
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 2002

Embedded Software Programming to Develop a Command Line Embedded Software Programming to Develop a Command Line

User Interface for Monitoring and Debugging a Manually Driven User Interface for Monitoring and Debugging a Manually Driven

Gas Regulator Control System Gas Regulator Control System

Syed N. Hyder
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Engineering Commons, Controls and Control Theory Commons, Programming

Languages and Compilers Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Hyder, Syed N.. "Embedded Software Programming to Develop a Command Line User Interface for
Monitoring and Debugging a Manually Driven Gas Regulator Control System" (2002). Master of Science
(MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/a8ac-xv13
https://digitalcommons.odu.edu/ece_etds/370

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/370?utm_source=digitalcommons.odu.edu%2Fece_etds%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

EMBEDDED SOFTWARE PROGRAMMING

TO DEVELOP A COMMAND LINK USER INTERFACE

FOR MONITORING AND DEBUGGING A MANUALLY DRIVEN

GAS REGULATOR CONTROL SYSTEM

by

Syed N. Hyder
B.E. November 1997,

N.E.D. University, Pakistan

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of

the Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
May 2002

Approved by:

Glenn A. Gerdin (Director)

ABSTRACT

EMBEDDED SOFTWARE PROG~ING
TO DEVELOP A CO~D LINE USER INTERFACE

FOR MONITORING AND DEBUGGING A ~ALLY DRIVEN
GAS REGULATOR CONTROL SYSTEM

Syed N. Hyder
Old Dominion University, 2002
Director: Dr. Glenn A. Gerdin

This thesis presents a complete embedded programming model and software

codes for a command-line user interface for CONCOA's gas regulator control system.

Control Corporation of America (CONCOA) manufactures high-pressure gas regulators,

which mechanically control the pressure at their outlets. Since the control system is based

on mechanical regulators, adding or stopping gas flow from the system can cause

manifold fluctuation that could further cause the pressure to rise or fall with time. The

main motivation for developing a command line user interface is to provide a centralized

computer control to monitor and debug the gas regulator control system electronically by

using a stand-alone 1BM-compatible personal computer. This project was of a

considerable significance for CONCOA to increase the accuracy of the gas regulator and

to operate their gas regulator system electronically and from a central control location.

A user interface is developed in assembly language for Motorola's 68HC12

microcontroller on an M68EVB912B32 Evaluation Board, which enables users to

communicate interactively with CONCOA's gas regulator system. The software written

for this project provides CONCOA a complete system to monitor and debug their

hardware using a set of commands consists of read (monitor), write (modify) and debug

system operations. The debug program uses a set of commands to modify and dump any

RAM and ROMs locations respectively, and is recommended only for expert users of the

system, since it provides a way to access the RAM locations which are impossible using

the monitor program's command set. Mainly the two well integrated monitor and control

programs are used to carry out all the operational tasks. This thesis explores only the

monitor program that runs in the foreground as the main program for CONCOA system.

The control program, works in the background, is used to perform AD and DA

conversions to store the output pressure in the microcontroller's RAM and to calculate an

equivalent voltage signal for a new set point pressure for the output respectively.

Finally, the successful testing of this soAware with the company's hardware

provides a very strong base to suggest the further studies of this project.

This thesis is dedicated to my parents who gave me their love and prayed days

and nights for my successes

ACKNOWLEDGMENTS

I would like to thank Dr. Glenn A. Gerdin for his technical support, patience, and

guidance while I was completing the work for my master's degree.

I would also like to thank Dr. Leathrum and Dr. Lakdawala for being a part of my

defense committee. I appreciate their time spent critiquing my thesis.

Finally, I would like to thank my beloved wife Nadia for her full support and

encouragement for the completion of this research.

TABLK OF CONTENTS

LIST OF TABLES.

LIST OF FIGURES..

CHAPTERS

Page
. V111

..1X

INTRODUCTION..
1.1 OVERVIEW.
1.2 WHAT WAS THE PROBLEM.
1.3 SIGNIFICANCE OF THE STUDY
1.4 BACKGROUND AND PREVIOUS WORK REVIEW......

... I

.I
..3

.....4

PROBLEM FORMULATION AND GENERAL SOLUTION......
2.1 PROBLEM DISCUSSION..
2.2 HARDWARE SELECTION....
2.3 SOFTWARE REQUIREMENTS..
2.4 SYSTEM OPERATION.

........6
........6
.......7

..10

..11

SOFTWARE APPROACH TO THE PROBLEM.
3.1 SOFTWARE TECHNIQUES..
3.2 ~ MODULES AND THEIR FLOWCHARTS....
3.3 SOFTWARE INTEGRATION..

14

14

..... 1 5
54

SOFTWARE RESULTS..
4.1 PROGRAM TESTING.
4.2 SOFTWARE PARAMETER SET.
4.3 SYSTEM MESSAGES..

57
57

.63
72

THESIS RESULTS..
5.1 CONCLUSIONS.
5.2 RECOMMENDATIONS FOR FURTHER STUDY.....

76
..76

......77

REFERENCES. .80

APPENDICES
A. COM~ SET AND SYSTEM MESSAGES EXAMPLES....
AI. DEBUG COMMANDS..
A2- HELP CO~D...
A3. SYSTEM MESSAGES EXAMPLES........

....81
.81
.91

.92

B. MOREFLOWCHARTS.. ..95

C. FLASH- EEPROM PROGRAMMING.
D. ASSEMBLER AND SCREEN EMULATORS..
VITA .

..101

..103

..104

LIST OF TABLES

Table Page

3.1 Default Parameters'alues., 21

3.2 Parameter Address Calculations.. 32

4.1 Read/ Write Parameter Set.. ..64

4.3 Read-Only Parameter Set.

4.4 Write-Only Parameter Set

..66

..67

LIST OF FIGURES

Figure

1.1 CONCOA Electronic Control Gas-Regulator System.

Page

2.1 Computer Control For CONCOA Gas-Regulator System.....

3.1 Basic Program Flowchart.... 17

3.2 System Initialization..

3.3 Message Display Module For Default Parameters..

.......20

...23

3.4 CONCOA Prompt.

3.5 Service Routine For User-Input.,

25

27

3.6 Syntax Check And Service User Request. 30

3.7 Syntax Check And Parameter Value. 33

3.8 Read Value Command Service Routine

3.9 Refine and Display Service Routine

3.10 Write Value Command Service Routine.

3.11 Second Step and Test Limits Service Routine

35

36

39

..42

3.12 Debug Command Main Routine

3.13 Debug Command Subroutine ..46

3.14 Memory Modify Command. ..48

3.15 Check-Options Service Routine 50

3.16 Memory Dump Command.

Bl Control Program Enable Request Routine..

B2 Pass Parameter Value For Other Commands..

B3 Common Debug Command Routine.

52

96

97

98

B4 Common Debug Command Routine contd. 99

B5 Terminate and Reference Modules. 1 00

CHAPTER I

INTRODUCTION

1.1 Overview:

The goal of this thesis" research was to provide an electronic control to a gas

regulator system for CONCOA Corporation. To accomplish this task, a control and

monitor sofhvare program was needed to run a hardware control system (as shown in

figure 1.1) by using a stand-alone personal computer to control and monitor the gas

pressure at the output of CONCOA's gas regulator system. The end goal of this system

was to control the outlet pressure of CONCOA's gas regulator system.

1.2 What was the problem?

Control Corporation of America (CONCOA) manufactures high-pressure gas

regulators, which mechanically controls the pressure at its outlet. The conventional

mechanical gas regulators, even under normal operating conditions, cannot control the

outlet gas pressure exactly.

As we know from the ideal gas law that: PV=NkT, provided the volume of the

gas is kept constant.

(Vhere N = number of gas molecules, k = Bottzman s constant = 1.38 * 10-23

When the gas is drawn from a high-pressure gas cylinder, 'N'ecreases and so

does the gas pressure 'P'. This gas is stored in high-pressure (up to 2000 psi) cylinders to

reduce gas volumes.

" The journal model for this thesis is IEEE TttAnsAcrtons on DtELEcrtucs and Electrical Insulation.

A gas regulator enables one to set the outlet pressure at its low-pressure side so

that as the gas is used up, the high-pressure side falls but the outlet pressure remains

lixed. For mechanical regulators, at steady flow rate, the outlet pressure gradually falls

(single-stage regulator) or rises (double-stage regulator) with falling source pressure.

Moreover, with an increasing flow rate, both the regulator types let the outlet pressure to

fall. Phenomenon that could also change the outlet pressure includes excursions caused

by the addition or subtraction of gas sources or sinks and/or downstream 1'rom regulator.

So the actual problem was the control of the outlet pressure to within a +0.5% full scale

of the set point pressure at the gas PO manifold as shown in figure 1.1.

Figure 1.1 CONCOA Electronic Control System

1.3 What was the significance?

This project was of a considerable signiticance for CONCOA to operate its gas

regulator control system electronically and Irom a central control location. The

computerization of this gas regulator control system would increase the accuracy of the

gas regulator. This project would help CONCOA to control and monitor the complete

operation of their system remotely through a personal computer. The computer control

provides them a command-line user interface with a set of commands, such as read, write

and debug, which can be entered through a standard IBM-compatible computer keyboard.

With these commands, they can now control many different system parameters,

electronically, which used to be control manually by turning a knob.

Before this project, the outlet gas pressure at the cylinder banks and gas regulator

used to be read by an analog meter with a needle indicating an approximate gas pressure

value. Now a digital value with half-percent accuracy can be seen any time on a standard

display monitor screen. The computer control also saves time, as one does not need to be

physically present where the gas regulator is to modify the gas pressure to a desired

value. The electronic control is provided by means of setting control parameters. The

control parameters that may be set are KI (I coeflicient of PID control coeflicients) which

provide an integral control, PS which is the set point pressure, TM (loop time) which is

the time-interval between the cells to the control program and TR (ramp time) sets the

number of loop-time the control program will take to change the set point pressure (sofl-

start-up).

The software command-set enables a user to set a desired value for a particular

parameter. For example, to set a new value of 10 (only decimal number is allowed) for

integral control coeIIIcient (ki) we use 'KI (in upper case letters) command as shown

below:

KI=10 followed by a carriage return.

In order to verify these changes, we use the same command with a question mark (?) as

shown below:

The expected result should be,

KI=10

followed by a carriage return.

This new control and momtor system provides the kind of accuracy, which was

impossible with the old manual gas control system. With the help of a monitoring support

in the system, now a pressure value can be set for a minimum and/or for a maximum

pressure limits. If the outlet pressure crosses either of these upper and lower threshold

pressure limits, the control program activates a digital dialer to notify the operator. This

really restricts the end user to change the set point pressure with in a certain pressure

limits.

Setting any default limits for manifold makes the system configurable and

scaleable to any pressure values between the two thresholds limits. Finally, the PID

control and the time features, like loop time and ramp time which follow a linear

approach to setting the output pressure in steps and with some known time intervals,

provide an approximate calculation for a pressure error value and a timing control

respectively.

1.4 Background «nd Review of the Thesis:

Control Corporation of America (CONCOA) manufactures gas regulators for

handling high-pressure gasses up to 5000 psi. These gas regulators control the pressure at

its outlet and any adjustment to this outlet pressure has to be made mechanically at the

cylinder banks and gas regulator. The engineers'eam at CONCOA decided to

computerize the whole process to adjust the magnitude of this outlet pressure remotely

Irom a central location and to get an efGcient electronic control on their gas regulators as

shown in the 'Block Diagram of CONCOA Electronic Control System'n Iigure 1.1.

The pressure (up to 5000 psi) gas-regulator is a mechanically controlled device

manufactured by CONCOA; however, the outlet pressure is adjusted by adjusting the

manifold pressure, which is relatively low (up to 100 psi) and thus could be controlled

electronically. To regulate the gas pressure at the outlet and to monitor the state and the

activity at the outer banks a pressure transducer is attached with CONCOA regulator

which closes the feedback system by converting the outlet pressure Pout into an electrical

signal. This electrical signal becomes a corresponding digital signal by passing it through

an analog-to-digital converter (ADC) and could be easily read and manipulated by a

microcontroller for further processing.

Solid-state regulators (SSR) could control 'POUT'ut since it is made of silicon,

the high-pressure side can only be 120-150 psi. A dome regulator outlet pressure is

controlled by pressure applied to its DOME side. So,

Pout = PDOME - Poffset1 (Polfset = 10-20 psi)

So use electronic-controlled solid-state regulator to control DOME pressure.

Since,

Pout + Poflset1 + Poffset2 = PDOME + Poffset2 & Pur & 150 psi

The system 'UP'ressure side of DOME regulator is 2000-5000 psi, so there is a

substantial gas supply for the system.

Pout is controlled by PDOME, which is controlled by the solid-state regulator's

feedback input voltage V. This solid-state regulator, which has a built-in pressure

transducer, generates a Pressure PDOM proportional to voltage V. The 12-bit ADC

converts pressure 'POUT'o a digital-word and this number is transferred to

microcontroller. This hex number is then compared to Pset (set-point pressure) and a

control voltage number is calculated by the microcontroller using a PID algorithm. This

control voltage number is transferred to the DAC-chip, which in turn converts it into the

corresponding analog voltage 'V'. This voltage 'V's applied to the solid-state regulator

which adjusts PDOivtE and hence PO to bring PO —+ Pset.

CHAPTER 2

PROBLEM FORMULATION AND GENERAL SOLUTION

2.1 Problem Discussion:

As discussed earlier, Control Corporation of America (CONCOA) manufactures

high-pressure gas regulators, which mechanically control the pressure at their outlets.

Since the control system is mechanical, it might induce fluctuation in the outlet pressme

causing its level to fall down or up beyond a certain default limit. It might also include a

gradual decrease in upstream pressure due to the uniform gas flow through the regulator

and/or excursion caused by the addition or subtraction of gas sources or sinks upstream

and/or downstream Irom regulator. So the actual problem was the feedback control of the

outlet pressure at the cylinder banks and gas regulator.

To overcome this problem and to adjust and maintain a desired outlet pressure of

a high-pressure gas regulator, a project was designed to electronically control the outlet

pressure through a central control location using a stand-alone personal computer.

The goal of this project was to design a control, monitor and debug system for

CONCOA's high-pressure gas regulator. The key to this design was to electronically

control the pressure, which is done by the control program as described in section 1.4 in

chapter I. To provide a computer control over the whole system, the microcontroller is

attached to a personal computer through a serial communication link such as RS-232 and

screen emulator software such as: ProComm, HyperTerminal, miniide, etc. The object of

the software program developed in this thesis, is to develop a monitor program so the

operator can change the control parameters; such as the set-point pressure 'PS', etc.

2.2 Hardware Selection:

As stated by CONCOA officials, the following are desirable control accuracies:

o ~Pout-Pset~ & 0.5 % of full scale

The system that could meet the above design specilications that is the pressure

difference at the outlet and the set pressure to be less than 0.5%, forces the digital system

to be 10 bits or more. To approach the less than 0.5% accuracy for the overall system, we

need a 10 bit analog-to-digital converter (ADC) for reading the output of the transducer

as does the digital-to-analog converter (DAC) needed to convert the digital control signal

into the analog voltage necessary to operate the solid state regulator. Also the

microcontroller architecture should be at least 10 bit, so the digital control signal

generated by the controller's program is sufliciently accurate.

Following is the details of the hardware selection and its significance in making

the CONCOA system work with all desired functionalities and accuracies.

Microcontroller- Motorola's 68HC12

Digital-to-analog converter MAX7645

Analog-to-digital converter ADS7824

An IBM-compatible personal computer

Figure 2.1 is a block diagram that explains how these components are connected

together to accomplish the goal of providing a centralized electronic control to

CONCOA's gas-regulator system by using an IBM-compatible personal computer.

Below is a detailed description of all the components mentioned above.

2.2.1 Microcontroller- Motorola's 68HC12:

68HC12 is Motorola's 16-bit microcontroller. It means it has enough capability to

provide a 10-bit accuracy. It has a 16-bit data bus, a revised and better command set than

Motorola's 68HC11 microcontroller and a background mode, which enables the

communication with a PC, via an RS-232 serial port, without interrupting the main

control program operating on the microcontroller.

It also has sut5cient parallel I/O interfaces, also known as ports such as: A, B, E,

P, etc. These ports provide a way ofI/O communication with the 12-bit ADC and DAC to

read the outlet pressure (PO) at the gas regulator and to set a desired pressure (PS) in

terms of analog actuating voltage to the solid-state regulator.

This controller is a programmable, 8MHZ, stand-alone 16-bit controller, fully

capable ofperforming the tasks in hand, and is relatively low cost.

CONCOA

Contml

Sysbm

Figure 2.1 Computer control for CONCOA's gas regulator system

2.2.2 Digital-to-Analog Converter:

For this project a 12-bit buffered multiplying DAC, MAX7645 (for more details

refer to the web site of Maximum integrated products at www.maxim-ic.corn) is chosen

to convert a digital signal into an equivalent analog voltage. It is TTL and CMOS

compatible with a +15V supply voltages and available in 20-lead narrow DIP, surface

mount small outline and PLCC packages. This device is fully specified for operation over

the industrial -40'C to +85'C range. The MAX7645 directly interfaces to 8- and 16-bit

microcontrollers and processors and are loaded by a single 12-bit wide word using

standard control signals and its 12-bit data latch. At 12-bit it has sutficient accuracy for

the problem specifications. Moreover, its analog output voltage range of 0-10 Volts

coincides exactly with the input voltage range of the solid-state regulator. Thus, all 12

bits are utilized.

2.2.3 Analog-to-Digital Converter:

The ADS7824 (the electrical characteristics are retrieved &om the BURR-

BROWN web site at www burr-rown com/databook/ADS7824 htm) is a low-power,

12-bit sampling CMOS A/D converter with a four-channel input multiplexer, S/H, clock,

reference and a parallel serial microprocessor interface. It can acquire and convert 12 bits

to within+0.5% LSB in 25Its max while consuming only 50mW of maximum power. It

has 12data lines, with which to communicate with MC6812 in an 8 most significant bit

(MSB), 4 least significant bits (LSB) format and can be controlled by the MC6812 over 4

additional parallel interface or port lines. This ADC is multiplexed to accept several

inputs, permitting the reading of both output pressures, i.e., &om the transducer and &om

a locally adjustable analog voltage. The 12-bit ADC was chosen to provide sufficient

accuracy (0.5%). However, the output of the analog pressure transducer circuit had a

range of about 0-3.3 Volts, so the actual precision of the ADC was only 675 (2" * 3.3 /

20) only slightly better than 9-bit.

2.2.4 An IBM-Compatible Personal Computer:

To obtain a computer control on CONCOA's gas regulator system, an IBM-

compatible personal computer is used with a standard display monitor, a standard

keyboard and a RS-232 serial interface. The one end of the mam controlling hardware,

the microcontroller evaluation board, is connected to the computer via the RS-232 serial

interface and the other end to the ADC and DAC via the parallel interface lines also

called ports for data input and output as shown in the Block diagram of a Computer

control for CONCOA's gas regulator system in Figure 2.1.

The other end (output) of the DAC is connected to the solid-state pressure

regulator, which converts the DAC analog voltage to an equivalent DOM pressure. The

analog input of the ADC is connected to the pressure transducer amplifier output and to a

variable set voltage. The latter is an adjustable voltage divider and used to set the set

point pressure at the regulator if required.

2.3 Software Reqmrements:

To acquire computer control for CONCOA's gas regulator system, a

software program was needed to communicate with the company's hardware using a

microcontroller to control, monitor and debug the complete system operation. A monitor

program was needed with a default prompt so that users can input and verify new

parameters'alues as command-line arguments while the control program is operating in

the background. The sofhvare requirements for this project are further described below:

~ For an interactive and friendly user-interface, a set of system messages to be

displayed in an event an error is occurred (ex: syntax error) or to alarm the user

about the current status of the system (ex: control program is enabled).

11

~ Backspace feature to modify a mistake on the command line before the

arguments are actually submitted using 'enter'ey of the keyboard.

~ Command-line help file with a brief description of the available commands and

the set of rules for their syntax.

~ Safety limits on setting control parameters to prevent the system from getting

unstable.

~ Memory-modify and memory-dump commands to assist the present and the future

developments of the system, while the program is running &om the Flash

EEPROM on the microcontroller unit.

~ Startup of the monitor program in the foreground as the main contro5ng program

for the system and its capability to enable the control program to run in the

background.

2.4 System Operation:

Once the embedded hardware is hooked up with the IBM-compatible stand-alone

PC, the microcontroller starts executing binary codes &om Flash EEPROM and

immediately issues CONCOA prompt on the display terminal and then transfers the

control to a 'wait-forever-loop'o wait until the user input data through the computer

keyboard. This loop is basically the command-line interface, which waits for a user to

input the commands for various system parameters. When a user presses carriage return

(enter key on standard keyboards), the system takes it as a point of submission for an

available commmd for the monitor or debug program. This action is the same as pressing

'enter key'&er writing a command for an operating system like DOS™ or UNIX.

steps:

The complete operation of the system can be described in the following three

~ Program Execution &om Flash EEPROM

~ Initialization using default parameters'alues
~ Initialization and Execution of the Control program

2.4.1 Program Execution From Flash EEPROM:

The sofiware for this project has overwritten the Motorola's SDBUG12 program

into the Flash EEPROM. Once the evaluation board is powered up, it starts its execution

form the Flash EEPROM where it finds a jump instruction to the main program of

CONCOA software. The program then initializes the "Monitor" program and heads

towards the next step.

2.4.2 Initialization Using Default Parameters'alues:

After going through the initialization part, the program then loads the default

parameters'alues and prints them on the monitor screen. Finally, the program displays a

message for the operator to change the default parameters'alues, if desired, and then

displays the CONCOA prompt. Now the CONCOA command-line interface is ready to

execute commands and at this point the "Monitor" program is fully initialized and

enabled. To enable the "Control" program the end user must need to enter 'DN'for done

- case sensitive) command followed by a carriage return, atter changing the default

parameters'alue to his own. If the default parameters'alues are not modified, the end

user still needs to enter 'DN'or the initialization and execution of the 'Control'rogram.

2.4.3 Initialization and Execution of the Control Program:

Finally, when CONCOA command-line interface reads a 'DN'ommand

followed by a carriage return, it initializes the main control program and one of the

68HC12's timers to get into the 'Control'rogram atter every 'TM's. Where 'TM's a

set able parameter whose default value is 8, which was found to be optimal during the

system testing. This is because the complete control program is written in the timer

13

interrupt service routine and since the timer interrupt is set to occur after every 'TM's,
the control program takes control &om the monitor program every time the

microcontroller services a timer interrupt. The control is always transfers back to the

monitor program whenever the system finishes servicing the ISR. The main progratn then

runs with both its Monitor and Control progratns enabled.

The program will get back to the first step that is start executing the sofiware

codes &om the Flash EEPROM every time when the evaluation board is reset.

14

CHAPTER 3

SOFTWARE APPROACH TO THK PROBLEM

3.1 Software Techniques

The software program for this project is written in assembly language for

Motorola's 68HC12 microcontroller. A top-level flow chart is made first (refer to 'Basic

programming flow chart, figure 3.1) and then the second-level flow charts and then the

other levels as shown in section 3.2. This program is a combination of a top-down and

structured programming design style. A modular programming technique is adopted to

write the complete software program for this project. Each module is programmed and

tested separately before its integration into the main program. On the top level, the

complete monitor program can be divided into five sub-programs, which are

initialization, display default parameters, display prompt, wait for user input and service

user request. These sub-modules are further divided into smaller programs and so forth.

Some modules work independently as a subroutine and can be used with other main

modules. For example the memory dump and memory modify commands use the same

sub-modules to calculate and print the memory addresses as shown in 'Common Debug

Command Routines'n figure B4 of appendix B. Most of these modules are generic in

nature and can be easily modified to add or remove new parameters. One of the example

of such a module is 'syntax check and pass parameter value's shown in figure 3.7.

This modular programming technique is the same as Gene H. Miller [1] describes

in detail in Microcomputer Engineering. The main modules are linked together in a top-

down design fashion where as the individual modules are coded using the structured

programming techniques. As written in the book referenced above, the top-down design

technique parts the complete sofiware program into some very basic or parent modules

(refer to 'Basic Program Flow Chart'n figure 3.1), which are further divided into other

15

sub-modules as the child modules. This child-parent tree of the sub-modules grows until

the finest detail of the program is achieved. The structured programming technique

provides a very strong relationship and integration between the individual sottware

modules. A good example of this kind of programming technique is shown in 'syntax

check and pass parameter value'n figure 3.7, which is a nested if-then-else loop to

branch to a sub-module when a condition becomes true and in the next level it behaves

like a switch-case statement to come out of the loop when a parameter name is matched

with an input provided by the user.

Each written module is tested in the RAM on an individual basis as a complete

program using the evaluation board's factory-installed 'DBUG12'onitor/debugger

program. The final testing of the monitor program is done in the Flash EEPROM because

it was too big to fit in the RAM ofmicrocontroller's evaluation board.

3.2 Main Modules and their Flowcharts:

The sofiware model for this project is explained in the 'Basic Program Flow Chart

as shown in figure 3.1. It illustrates how the main program and the control program are

integrated to pass the information back and forth, As shown in the figure, the system,

after the power is turned on, initializes various registers, counters, pointers, and many

other parameters. It then displays the default parameters'alues and prints a message on

the monitor screen asking the system operator to modify the default values, if needed.

The system then prints a default prompt (&CONCOA&) for the command-line user

interface. The next step is to transfer the control to a 'wait-for-ever'oop for acquiring

the user input at the command prompt. At this point only the monitor program is

available to service the user requests. In other words, the control of the program only

navigates within the 'Main Program Loop* as shown in figure 3.1. To enable 'Control'rogram,

the user has to type in the 'DN'ommand (use only upper case letters) followed

by a carriage return. The 'DN'ommand basically enables a timer interrupt to occur after

every 'TM* ms, and, since the complete 'Control'rogram is written in the timer

16

interrupt service routine, the main program transfers the data and the software control

between the monitor and the control program whenever it senses the occurrence of a

timer interrupt or &ushes servicing the interrupt service routine.

The complete software program for CONCOA may be divided into the following

five basic modules as described in the previous section:

~ Initialization

Default values

~ Display Prompt

~ Wait for user input

~ Service user request

Figure 3.1 contains a description of each software module and its flow chart.

~END

'M
IA

,
'P
,R
',6
,'R'A
IM

Q
.'

Figure 3.1 Basic Program Flow Chart

18

3.2.1 Initialization:

The complete program initialization by means of RAM, Flash EEPROM and

Main program location is shown below in 'initialization'low chart in figure 3.2 and can

be described as follows:

The RAM location:

The 68HC12 microcontroller has a 1K on-chip RAM, starting &om $0800 to

$0BFF. The RAM location, set aside for the dynamic data, is called RAM-Data-Monitor

segment ($0800-$08CF) and RAM-Data-Control segment ($08 DO-$09AO). The

following initialization is done in the monitor data segment as shown in figure 3.2.

Reserve memory location(s) for 68HC12 registers

Reserve memory location(s) for CONCOA's permanent data registers

Reserve memory bytes for counters, flags, pointers and other temporary

registers.

The Flash EEPROM location:

68HC12 has a 32 KB of on-chip Flash EEPROM, starting &om $8000 to $F67F.

The Flash memory location, set aside for static data, is called ROM-Data-Monitor

($8000-$8FFF) and ROM-Data-Control ($9000-$9FFF). The following initialization is

done in the RAM-Data-Monitor segment as shown in figure 3.2.

Define byte(s) for parameters to compare with user input, CONCOA

prompt, read and write values, carriage return/line feed, default

parameters'ame and boot up messages.

Define byte(s) for system error and system status messages.

Define byte(s) for command line help for CONCOA soflware.

19

Main program location:

The following initialization is done in the main program location starting at

SA000 in the Flash EEPROM as shown in figure 3.2.

~ Setting and clearing 68HC12 registers

~ Setting and/or clearing counters, Gags, and pointers

Loading default parameters'alues

Monitor

Data

Segment

($0800- $08C

Reserve memory locations
for 68HC12 Registers

Reserve memory locations for Permanent
Registers for CONCOA Sothvare

Reserve memory bytes for counters, flags,
registers and pointers

Jump $A000 (Main Program)~
1st instruction at $8000 (EEPROM)

Monitor
RAW Data
Segment

($8000- $8FFF

Fix data bytes for coeflicients, prompt and
ASCII codes

Fix data bytes for System messages

Fix data bytes for Command-Line help

Main
Program
Location
($AOOO)

Initialize 68HC12 Registers

Clear flags and load default values for
system-set parameters

Figure 3.2 Initialization

21

3.2.2 Default Values:

This program module is used to load the system with the default parameters'alues

for the following coefficients:

KP, IO, PS, PU, PL, TM, TA, IFB, INT, SXDV

The default parameter values for the above parameters are shown in table 3.1.

Table 3.1 Default Parameters'alues

These values can be easily modified using the write-commands for a

corresponding parameter. Atter the default values for the above mentioned parameters are

loaded mto the RAM, a message is displayed on the terminal screen to change the values

of any default parameters as shown in the 'Message Display Modtde for Default

Parameters'low chart, in figure 3.3. When the system finishes displaying this message

22

on the monitor screen, it prints a default CONCOA prompt on the screen and transfers the

control to the 'wait-for-ever'oop to acquire user input at the command prompt. As

discussed earlier, at this point the monitor program becomes ready to service the user

input commands.

Now, since at this stage of the program execution the control progratn is not

enabled yet, the user can change the default vines, if needed, before pressing 'DN'o
enable the control program.

23

+END

END
~END

Figure 3.3 Message Display Module for Default Parameters

24

3.2.3 Display Prompt:

This program module is used to display a default prompt l&CONCOA&l on the

terminal screen. This prompt is the command-line interface for entering CONCOA

commands to read or write or debug parameters* values. Once the default parameters're

loaded by the system, this prompt is issued immediately on the monitor screen. The

presence of CONCOA prompt on display terminal indicates that the system is ready to

accept commands for reading and writing parameters'alues and debugging any memory

locations using memory modify and memory dump commands. The system always prints

this prompt after completing a user request. Once a command is serviced, all the

counters, pointers and flags are initialized before printing the prompt on the screen again

as shown in 'Display CONCOA Prompt'low chart in figure 3.4.

25

Figure 3.4 CONCOA Prompt

26

3.2.4 Wait for User Input:

This module is used to acquire user input through keyboard for further processing.

After displaying a CONCOA prompt on the screen, the control of the system is actually

transferred to this module to wait until a new command is input through the keyboard.

This is a wait-for-ever so&ware loop that can be terminated either by pressing a carriage

return (Enter key on IBM-compatible keyboard) after entering a user command or by

overflowing the input-store bulfer for capturing the command line arguments. Once a

carriage return is detected by the system, the loop terminates normally and the system

gets into the next phase of servicing the user request. If the loop does not terminate

normally, e.g., the input buAer exceeds the allowed limit of 16 bytes, the system shows

an error message and the control is transferred back to the same loop. In the next phase of

servicing a user request, the command line arguments are checked for syntax, value, or

any other possible typing errors. For an abnormal termination of this loop, the system

reinitializes the counters, pointers and flags, and displays the CONCOA prompt again

before going back to the wait-loop as shown in the flow chart in &gure 3.5.

This module also has the functionality to allow the user to correct any typing error

or mistakes before &nally submitting (by pressing 'Enter'ey) a command. The

backspace key (sometimes symbolized as a left arrow key on an IBM-compatible

keyboard) is used for deleting a previously typed character or a false parameter's value.

This feature not only deletes a mistyped or unwanted argument but also removes its entry

&om the input capture register and subtracts the input counter accordingly to get to the

right location where the data has to be stored. To make the monitor screen look user

fiiendly, the display terminal is also re&eshed to show that the mistyped character is

removed &om the terminal screen.

This module also distinguishes between a floating point and an integer value for a

command parameter and sets or clears a period flag to pass on the status of the input data

type to the next phase of servicing a user request. There are also some other Ilags and

counters used as a purpose to keeping track of syntax and other potential errors.

27

Figure 3.5 Service Routine for User-Input

28

3.2.5 Service User Request:

This is the most important and the largest program module for CONCOA

software. It basically incorporates the most basic programming modules to carry out the

tasks, such as: error checking, reading and writing the parameters'alues and debugging

the system, etc. This software module has the following integrated sub-modules:

Error Checking

Parameter Passing

Read Commands

Write Commands

Debug Commands

Error Checking:

This sub-module is further integrated into many small sofhvare programs to

perform the error checking and correcting for the command line arguments. It typically

includes checking the arlnunent's length, its syntax and value before carrying out the user

requests. It then checks if the request is a read, write or a debug command as shown in

the 'Syntax check and Service User Request'low chart in Ggure 3.6. It also checks for a

command to enable the control program If, at any point, an error is found in the

command line argument, a corresponding error message is displayed on the terminal

screen followed by a CONCOA prompt on the very next line. To check the syntax of

commands, the system compares the command line input arguments with a set of

arguments already saved at a permanent memory location in controller's Flash EEPROM.

It works in a chronological order to compare an input command with the saved

commands in the command-database within the Flash EEPROM. Since, all the

commands (read, write and debug, etc.) are two-character or two-byte long; they are

divided into small sections. For example, for PS, PU and PL, it &st checks for the letter

P (in uppercase). When a match is found, it then compares the very next letter entered at

command prompt with S, U or L (all in uppercase) in the command-set-database for the

above-mentioned PS, PU and PL commands respectively. If, for example, a match is

29

found for letter S with the second input character received at the command prompt, it

comes out of the loop assuming a PS command is entered at the CONCOA prompt as

shown in 'Syntax error and pass parameter value'low chart in figure 3.7. If the first

command line argument is matched with the letter 'P', but the second command line

argument doesn't match with any of the letters shown above, the system displays an error

message and goes back to the main 'wait-forever'ser input loop.

This programming technique is analogous to the switch-case statement in C or

any other high-level programming languages, where it breaks and stops looking for any

other case-statement when a match is found. A similar programming technique is used for

checking the other parameters as shown below:

KP, KIor TM, TI, TR, etc.

The maximum and minimmn arguments'ength for a write-parameter value

command varies with the type of command. For example for a floating- point write-

parameter value command, like PS, it should be between 6-byte (ex: PS=I. I) and 8-byte

(ex: PS=999.9) respectively. Where as for an integer write-parameter value command,

like KP, it should be between 5-byte (ex: KP=I) and 8-byte (ex: KP=65535). For a read-

parameter value command the length is fixed to 4-byte (ex: PS? or KP?). An error

message will be displayed when these arguments'ength limits are violated. Since all

these values should be entered as decimal values, an error message is displayed to alarm

the user, incase, a non-decimal value is entered through the keyboard. The way this

module checks this error is very simple. Since the ASCII codes for the decimal numbers

from 0 to 9 are &om 30 to 39 respectively, the system logically AND these codes with a

binary mask of 00001111 (OFh) and then compares the result to see if it is less than 0 or

greater than 9.

30

Figure 3.6 Syntax Check and Service User Request

31

Parameter Passing:

A parameter passing technique is used to recognize which command is entered at

the command prompt and what memory location the data has to be stored or read for a

particular parameter. When the system successfully identifies a command, it then assigns

it a reference value, which is then passed to the next phase of operation. This reference

value is two-byte long for every command. All the parameters are assigned a permanent

two-byte memory location in the RAM and they have a predefined and constant distance

among them. Starting with KP, whose address is taken as the base address, each

parameter is two bytes ahead of the others. This known distance is used as a reference

and thus added to the base address (address of KP) to get the actual memory location for

a particular parameter to carry out a read or a write command request as shown in

'Syntax check and Pass Parameter Value'iow chart in figure 3.7. This parameter passing

technique is same as passing a value &om one function to the other in C programming

language. The next step after passing a parameters'alue is to check whether it is a read

or a write parameter value request. Por a read command the system looks for a question

mark (ex: PS?) and for a write command an equal sign (ex: PSi 123.4), immediately after

the parameters name as shown in 'Pass Parameter Value for other Commands'low chart

in figure 82 (see appendix 8).

Since, the debug commands are entered at the command prompt using different

set of rules than the read and write command set, the parameter passhig module (as

shown in "Syntax check and Pass Parameter Value'low chart in figure 3.7) transfers the

control directly to the debug module as shown in 'Pass Parameter Value for other

Commands* flow chart in figure 82 (see appendix 8).

The same technique of transferring the control directly to the respective module is

used for 'CD'nd 'DN'ommands. The 'CD'coefficient display) command is used for

displaying the most current values of all the parameters at a time. When system finds a

'CD'ommand it basically uses the same routine that it used to print the default

parameters'alues at the time of system initializations. The 'DN'abbreviated for done)

32

command is used to enable the timer interrupt to occur aller every 'TM's. Since the

control program is written in the timer interrupt service routine, this command actually

enables the control program in the background to take control of the system to carry out

AD and DA Conversions and the PID control calculations.

For example, if we have the parameters in the following order, considering KP's

address as the base address:

Table 3.2 Parameter Address Calculations

Where $0800 is the base address and the parameters following it (KI and PS)

should always be two-byte apart from each other as shown in table 3.1. If, for example, a

parameter, such as: KI is entered at the command prompt, a reference value of 02 is

passed on to the next phase which could be a read or a write value operation. This

reference value of 02 is then added to the base address (address ofKP = $0800) to get the

actual address of KP, which is $0802 for this example. For KP and PS this value should

be 00 and 04 to obtain a corresponding actual address of $0802 and $0804 respectively.

This shows that these parameters form a block of reserved memory locations which can

be placed anywhere in the RAM; however, their address locations should always be fixed

with respect to each other in order for this technique to work properly. If a parameter's

actual memory location needs to be changed, its reference value should also be changed

33

Qtss

Figure 3.7 Syntax Check and Pass Parameter Value

34

to obtain the actual permanent location for a read or a write value operation. Now, since

the position of diferent parameters is constant u4th respect to the KP's address location,

changing the memory address of a parameter without its respective reference value may

cause some serious software problems.

For read-only parameters, such as: PO, PB or HP, this technique is used to

recognize the command type and the reference value is used only to identiTy which read-

only command has to be serviced.

Read Commands:

This sub-module is used to reading parameters'alues. There are basically two

kinds of parameters, floating point and integers. The floating-point type parameters are

those whose values are always displayed with a decimal point and the integer type are

those, which must be entered without a decimal point at the command prompt. However,

a similar command line input rule is used for reading the corresponding values for both

the types (ex: KP?, PS?). Even the command line help is shown on the screen using the

same read input command (HP?) value rules (refer to the flow chart in Ilgure 3.8).

According to this rule, no read command should exceed three bytes. This means that it

should contain the name of the parameter (which is a two-character constant name, such

as: PS or HP, etc.) followed by a question mark (?). In order to avoid any syntax error

these rules for read commands are to be followed. Unlike the similar rules for entering

the read commands, the output of any user request is shown, basically, in two different

ways, based on a flag's value. If the flag is set, the read command value is shown as a

floating point (values with a decimal point) and if this flag is clear, the input command's

value is displayed as an integer as shown in 'Read Value Command Service Routine'low

chart in Iigure 3.8 and 3.9.

This module works the opposite way than that of the write command module. It

Iirst ofall grabs the hex value Irom the permanent memory location of a parameter whose

35

Qae

Figure 3.8 Read Value Command Service Routine

36

Figure 3.9 Re5ne and Display Service Routine

37

value is to be read. The permanent memory location is found by using the same

reference -value technique as described in the previous section. Tins hex value is then

translated to its decimal equivalent, and finally, to display this new value on to the

terminal screen, it is further translated into their equivalent ASCII codes. Some

temporary memory registers are used to hold the immediate equivalent results for the

hex-to-decimal and decimal-to-ASCII number translation. To avoid any error

manifestation, the system is made immune to any intermittent faults, such as: data error

that could be caused due to software or hardware Mores.

This functionality is added in the system by using a double error-checking

mechanism that is checking the parameter-type and the decimal-point ilags before

showing the values on the display prompt. For example, if the floating-point-detect flag is

set but the parameter is not a floating-point type, the system clears the flag and sends an

error message signal on the monitor screen to let the operator know about this erroneous

input data. For a command-line help, the system checks the passed on value for the

parameter &om the previous module. This reference value tells the system that a

command-line help is needed to be displayed on the terminal screen. This module is

based upon two basic sub modules to carry out most of the tasks. The first sub-module

reads the value of a parameter and the other displays this value on the terminal screen. As

mentioned above, the second sub-module checks the fioating-point-detect flag to display

a floating point or an integer value. Finally when this read command module displays a

parameter's value on the terminal screen, a prompt is displayed on the very next line and

control is transferred to the wait-forever loop (main programming loop).

When a read request is processed by the system, it uses the 'Refine-it'ub module

to display it on the screen. For example, when a user wants to read the current value for

the set point pressure parameter, he enters 'PS?'his data is always stored into the input

capture buQer. When the read module completes translating the hex data &om the PS

parameter's permanent location in the RAM to an equivalent ASCII code, it echoes the

parameter's names, saved in the input capture burr, to the display monitor until it finds

a question mark. As the next step the read module prints an equal sign (=) on the monitor

38

screen and goes to the location where ASCII codes for PS parameters are saved as shown

in 'Read Value Command Service Routine'ow chart in figure 3.9. Now, if the hex

number is equal to decinud 6535, the output would be: PS=653.5.

Write Commands:

This module is used to write values for difierent parameters. Like the read

commmds module, there are two kinds of parameter's values allowed to be entered on

the command prompt. It could either be a floating point or an integer number. The same

flag is used, as in the read command module, to distinguish between the integer and the

floating- point values. This flag is set (flag value = binary I) when a decimal point is

entered with the value of a parameter and is cleared (Gag value = binary 0) when an

integer value is entered. This flag value is then passed on to the next module to make

decisions for the next phase of servicing a user request. Since only decimal numbers (0 to

9) are allowed to be entered at the command prompt for write value commands, any hex

value or a mistyped character causes a syntax error. Also, for both floating point and

integer value write commands, the maximum number of typed characters should not be

greater than 8-byte or smaller than 4-byte. A violation of this rule can also cause a syntax

error as shown in 'Write Value Command Service Routine'low chart in figure 3.10 and

3.11.

This module, first of all, checks the input data at the command prompt for any

syntax errors. If the data using write command is correctly entered, it is then translated

&om ASCII to a decimal equivalent. A Boolean technique is used to change the data &om

ASCII to decimal number. For example, if a user types the number 4 at the command

prompt, an ASCII value of 34 will be stored in the memory. Masking this ASCII value of

34 with a OF as an 'AND'oolean operation will result in a number 04 which is the same

number as entered at the command prompt. All the numbers in the input data buffer

register are then translated &om ASCII to their decimal equivalent using the same

technique until a carriage return (ASCII code OD) is found. At this point the control is

transferred to the next sub-program within this module to calculate a hex equivalent of

this decimal value. To get the hex equivalent, each place (tenth, hundredth, etc,) of

39

Write

Clear all storing locations and
pointers

Show Syntax
Error

N

Show Invalid
Command Error

Subtract counter from max. Count
value & add it to the storing address

Read input number I'rom

input capture buffer

N

(.

N

Branch
'HEX STR'o
calculate a hex

equivalent

Inc. reading
location pointer

Change ASCII input to decimal

&92

N

Show Invalid
Input Error

Store it & increment
location pointer

Go to Terminate
Loop

Figure 3.10 Write Value Command Service Routine

40

Figure 3.10 Write Value Command Service Routine

41

decimal number is multiplied to its corresponding hex equivalent number as shown in

'Write Value Command Service Routine* flow chart m figure 3.10 and 3.11.

For example, a 1234 decimal number is equal to 04D2 hex number. To obtain this

number, multiply the first decimal number, '1', at the thousandth place by the

corresponding hex number 03E8 (1000d = 03E8h). Multiply the second decimal number,

'2', at the hundredth place by the corresponding hex number 64 (100d = 64h) and the

third decimal number, '3', by OA (10d = OAh). Finally, we can leave the fourth decimal

number, '4', as it is, since multiplying it by the unit place hex number (1) will result in

the same number. Using sum of the product technique, the equivalent hex number can

easily be calculated. In the above example, the individual products are:

(1d) * (03ESh)

(Zij) * (64h)

(3(j) *(OAh)

= 03ESh&

= Cgh,

=1Eh and

(4(1) * (1h) = 4h

Now, summing up the products will result in:

(03ESh) + (CSh) + (1Kh) + (4h) = 04D2h

This is the hex equivalent of the decimal number '1234'.

This translation of a decimal number into its hex equivalent is controlled by

means of a down counter, whose value is known and fixed, regardless the number of data

inputs for a decimal value. If, for example, a user wants to change a parameter's value to

a decimal 10, then this module stores the actual number 10 as 0010 so that it can use the

same techniques of multiplication and addition, as mentioned above, to get a hex

equivalent number for the decimal number 10.

The parameters correspond to the pressure values in the system, such as: PS, PU,

etc., translate a djjferent simulated hex number to generate an electrical signal

corresponding to an equivalent pressure value at the output. For example, ifyou enter

42

+m

Figure 3.11 Second Step and Test Limits Service Routine

43

PS=50.0, it translates and store 32 hex, which is equivalent to a decimal 50. But

the hex number needed to generate an equivalent 50.0 psi pressure at the output is 23 hex.

Now to simulate 32 into 23, we use the formula: (hex number ~ OFFFh) / (16BOh) as

shown in 'Write Value Command Service Routine'low chart in figure 3.11.

To keep the control system stable and running without difficulties, some of the

parameters are checked for a divide by zero error. Since, some of the parameters must not

contain a value equal to zero; the system checks the number first before permanently

storing it in a memory location. This software module also checks the input arguments

for an upper/lower limit violation.

Finally, when no errors are found in the input data of a parameter, the translated

hex value is stored in its corresponding permanent memory location using its unique

reference value as shown in 'Write Value Command Service Routine'low chart in

figure B5 (see appendix B for more details). Using "terminate-loop" as shown in the flow

chart in Figure B5, the system transfers the control back to the main program loop.

Debug Commands:

This module is used to provide a command line debugging for the complete

system Two commands, Memory Modify and Memory Dump, are used to changing the

RAM contents and displaying any memory location including ROM„EPROM and Flash

EEPROM respectively. These commands are very useful for testing purposes and can be

used any time during the normal execution of CONCOA software program. This feature

is included in the system to prevent the excessive writing of the Flash EEPROM. This

reaHy helped us testing our program in the Flash EEPROM completely by putting

different numbers for different parameters in the RAM. We also checked the outcomes of

these parameters after modifying their previous values in the RAM. This soflware

module turned out to be an important source of help to come up with a reasonable set of

numbers for many parameters and also to finally write an error-fee version for

CONCOA sofiware in the Flash EEPROM.

Figure 3.12 Debug Command Main Routine

45

The basic technique, for transferring control to a particular software module to carry out a

user request, is the same as in the read or the write commands. However, these

commands follow a different input format at the command prompt. When a debug

command is entered at the CONCOA prompt, its reference value is passed to the next

module, which recognizes the command type and transfers the control to that particular

software module. This module starts by verifying the command line arguments against

probable errors as shown in 'Debug Command Main Routine'low chart, in figure 3.12.

It then checks and converts the ASCII value of the memory addresses for the memory

dump or memory modify commands to their hex equivalent number. Once a carriage

return is found, the system transfers the control to the next phase of operation for a user

request to either modify a RAM location or dump a memory block as shown in the

'Debug Command Subroutine'iow chart in figure 3.13.

The following two sub-modules are used to either dump or modify the selected

memory locations.

Memory Modify sub-module

~ Memory Dump sub-module

Memory Modify Sub-module:

This sub-module of the main debug module, first of aII, checks the address range

of a memory location to modify. If the address is outside the 68HC12 microcontroller's

RAM or it is some how mistyped, it gives an error message and immediately transfers the

control to the 'wmt-forever'ain program loop. Since this address is stored in the

memory as ASCII codes (e.g., for 0800 decimal number it will store 30383030 in the

consecutive memory location in the RAM), the program will calculate an equivalent

decimal number to compare if the actual number (0800 decimal), that user wanted to

change the contents of, is within the RAM. To see how this address is calculated, refer to

the software module 'Cal-Address'n 'Common Debug Command Routine'low chart in

figure B3 of appendix B). Now if this address is correct, the system prints this address

46

I

Qm

Figure 3.13 Debug Command Subroutine

47

and its contents (data), separated by spaces, on the very next line of the command line

arguments (refer to software module 'First Prnt'n 'Common Debug CommandRoutine'low

chart in figure B3 of appendix B), At this point the control undergoes into a user

input-wait state and the system waits for a new value or data for this particular memory

address. The backspace feature is also available for this command, so any mistyped new

value can be easily modified before submitting it finally using the computer's "Enter"

key as shown below in 'Memory Modify Command'low chart, in figure 3.14.

Once a carriage return is detected, the control transfers to the next stage of

operation, which is to check the syntax for the new value to modify. If there are no errors,

the system converts the ASCII value of the input data to its hex equivalent number and

stores it at that specific address which was entered at the command prompt. The system

then repeats the same loop of displaying the address and waits for the user to input a new

value to modify the next available location. To skip a memory location, one either needs

to press carriage return or a plus "+" key and it will print on the next line the very next

address, immediately afier the skipped address and the system will wait for a new value

to modify. In order to go back to a previous memory location a minus "-" key is used.

When you fimsh modifying the memory locations, terminate this loop by entering a

period (.) followed by a carriage return as shown in Chk-Option memory module in

'Memory Modify Command'iow chart, in figure 3.15.

In order to verify the memory locations just modified, the memory dump

command can be used. Now once a period in used and the memory modify loop is

terminated, the control always transfers back to the user input routine.

IIIIIIII II
48

Check number of typed character

Calculate equivalent hex address for
user input to modify memory

It not s
sddt;

N

Display error
message

Print this address on screen

Print data byte at this address
followed by a space on screen

Initialkte counters

Wait for user input

Istt a

N

Go to
Backspace

module

slt s
tttttttn V

N

Go to 'Modify
Synt'outine

Store the number; increment storing
location pointer dr MMOD counter

N

Show error
message

Display it on
screen Go to Terminate

Loop

Figure 3.14 Memory Modify Command

49

Figure 3.14 Memory Modify Command

50

Figure 3.15 Check-Options Service Routine

51

Memory Dump Sub-module:

This command is used to dump a block of memory locations using a set of rules

for entering start and the end addresses of the memory block needed to be dumped at the

command prompt. This command dumps a minimum of sixteen bytes. So if it is desired

to dump just one memory location, it will automatically dump the very next fifteen bytes

after printing the actual (first) one. To see how this address is calculated, refer to the

sofiware module 'Cal-Address'n 'Common Debug Command Routine'low chart in

figure 83 of appendix B. The memory dump commmd prints a constant, sixteen bytes in

a row. So if the number of memory bytes between the start and the end addresses is less

than sixteen, it prints a complete block of sixteen bytes in that row up till it reaches the

very next address which is a multiple of 2 n. If the number of bytes is greater than

sixteen, it prints the first sixteen in a row and prints a complete block of the next sixteen

bytes on the very next line. Now, if the number of bytes are greater than 16 and less than

or equal to 32, it stops printing after two lines (1 line = 16 memory bytes). This shows

that it prints at least a sixteen-byte row and so forth depending upon the start and the end

address for the memory dump as shown in 'Memory Dump Command'low chart, in

figure 3.16.

Basically, the screen for this command is divided into three columns. The first or

the left column shows the address of byte zero of a sixteen-byte block, the second or the

middle column contains the contents of these sixteen bytes, starting with byte zero whose

address is printed on the left column, the third or the right column indicates the ASCII

representation of the equivalent hex number on the middle column. To know how these

characters are printed in the 1 2" and 3 columns, refer to the software modules 'Seprt-

Nibble'nd 'Prnt-Char'n 'Common Debug Command Routine'low chart in figure B4

of appendix B). For example, if you see a hex number 41 in the middle column, it will

show the letter 'A'n the right column, which is nothing but the ASCII code of 41 hex.

The ASCII code display in the right column is limited to displaying the alphabets, and

some other special characters. For the characters like carriage return (ASCII code Od) it

Qse
Figure 3.16 Memory Dump Command

53

Figure 3.16 Memory Dump Command

54

just prints a colon (:) to prevent any monitor screen disturbances as shown in the 'Prnt-

Char'oftware module in 'Memory Dump Command'low chart, in figure 3.16.

Unlike the memory modify command where the request loop can only be

terminated by entering a period (.) followed by a carriage return, this module transfers the

control back to wait for user input module after displaying the memory contents needed

to be dumped. However, like the memory modify module, it also checks the command

line arguments for any possible human error.

Once the system finds no errors, it starts by changing the ASCII codes of the

addresses to their hex equivalent numbers and stores the starting and the ending memory

addresses to two different memory locations. It then prints the start address of the

memory byte to be dumped followed by the contents of the next fifieen bytes and the start

byte. The next task of this command is to display an ASCII map of the hex equivalent

numbers just printed in the middle column. Once it finishes printing the first row, it

prints a carriage return and line feed and continues the same operation on the next line

and so forth, until the address pointer reaches the end address for the memory dump.

Even if the end address is in the middle of a particular row, the system ends up printing

until the complete set of 16-byte in that row. Every new row starts with the very next

address of the memory after the last address on the previous row.

3.3 Software Integration:

The integration of the modules, mentioned above, can be described as follows:

~ Monitor and Debug program integration

~ Complete Software integration

55

3.3. I Monitor and Debug Wogram Integration:

All the individual modules of the Monitor and the Debug programs are tested

individually before their complete integration. None of the main modules are directly

available to carry out a particular user request. Even though the main modules work

independently, they all are linked to another module, common to them. This module

provides the point of integration for the main modules, such as: write, read and debug,

etc. Also, they have another common module to exit the main modules, which provide a

common point of integration to exit the individual programs. This exit-link module is

used to initialize aH the necessary flags, counters and registers, before transfen ing control

back to the main user request loop. The common starting link module, used by all the

other modules to take control of the program for a corresponding user request, uses a

parameter passing technique to the very next module to identify the command entered at

the prompt.

For the memory modify command, a separate user wait-loop is integrated into the

debug module, which works independently lrom the main user-wait loop. The complete

monitor and debug programs are nicely integrated and are checked for any possible

errors.

3.3.2 Complete Soibvare Integration:

The complete software integration comprises of the Monitor, Debug and the

Control programs. On reset the system starts loading monitor program and displays a

prompt (&CONCOA&) on the screen. At this point the only program available to the

system operator is the monitor and the debug program with all its functionalities, i.e.,

with all its debugging and monitoring features available. Now, to enable the control

program the operator needs to use the DN (for done) command followed by a carriage

return. This command actually sets a timer interrupt to occur aAer every TM

milliseconds. This procedure is adopted because the whole control program is integrated

56

into the interrupt timer service routine. This shows that aller every TM ms the control of

the system is transferred to the control program to do the analog to digital conversions of

PO and PB, perform the PID control calculations to finally calculate a new 16-bit digital

word for the solid-state gas-regulator. It transfers this digital voltage word to the solid-

state regulator by operating and transferring the 12-bit word to the DAC, whose output is

attached to the input of the SSR. The control of the system is transferred from the control

program back to the main program every time, when an interrupt service routine is

completed. The main program then resumes the task it was doing before the timer

interrupt had interrupted the system.

The control program always works in the background and the monitor program in

the foreground. Since, the two programs are very nicely integrated and the transfer of

control between them is very Irequent, it seems for the user as just one program carrying

out all the tasks without any internal or external interruptions. Once the control program

is running in the background, the debug commands can be used to debug it for any

possible errors.

57

CHAPTER 4

SOFTWARE RESULTS

4.1 Program Testing:

The software development for this project can be divided mto the monitor, debug

and the control programs, which are well integrated to provide complete software with its

controlling, monitoring and debugging features available. To see how the main and the

control programs are integrated refer to fig. 3.1 in chapter 3. This thesis only covers the

code written for the monitor and the debug programs, which enables the system operators

to write and read the system set and system response parameters (for more details refer to

section number 4.2 of sofhvare command seti. The debug program enables a user to

modify any RAM locations and print the complete memory map including RAM, ROM,

EEPROM and Flash-EEPROM. To use these features electively a user interface with a

software command set is developed using modular programming techniques. These

modules are further divided into smaller modules and sub-modules. The testmg of the

main program, which includes the monitor and the debug programs, can be described as

follows:

~ Individual software module testing

~ Monitor program testing

~ Complete main program testing

4.1.1 Individual Software Module Testing:

This kind of testing is done mostly during the code-write up on a regular basis.

Since most of the modules were smaller in size, the testing is done in the RAM of

58

68HC12 evaluation board using factory installed monitor/debugger program 'SDBUG12'n

the Flash-EEPROM. The testing in the RAM is done using the SDBUG12 commands.

The bigger modules are tested using the same default program, but by dividing them into

smaller modules and testing each on an individual basis. Since, a modular programming

technique is used to write the software for CONCOA's gas regulator system, individual

modules are tested during and aller their completion. The three very basic modules of the

fdlh main module 'Service User Request'hat is read, write and debug modules as shown

in the 'Basic Program Flow Chart'n figure 3.1, are tested thoroughly on an individual

basis before their integration as the main program There were some other smaller

modules and sub-modules, which were also tested with their parent modules to verify the

strong integration as a single main module.

The individual testing of the modules can be described as follows:

Read module testing

Write module testing

Debug module testing

Other modules testing

4.1.2 Read Module Testing:

As mentioned previously that the basic modules are not available directly and can

only be accessed through a common module, linked them and the wait for user request

modules as shown in 'Syntax check and Service User Request'lowchart in figure 3.6 in

chapter 3. This module is tested with some very typical error scenarios for an end user

software operator. To provide an interactive command line communication, different

warning and alert messages are written for different situations. For example, to read a

parameter's value, a question mark must follow the parameter*s name. Also the

commands should always be entered in uppercase letters at the CONCOA prompt. A

syntax error will be displayed if these rules for a read command input are not followed.

59

The command line help is also a part of the read module and follow the same rules,

mentioned above.

The syntax for command line help is the same as that of the other read commands

(i.e. 3 bytes- 2-byte for parameters name and I-byte for question mark). Any violation of

these set rules for a read command will cause a syntax error as shown in section 4.3.1.

This module was tested during and after its code was written and no errors have been

found so far.

4.1.3 Write Module Testing:

This is the most important module as it is used to write the parameters'alues,

which directly or in directly acct the output voltage for the CONCOA's gas-regulator

system DiFerent system messages are displayed for diFerent kinds of error

manifestations. Since, this module is used to modify the most basic PID control

coefficients, such as: KP and KI, a new value has to be tested thoroughly before the

system actually changes and stores them at a permanent memory location. Otherwise, the

controlled gas regulator control system could become unstable and potentially cause

damage and/or a dangerous situation.

The value for some parameters has to be checked for a divide by zero error every

the time before finally modifying and storing their new values. For example, the P

coefficient 'KP', of the PID coefficients, is used as a denominator in the mathematical

formulas for calculating a new output pressure value. Thus, a zero for KP can cause a

serious problem for the whole system and it can get unstable. Now, if someone

intentionally or unintentionally tries to change it to a zero, the system will display an

error message leaving the value for KD unchanged.

Since, diFerent parameters are used to carryout different calculations in the

control program; certain limits are imposed for their proper modifications. For example it

was noticed during the onsite testing of the software program that a TR (Ramp time)

60

value greater than sixty (60 seconds) caused the system to become unstable, so a

maximum value limit of 60 is set for TR. Some parameters, like IF (work as a fiag), can

only have two values, either a zero (0) or a one (1). Any other value for this parameter is

restricted by the system with a corresponding error message as shown in section 4.3,X.

The default parameter values for different parameters are shown in table 3.1 in section

3.2.2 in chapter 3.

The write module allows two kinds of parameters'alues, such as: floating point

and integer. This module has been tested for all pressure write commands, such as: PS,

PU, PL, etc, which are floating point type and should always input with a decimal point

as shown in section number 4.2.3.

The system displays difierent messages for different types of errors or typing

mistakes at the command prompt. Since, only decimal numbers should be entered at the

command prompt, any other value, such as: a hex number, is not allowed and causes an

error message to display on the terminal screen. Since floating point and integer number

parameters have diAerent input arguments length, the system also tests for any argument

length violation and a corresponding error message is displayed for an error (refer to

command set description in section 4.2.3. Finally the complete write module is tested for

any possible errors and it works fine udthout any problems.

4.1.4 Debug Module Testing:

The rules for entering command line arguments for this module is different than

read and write software modules. Since, the memory modify command is used to modify

only the RAM locations, this module is tested for a typical user error of modifying a

memory location outside the RAM area. The program responds with an error message of

violating the modifying range. All the functions of memory modify command, such as:

loop terminator (decimal point), next address pointer (+ sign), and previous address

pointer (- sign), are tested and work excellent for all the possible user errors.

61

As with the memory-modify command, certain rules should always be followed to

entering a memory dump command. For example, the start and end addresses must

always contain one space between them and they should always be four-byte long. The

system is tested to show a corresponding error message for a typical mistake violating

any one of the above-mentioned rules for entering command line arguments. The

memory-dump command is also tested to display a desired output on the computer

monitor screen. The display is parted into three columns for a complete dump (display)

of a particular memory block on the monitor screen, such as: the lust columns show the

address of the &st byte for a sixteen-byte row, the second columns show the actual hex

contents for the sixteen bytes in a particular row, and the third columns show the ASCII

numbers corresponding to the hex values of the sixteen bytes on the second column.

The other smaller modules, for example: modules for separating and storing

command line arguments, converting ASCII to hex number and vice versa, user wait loop

for memory modify, memory contents display module, etc., are all individually tested for

any possible errors during the code write up and after their integration into a single

memory dump module.

4.1.5 Other Modules Testing:

The other important individual sub-programs are also tested on an individual

basis. These modules includes the backspace, control program enable, wait-forever user

input, common-link and exit-link and command-line syntax check modules are discussed

below.

Back Space Module:

The backspace feature, which is used to erase the mistyped characters, was also

tested and worked without a problem before and after the complete integration. This

feature not only deletes mistyped characters but also refreshes the display terminal to

make it user friendly. It is also tested to see if it is overwriting the mistyped character (s),

62

decrementing the character counter by one, and clearing the decimal-detect flag if the

mistyped character is a decimal point.

Other Smaller Modules:

The module that enables the control program in the background is also tested for a

possible error. In order to avoid any timer interrupt initialization problems, the system

checks if a user tries to enable an already enabled control program and displays a wanfing

message discarding the user's request to enable an already enabled control program as

shown in 'Control Program Enable Request Routine'low chart in figureB1 of appendix

There is another small but very important sub-module, wait for user input, is also

tested with different error scenarios. The system is also tested to see if the program

displays an error message and issues a command prompt on the very next line, when a

user exceeds the buffers of the input capture register. This module also works perfect

without any problems. To see how this routine works, refer to the liow chart in figure 3.5

of chapter number 3.

The two link modules, such as: common-link module (refer to 'Syntax Check &

Service User Request'low chart in figure 3.6 of chapter number 3) and the exit-link

module (refer to 'Back'low chart in figure B5 ofappendix B) were tested for any errors

during the program integration. These modules work without errors and provide a very

strong point of integration for the most important main software modules to carryout user

requests.

Some initial stage sub programs, for example, the module to check the command

line syntax (refer to 'Syntax Check & pass parameter'low chart in figure 3.7 of chapter

number 3), are also tested with very typic@ end user error scenarios. All the error

messages are also tested for a screen popup for a known user input error and they all

performed excellently with their corresponding set of rules.

63

4.2 Software Parameter Set:

Since the command set and CONCOA prompt form the basis of the monitor

program, it is essential to discuss them in this thesis.

The I/O parameter set for CONCOA controller can be divided mainly into three

categories, such as:

~ Read/Write Parameter

~ Read-only Parameter

~ Write-ordy Parameter

Below is a discussion of this command set, their name, correct syntax and the

features they offer to accomplish various user requests.

4.2.1 Read / Write Parameters:

These commands are comprised of system-set parameters and system-response

parameters. All those commands that can be read and write at any time are in this

category. The memory modify (debug command) is also a part of read / write command,

since it not only prints the memory contents of a parameter but also let the user to write a

new value for it, ifneeded.

The following is a list of commands that can be used to read the current and write

a new parameter's value as shown in table 4.2.

64

Read / Write Parameter Set

Descriptions

Set Pressure

Maximum Output Pressure

Minimum Output Pressure

P Coefficient of PID

I Coefficient of PID

Loop Time

Ramp Time for Soft Startup

Flag for Set Pressure from Eva. Board

SUMN DIV input

Memory Modify

Unit

Psi

Psi

Psi

ms

Name

PS

PU

PL

TM

TR

IF

DS

MM

Features

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Debug /Read/Write

Table 4.1 Read / Write Parameter Set

The 'IF'ommand is used to set the evaluation board mode so that the system can

be operated to get a set-point pressure value either from the computer keyboard or from

the evaluation board. If the 'IF'alue is set to 0 (default setting) the system will read the

set-point pressure Irom the keyboard and if it is I, the input to the system will be

provided by the evaluation board and the system will read from the memory location set

aside for the set point pressure from the evaluation board. This pressure value from the

evaluation board can be read using the 'PB'ommand.

The PS command is used to enter a set-point pressure for the output oi'ONCQA

gas- regulator control system. The PU and PL commands are the upper and lower limits,

for the set point pressure. The KP and KI commands are used for entering a constat)I

coefficient value for the proportional and the integral control of the system respectively.

As discussed in section 1.3 of chapter 1, TM (loop time) is the time-interval for

the timer interrupt to occur after every TM ms, and TR (ramp time) command sets the

65

number of loop-time the control program will take to change the set point pressure (sofl-

start-up) at the output.

4.2.2Read-only Parameters:

The following commands are read only or system-response commands as they can

only response to our request with the most current or desired output on the terminal

screen. For example, the output pressure 'PO*, which is read only, can only update us

about the current value of output pressure. The 'CD'oefficient display command is used

to print the current values for all the parameters whose default values are shown at the

time of program initialization. The debug command 'MD's also a read only command,

since it displays only the memory block whose contents are needed to be dumped by the

user.

The 'IT'ommand is used to display the status of the timer. If the value of this

parameter is binary I, it indicated that the timer is enabled to interrupt the main program

after every 'TM's. It also shows that the control program is enabled as the control

program is written in the interrupt service routine. A binary value of 0 in the 'IT'egister

indicates that the control program is not enabled yet. As discussed above, the 'PB'ommand

is used to read the set-point pressure f'rom the evaluation board.

table 4.3.

The following is a list of commands that are read only as shown below in

66

Table 4.2 Read-Only Parameter Set

4.2.3 Write-only Commands:

There is only one command that falls in this category, as shown below. The DN

command (abbreviated for done) is used to enable the control program. As described in

appendix B(refer to flow chart in tigure Bl to get more information about how to enable

the timer interrupt) this command 'DN'case sensitive= use only upper-case characters)is

necessary to enter so that the system start sending and receiving the electrical signals

&om CONCOA gas regulator system using control program. This command does nothing

but set a timer interrupt to occur after every TM ms. Since, the control program is located

in the timer service routine, it starts executing aAer every TM (the default is 8) ms and

returns the control back to the main program to resume its job from where (the memory

location) it was interrupted.

67

Table 4.4 Write-Only Parameter Set

4.2.4 Syntax Rules for Software Parameter Set:

All the command set parameters are case sensitive and should be entered as upper

case characters for a read or a write value operation.

The system-set and system-response parameters are further divided, in terms of

their values being written or read, in three parts, as shown below:

i. Commands, which contain a decimal point for both reading and writing

values to permanent memory locations.

ii. Commands, which does not contain a decimal point (integer numbers) for

both reading and writing values to permanent memory locations.

iii. Control program enable, command line help and debug commands.

i) Parameters with a decimal point (floating-point):

The following parameters'alues must always contain a decimal

point (~) between the integers for either read or a write value operation:

~ PS

~ PB

~ PO

68

~ PU

~ PL

~ TR

~ CD

NOTE:

The maximum number of integers for a write operation cannot be

greater than 4 and the minimum is 2. There should always be only one

integer after the period or decimal point.

The 'CD'r coetftcient display command, which is read only,

displays the current values for all the parameters. That is why it is a part of

both numbers (i) and (ii).

Example tilt

To write set pressure (PS) trom the PC's keyboard for a value of

50 psi, the following command should be used in the exact order at the

CONCOA prompt, as shown below:

&CONCOA& Psi 50.0

&CONCOA&

One has to press the 'Enter 'ey on the PC keyboard in order to

write this value in the permanent storage location for the above parameter

(PS). The CONCOA prompt will appear immediately on the next line

when the system fmishes serving the user's request.

69

Example tt2:

To read set pressure (PS) &om its permanent memory location the

following command should be entered in the exact order at the CONCOA

Prompt:

(CONCOA& PS'?

PS= 50.0

&CONCOA&

NOTE:

The read value command is the same for all the other command set

parameters that could have a different set of rules for the write value

command.

ii) Parameters without a decimal point (integer):

The following parameters'alues should only contain integers for

a read or a write value operation:

~ TM

~ DS

~ IF

~ IT

~ CD

NOTE:

The maximum number of integers for a write operation cannot be

greater than 4 and the minimum is 1. Some of these parameters have a

minimum and a maximum value limit that should always be taken into

account while writing a value to a parameter.

70

The 'CD'r coet5cient display command, which is read only,

displays the current values for all the parameters. That is why it is a part of

both numbers (i) and (ii).

Example tt1:

To write a value of 100 for coef5cient 'P'KP) using PC

keyboard, the following command should be used in the exact order at the

CONCOA prompt, as shown below:

&CONCOA& KP=100

&CONCOA&

One has to press the "Enter" key on the PC keyboard in order to

write this value in the permanent storage location for the above parameter

(KP). The CONCOA prompt will appear immediately on the next line

when system cfishes up serving user request.

Example 42:

To read the same parameter (KP) from its permanent memory

location the following command should be entered in the exact order at the

CONCOA Prompt:

&CONCOA& KP?
KP= 100

&CONCOA&

NOTE:

The read value command is the same for all the other command set

parameters that could have a different set of rules for the write value

command.

71

iii) Control Program enables, Help and Debug command set:

The following commands are different than the rest of the

command set.

~ HP

~ DN

MD

MM

For example the command-line help is neither a system-set or

response parameter but it is only used to display an aheady stored help file

in the Flash-EEPROM.

The DN command just enables the control program in the timer

interrupt service routine by enabling the timer interrupt to occur after

every 8 ms.

The debug commands are used to either write a new value for a

parameter in the RAM or to dump the memory blocks including RAM,

ROM, EPROM and Flash-EEPROM. They follow a different set of rules

for the syntax at CONCOA prompt than the read and write commands that

would be explained below in the following examples.

NOTE:

The debug commands are recommended only to the advance users of

CONCOA software.

Example ill:

To get command line help (HP), the following syntax rules should

be obeyed.

&CONCOA)HP'? Followed by a carriage return

72

It will display a one page command line help followed by a

CONCOCA prompt, as shown below.

(CONCOA&

Example P2:

To see the examples for memory modify (MM) and memory dump

(MD) commands refer to 'Command Set and System Messages

Examples', section Al of appendix A.

4.3 System Messages:

To make an interactive and 6iendly user interface for this project, system

messages are written. Basically, they can be divided into two categories: such as,

~ Error Messages

~ Alert messages

The error messages, such as: syntax error, length error, number error, limit error,

etc. (as shown below in this section), are shown up when the system tmds an error due to

the invalid command line arguments or an internal error. Different messages are popped

up for different kind of error manifestation. These error messages also contain an

immediate help to remedy the mistake as shown below in this section.

The alert messages let a user know about the current status of the system. For

example, when you use the 'DN'ommand to enable the Control program, the system

prints a message atter enabling the timer that the control program is enabled. If for some

reason a user has forgotten whether he has enabled the Control program or not and he

presses 'DN'gain, his request will be discarded and the system will display a message

letting the user know that the control program is already enabled. Similarly when the

73

system initiahzes after hardware reset, it prints the default value of all parameters and ask

the user to either change or go urith the default parameters'alues.

Following are the system error messages for the CONCOA software:

Syntax Error

Value Error

Divide by Zero Error

Max / Min Limit Error

Argument Error

Length Error

Other Error Messages

4.3.1 Syntax Error:

Example:

&CONCOA&ps=50.0

Syntax Error

To get command line help type: HP?

Since, the 'P'nd 'S* characters are entered as lower case. In order

to avoid this error type all characters in upper case.

4.3.2 Value Error:

Example:

&CONCOA&PS=12A.0

Invalid Parameter Value

You can only input the decimal numbers (0 to 9) for this

command.

74

Since, A is not a decimal number. To avoid this error only use

integer combinations)rom 0 to 9 to write a parameter value.

4.3.3 Divide by Zero Error:

Example:

&CONCOA&TM=O

Divide by Zero Error

The input value for this parameter should be greater than zero (0).

Since, TM can not be less than or equal to zero (0)

4.3.4 Max / Min Limit Error:

Examplel t

&CONCOA&TR=69.9

Min / Max Limit Error

The upper limit for the Ramp Time (TR) is 60.0 (decimal) seconds.

Since, the TR value should not be greater than 60.0.

Example2:

For more examples of these kinds of error messages refer to 'More

MaxMin Limit Error Examples'n section A2 of appendix A.

4.3.5 Argument Error:

Example:

&CONCOA&MD 825A 0800

Invalid Argument

The starting address is greater than the ending address.

Since, 825A (&st address) is greater than 0800 (last address).

75

4.3.6 Length Error:

Examplel:

(CONCOA&MD 800 0850

Invalid Argument Length

The start and the end address should be entered as a 4-digit number

input.

Since, each address should be entered as a 4-digit number, 800

should be entered as 0800.

Example2:

&CONCOA)KP=123456

Invalid Length

Total number of characters typed is greater than the maximum

Since, you can only enter a maximmn of 4 integers for KP

command.

4.3.7 Other Error Messages:

Example:

These error messages include; address, number and option errors.

To learn about them, refer to 'System Messages Examples, in

section A2.2, A2.3 and A2.4 respectively of appendix A.

76

CHAPTER 5

THESIS RESULTS

Conclusions

The soflware program for controlling and monitoring a gas-regulator system is

presented in this thesis. The program with a command line user interface is made

available for CONCOA to centrally control their gas regulator control system using a

stand-alone IBM-Compatible personal computer. Basically, two well integrated software

(Monitor and Control) programs are written for this project (refer to the flow chart in

figure 3.1 of chapter 3). This thesis only covers the monitor program that is the main

program of the complete CONCOA soflware for this project. It works in the foreground

as the main controlling authority for the end-user to control and monitor the CONCOA's

gas regulator control system by means of a command prompt to enter soflware

commands for system parameters.

This software program provides an access to system-set and system-

response parameters for controlling and monitoring various system parameters using a

computer's keyboard. The command set for this system provides a comprehensive and

thorough control scheme for CONCOA engineers to monitor and control the gas pressure

electronically and through a centralized control location. Even though it was not required

by CONCOA, but I wrote a debug soflware module to access the 68HC12's memory

locations (RAM and ROMs) when the microcontroller executes codes for CONCOA

software Irom the Flash-EEPROM.

The results show that the system is running without any ditficulty, and the

successful tests of the software at the company's facility also indicate that the code is

organized and well integrated with the main control program to calculate an output

77

voltage for CONCOA's gas regulator control system. Every software module was tested

on an individual basis, and finally the complete program testing, atter the individual

modules integration, was very successful and was carried out using diferent kinds of

error scenarios.

To make the user interface interactive and Iriendly, a set of messages is stored in

the Flash EEPROM to display in an event to alarm the user about the current status of

their command line user request. The sottware program is well commented and describes

the details of almost every single line of code. As a whole, the code for this software is

simple to follow and easy to read,

The software modules for this industrial project are made generic to include any

new commands or lines of code to add or remove system or control parameters. Also to

make it simple, several programmable modules are saved into diferent files and are

linked using the 'include'irective for the assembler used in this project (refer to section

2.3 'Software Requirements'f chapter 2). A complete help module is also available to

get command line help at CONCOA prompt. This help module is used for describing

ditferent commands with their associated parameters and a correct syntax.

5.2 Recommendations for the future studies:

At this stage we have a software user interface for CONCOA, which provides a

command line user access to control the gas pressure electronically. It is also noticed that

the CONCOA engineers have a simulation program that keeps track of the system

behavior and extract some thousands of data samples while system is running. Those data

samples can then be analyzed using a software package like Microsoit33 Excel™. Since

this system uses the standard emulator software (refer to 'Assembler and Screen

Emulator'n section C2 of appendix C), it can only be used in with a stand-alone

computer.

78

One of the best features of the monitor program is the debug software module.

But this module can only access the memory locations when the code is executed Rom

the Flash-EEPROM. To provide a better debugging system all the microcontroller

registers should also be accessed by the system any time during the normal software

execution. But the question is what kind of user interface should be used in the future to

come up with all the features discussed above.

On the basis of above discussion, it can be concluded that a graphical user

interface is not only more user &iendly but it also provide a great deal of interactivity and

features that are did5cult to acquire using a command-line interface. Using high level

languages such as Visual Basic™ or Java™, the coding becomes easier and transportable

among different operating (ex: Windows, UNIX) and hardware (ex: IBM, Macintosh)

platforms. These high-level languages like Visual Basic™ provide a nice integration with

the software packages like Excel™ for analyzing and drawing graphs automaticaHy using

some set of commands. Using a high-level language like Visual Basic would help

CONCOA to not only control their system electronicaiiy but also analyze the useful data

for future studies or for a software alarm system using PC speakers. A software dialer can

also be embedded with the actual software.

Based on the above discussion, I can suggest the folloudng recommendations for

the enhancement of tlus project of CONCOA:

1. Designing a graphical user interface for the monitor, control and debug system

for CONCOA using a high level language such as Visual Basic, C, C++ or Java.

2. A multi-user support using a computer network for this graphical user interface.

3. Enhancement of the graphical user interface to include some of the emulator

characteristics, such as: uploading and downloading the software codes into

ROM and/or Flash EEPROM of the microcontroller.

4. An event log ffle with different sorting attributes such as: parameters, time,

errors, alarms, system messages, last modi6ed, user names, etc.

79

5. The graphical user interface should be capable to sort this data &om the event

log file to come up with some meaningful results and graphs for the future

studies and analysis.

6. An automatic event log file should be generated, for software or a hardware

failure containing the final values of all the important system and control

parameters.

7. Enhancement should be made to the debug program to include the features to

show the memory contents of the microcontroller's registers such as,

Accumulators, index registers, program counter, stack pointer and the status or

the flag register, at any place of the executable sofiware code.

8. A periodic update and simulation of all the parameters'alues &om the

hardware into the graphical user interface as a separate display screen and the

introduction of a software switch key to toggle between the user interface and

the debug interface.

9. The debug interface should be able to catch the values for the new features, as

mentioned in the enhancement model for the debug program, without disrupting

the program execution.

10. Support for the hardware alarm system into the graphical user interface for an

alarm activation using sofiware codes within the program.

80

RKFKRKNCKS

[1] Gene H. Miller, Microcomputer Engineering, Prentice Hall, Inc., 1999.

[2] John B. Peatman, Design with Microcontrollers, McGraw —Hill Book Company,

1988.

[3] Frederick F. Driscoll, Robert F. Coughlin, Robert S. ViUanucci, Data Acquisition

and Process Control with the M68HC11 Microcontroller, Macmillan Publishing

Company, New York, 1994.

[4] Jonathan W. Valvano, Embedded Microcomputer Systems, Brooks/Cole, 2000.

[5] Jean J. Labrosse, Embedded Systems Building Blocks, CMP Media, Inc., 2000.

[6] Michael Basr, Programming Embedded Systems in C and C++, O'Reilly k,

Associates, Inc., 1999.

81

Appendix A

Command Set and System Messages Examples

Al Debug Commands:

Following are the examples for the memory modify and memory dump command

syntax rules.

Al. 1 Memory Modify Command

The memory modify (MM) uses the following syntax to moddy a memory

location in the RAM of 68HC12.

&CONCOA& MM XXXX

XXXX YY ZZ

XXXX+1 YY

Followed by a carriage return

Followed by a carriage return

Where XXXX is a 4-byte address of a memory location in the RAM, YY

are the contents at that location and ZZ is the new value you have just entered.

Once you press a carriage return after making the changes in the RAM, on the

next line it will show the very next address of the memory location and its

contents (YY). The two dashes (—) are basically indicating the cursor position.

The above syntax and the screen display can be seen in the following

captured screen while the command was running f'rom the Flash EEPROM of the

68HC12 evaluation board.

82

&CONC'& MH 0820

0820 55 66
0821 66 77
0822 77 88
0823 88 99
0824 99 AA
0825 Mt BB
0826 BB CC
0827 CC DD
0828 DD EE
0829 EE FF
0825 FF 66
Invalid Hex Bumber
Only hex numbers lrem 00 tc FF can be entered

082K FF 123
Invalid Data Input
Input data should net e~ceed 8 bits (1 byte}.

082K FF 00
0828 00 FF
082C 02 12
082D 00

Now if you repeat the same action as in the first line it will show a third

line aAer replacing the cursor with a new value (ZZ). But, you can also use the

available options such as:

Followed by a carriage return

If you use a positive sign (+) or just press the carriage return, it will

simply print the same line with the address of the next memory location and its

contents and the cursor will wait for your input again. The contents of that

memory location will not be changed.

Using a minus sign (-) instead of a plus sign (+) will show the previous

address and its contents. If you press the minus sign recursively, it will just

scroll the screen with the memory location and contents of the previous address

83

and will leave the contents unchanged. The above syntax and the screen display

can be seen in the following captured screen.

:. O'AlrC'0K.. tan 0 8 2 0

0820
082K.
0822
0829
0824
0825
0&26
0827
0828
0829
082B.
0829
0828
0827
0826
0825
0824
0823
0822
0823.
0&20
0821.

66
77 +'&

+
99 +
A2i.
BB
c,'c: +
DD +
EE +
F'F'
00
9"s'B

DD
c.'c!
BB
AA
99
8&
77
66
77

If you use a decimal point (.) as the input, the program will come out of

the loop followed by a carriage return. This is the only point of exit for this

memory command. For any mistyped option or parameter value the system will

display a corresponding error message and print the same address and its contents

on the next line for the user input.

The following captured screen for memory-modify command will explain

how this option work when the command is running I'rom the Flash EEPROM of

the 68HC12 evaluation board.

84

0829 FF t
082A 00-
0829 FF-
0828 EE-

0827 00-
0826 CC-

0825 BB-

0824 AA-

0823 99-
0822 88-
0821 77-
D820 66

0821 77 s

Invalid Connand Option

The only options to use with this oonnand are: &,-,,, and carriage return

0821 77 /
Invalid Connand Option

The only options to use with this oomnand are; &,-,., and oarriaqe return

0821 77 t

0822 88-
Q821 77 ,

&COHCOA&

A1.2 Memory Dump Command

The following syntax should be used to enter memory dump (MD) command.

&CONCOA& MD XXXX YYYY Followed by a carriage return

Where XXXX is the ftrst or starting address and YYYY is the ending

address to dmnp the memory contents.

85

It will display dumped memory blocks starting from XXXX and ending at

YYYY in the following order, as shown below.

PPPP PPPP PPPP PPPP JJJJJJJJJJJJJJJJ
PPPP PPPP PPPP PPPP JJJJJ;IJJJJ;IJJJJJ

YYYY PPPP PPPP PPPP PPPP JJJJJJJJJJJ;IJJJJ

Where 'P's the memory contents of the memory-byte starting with the

address on the first column followed by fifteen bytes. 'J's the ASCII code for a

corresponding 'P'alue in the second column. The next line prints 'XXXX'hich
is the address of the 17'" byte starting from the 'XXXX'n the first line

and so on. If the ending address of the memory to be dumped is not a multiple of

16, the system still print the data until it reaches the very next multiple of 16. For

example if a user wants to dump 30 memory bytes, the system will at least dump

32 bytes followed by a carriage return.

The following captured screen will explain how we can use the memory

dump command to see the memory block we just modified using memory modify

command. This screen capture is obtained while the command was running

through the Flash EEPROM on the 68HC12 evaluation board.

86

0826 CC-
0825 BB-
D824 Mt-
0823 99-
0822 88—

0821 77—

0820 66

Q821 77 s

Invalid Command Option
The only options to use with this command are. +, —

, , and carriage return

0821 77 /
Invalid Command Option
The only options to use with this commaud are; &, — ,,, and carriage return

D821 77 +

0822 88-
0821 77 .

&COBCOa& t40 0820 0840

0820 66-77-88-99-BB-BB-CC-DD-EE-FF-00-FF-12-00-00-2E

0830 00-08-02-DO-00-DB-D4-OQ-00-78-00-11-OD-4D-20-08

0840 OQ-OE-07-76-00-3E-00-08-00-Ql-00-01-00-00-08-20

&COBCOB&

The following captured screen will show how we can dump the contents of a

memory block in the RAM location where we are actually storing the input from the

command line arguments. The starting location for the input capture buffer is $0810 in

the RAM.

87

&CGHCOA."

&CONC'& hS 0800 0900

0800

0810

0820
0&30

0840

0850

0860

0870

0880

0890
0&A0

08&0

&&CO

OBDO

0&EO

OBFO

0900

02-21-10-01-06-90-BA-04-05-40-10-82-00-OA-00-02
4D-44-2Q-30-38-30-30-20-30-39-30-30-0D-39-39-80
66-77-88-99-AA-BB-CC-DD-EE-FF-00-FF-12-00-00-2E
00-0&-00-00-00-09-QO-00-00-7B-00-11-00-4D-20-08
00-OE-07-76-00-38-00-08-00-01-00-01-00-00-08-00
09-10-09-00-28-28-33-32-04-11-04-00-OC-04-00-80
OD-02-02-FF-00-04-00-07-02-18-00-07-00-00-00-00
04-00-08-46-00-12-08-10-&A-30-18-00-80-34-OS-60
08-81-38-38-08-80-30-00-00-48-18-00-01-16-20-04
04-00-81-44-48-QO-08-40-1Q-00-00-AO-00-00-08-00
01-62-06-82-00-89-84-00-00-20-80-00-21-00-00-26
18-CO-10-00-00-44-22-12-01-14-08-QO-01-20-45-00
64-00-00-86-40-40-00-22-08-64-OE-01-OC-82-00-00
C9-CO-02-00-DD-12-01-00-20-02-08;98-1C-00-00-24
00-00-00-10-04-00-00-02-00-00-04-4C-DD-12-76-72
00-OQ-00-08-01-00-00-00-40-CO-06-00-C&-OQ-02-60
Q4-21-CO-62-OA-00-10-02-00-09-21-00-OQ-QO-04-00

,I,,;;;;,8,,;;;;
MD OSOO 0900:99:

,
'.'.'v,''.''.''.'''. '.'.

%32

:::F,,::,Q:::4:p
:.04,:4::H::.: :

:::DH.':8::::::::

,'::'',D"::::,'',E:»
SS

~ a ~

.':::: '.:::,',': .'tl'

'I: h'.:: ', .': I:,':'.'he
following captured screen displays a memory block in the Flash EEPROM

also known as ROM-Data-Monitor as explained in section 3.2.1 in chapter 3. This

memory block of the Flash EEPROM contains the static data for the monitor program

such as; command-set-database, system-help, system messages, etc.

88

&CDECDA& i4D 8200 8340

8200 64-65-64-20-6F-72-20-50-53-38-20-50-55-2E-06-54
8210 6F-20-63-68-61-68-67-65-20-50-53-20-74-6F-20-74
8220 68-69-73-20-76-61-6C-75-65-20-63-68-61-6E-67-65

8230 20-74-68-65-20-75-70-70-65-72-20-70-72-65-73-73
8240 75-72-65-20-68-69-6D-69-74-20-28-50-55-29-20-66

8250 69-72-73-74-28-06-07-44-69-76-69-64-65-20-62-79
8260 20-5A-65-72-6F-20-45-72-72-6F-72-06-54-68-65-20

8270 76-61-6C-75-65-20-6A-75-73-74-20-65-68-74-65-72

8280 65-64-20-66-6F-72-20-74-68-65-20-61-62-6F-76-65
8290 20-70-61-72-61-6D-65-74-65-72-20-73-68-6F-75-6C

82AO 64-20-61-6C-77-61-79-73-20-62-65-06-67-72-65-61
8280 74-65-72-20-74-68-61-6E-20-7A-65-72-6F-28-30-29

82CO 06-07-49-68-76-61-6C-69-64-20-50-61-72-61-6D-65

82DO 74-65-72-2Q-56-61-6C-75-65-06-59-6F-75-20-63-61
82EQ 6E-20-6F-6E-6C-79-20-69-6E-70-75-74-20-74-68-65

82FO 20-64-65-63-69-6D-61-6C-20-6E-75-6D-62-65-72-73

8300 20-28-30-20-74-6F-20-39-29-20-66-6F-72-20-74-68

8310 69-73-20-63-6F-6D-6D-61-6E-64-28-06-07-53-79-6E
8320 74-61-78-20-45-72-72-6F-72-06-54-6F-20-67-65-74
8330 20-63-6F-6D-6D-61-6E-64-20-6C-69-6E-65-20-6&-65

8340 6C-70-20-74-79-70-65-3A-20-48-50-3F-20-06-07-49

&CDECM&

ded or PE& PV,:T

o change PB to t
his value change
the upper press

ure limit (PV) f
irst.:;Divide by

Tero Error:The
value)ust enter
ed for the above

parameter shoul
d always be;grea
ter than zero(0)

Invalid Parame

ter Value:You ca
n only input the
decimal numbers

{0 to 9) for th
is command.::Eyn
tax Error:To get

command line he

lp type: HP? ::I

The following captured screen displays a memory block in the Flash EEPROM

also known as ROM-Data-control, which contains the static data for the control program.

89

&CO&CGA f4D 9000 9140

9000

9010

9020

9030

904Q

9050

9060

9070

90SO

9090

90AO

9080

9000

9&DO

90EO

9&F0

9100

9110

9120

9130

9140
&CGHCGfL"

04-4C-76-72-00-00-00-08-OQ-02-18-03-00-01-08-4C
86-06-7A-08-04-CC-90-BA-7C-08-05-FC-08-3C-CD-00
20-18-13-CD-00-19-18-14-B7-C6-83-01-DC-FD-08-3A
18-13-7C-08-D4-18-04-08-D4-08-EC-1&-03-00-00-08
El-18-03-00-OQ-08-DD-18-03-00-00-08-F6-&6-77-5A
57-86-65-5A-56-18-QB-FF-00-03-FC-90-00-7C-08-EA
FC-90-02-7C-08-EE-FC-90-04-7C-08-FO-FC-90-06-7C
08-F2-FC-90-08-7C-08-E6-18-OB-01-08-D6-79-0&-E5
79-0&-E9-18-08-90-00-08-18-08-90-00-08-18-08-90
00-OA-18-08-09-00-16-1&-OB-01-00-80-1&-OB-EO-QO
86-18"OB-01-00-89-1S-OB-25-00-8D-FC-Q&-46-CD-00
FA-13-5C-9Q-18-OB-01-00-&C-3D-FC-08-46-CD-00-FA
13-D3-90-5C-90-4C-SE-01-79-08-ES-CE-08-ES-OE-01
04-3F-OE-01-02-18-OE-01-01-OA-86-70-5A-56-86-74
18-20-00-1E-86-71-5A-56-86-77-18-20-00-14-08-01
01-OA-&6-72-5A-56-S6-76-18-20-00-06-86-73-5A-56
86-75-5A-56-4F-08-04-02-20-FA-16-93-94-18-20-FF
87-FC-08-DO-CE-00-10-18-15-7E-O&-40-BE-O&-42-1&
2E-00-32-BE-08-44-18-2D-00-32-4D-08-F&-86-08-E5
&1-01-18-27-00-A2-81-02-18-27-00-CA-FC-08-4A-8C
OQ-00-18-27-00-1D-FC-08-D2-CE-00-10-18-15-7E-08

Lvr::::::::::
:z:::::I::::;

WteZY::::::::I::

'l:L::y
:Y:::::::::pZV:t

:::qZV:vt:
:::rZV:v: :::sZV
:uZVG;;:

:&::B:

The following captured screen displays a memory block in the Flash EEPROM

also known as Main program location as explained in section 3.2.1 in chapter 3. This

memory block of the Flash EEPROM contains the executable codes for the main

CONCOA software. Actually the microcontroller evaluation board starts executing the

program codes from the Flash EEPROM location $8000 (by default) where the first

instruction is a jump to the main program location, which is $A000 as shown below.

90

&CGNCOA& L4D ADDS A140

ADOD

A010

1L020

A030

A040

lL050

A060

A070

A080

A090

AOAO

ADBD

ADCO

AODO

ADEO

AOFO

A100

A110

A12I}

A130

A140

CF-OA-DO-18-OB-00-00-C2-18-OB-34-00-Ci-18-OB-OC

00-C3-86-FB-5A-09-4D-08-FS-79-08-60-79-08-71-14

10-iS-08-00-08-87-18-03-00-64-08-38-is-03-00-ii

08-3A-18-03-02-Cl-08-3C-18-03-06-9C-08-42-18-03

DO-SD-08-44-18-03-00-08-OS-46-18-03-00-01-08-48

18-03-00-00-08-4A-18-03-00-00-08-4C-18-03-00-02

08-56-16-AA-D9-CE-8D-1C-7E-08-7C-18-OB-FF-08-6C

CD-08-10-7D-08-76-FD-08-76-FE-08-7C-A6-00-81-07

18-27-00-1S-6lL-40-81-3F-27-OA-02-7D-08-76-08-7E

08-7C-20-E2-08-7E-08-7C-18-20-01-50-16-AA-D9-18

OB-00-OS-6C-79-DS-6A-C6-01-Fi-08-71-18-27-00-3E

CE-89-89-7E-08-78-79-08-6B-16-AO-CB-C6-07-Fl-08

68-18-27-00-29-08-7E-08-78-20-EE-38-34-35-FE-08

78-A6-00-16-AA-D4-81-07-27-OA-81-06-27-OB-5A-C7

31-30-3A-3D-7A-08-6B-20-F7-16-AA-D9-20-F2-16-AA

D9-CE-86-3D-16-ML-D4-96-C4-A6-00-5A-C7-81-07-27

03-08-20-FD-79-08-60-79-08-69-79-08-71-79-OS-6E

79-0&-6D-79-08-64-79-08-6F-18-OB-OF-08-61-CD-08

10-7D-08-76-4E-C4-20-02-20-FA-96-C4-96-C7-81-08

18-27-00-40-FD-08-76-6A-40-02-7D-DS-76-73-08-61

18-27-08-F7-4E-C4-80-02-2D-FA-16-AA-D4-5A-G7-81

...;...,,,4:,:.,
::::2:M::y: y.q:
,;,:;,,::d:8',:::

:::'.:',B

,': ,'D,','.'.''.F',',',',: E

','',,'',J',','',,'L,'

',',',Lt',',',',','.: }','.',',1

...},v:;v;.I:,::
t jSigl

}

}:"} F.
...ly,j::,",q, ',&

...",xy,k...,,:,
k. '.}:.:x ,,45,,

10,'=z'.k',',':,''.',

'' 'y''ly'qyLB
y:ay:dy,o:...a,,

}IvN I I

, ',8::vjS:}:vs:a
: ",.'N',,'',.'',.','Z',,'

91

A2 Help Command:

The following captured screen shows how a one page command-line help will be

displayed while the system is executing the soitware codes &om the 68HC12

micro controller.

&CONCOA& HP2

This is the HELP for CONC'oftware.
The following parameters should be entered as integer only.
KP, KI, TM, and IF.

1.} To write value...say for KP... KP-XXXX tEnter Key,
Where XXXX could be any integer from l) to 9,
The max, 5 of integers could be 4 and the min, is 1,

2.) To read value... say for KP... KP2 &Enter Key.

The followinq parameters should always be entered with a
decimal point:
PS, PU, PL and TR.

1,) To write value...say for PS... PS=XXX.X &Enter Key.
Where XXXX could be any integer from 8 to 9.
The max, 8 of integers could be 4 and the min. is 2,
A period (.} is a must to enter these parameters and there
should always be one integer after the period,

2.) To read value... say for P8... P82 &Enter Key.

The following parameters are read only:
PB, PO and IT,

92

A3. System Messages Examples:

A3.1 More MaxfMin Limit Error Examples

Kxamplel:

&CONCOA&IF=2

Invalid Value

IF values can either be zero (0) or a one (I)...

IF= 0 ... Set Pressure should be entered trough the PC Keyboard.

IF= I ... Set Pressme should be entered trough the Evaluation Board.

Since, IF is only used as a flag value for entering the set pressure either

from the keyboard orPom evaluation board.

Kxample2:

&CONCOA&PS= 99.9

Invalid PS Value

The upper PS limit is exceeded or PS& PU

To change PS to this value change the upper pressure limit (PU) &st.

&CONCOA&PS= 8.9

Invalid PS Value

The lower PS limit is exceeded or PS& PL
To change PS to this value change the lower pressure limit (PL) erst.

NOTE:

For the above example we have assumed the upperpressure value (PU) =

100.0psi and the lowerpressure value (PL) = 10.0psi

93

A3.2. Address Error:

&CONCOA&MM 8000

Invalid Input Address

Only RAM (random access memory) locations from 0800(hex) to OA00 (hex)
can be modified.

Since, 8000 is a Flash-EEPROM location and memory modify (MM)

command is used to modify RAM locations for 68HC12

A3.3 Number Error Example:

&CONCOA&MM 0800

0800 00 GG

Invalid Hex Number

Only hex numbers Irom 00 to FF can be entered

0800 00

This error shows up when a user try to modify the memory

location and mistypes a two-byte hex number (GG) as shown above.

A3.4 Option Error Example:

&CONCOA&MM 0800

0800 00

Invalid Command Option

The only options to use with this command are: +,-,, and carriagereturn'800

00

94

This error shows up when a user tries to use an option in memory

modify command and mistypes a character which is not available as an

option.

95

Appendix B

More Flow Charts

The 'Control Program Enable Request Routine'low chart in figure Bl describes

how the control program is enabled using the 'DN'ommand. Once a user presses DN

followed by a carriage return, the program control is immediately transferred to 'Norm'ub-module

(see figure Bl). This module increments and tests a flag whose value is

initially set to zero. If this value is a binary one (1), which indicates that it is the first try

to enable control program, the system branches to another sub-module 'Init Cntrl'o
enable the control program. If the binary value is greater than one this indicates that the

user has tried to enable an already enabled program. To prevent this situation and to

alarm the user, an error message is popped up telling user that the control program is

already enabled and setting the value to binary two to avoid any other action of enabling

an already enabled control program.

The 'Init-Cntrl'odule sets the input /output port registers, initializes the AD and

DA converter bits connected to port P and then finally initializes the timer as shown

below in 'Output-Ports'nd Init Timer sub-modules respectively in figure Bl. The

clock &equency of timer is set to 1MHZ and a hex number is entered for timer interrupt

to occur after every gms.

As mentioned earlier in the introductory chapters that the complete control

program is written in timer interrupt service routine, so every time an interrupt occurs it

causes the monitor program to transfer the flow of program instruction to the control

program. The control is always transferred back fiom control program to the monitor

program, when the program finds a return from the interrupt instruction (RTI).

96

+m +m

Qm

Figure B 1 Control Program Enable Request Routine

97

Qse

Figure B2 Pass Parameter Value for Other Commands

Figure B3 Common Debug Command Routine

99

Figure B4 Common Debug Command Routine contd.

100

I

i E
i R'M
I

)
i N'A
I

I

i E
I

I L
Io
i O
I

Figure BS Terminate and Reference Modules

101

Appendix C

Flash EEPROM Programming

The software program for CONCOA is 3000 bytes long and thus needed to be

written into the 32K-byte long on board Flash-EEPROM. After assembling the codes

successfully, we took the following steps to transfer the whole program into the Flash-

EEPROM of the microcontroller.

Change the binary (user-assembled) file of the soitware (file type S

extension S19) to include the interrupt vectors for the timer and/or serial

interrupts

For the M68EVB912B32 microcontroller evaluation board, change the

jumper W3 and W4 to position 1 which is called the BOOTLOAD mode

to reprogram the Flash EEPROM with the user codes

Change the jumper setting for jumper W7 to VPP

Connect 12V DC to jumper Wg which is VPP — needed to program Flash

EEPROM

Now power up the evaluations board, you will see the following three

options available with this mode of operating the evaluation board.

(E) rase, (P) rogramm, (L) oad:

Hit E to erase the factory installed microcontroller evaluation board D-

Bug12 monitor/debugger program,

Once we are done with the erasure of the D-Bug12 program, hit P to

reprogram the Flash EEPROM with our code in the Flash EEPROM.

We used ProComm screen emulator sofiware to download the S19 binary

file for the codes of CONCOA software; other emulators such as

Microsoft windows™ HyperTerminal can also be used.

102

Once the system is done downloading the codes into the Flash EEPROM,

it will shoot a message 'programmed'n the terminal screen and then on

the next line it will display the three options to erase, program or load the

Flash EEPROM again

Finally to see the Software for CONCOA running trom the Flash

EEPROM, we need to change the board setting back to the evaluation

board mode and hit a reset if the CONCOA prompt does not pop up on the

Terminal display

103

Appendix D

Assembler and Screen Emulators

MS DOS™ and PkE editors were used to write the assembly codes for this

project. The software codes are assembled using IASM12, version 3.14 from PkE

Microcomputer Systems (for more information on this product visit the web site at

htt://www, emicro om/). This software program came with the purchase of 68HC12

microcontroller evaluation board.

A DOS™ or Windows™ based soAware emulator, such as: ProComm™

HyperTerminal, and MiniIDE™can be used to emulate the computer screen with 68HC12

microcontroller default prompt. For this project, the ProComm™ software is mostly used

to emulate the microcontroller's command-line interface on a standard display monitor.

The same software emulator is used to download the assembled binary codes (S record)

for CONCOA software to the Flash EEPROM to replace the default 'DBUG12'onitor/debugger

program, which is the default program (comes with the purchase of

Motorola's microcontroller evaluation board) to communicate with the microcontroller

evaluation-board. The same binary codes may also be downloaded using Windows™

based emulators, such as: HyperTerminal and MiniIDE™. Since the Flash EEPROM is

replaced with the sofhvare for this project, the monitor displays CONCOA prompt

(&CONCOA&), which is the command line interface for this software.

104

SYED N. HYDER

Home: (757) 440-5734
E- il:~ii r. i

DEGREES:
Master of Science (Computer Engineering), Old Dominion University, Norfolk, VA,

May 2002
Bachelor of Science (Electronic Engineering), N.E.D University, Karachi, Pakistan

November 1997
One year Diploma (Computer Maintenance), Sindh Board, Karachi, Pakistan

May 1996

PROFESSIONAL CHRONOLOGY:
CONCOA Corporation
Virginia Beach, Virginia

Graduate Researcher, January 1999 — December 2001

Technology Applications Center
Norfolk, Virginia

Network Administrator, May 1999 — August 2000

CONSULTING/PART TIME EMPLOYMENT:
Diner's Club International
Karachi, Pakistan

Intern, September 1997 — December 1997

Faith Computers
Karachi, Pakistan

Hardware Engineer, June 1995 — January 1998

TEACHING EXPERIENCE:
Old Dominion University
Norfolk, Virginia

Lab Assistant, September 2001- May 2002

PROJECTS:
~ Designed Microprocessor's ALU, FIR/IIR filters, and advanced digital circuits using

VHDL
~ Socket programming using TCP/IP and UDP/IP protocols to make client/server,

multi-group/multi-domain chatting software on a SUN Solaris platform using C

language

105

~ UNIX system and shell programming on a SCO UNIX platform
~ Designed an automatic multi-mode traflic light control system using Intel's 8075

microcontroller
~ Designed an I/O card for an IBM-compatible Personal Computer and wrote its device

driver in C and Assembly language

COMPUTER SKILLS:
~ Languages: C++, C, Assembly, VHDL, LabView, ORCAD, HTML, JavaScript
~ Simulation tools: Funsim, Simnet
~ Operating systems: Linux, UNIX (SCO, Solaris, HP)„Novell, Windows 98/NT/2000

k Macintosh
~ Packages: Adobe Photo shop, MS photo editor, MS Visio, MS FrontPage,

Office2000/XP suite

OTHER SKILLS:

~ ROM, EEPROM and Flash EEPROM programming experience
~ Wrote machine codes on Motorola's 6800 trainers
~ Worked with variety ofmicrocontrollers, such as: Intel's 8031/51,8075; Motorola's

68HC11/12
~ Worked with Motorola's microcontroller evaluation boards, such as: XC68HC912DO,

XC68HC12B32 and M68HC11E9BCFN2
~ Worked with analog/digital oscilloscopes, spectrum analyzer, Irequency counter,

function generator, digitaVanalog multimeter, etc.

LANGUAGES:

Reading and speaking competence in English and French

MEMBERSHIPS:

YMCA
French Cultural Center

	Embedded Software Programming to Develop a Command Line User Interface for Monitoring and Debugging a Manually Driven Gas Regulator Control System
	Recommended Citation

	tmp.1722430905.pdf.98aLE

