reliance on ultrasound, motion capture, and 

force plate equipment for final features. Electromyography and dynamometry dependencies were 

eliminated. This increases efficiency for data collection and processing time. As with each study, 

the dataset was small which has its own potential concerns of decreased classification 

performance and risk for overfitting. There were unexplored algorithms like, Naïve Bayes 

classifier and Logistic Regression. This could be included for future work. Potential benefits 

could be found in refining the comparable K-Nearest Neighbors algorithm as it is noted for its 

ease in implementation and responsiveness. Future work would involve simplifying data 

collection procedures, including obtaining jump height without the use of motion capture and a 

force plate. Automatizing segmentation of ultrasonography images for various measures could 

also reduce post-hoc analysis. The realization of prompt physical activity assessment and 

personalized recommendations becomes more achievable with this work. Exploring pathways to 

predict susceptibility to chronic diseases through evaluated physical activity could be a potential 

next step. 

This work has successfully differentiated low to moderately active and highly active 

asymptomatic young adults aged 18 to 30 beginning with 15 biomechanical metrics. These 15 

biomechanical metrics were further reduced to 11 features allowing for a reduction in 

computational time. It should be emphasized how the success of this study contributes to work in 

a clinical setting, as all the features are collected through a brief surveying of the individual, 

collection of weight and height, employment of ultrasound, and use of motion capture with force 

plates. This reduces manpower for equipment operation and use which is essential for clinical 

work.  
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APPENDIX A - INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 
DIRECTIONS 

(August 2002) 

 

SHORT LAST 7 DAYS SELF-ADMINISTERED FORMAT 

 

 

FOR USE WITH YOUNG AND MIDDLE-AGED ADULTS (15-69 years) 

 

The International Physical Activity Questionnaires (International Physical Activity 
Questionnaire) comprises a set of 4 questionnaires. Long (5 activity domains asked 
independently) and short (4 generic items) versions for use by either telephone or self-
administered methods are available. The purpose of the questionnaires is to provide common 
instruments that can be used to obtain internationally comparable data on health–related physical 
activity. 

 

1. Background on International Physical Activity Questionnaire 

The development of an international measure for physical activity commenced in Geneva in 
1998 and was followed by extensive reliability and validity testing undertaken across 12 
countries (14 sites) during 2000.  The final results suggest that these measures have acceptable 
measurement properties for use in many settings and in different languages and are suitable for 
national population-based prevalence studies of participation in physical activity. 

 

2. Using International Physical Activity Questionnaire  

Use of the International Physical Activity Questionnaire instruments for monitoring and research 
purposes is encouraged. It is recommended that no changes be made to the order or wording of 
the questions as this will affect the psychometric properties of the instruments.  

 

3. Translation from English and Cultural Adaptation 

Translation from English is supported to facilitate worldwide use of International Physical 
Activity Questionnaire. Information on the availability of International Physical Activity 
Questionnaire in different languages can be obtained at  www.ipaq.ki.se. If a new translation is 
undertaken, we highly recommend using the prescribed back translation methods available on 
the International Physical Activity Questionnaire website. If possible, please consider making 
your translated version of International Physical Activity Questionnaire available to others by 
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contributing it to the International Physical Activity Questionnaire website. Further details on 
translation and cultural adaptation can be downloaded from the website. 

 

4. Further Developments of International Physical Activity Questionnaire  

International collaboration on International Physical Activity Questionnaire is on-going and an 
International Physical Activity Prevalence Study is in progress. For further information see the 
International Physical Activity Questionnaire website.  

 

5. More Information 

More detailed information on the International Physical Activity Questionnaire process and the 
research methods used in the development of International Physical Activity Questionnaire 
instruments is available at www.ipaq.ki.se and Booth, M.L. (2000).  Assessment of Physical 
Activity: An International Perspective.  Research Quarterly for Exercise and Sport, 71 (2): s114-
20.  Other scientific publications and presentations on the use of International Physical Activity 
Questionnaire are summarized on the website. 
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APPENDIX B - INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

We are interested in finding out about the kinds of physical activities that people do as part of 
their everyday lives.  The questions will ask you about the time you spent being physically active 
in the last 7 days.  Please answer each question even if you do not consider yourself to be an 
active person.  Please think about the activities you do at work, as part of your house and yard 
work, to get from place to place, and in your spare time for recreation, exercise or sport. 

 

Think about all the vigorous activities that you did in the last 7 days.  Vigorous physical 
activities refer to activities that take hard physical effort and make you breathe much harder than 
normal.  Think only about those physical activities that you did for at least 10 minutes at a time. 

 

1. During the last 7 days, on how many days did you do vigorous physical activities like 
heavy lifting, digging, aerobics, or fast bicycling?  

 

_____ days per week  

 

   No vigorous physical activities  Skip to question 3 

 

 

2. How much time did you usually spend doing vigorous physical activities on one of those 
days? 

 

_____ hours per day  

_____ minutes per day  

 

  Don’t know/Not sure  

 

 

Think about all the moderate activities that you did in the last 7 days.  Moderate activities refer 
to activities that take moderate physical effort and make you breathe somewhat harder than 
normal.  Think only about those physical activities that you did for at least 10 minutes at a time. 
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3. During the last 7 days, on how many days did you do moderate physical activities like 
carrying light loads, bicycling at a regular pace, or doubles tennis?  Do not include 
walking. 

 

_____ days per week 

 

   No moderate physical activities  Skip to question 5 

 

 

4. How much time did you usually spend doing moderate physical activities on one of 
those days? 

 

_____ hours per day 

_____ minutes per day 

 

  Don’t know/Not sure  

 

 

Think about the time you spent walking in the last 7 days.  This includes at work and at home, 
walking to travel from place to place, and any other walking that you have done solely for 
recreation, sport, exercise, or leisure. 

 

5. During the last 7 days, on how many days did you walk for at least 10 minutes at a time?   

 

_____ days per week 

  

   No walking    Skip to question 7 

 

 

6. How much time did you usually spend walking on one of those days? 
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_____ hours per day 

_____ minutes per day  

 

  Don’t know/Not sure  

 

 

The last question is about the time you spent sitting on weekdays during the last 7 days.  Include 
time spent at work, at home, while doing course work and during leisure time.  This may include 
time spent sitting at a desk, visiting friends, reading, or sitting or lying down to watch television. 

 

7. During the last 7 days, how much time did you spend sitting on a weekday? 
 

_____ hours per day  

_____ minutes per day  

 

  Don’t know/Not sure  

 

 

This is the end of the questionnaire, thank you for participating. 
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