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ABSTRACT 

APPLICATION OF THE FOKKER-PLANCK EQUATION FOR QUANTIFYING INITIAL CONDITION 
UNCERTAINTY OF REVERSIBLE DYNAMIC SYSTEMS 

 
Troy Newhart 

Old Dominion University, 2023 
Director: Dr. Gene Hou 

 

 Characterizing the behavior of dynamic systems requires the inclusion of initial 

conditions to propagate behavior forward in time. More realistic representations of system 

behavior quantify uncertainty about the initial conditions to assess sensitivity, reliability, and 

other stochastic response parameters. In many engineering applications, the uncertain initial 

conditions may be unknown given a desired response. This research applies the Fokker-Planck 

equation to reversible dynamic systems of select multi-dimensional nonlinear differential 

equations as a means for predicting the uncertainty about initial conditions. An alternating 

directions implicit numerical scheme is used to numerically solve the Fokker-Planck equation 

for both forward and reversed equations of motion. Initial conditions are predicted for a linear 

oscillating system, nonlinear trim solution, and atmospheric reentry equations. A use case is 

presented where the initial atmospheric entry conditions are predicted for a Mars reentry 

vehicle given a landing zone and parachute deployment response conditions. Monte Carlo 

simulations are also implemented to verify the outputs of the numerical scheme. Additional 

verification is conducted by comparing forward and reverse transient results of each problem 

set.  It is shown that the initial conditions can be adequately predicted using the presented 

methodology. Computational resources quickly become a limitation as additional dimensions of 

variability are added to the problem. 
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NOMENCLATURE 

 

Ai Drift Vector 

Bij Diffusion Matrix 

Bt Wiener Process 

c Initial Conditions 

CD Drag Coefficient 

d Great Circle Distance 

D Drag Force 

E[ ] Expectation 

f Function 

g Gravitational Constant 

G System Noise Mapping 

h Altitude 

J Jacobian 

m Mass 

M Number of dimensions 

n Number of time steps 

N Number of nodes 

p Probability Density 

pr Pressure 

R Sperical Radius 

Sref Reference Area 
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t Time 

T Temperature 

x State Variable 

Xt Stochastic Process 

ξμ Random Excitation 

μ Drift coefficient 

μc Trim coefficient 

σ Diffusion coefficient 

τ New Time 

ρ Density 

ω Angular Velocity 

φ Latitude 

λ Longitude 

1,2,…,M Specific state 

0 Initial condition 

i,j Indexing points 
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, the reader is introduced to concepts of uncertainty and the relationship 

uncertainty has with dynamic processes. Of primary note for this research is a reentry problem 

of a space vehicle within the atmosphere of Mars. The primary objective of this research is then 

defined and expanded upon. The remaining scope if this dissertation is then discussed. 

1.1 BACKGROUND 

Uncertainty is an inherent aspect of all facets in engineering, ranging from epistemic 

(uncertainty in the knowledge of a system or phenomenon) to aleatoric (randomness 

encountered in nature) [1]. The propagation of uncertainty, or uncertainty quantification (UQ), 

has been a topic of interest to the scientific community for decades, gaining much of its traction 

with the advent of computers [2]. Derivation of methods combining classical deterministic 

engineering approaches with stochastic elements of uncertainty have been a natural means to 

advancing the field of UQ and provide not only the ability to assess the impact of uncertainty on 

system properties but also system reliability and parameter sensitivities. UQ can be further 

categorized into the forward and inverse problems [3] where the forward problem aims to 

propagate system uncertainty through a model. Forward problems are the most prevalent in 

literature and span a wide array of problem sets to determine parameter sensitivity, response 

statistics, failure likelihood, etc. Inverse UQ attempts to determine input randomness given 

response data. Model calibration using Bayesian approaches is a common example of inverse 

UQ.  Many methods have been developed and modified throughout the years to solve a 
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multitude of forward and inverse UQ problems. As the digital age progresses, modeling and 

simulation (M&S) continues to advance and become an essential component of projects 

throughout many disciplines of study. Benefits of implementing M&S are well documented, 

demonstrating cost and time savings as well as a better understanding of modeled systems [4]. 

Although computational M&S has advanced significantly in the past decade, demand for faster 

M&S at higher fidelity introduces complexities that require innovative techniques [5, 6]. Of the 

many complexities that must be overcome to further M&S capabilities, uncertainty remains a 

central topic. 

Traditional approaches in engineering problems simplify quantification by handling 

uncertainties as deterministic values [7]. This approach is common in most undergraduate 

curriculum as the reinforcement of fundamentals is of primary concern. This can be done using 

mean values from test data (Modulus of Elasticity, specific impulse of a batch of solid rocket 

fuel, ducting conditions off the coast of California at a specific time of the year, etc.) or by 

taking some worst-case measurement (highest flood condition, lowest shear strength to failure, 

etc.) and applying a factor of safety. In general, the deterministic process has proven insightful, 

efficient, and useful toward engineering design and analysis. The major downside occurs in the 

resulting outputs and the inability to assess how input variability propagates through a system 

or process. This downside continues to become more protuberant as system design complexity 

increases, especially amongst system-of-systems structures and simulations. Adequately 

quantifying and propagating this uncertainty through a model elevates the fidelity at which we 

may assess the system; revealing information that would not have been found otherwise. Of 

particular interest for this research is the UQ applied to dynamic systems. 
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Literature is abundant in presenting dynamic problems characterized by differential 

equations that describe the motion of its specific system given initial conditions, boundary 

values, model coefficients, etc. The ability to determine responses of systems with uncertain or 

random parameters is the natural extension of these deterministic approaches and yields a 

transient stochastic system, or stochastic process. A stochastic process, much like its 

deterministic counterpart, may be represented by a differential equation but requires new or 

modified solution methods due to the added stochastic aspects [8]. Examples demonstrate the 

novelty of assessing the transient nature of not only a stochastic process marching forward in 

time but also (given a desired response) marching backward in time, allowing for a 

determination of initial conditions and the uncertainty about them. The novelty here being a 

direct application of the Fokker-Planck equation to forward and reverse reentry dynamics. 

Although multiple examples are explored in this research, the primary example explored relates 

to uncertainty within the initial conditions of a space reentry vehicle.  

Reentry vehicles entering an atmosphere follow a set of equations of motion that 

characterize the flight path to an impact point on a planet’s surface. Forward UQ applied to this 

problem allows for the assessment of potential impact regions. The benefits of which are 

obvious when looking to avoid regions that may have drastic elevation changes, populated 

areas, environmental concerns, etc. Although literature is present on the topic of the forward 

problem applied to this scenario, it is sparse. Literature pertaining to the inverse problem in this 

context is even more uncommon. Enabling engineers to solve the inverse stochastics of a 

dynamic system provides the ability to assess initial conditions given system responses (or 

desired responses). Finding ideal input conditions and uncertainty bounds may influence design 
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or employment strategies. In the case of assessing the landing of a vehicle on the surface of 

Mars, eight potential landing points were identified by NASA scientists [9] depicted in Figure 1. 

If an area in the Holden crater is chosen, a joint normal distribution can be defined about the 

Martian latitude and longitude as an optimal landing location as seen in Figure 2 where the 

“hotter” regions depict a desired higher probability of that area being the landing zone. 

 

 

Figure 1. Potential Landing Sites, ref. [9] 
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Figure 2. Holden Crater Preferred Landing Zone, ref. [9] 

 

Although a joint distribution of latitude and longitude may characterize the desired 

landing zone within the Holden crater, additional dimension are also of interest to include 

velocity and flight path angle. Visualizing and quantifying higher dimensional joint distributions 

add another level of complexity to adequately assessing the initial conditions necessary to 

reach a satisfactory state that allows for a safe landing within the specified region. 

1.2 OBJECTIVES 

The objective of this dissertation is to derive and apply a scheme for solving the 

uncertainty about initial conditions of dynamic systems given a desired response. Examples are 

first assessed on single and 2-dimension cases for intuitive purposes. Consideration of higher 

dimensions is necessary when observing reentry equations of motion or other flight path 

computations. The primary applicable case is considered for determining bounds on uncertain 

initial conditions for a reentry body given impact criteria described in Section 1.1.  
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The employment of Kolmogorov’s forward (Fokker-Planck equation) is observed 

assuming that no diffusion (no random excitation) occurs for both the forward and reverse 

dynamics of a system. Diffusion is investigated and shown to cause large instabilities within 

outputs. The alternating directions implicit numerical method is leveraged to solve Fokker-

Planck formulations of the various examples. Monte Carlo Simulations are leveraged as 

verification cases for the methodology.  

1.3 SCOPE 

Chapter 2 provides a comprehensive literature survey of the field of uncertainty 

quantification as applied to engineering, specifically time-dependent differential equations. An 

overview of stochastic time-dependent differential equations, types of uncertainty inherent in 

engineering problems, stochastic characterization of uncertainty, forward and inverse methods, 

and numerical methods are all discussed at length. The literature survey concludes with a 

discussion of current methods for characterizing uncertainty in dynamics with emphasis on 

flight path uncertainty of reentry vehicles. 

Chapter 3 depicts the derivation and methodology for using the presented forward and 

inverse uncertainty quantification schemes. The probability density is computed using a finite 

difference numerical method for solving a diffusion-less Fokker-Planck (FP) equation. Numerous 

accounts for solving the FP equation in this manner are available and discussed. The forward 

problem is presented primarily for completeness of the subject matter. The novel approach 

presented for solving the reverse kinematics is then derived. This approach requires 

modification to system equations of motion and implementation of a numerical scheme that 

computes the inputs of the stochastic process backwards through time.  
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Academic example problems demonstrating the forward and inverse computation of 

uncertain system response and initial conditions are depicted in Chapter 4. The example 

problems advance in difficulty starting with the observation of a linear oscillating system. The 

next problem then depicts a nonlinear set of equations. Both initial cases provide differential 

equations composed of 2 dimensions. Chapter 5 depicts the primary reentry cases for both 

Earth and Mars reentry. For this final case, equations of motion containing higher order of 

dimensions are observed as compared to the academic examples of Chapter 4. These chapters 

depict the method using ADI for solving these problem sets as compared to Monte Carlo 

Simulations for validation.  

The report is concluded with Chapter 6. A discussion of the results is presented followed 

by final thoughts on the proposed methods. This includes the accuracy and computational 

efficiency of the various methods employed. Future work is discussed to close out the report 

and provide a comprehensive starting point for follow on work aimed to improve and expand 

this research. Appendices are provided listing out MATLAB® scripts used to generate results for 

this research.   
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CHAPTER 2 

LITERATURE REVIEW 

 

A comprehensive literature review is discussed in this chapter, expanding upon multiple 

fields that build upon the novel approach presented in this research. A stochastic differential 

equation and stochastic process are presented first as these are the primary building blocks for 

assessing uncertainty within system dynamics. Various methods for characterizing uncertainty 

within system inputs is then reviewed. After characterizing uncertainty, methods for 

quantifying it over a process are presented. An in depth look at the primary method used in this 

research (the Fokker-Planck equation) is then studied along with respective numerical 

approaches.  

2.1 STOCHASTIC DIFFERENTIAL EQUATIONS 

Differential equations (DE) are commonly formulated to describe the motion of a 

system. The derivation and application of DEs cover a wide range of topics discussed in 

numerous academic texts. Differential equations with random functions (i.e. uncertain initial 

conditions, random excitations, stochastic coefficients) formulate a stochastic process [8] that 

can be expressed in one of two ways [10]. The first is described as the stochastic differential 

equation (SDE) with no random excitation as depicted in Equation (1). This follows a more 

traditional DE with the addition of some randomness, whether it be in the initial condition (𝑐), 

boundary constraints, or coefficients of the function 𝑓. Given the addition of some random 

excitation or noise (𝜉), Equation (2) is leveraged for characterizing the SDE where 𝐺 is a 

mapping of system parameters to the noise component. The three types of randomness that 
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may be contained in an SDE are: initial conditions, model coefficients, and excitations. These 

types may be observed in varying levels and configurations dependent on the problem space 

being explored. Both equations are indicative of a Markov process, defined as a stochastic 

process in which the future states are derived solely from knowledge of the present state 

(initial conditions) and do not depend on information of the system from past states [11]. 

 𝑥̇ = 𝑓(𝑡, 𝑥),  𝑥0 = 𝑐 (1) 

 

 𝑥̇ = 𝑓(𝑡, 𝑥) + 𝐺(𝑡, 𝑥)𝜉,  𝑥0 = 𝑐 (2) 

 

Equation (2) is commonly represented in the Langevin form as Equation (3). Where 𝜇 is 

considered the drift coefficient, 𝜎 is the diffusion coefficient, and 𝐵𝑡 is a Wiener process 

representing the integral of a Gaussian white noise process. 

 𝜉̇𝑖 = 𝜇𝑖(𝝃, 𝑡)𝑑𝑡 + 𝜎𝑖𝑗(𝝃, 𝑡)𝑑𝐵𝑡 (3) 

 

Statistical calculus and numerical methods provide approaches for computing the time 

dependent stochastic process 𝑋𝑡 over a probability space. These methods are described further 

in Sections 2.3 and 2.4. 

What is observed in later example problems are discrete-time Markov chains, a Markov 

processes on a finite state space. Stationary and nonstationary categories compose Markov 

processes describing whether the distribution remains the same over time (stationary) or 

changes (nonstationary) [12]. The stationary system can also be thought of as “time-invariant”, 

such as the addition of small perturbations of inputs due to background noise (Gaussian White 
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Noise) [13]. Response distributions in many cases can vary drastically from the initial 

distributions observed over a space. Figure 3 depicts this change in the distribution of a linear 

oscillator where the initial position is a Gaussian distribution centered on 5 units with a small 

standard deviation.  

 

  

Figure 3. Nonstationarity of Position for a Linear Oscillator 

 

The linear oscillator example is a benign example of a nonstationary system, where the 

response is still found to be Gaussian with a different mean and standard deviation. In many 

cases, the response may evolve into a completely different distribution. New distributions may 

or may not be characterized by a function, adding to the difficulty in quantifying transient 

response PDFs.  

2.2 CHARACTERIZATION OF UNCERTAINTY 

As previously discussed, stochastic differential equations may contain uncertainty in 

initial conditions, model coefficients, and/or excitations. The uncertainty, or randomness, 

inherent in these parameters has already been depicted for the linear oscillator example. In 



11 
 

general, PDFs are powerful functions for characterizing the variability of some parameter or set 

of parameters in a random sampling. Quantifying statistical properties of a parameter follows a 

systemic process inclusive of data collection, statistical analysis, and probability distribution 

assessment. Random variables may be of a discrete (random variable describes some integer) 

or continuous (random variable consists of an infinite range of values on a number line) nature 

[14]. Through empirical data or known probabilities of system inputs, probability mass 

functions (discrete) and probability density functions (continuous) are used to characterize the 

randomness of an input variable. When multiple random variables are assessed, the ability to 

observe their combined probabilities is called a joint PDF. Marginal PDFs then define the 

observation of a single variable that has all other variable effects removed from its 

computation. Conditional probability distribution is then the probability of one variable 

conditional on the values of another variable.  

In many research fields, the use of a Gaussian distribution is of primary interest due to 

its span, symmetry, and statistical characteristics. Although Gaussian distributions are 

commonly used, they are not necessarily the most representative of engineering systems. 

Additional PDFs of interest to the engineering community include continuous functions such as 

lognormal, uniform, triangular, Rayleigh, and beta distributions and discrete functions including 

binomial, Poisson, Bernoulli, and exponential distributions. The information that is stored 

within a PDF allows for computation of stochastic moments, probabilities, and cumulative 

distribution function of the system subject to a normalization condition depicted in Equation 

(4), where Pr is the probability, 𝑝(𝑥) is the probability distribution of some continuous 
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distribution, and 𝑥 is the random variable [15]. These properties make PDFs powerful tools for 

understanding the statistics of a system. 

 
Pr(−∞ < 𝑥 < ∞) = ∫ 𝑝(𝑥) 𝑑𝑥 = 1

∞

−∞

 
(4) 

 

Table 1 depicts a list of common PDFs found in engineering applications and may be 

used as a reference for subsequent example problems, where 𝜇𝑋 is the mean and 𝜎𝑋 is the 

standard deviation [14, 16]. Γ is a factorial function that may be evaluated using the process 

defined in Appendix 2 of [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Table 1. Common Probability Distribution Functions in Engineering 

Continuous Functions 

Distribution PDF Use Cases 

Gaussian 
 𝑓𝑋(𝑥) =

1

𝜎𝑋√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑥−𝜇𝑋

𝜎𝑋
)
2
] ,

−∞ < 𝑥 < ∞  

Random vibration [14], 
generalizations of parameters with 

no a priori knowledge 

Lognormal 
 𝑓𝑋(𝑥) =

1

𝜁𝑋𝑥√2𝜋
𝑒𝑥𝑝 [−

1

2
(
ln (𝑥)−𝜆𝑋

𝜁𝑋
)
2
] ,

0 < 𝑥 < ∞  

Variables physically cannot be 
negative, defined by logarithmic 

parameters 𝜁𝑋 (Eq. 5) and 𝜆𝑋 (Eq. 6) 

Uniform 𝑓𝑋(𝑥) =
1

𝑏−𝑎
, 𝑎 < 𝑥 < 𝑏    

Equally probable outcomes over 
specified bounds a and b 

Triangular 𝑓𝑋(𝑥) =
(𝑏−𝑐)−|𝑐−𝑥|

(𝑏−𝑐)2
, 𝑎 < 𝑥 < 𝑏     

Centrally probable outcomes over c 
and specified bounds a and b 

Rayleigh  𝑓𝑋(𝑥) =
𝑥

𝜎2 𝑒𝑥𝑝 [−
𝑥2

2𝜎2] , 0 < 𝑥 < ∞   

Chi squared distribution with 2 
degrees of freedom, assesses peak 

values  

Beta 
𝑓𝑋(𝑥) =

1

𝐵(𝑞, 𝑟)

(𝑥 − 𝑎)𝑞−1(𝑏 − 𝑥)𝑟−1

(𝑏 − 𝑎)𝑞+𝑟−1
, 

𝑎 ≤ 𝑥 ≤ 𝑏, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

A flexible distribution over specified 
bounds a and b where q and r are 
Beta function (Eq 7) parameters 

estimated through their relationship 
with mean and variance (Eq. 8 and 

9) 

Discrete Functions 

Distribution PDF Use Cases 

Binomial 𝑃(𝑋 = 𝑥, 𝑛|𝑝) = (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥  

Characterizes the randomness of a 
pass/fail event or systems with only 
2 discrete outcomes given n number 

of observations 

Poisson 𝑃(𝑥 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒) =
(𝜐𝑡)𝑥

𝑥!
𝑒−𝜐𝑡   

Probability of several events 
occurring over time (t) and event 

occurrence per time (𝜐). 

Bernoulli 𝑃(𝑘) = {
𝑝, 𝑘 = 1

1 − 𝑝, 𝑘 = 0
     

Probability that a system is at a 
specific state (k). 

Exponential 𝑃(𝑇 > 𝑡) = 𝑒−𝜐𝑡    
Probability that no events occur 

over time. 

 

 

 
𝜁𝑋

2 = ln [1 + (
𝜎𝑋

𝜇𝑋
)
2

] 

 

(5) 
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𝜆𝑋 = ln(𝜇𝑋) −

1

2
𝜁𝑋

2 

 

(6) 

 
𝐵(𝑞, 𝑟) =

Γ(q)Γ(r)

Γ(q + r)
 

 

(7) 

 
𝐸(𝑋) = 𝑎 +

𝑞

𝑞 + 𝑟
(𝑏 − 𝑎) 

 

(8) 

 
𝑉𝑎𝑟(𝑋) =

𝑞𝑟

(𝑞 + 𝑟)2(𝑞 + 𝑟 + 1)
(𝑏 − 𝑎)2 (9) 

 

All three of the random cases described above are intrinsic to engineering problems and 

experiments. Attempts to create more realistic models require uncertainty of all three to some 

capacity. This allows for sensitivity analysis of system responses to the corresponding variability 

introduced by uncertain inputs [17] and reliability of engineering design [18]. Probabilities and 

statistical moments of response variables provide insight as to the risk that is taken in specific 

design or implementation of a system. For the example described in Chapter 1, after assessing 

the uncertain inputs, a probability is computed for where the reentry vehicle will land. If some 

significant portion of the probability overlays an area that could result in mission failure, this 

area is the risk given specific design and implementation parameters.  

The first source of randomness discussed is introduced via initial conditions. Generally, 

initial conditions are provided to solve differential equations (initial value problems). Applying 

variability to these inputs can characterize events such as but not limited to weather prediction 

[19, 20], structural geometry [21], spread of disease [22], and (of particular interest to this 
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research) initial kinematics of dynamic systems [23-26]. Additionally, randomness can be 

attributed to model coefficients as well. This uncertainty is observed within the equations that 

have been derived for characterizing a system. Some examples of random coefficients include 

ballistic coefficients [27], modulus of elasticity [21], or basically any coefficient within a 

mathematical model. The final random type is that of the excitation applied to a model. This 

random excitation may encompass events such as sea state, wind load, vehicle vibration over 

an interstate, etc. [28].  

The accurate characterization of uncertainty within a differential equation is an 

important step toward representing realistic responses of systems through modeling and 

simulation. Numerous experiments are conducted to adequately quantize the variability 

surrounding random inputs so that the community may better represent these systems through 

modeling and simulation. Unfortunately, these stochastic parameters or PDFs cannot be 

directly applied to deterministic equations and models. 

2.3 FORWARD/INVERSE METHODS FOR UNCERTAINTY QUANTIFICATION 

Various methods have been derived for propagating the different types of uncertainty 

discussed above, and new methods continue to be a topic of research to minimize 

computational cost while maximizing accuracy of results. As defined in Section 1.1, UQ can be 

categorized as forward and inverse problems where the propagation of uncertainty through 

either category is done using unique derivations of system equations or processes. In the case 

of forward UQ, the most popular method is the non-intrusive [29] Monte Carlo Simulation 

(MCS). The MCS method may be applied to systems with uncertain initial conditions, model 

coefficients, and excitations. This is unique as other methods seldom handle uncertainty of all 
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three categories. Another unique attribute of MCS is the ability to compute transient response 

PDFs. It was discussed in section 2.2 that these response PDFs through time provide critical 

information as to the stochastic properties of a system. Other methods such as Taylor series 

expansion [30] and polynomial chaos [31] are examples of forward methods that can handle 

various degrees of uncertainty for a wide array of problems. Of primary concern in this research 

are specific methods used to determine the uncertainty associated with initial conditions.  

A great deal of literature is available on MCS and its diverse applications. Devised during 

World War II by John von Neumann and Stanislaw Ulam to improve decision making given 

stochastic inputs [32], the Monte Carlo method quickly spread to countless disciplines where its 

use made for better decision-making strategies when faced with uncertainty. No limitations 

exist for number of random variables, or the distributions used to characterize the random 

variables. Use of this method is simple, as its process is easily applied to any existing model. 

Uncertain values with known probability distribution are set as inputs for a simulation. A 

random number is generated to select samples and discretize the problem. The simulation is 

then run, generating desired outputs. This process is repeated a finite number of times to 

achieve a desired accuracy of results [33]. Limitations of this method are dependent on 

computational resources. A variety of “smart sampling” techniques have been explored to 

minimize computational resources while adequately characterizing the uncertain space. Due to 

the simplicity, applicability, and history of MCS, it is commonly used to validate new processes. 

MCS is employed in the example problems of Chapters 4 and 5 as ground truth for comparison 

of the presented method. 
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For completeness, it is important to mention the existence of closed form solutions for 

computing responses of systems with uncertain inputs. Various closed form solutions have 

been developed to characterize uncertainty within systems. The major limitation with these 

methods is their applicability and robustness. Closed form solutions are generally derived from 

first principles of the specific system being assessed and are dependent only on factors 

identified as significant at the time of derivation. An example of a closed form solution of 

propagating uncertainty in mechanical design is presented in [34]. The number of cycles to 

failure is computed for mechanical designs under varying loads using Manson’s method. This is 

done by establishing a maximum and minimum stress, along with many table lookups to 

characterize defects in the material. For each cycle, mean and alternating stresses are 

computed from the defined minimum and maximum stress. Each cycle is assessed for damage 

and summed until a threshold is met indicating mechanical failure. It is obvious here that no 

true randomness is applied to the problem. This closed form solution, much like many others, 

leverages a mean value given knowledge of the min and max characteristics of a specific 

system. Not only is this method limited to computing cyclic loading of mechanical systems, but 

it is also assuming a uniform distribution of the loads. 

The first inverse UQ of initial conditions that is assessed is the Mean Square Method 

presented in [10]. Given the initial state and a random initial condition depicted in Equations 

(10) and (11), assume an explicit solution can be found as depicted in Equation (12). 

 𝒙̇(𝑡) = 𝑓(𝒙(𝑡), 𝑡) 

 

(10) 

 𝒙(𝑡0) = 𝒙0 (11) 
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 𝒙(𝑡) = ℎ(𝒙0, 𝑡) 

 

(12) 

The inverse is then assessed to determine the initial conditions. 

 𝒙0(𝑡) = ℎ−1(𝒙, 𝑡) 

 

(13) 

The determinate of the Jacobian of Equation (13) is then found using Equation (14) and used to 

determine the joint density function of the initial conditions as depicted in Equation (15). 

 |𝐽| = |
𝜕𝒙0

𝑇

𝜕𝒙
| (14) 

   

 𝑓(𝒙, 𝑡) = 𝑓0[𝒙0 = ℎ−1(𝒙, 𝑡)]|𝐽| (15) 

 

This method is useful in providing an analytic probability density function that characterizes the 

initial conditions based on response variability. Unfortunately, this method requires defined 

distribution functions for response variables as well as an analytical solution for the systems 

differential equation. Having this information is rare in realistic engineering problems. Other 

methods like the Mean Square Method compute initial conditions using processes such as 

multivariate intervals [35], stochastic adaptive interpolation [25], and alpha path equation [36].   

 Although numerous methods exist for determining uncertainty in initial conditions of a 

physical system, they are limited in applicability and scope. Requirements of formulating an 

analytical solution, dimensionality, and defining response PDFs can be severely limiting in 

engineering problems. This is less true with propagating uncertain initial conditions forward in 
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time using MCS, but computational resources are always a concern when employing this 

method. Efficiently solving physical system ODEs with uncertain initial conditions that do not 

meet the requirements of the previous methods, [37] derives a Partial Differential Equation 

(PDE) that is capable of computing the transient PDF of an ODE as depicted in Equation (16). 

Upon further investigation, Equation (16) is the Fokker-Planck equation of a stochastic 

differential equation with zero diffusion (no random excitation) also known as the Liouville 

equation. Here 𝑡 is time, 𝑝(𝒙, 𝑡|𝒙0, 𝑡0) is the probability density as a function of the variable 

vector given initial conditions, 𝑑 is the number of variables, and 𝐴𝑖(𝒙, 𝑡) is the drift vector. 

 𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0) = −∑

𝜕

𝜕𝑥𝑖
(𝐴𝑖(𝒙, 𝑡)𝑝(𝒙, 𝑡|𝒙0, 𝑡0))

𝑑

𝑖=1

 
 

(16) 

 

2.4 FOKKER-PLANCK EQUATION 

Originally derived to describe Brownian motion of particles in 1914, the Fokker-Planck 

(FP) equation is a second order parabolic PDE also known as the forward Kolmogorov equation 

[38]. The FP equation provides an “equation of motion for the distribution function of 

fluctuating macroscopic variables,” or, in simpler terms, characterizes the variability 

surrounding some motion (described by an ODE) throughout time given uncertainty in initial 

conditions or random excitation. Also known as Kolmogorov’s Equations or Smoluchowski 

Equation; the FP equations origins are rooted in various scientific derivations that lead to 

varying forms of what is now primarily known as the FP equation [39]. The most rigorous 

derivation stems from the differential Chapman-Kolmogorov equation, composed of drift, 

diffusion, and jump characteristics. Derivations of this form and others are available in [24, 37, 
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39]. Following one of the more popular derivations [38] a set of stochastic variables is defined 

as 𝝃 = 𝜉1, 𝜉2, … , 𝜉𝑁,  where N is the total number of random variables. Equation (17) 

demonstrates the relationship between a probability density (𝑃(𝑥, 𝑡 + 𝜏)) and its transition 

(𝑃𝑡𝑟(𝑥, 𝑡 + 𝜏|𝑥0, 𝑡)) at some new time (𝜏) and initial conditions (𝑥0) for a single variable case.  

 𝑝(𝑥, 𝑡 + 𝜏) = ∫𝑝𝑡𝑟(𝑥, 𝑡 + 𝜏|𝑥0, 𝑡)𝑝(𝑥0, 𝑡)𝑑𝑥 (17) 

Assuming all moments of the transition probability are defined by Equation (18) for 𝑛 ≥ 1, the 

transition probability may be expanded using a variety of techniques. 

 

𝑀𝑛(𝑥0, 𝑡, 𝜏) = 〈[𝜉(𝑡 + 𝜏) − 𝜉(𝑡)]𝑛〉|𝜉(𝑡)=𝑥0

= ∫(𝑥 − 𝑥0)
𝑛𝑝𝑡𝑟(𝑥, 𝑡 + 𝜏|𝑥0, 𝑡)𝑑𝑥 

(18) 

Defining Δ = 𝑥 − 𝑥0, the integrand in Equation (17) may be expanded in a Taylor series as: 

 

𝑝𝑡𝑟(𝑥, 𝑡 + 𝜏|𝑥0, 𝑡)𝑝(𝑥0, 𝑡)

= 𝑝𝑡𝑟(𝑥 − Δ + Δ, 𝑡 + 𝜏|𝑥 − Δ, 𝑡)𝑝(𝑥 − Δ, 𝑡)

= ∑
(−1)𝑛

𝑛!
∆𝑛 (

𝜕

𝜕𝑥
)
𝑛∞

𝑛=0

𝑝𝑡𝑟(𝑥 + ∆, 𝑡 + 𝜏|𝑥, 𝑡)𝑝(𝑥, 𝑡) 

(19) 

Applying this to Equation (17) and integrating over Δ leads to the formulation in Equation (20). 

 𝑝(𝑥, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑡) = ∑ (−
𝜕

𝜕𝑥
)
𝑛∞

𝑛=1

[
𝑀𝑛(𝑥, 𝑡, 𝜏)

𝑛!
] 𝑝(𝑥, 𝑡) (20) 

Expanding the moments using Taylor series about 𝜏 results in the following equation: 

 
𝑀𝑛(𝑥, 𝑡, 𝜏)

𝑛!
= 𝐷(𝑛)(𝑥, 𝑡) + 𝑂(𝜏2) (21) 

Where the Kramers-Moyal operator is defined as: 
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 𝐿(𝑥, 𝑡) = ∑ (−
𝜕

𝜕𝑥
)
𝑛∞

𝑛=1

𝐷(𝑛)(𝑥, 𝑡) (22) 

And yields: 

 𝑝(𝑥, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑡) = ∑ (−
𝜕

𝜕𝑥
)

𝑛

𝐷(𝑛)(𝑥, 𝑡)

∞

𝑛=1

𝑝(𝑥, 𝑡) (23) 

After omitting the case where 𝜏 = 0 (because no change in time yields no change in the 

probability density from its initial conditions), an infinite sequence of coefficients is observed 

for defining the transitional scale of the probability density. The coefficients 𝐷(𝑛)(𝑥, 𝑡) are 

attainable from the functions defining the stochastic differential equation of interest. From the 

Langevin form defined in Equation (3), the first two coefficients of the series are derived [38]. 

These coefficients are the drift (𝐴𝑖(𝒙, 𝑡)) and diffusion (𝐵𝑖𝑗(𝒙, 𝑡)) coefficients, where all other 

coefficients (𝑛 > 2) are equal to zero. 

 𝐴𝑖(𝒙, 𝑡) = lim
𝜏→0

1

𝜏
〈𝜉𝑖(𝑡 + 𝜏) − 𝑥𝑖〉|𝜉𝑘(𝑡)=𝑥𝑘

, 𝑘 = 1,2, … ,𝑁 (24) 

 

 
𝐵𝑖𝑗(𝒙, 𝑡) =

1

2
lim
𝜏→0

1

𝜏
〈[𝜉𝑖(𝑡 + 𝜏) − 𝑥𝑖][𝜉𝑗(𝑡 + 𝜏) − 𝑥𝑗]〉|𝜉𝑘(𝑡)=𝑥𝑘

,

𝑘 = 1,2, … , 𝑁 

(25) 

 

 Knowing the deterministic differential equations of a system provides the necessary 

information for obtaining the drift coefficients. For Brownian motion that is applicable to the 

diffusion coefficient, problem heuristics may define the matrix scaling coefficients [38]. 

Obtaining the coefficients simply requires a decomposition of the system into a set of first-
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order equations that define its motion. Inserting Equations (24) and (25) into Equation (23) 

yields the traditional Fokker-Planck (forward Kolmogorov) equation.  

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −∑
𝜕

𝜕𝑥𝑖

[𝐴𝑖(𝒙, 𝑡)𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

𝑖

+ ∑
1

2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝐵𝑖𝑗(𝒙, 𝑡)𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

𝑖,𝑗

 

(26) 

Mathematically, the FP equation is known as a diffusion process. Many diffusion 

processes found in literature are driven by a standard Wiener process (Gaussian White Noise 

excitation) [40], although other formulations have been explored to provide non-Gaussian 

excitation to a system [41]. As mentioned above, many cases may exist where the Brownian 

motion is determined heuristically. In the case where no diffusion exists, Equation (26) can be 

further decomposed resulting in a special case of the Liouville’s Equation which was depicted 

earlier in Equation (16).  

2.4.1 FINDING THE DRIFT VECTOR 

 FP formulations result in nonlinear PDEs that describe the transient nature of a systems 

probability distribution. The states are specific to ODEs with uncertain initial conditions and 

random excitation. The drift vector is created directly from the set of first-order ODEs used to 

specify a system, whereas the diffusion matrix is subject to not only a vector of magnitudes but 

also the equations defining its randomness. Applying diffusion in the reverse case incorporates 

large instabilities within the solution sets as explained in later sections. For this reason, the 

diffusion-less process is of primary concern for this research and derivation of the drift vector is 
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prioritized. For example, consider the differential equation characterizing a linear oscillator 

depicted in Equation (27), where  𝑥 is position, 𝑥̇ is velocity,  𝑥̈ is acceleration, 𝑘 is spring 

stiffness, and 𝑐 is the damping factor. There is no random excitation in this problem statement, 

so the diffusion matrix can be neglected for now. 

 𝑚𝑥̈ = −𝑘𝑥 − 𝑐𝑥̇ (27) 

   

Let 𝑥1 = 𝑥 and 𝑥2 = 𝑥̇, such that Equation (27) can be described by a set of ordinary differential 

equations depicted in Equation (28). 

 [
𝑥̇1

𝑥̇2

] = [

𝑥2

−
𝑘

𝑚
𝑥1 −

𝑐

𝑚
𝑥2

] (28) 

 

The drift vector is then taken as this set of ordinary differential equations and substituted as 

the 𝐴𝑖(𝒙, 𝑡) vector in Equation 26. After differentiating, and observing no random excitation 

(𝐵𝑖𝑗(𝒙, 𝑡) = 0) the FP equation for the linear oscillating system is: 

  

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −𝑥2

𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

+
𝜕

𝜕𝑥2
[(

𝑘

𝑚
𝑥1 +

𝑐

𝑚
𝑥2) 𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

(29) 

 

Equation (29) is the product of a relatively simple dynamic system. Provided with simple joint 

probability distributions characterizing the behavior of each state, an analytical solution is 
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possible. As the joint distribution increases in complexity, numerical methods are necessary to 

solve for each state. Add to this a case where diffusion is present and the need for numerical 

methods becomes more prevalent.  

 For completeness a brief discussion on the diffusion matrix is presented although this 

matrix is omitted for much of the research due to limitations explained in Section 3.2. 

Generally, the diffusion matrix is composed of scaling factors that are applied to some level of 

randomness usually in the form of Gaussian white noise [48]. Scaling factors are obtained from 

experimental data, trial and error, or educational assumptions. Other levels of randomness may 

be applied but further complicate the ability to numerically solve the FP equation. 

2.4.2 ALTERNATING DIRECTION IMPLICIT NUMERICAL METHOD 

Given the nonlinear nature of transient PDF equations, there is seldom an analytical 

solution available (primarily only cases containing linear systems driven by Gaussian excitations 

[42]).  Numerical methods such as finite elements and finite differences are well documented 

[43-44] with [45] providing a comprehensive comparison of the two as applied to the FP 

equation. From [45], the Alternating Directions Implicit (ADI) finite difference method was 

adopted for use in this research due to its accuracy, computational efficiency, and ability to 

handle multi-dimensional problem spaces. ADI solves finite difference steps in each direction 

separately, implicitly for one dimension and explicitly for all other dimensions resulting in stable 

formulations. For a two-dimensional problem over variables 𝑥1 and 𝑥2, the initial steps of ADI 

for the FP equation are depicted in Equations (30) and (31) where the 𝐴 and 𝐵 matrices are 

derived as tridiagonal coefficients. The 𝐴 matrix is composed of coefficients defined over each 

node given the value of the central difference of the specified state equation of motion, where 
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N is the total number of nodes defined for all directions and M is the total number of 

dimensions. 

 𝐴𝑥𝑀
≡

[
 
 
 
 
 
 
 
 

𝑟1 𝑞1 0 0 0

𝑠1 𝑟2 𝑞2 0 0

0 𝑠2 ⋱ ⋱ 0

0 0 ⋱ ⋱ 𝑞𝑁−1

0 0 0 𝑠𝑁−1 𝑟𝑁 ]
 
 
 
 
 
 
 
 

 (30) 

where: 

 [
𝒒
𝒓
𝒔
] = [

𝒙̇𝑀|1:𝑁−1

𝟎|1:𝑁

−𝒙̇𝑀|1:𝑁−1

] (31) 

 

A series of tridiagonal matrices are formulated for each dimension 1 through M. The 

diffusion matrix (if existing) is formulated similarly using scaling factors defined from heuristics 

applied to a tridiagonal matrix of ones. The 𝒓 vector in the case of no diffusion ends up being 

zeros. The transient probability distribution may then be solved using Equations (32)-(33) for a 

two-dimensional case, where 𝒑 is a vector of the probability density at each node of the finite 

difference grid for the specified time step. 

 (𝐼 −
∆𝑡

2
[

𝐴𝑥1

2∆𝑥1
−

𝐵𝑥1

∆𝑥1
2
]) 𝒑

𝑛+
1
2 = (𝐼 +

∆𝑡

2
[

𝐴𝑥2

2∆𝑥2
−

𝐵𝑥2

∆𝑥2
2
]) 𝒑𝑛  (32) 

 

 (𝐼 −
∆𝑡

2
[

𝐴𝑥2

2∆𝑥2
−

𝐵𝑥2

∆𝑥2
2
]) 𝒑𝑛+1 = (𝐼 +

∆𝑡

2
[
𝐴𝑥1

2∆𝑥1
−

𝐵𝑥1

∆𝑥1
2
])𝒑

𝑛+
1
2 (33) 
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 For additional dimensions, the number of time steps are increased. The number of steps 

then correspond to the number of states (each state must be solved implicitly) where 𝑛 +
1

𝑑
, 

changes such that d is the number of states or dimensions being implicitly solved. This results in 

a set of equations equal to d that are solved over all dimensions. The resulting matrices, on 

both the left and right side of the equations, are tridiagonal. Tridiagonal matrices consist of 

non-zero diagonal elements along the upper and lower diagonal components with the 

remainder of the matrix being zero. This is depicted in Equation (34) leveraging the 𝑥2-direction 

from previous equations, where a, b, and c are computed coefficients of the system. 

 (𝐼 −
∆𝑡

2
[
𝐴𝑥2

2∆𝑥2
−

𝐵𝑥2

∆𝑥2
2
]) ≡

[
 
 
 
 
 
 
 
 

𝑏1 𝑎1 0 0 0

𝑐1 𝑏2 𝑎2 0 0

0 𝑐2 ⋱ ⋱ 0

0 0 ⋱ ⋱ 𝑎𝑁−1

0 0 0 𝑐𝑁−1 𝑏𝑁 ]
 
 
 
 
 
 
 
 

 (34) 

 

Tridiagonal matrices provide numerous computational advantages that are a primary driver 

for the popularity of the ADI method. Sparse matrices can be leveraged to reduce the memory 

required to compute multidimensional PDFs along fine step sizes due to the large number of 

zero cells in each matrix. Inversion of a tridiagonal matrix is another computationally efficient 

property when applying the Thomas algorithm [46]. The Thomas algorithm drastically reduces 

the number of computations necessary to find an inverse of a matrix when compared to 

Gaussian elimination methods. It is observed in Equations (32) and (33) that inverting matrices 



27 
 

is necessary to solve for p at each step of the evaluation. Equation (33) is reformulated as 

Equation (35). 

 𝒑𝑛+1 =

[
 
 
 
 
 
 
 
 

𝑏1 𝑎1 0 0 0

𝑐1 𝑏2 𝑎2 0 0

0 𝑐2 ⋱ ⋱ 0

0 0 ⋱ ⋱ 𝑎𝑁−1

0 0 0 𝑐𝑁−1 𝑏𝑁 ]
 
 
 
 
 
 
 
 
−1

(𝐼 +
∆𝑡

2
[

𝐴𝑥1

2∆𝑥1
−

𝐵𝑥1

∆𝑥1
2]) 𝒑

𝑛+
1

2.   (35) 

 

Let 𝑝1
𝑛+1 =

𝑑1

𝑏1
 and the initial 𝑏̃ = 𝑏1.  Forward substitution is done from 𝑝2

𝑛+1 to 𝑝𝑁
𝑛+1 (or 𝑁 = 2 

to 𝑁) via Equations (36)-(38). 

 𝑐𝑁
′ =

𝑐𝑁−1

 𝑏̃
 (36) 

 

 𝑏̃ = 𝑏𝑁 − 𝑎𝑁 ∗ 𝑐𝑁
′   (37) 

 

 𝑝𝑁
𝑛+1 =

𝑑𝑁 − 𝑎𝑁 ∗ 𝑝𝑁−1
𝑛+1

 𝑏̃
 (38) 

 

Backward substitution is then performed to find all unknowns for 𝑁 = 𝑁 − 1  to 1 using 

Equation 39. 

 𝑝𝑁
𝑛+1 = 𝑝𝑁

𝑛+1 − 𝑐𝑁+1
′ ∗ 𝑝𝑁+1

𝑛+1 (39) 
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 An example of the above algorithm in MATLAB® is depicted in Appendix A for the first 

example problem of Section 4. The ADI method proves to be useful for numerically solving 

parabolic and elliptic partial differential equations. Eventually, the step size and number of 

dimensions add a significant number of computations to this process. Comparison of ADI to 

Monte Carlo convergence rates are assessed for example problems in Chapter 4 and 5. A 5-

point-stencil of 2-dimensional ADI over a single step is depicted in Figure 4. 

 

 

Figure 4. ADI Graphical Depiction 

 

Application of the FP equation spans multiple disciplines within the scientific and 

engineering communities. Regarding dynamics, literature is found in some capacity on solving 

various forward problems. Orbital dynamic input uncertainty is assessed using the FP equation 

in [21, 44, 47]. Within these examples, initial condition uncertainty of orbital state vectors are 

imposed and PDFs of response variables are computed at varying times using finite element 

methods. Applications to control systems are discussed to determine system stability given 
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variance in the initial conditions and varying amplitudes of white noise excitation. Multiple 

forward problems are observed in [45] to include two- and three-dimensional linear oscillators, 

as well as a two- and three-dimensional Duffing oscillators. Here, the initial position and 

velocity of the mass is varied and randomly excited to determine equilibrium conditions. Ship 

rolling motion is presented in [48] where the roll and roll rate transient PDFs are computed for 

cases varying wave amplitude and white noise excitation. Copious amounts of literature are 

available on the FP equation in theoretical mathematical and physics applications. Although 

well documented and leveraged amongst many different disciplines, a direct application to 

reverse reentry dynamics is absent.  
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CHAPTER 3 

FORWARD AND REVERSE UNCERTAINTY PROPAGATION 

 

Chapter 3 provides an overview of the methodology adopted for assessing uncertainty 

about a dynamic system and ultimately determining uncertainty about initial conditions given a 

desired response. Forward and reverse deterministic cases are reviewed, ensuring an 

understanding of the basic dynamic process before the addition of uncertainty. The concept of 

time reversible systems is then discussed and how uncertain time reversible systems are solved 

using a Fokker-Planck equations. This chapter concludes with remarks on additional material 

that will assist the reader in understanding assumptions and interpreting results. 

3.1 FORWARD AND REVERSE DYNAMICS 

Initially, inverting the FP equation was assessed to compute PDFs of initial conditions 

from response information. As discussed in the previous section, solving the forward FP 

equation is not a trivial endeavor and computing its inverse only provides a solution for the 

terms that formulate the drift and diffusion coefficients. Given the problem set of interest for 

this research, the ability to determine a drift coefficient is dependent on the existence of a state 

space form of the differential equation that is being assessed. For completeness about inverse 

FP equations, [49] provides a comprehensive overview of methods available for solving the 

inverse FP equation using neural networks. 

Within a forward dynamic problem, the state space form is substituted within the FP 

equation as the drift vector. Using the numerical method discussed above, a transient PDF of 

the system responses is computed. Since this response is attainable from the forward dynamics 
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given input conditions, it was hypothesized that the input conditions could be attainable from 

the reverse dynamics given a response (so long as the system is time-symmetric). To find the 

reverse dynamics of a system, the equations of motion are computed backwards in time. This is 

done by applying a negative sign to the differential equation and ensuring decimal points are 

computed out to the maximum extent to minimize error. This time-reversal is only possible for 

systems that are time-reversal symmetric. Fortunately, this encompasses any mechanical 

system of the form 𝑚𝑥̈ = 𝐹(𝑥) [50]. These invariant systems are defined as reversible under 

𝑡 → −𝑡.  Applying this to a differential equation from [51] presented as the original forward 

formulation in Equation (40), the forward and reverse computations are plotted against time 

for position (orange line) and velocity (blue line) in Figures 5 and 6. 

 [
𝑥1̇

𝑥2̇
] = [

𝑥2

−5𝜇𝑐(1 − 𝑥1
2)𝑥2 − 9sin (𝑥1)

] (40) 

Where the reversible state space representation is depicted in Equation (41). 

 [
𝑥1̇

𝑥2̇
] = [

−𝑥2

5𝜇𝑐(1 − 𝑥1
2)𝑥2 + 9sin (𝑥1)

] (41) 
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Figure 5. Forward Dynamic Propagation 

 

 

Figure 6. Reverse Dynamic Propagation 
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Minimal errors between the forward and reverse dynamics are observed in Figure 7. This 

provides confidence in the observed results obtained from reversing the dynamics of the 

system. These reversed conditions may then be applied within the FP equation to determine 

the backwards transient PDF of a system, eventually leading to initial conditions of interest. 

 

 

Figure 7. Error Between Forward and Reverse Dynamics 

  

Time reversible systems are apparent in many academic applications of classical 

mechanics that are time symmetric. Time reversibility is restricted to closed systems where 

inputs such as guidance commands or entropy may skew any time symmetries of a system.  

3.2 TIME REVERSIBILITY AND THE FP EQUATION 

Applying the forward dynamic case to the FP equation is demonstrated in numerous 

papers where an equation of motion is deconstructed into a set of ODEs and applied to the first 
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unknown within the FP equation (𝐴𝑖). This drift vector is essentially the translation of the 

uncertainty about specific states. For example, take the case with no diffusion and a system 

composed of a single state characterized by the EOM 𝑥̇1 = 0.1. The resulting FP equation for 

this EOM is defined in Eq. (42). If the initial conditions are defined at time zero as a normal 

distribution with mean zero and standard deviation 0.2618, this uncertainty is easily 

propagated through time. Since this is a simple system, the distribution does not change but 

translates to different mean values. This is observed in Figure 8, where the transient probably 

density (PD) of the single state is depicted at two times. Plot colors are based on the magnitude 

of the probability density. For the two-dimensional plots, the colors are easily relatable to the 

magnitudes depicted on the vertical axes. The color schemes become more important with 

three-dimensional plots depicted in later sections. For three-dimensional plots, provided color 

bars define magnitudes. Additional information on the probability density is presented in the 

next section.  

 
𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0) = −0.1

𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] (42) 

 

 

Figure 8. Translation Example, Forward In Time 
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Since this simple system is time reversible, the PD for x can be propagated backwards in 

time as well. The reverse time PD is depicted in Figure 9.  

 

 

Figure 9. Translation Example, Backward In Time 

 

As previously stated, Figures 8-9 lack diffusion within the system. The translation 

example is used to depict how the state space ODEs of a system directly influence the output 

PDF of the FP equation. Diffusion is generally added to a system to account for randomness or 

noise in system excitations. This is applied within the FP equation as matrix 𝐵𝑖𝑗. The diffusion 

matrix scales Gaussian white noise (GWN) for the traditional FP equation [10, 48]. GWN is a 

random process applicable to many engineering systems that accounts for small perturbations 

of system inputs due to background noise. GWN is specified from a Gaussian distribution with 

mean of zero, and the property that any two values at different times are statistically 

independent [13]. It is composed of all frequency content, leading to the name “white” derived 

from white light which is composed of all wavelengths of the light spectrum. The use of GWN is 

generally scaled by a spectral density value, allowing for assessment of varying levels of white 
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noise on system output. For the simple example demonstrated in this section, GWN is applied 

as spectral densities of 0.01, 0.1, and 1.0. Figures 10, 11, and 12 depict the impact of diffusion 

on the simple system at times 0 and 10. The FP equation with GWN scaled at 0.01 is depicted in 

Equation (43). 

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −0.1
𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

+ 0.01
1

2

𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

(43) 

 

 

Figure 10. Diffusion Example, Density = 0.01 
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Figure 11. Diffusion Example, Density = 0.1 

 

 

Figure 12. Diffusion Example, Density = 1 

 

As the GWN is amplified, the probability density begins to approach a uniform 

distribution about all possible points within the standard deviation bounds. This approach to 

uniformity occurs as the magnitude of noise begins to outweigh all other sources of uncertainty 

within the state space. Unfortunately, the application of diffusion via the FP equation is not 

time symmetric. If the same density is applied to the reverse time system, the noise acts 

similarly to the forward case and causes the probability density to approach a uniform 
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distribution. As the system marches backward in time, the noise should be implementing the 

opposite effect. This is easily observed via Figure 13 and can be compared to the forward 

results in Figure 11.  

 

 

Figure 13. Reverse Diffusion, Density = 0.1 

 

Subtracting the noise component immediately causes probability density instabilities as seen in 

Figure 14.  
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Figure 14. Reverse Diffusion Instability 

Instabilities with the addition of diffusion are due to non-time symmetry of the diffusive 

process. Because the diffusion cannot be applied as a time reversible system, it is omitted from 

the future examples used to predict initial condition uncertainty. 

3.3 PROBABILITY DENSITY ANALYSIS, DIFFERENCE GRID, AND MONTE CARLO SIMULATIONS 

The power and applicability of a PDF is discussed in Section 2.2. A PDF provides 

engineers and scientists with a means for characterizing the uncertainty about a parameter. 

High order statistical moments can be derived from PDFs as well as discrete probabilities from 

select samples. In the simple example described in Section 3.2, a Gaussian distribution is 

observed and is characterized by the Gaussian function in Table 1. It is convenient to specify the 

probability density as a function, allowing for analytic solutions of statistical moments and 

probability metrics along values of interest. In real world application, these functions are 

generally best fits to actual data, and in the case of a joint transient system there may not be a 
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function that describes the output PD.  Fortunately, the function is not necessary to derive the 

higher order statistical moments if the PD data is available for a system. Referring to the simple 

case presented in the previous section, assuming the mean is zero and standard deviation is 

0.2628 the Gaussian distribution for time zero is defined by 𝑓𝑋(𝑥) =
1

0.2628√2𝜋
𝑒𝑥𝑝 [−

1

2
(

𝑥

0.2628
)
2
].  

Derivation of central statistical moments from a function may be leveraged to define the 

shape and location of a PDF [52]. This is generally done using the first four moments known as 

mean, variance, skewness, and kurtosis; all of which may be derived from a PDF using Equation 

(44) where k is the moment number and E is the expectation.  

 𝐸[𝑋𝑘] = ∫ 𝑥𝑘
∞

−∞

 𝑓𝑋(𝑥)𝑑𝑥 (44) 

Although useful in providing PDF metrics, more applicable to this research is the ability to 

find probability of variable occurrence given a single instance or span of instances. The 

probability of occurrence is simply the area under the probability density curve, or the integral 

over the variables span of interest. When a function is provided an analytical solution is 

available to determine probability of occurrence using Equation (45). 

 𝑃(𝑥1 < 𝑋 < 𝑥2) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥2

𝑥1

  (45) 

In the case where no function is defined, such as a response PD (𝑝𝑖) computed by the FP 

equation, a numerical approach is taken to calculate the area. This numerical approach is a 

simple sampling method over the defined grid multiplying the grid span by the density to obtain 

a probability over defined points of interest. Equation (46) defines this sampling technique. 
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 𝑃(𝑥1 < 𝑋 < 𝑥2) = ∑ 𝑝𝑖𝑑𝑥𝑖

𝑥2

𝑖=𝑥1

 (46) 

To prove out the sampling technique the Gaussian distribution from above is used. 

Analytically, this is solved by taking the integral over a span that is defined from 𝑥1 = 0 to 𝑥2 =

1, where it is known that the probability is approximately fifty percent. An analytical solution 

for a Gaussian distribution is no trivial task [53]. Fortunately, functions exist for solving this 

integral and were leveraged to compare the sampling technique in this 1-dimensional example. 

Errors between the analytical solution and the sampling technique are shown to be on the 

order of 10-8 where 𝑑𝑥𝑖 is set to 0.001. Node spacing between each one of the sampled points is 

critical for solution accuracy. Not only does the grid spacing affect the sampling technique for 

determining probability of occurrence but is also essential for stability and convergence of the 

numerical solution for the FP equation using the ADI method. 

The approximate solution set provided by the ADI method obtains an order of accuracy 

relative to the finite difference size along each direction and the time step. Ideally, small time 

steps and fine differences are leveraged to minimize computational errors. As system 

complexity is increased, the sheer number of computations may well outweigh capability of 

memory storage or run time feasibility. On the other hand, coarse differences and time steps 

contribute to instabilities within the ADI method. Instability and large computational errors 

then contribute to unrealistic results that violate PD assumptions. For the 1D case used in 

Section 3.2, coarse grid sizes and time steps are depicted in Figure 15 to demonstrate 

instabilities observed in the PD. Decreasing grid size and time step eventually results in a stable 

and accurate depiction of the PD at the cost of computations and run time [54]. As system 
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complexity increases, the need for finer step sizes is required to generate stable densities. For 

systems with additional dimensions or nonlinearities, these instabilities can become 

significantly worse as depicted in Figure 16. 

 

 

Figure 15. Grid Spacing Instability 
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Figure 16. Nonlinear Grid Spacing Instability 

 

3.4 SOFTWARE AND FUNCTIONS 

Matrix Laboratory (MATLAB®) is a computer coding platform used academically and 

industrially by engineers and scientists as a highly robust data analysis tool [5]. MATLAB® is the 

primary tool used in this research for computing results and plotting data depicted in this 

report. Example MATLAB® scripts created in support of this research are illustrated in Appendix 

A.  

Computations were run on an AMD Ryzen 7 4800H 2.90 GHz processor with Radeon 

Graphics and 8.0 GB of RAM. The MATLAB® version utilized is R2022a. General functions used 

from the MATLAB® toolkit include: ODE45, reshape, meshgrid, mvnpdf, and sparse. 
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CHAPTER 4 

ACADEMIC EXAMPLE PROBLEMS 

 

Chapter 4 depicts the use of a FP equation on both forward and reverse academic 

dynamic problems including a linear oscillator and a nonlinear trim solution. The FP equation is 

solved numerically for each example using an ADI method. Monte Carlo Simulations are 

employed as a secondary method for solving these problem sets, providing a benchmark for 

result comparison. MCS stop criteria is presented, showing the number of iterations necessary 

to obtain convergence of output results. 

4.1 LINEAR OSCILLATOR 

A 2-dimensional linear oscillator may be characterized mathematically by Equation (47) 

[45]. This differential equation can be represented by a set of ordinary differential equations 

depicted in Equation (48). Assessing this problem deterministically with input conditions equal 

to 5 for both states, Figure 17 depicts the system motion for 10 seconds. 

 𝑥̈ = −2𝜉𝜔𝑥̇ − 𝜔2𝑥 (47) 

 

 [
𝑥̇1

𝑥̇2
] = [

𝑥2

−2𝜉𝜔𝑥2 − 𝜔2𝑥1
] (48) 
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Figure 17. Linear Oscillator Deterministic Forward Motion 

 

Applying the results as initial conditions and reversing the dynamic equations of each 

state results in reverse time motion depicted in Figure 18. Since the conditions return to their 

original state after 10 seconds, the system is confirmed to be time symmetric. 
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Figure 18.Linear Oscillator Deterministic Reverse Motion 

 

Uncertainty is then applied to the system. As described previously, the FP equation drift 

matrix is replaced by the state vector of Equation (48), resulting in a PDE capable of computing 

the transient probability density at each state. Similarly to Equation (29), the FP equation 

yielded for this example becomes: 

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −𝑥2

𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

+
𝜕

𝜕𝑥2

[(2𝜉𝜔𝑥2 + 𝜔2𝑥1)𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

 

(49) 
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For this example, it is assumed that the initial conditions for both states follow a 

Gaussian distribution with a mean of 5 and standard deviation of 1. Grid sizes that ensure 

stability are 500 for each direction. Time step is set to 0.005 seconds. Solving this problem 

forward in time results in the probability densities depicted in Figures 19-21. 

 

Figure 19. Linear Oscillator Forward PD at Time 0 sec 
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Figure 20. Linear Oscillator Forward PD at Time 5 sec 

 

Figure 21. Linear Oscillator Forward PD at Time 10 sec 
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Where the density magnitudes at 10 seconds for each state are illustrated in Figures 22-

23. MCS results confirm the validity of FP equation results for this system in Figures 24-26. MCS 

convergence criteria is depicted in Figure 27. 

 

Figure 22. Linear Oscillator First State Density 
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Figure 23. Linear Oscillator Second State Density 

 

Figure 24. Linear Oscillator MCS PD 
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Figure 25. Linear Oscillator MCS First State Density 

 

Figure 26. Linear Oscillator MCS Second State Density 
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Figure 27. Linear Oscillator MCS Convergence 

 

Leveraging the time symmetry of the system, a negative sign is applied at the drift 

vector to propagate the system backwards in time. The response observed at 10 seconds in 

Figure 21 is used as the initial conditions for the backwards FP equation. The backward results 

are depicted in Figures 28-29. The errors observed between the true initial conditions and the 

predicted initial conditions are depicted in Figure 30. 
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Figure 28. Linear Oscillator Reverse PD at Time 5 sec 

 

Figure 29. Linear Oscillator Reverse PD at Time 10 sec 
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Figure 30. Linear Oscillator Error Between True and Reverse Predicted Initial Conditions 

 

4.2 NONLINEAR TRIM 

A 2-dimensional nonlinear oscillating system presented in [51] was demonstrated as a 

reversible system in Section 3.1 via Equation (41) with deterministic motion illustrated in 

Figures 5-6. Leveraging the set of ODEs as the drift vector the FP equation is formulated as: 

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −𝑥2

𝜕

𝜕𝑥1

[𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

+
𝜕

𝜕𝑥2

[(5𝜇𝑐(1 − 𝑥1
2)𝑥2

+ 9 sin(𝑥1))𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

 

 (50) 
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The forward problem is numerically solved using the ADI method. The additional 

complexity introduced by the nonlinear system requires finer differences and time steps. The 

time step for this problem is set to 0.005 seconds with grids containing 990 nodes along each of 

the two state directions. Initial conditions for both states are Gaussian distributions with a 

standard deviation of 0.001 and means of 0 at 𝑥1 and 0.4 at 𝑥2.  

 

 

Figure 31. Nonlinear Trim Forward PD at Time 0 sec 
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Figure 32. Nonlinear Trim Forward PD at Time 1.5 sec 

 

Figure 33. Nonlinear Trim Forward PD at Time 3 sec 
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Figure 34. Nonlinear Trim First State Density 

 

Figure 35. Nonlinear Trim Second State Density 
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MCS is leveraged to validate the computed FP response. Figures 36-38 depict 

comparable results to the probability densities computed via the ADI method. Convergence 

criteria for MCS is illustrated in Figure 39. The reverse nonlinear trim distributions are depicted 

in Figures 40 and 41 using the response from Figure 33 as the initial conditions for the reverse 

time propagation. Figure 42 concludes this section with a surface chart of the small errors 

observed between the true initial conditions and the predicted initial conditions using reverse 

dynamics within a FP equation. 

 

Figure 36. Nonlinear Trim MCS PD 
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Figure 37. Nonlinear Trim MCS First State Density 

 

Figure 38. Nonlinear Trim MCS Second State Density 
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Figure 39. Nonlinear Trim MCS Convergence 
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Figure 40. Nonlinear Trim Reverse PD at Time 1.5 sec 

 

 

Figure 41. Nonlinear Trim Reverse PD at Time 3 sec 
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Figure 42. Nonlinear Trim Error Between True and Reverse Predicted Initial Conditions 
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CHAPTER 5 

REENTRY VEHICLE 

 

Chapter 5 illustrates the novel approach of leveraging the FP equation to propagate 

uncertainty in reverse reentry dynamics, ultimately predicting initial conditions of a reentry 

vehicle given a desired response. The chapter begins with an overview of the reentry equations 

of motion that can be leveraged by for any planet and ballistic vehicle. Example problems for an 

Earth and Mars reentry are then presented, culminating in a case for a Mars reentry where 

uncertainty bounds must be met for a parachute deployment. Initial conditions are computed 

for mission planning and design to ensure reentry results in the desired response. 

5.1 BALLISTIC REENTRY EQUATIONS OF MOTION 

Simplified reentry dynamics are defined in Chapter 12 of [55] treating the body as a 

point mass resulting in a three degree-of-freedom system. The reduced order characterization 

provides a means for using the FP equation to assess reentry dynamics throughout flight to 

some terminating condition. Time derivatives of the vehicles position vector are provided in 

Equations (51)-(53) establishing the kinematic equations of motion relative to a rotating body, 

where 𝑥1 is longitude in radians, 𝑥2 is latitude in radians, and 𝑥3 is the radius in meters from the 

center of the rotating body to the reentry vehicle. 

 𝑥̇1 =
𝑥4 ∗ cos(𝑥5) sin (𝑥6)

𝑥3cos (𝑥2)
 (51) 

 

 𝑥̇2 =
𝑥4 ∗ cos(𝑥5) cos (𝑥6)

𝑥3
 (52) 
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 𝑥̇3 = 𝑥4 ∗ sin(𝑥5) (53) 

For a rotating spherical body with angular velocity 𝜔 and gravitational constant 𝑔, with 

vehicle parameters of drag 𝐷 and total mass 𝑚, the time rate of change for the relative velocity 

vector is defined by Equations (54)-(56), where 𝑥4 is velocity in meters per second, 𝑥5 is flight 

path angle in radians, and 𝑥6 is heading in radians. 

 

𝑥̇4 = −𝑔𝑠𝑖𝑛(𝑥5) + 𝑔 cos(𝑥6) cos(𝑥5) +
𝐷

𝑚

+ 𝜔2𝑥3cos (𝑥2)[sin(𝑥5) cos(𝑥2)

− cos(𝑥5) cos(𝑥6) sin (𝑥2)] 

(54) 

 

 

𝑥̇5

= (
𝑥4

𝑥3
−

𝑔

𝑥4
) cos(𝑥5) −

𝑔 cos(𝑥6) sin(𝑥5)

𝑥4
+ 2𝜔 sin(𝑥6) cos(𝑥2)

+ 𝜔2𝑥3cos (𝑥2)
[cos(𝑥5) cos(𝑥2) + sin(𝑥5) cos(𝑥6) sin (𝑥2)]

𝑥4
 

(55) 

 

 

𝑥̇6 =
𝑥4 sin(𝑥6) tan(𝑥2) cos (𝑥5)

𝑥3
−

𝑔 sin(𝑥6)

𝑥4

− 2𝜔[tan(𝑥5) cos(𝑥6) cos(𝑥2) − sin(𝑥2)]

+
𝜔2𝑥3 sin(𝑥6) sin (𝑥2)cos (𝑥2)

𝑥4cos (𝑥5)
 

(56) 

5.2 EARTH REENTY 

Deterministic inputs for the above equations of motion are first assessed given Earth 

conditions. Table 2 depicts the Earth input parameters for the model [55]. An Earth atmosphere 
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model based on 1976 U.S. Standard Atmosphere is leveraged for pressure and density 

parameters at varying altitudes. Figure 43 depicts the density change in log scale from sea-level 

to an Altitude of 300 km. Atmospheric measurements are used in tandem with body 

parameters specified in Table 3 to compute drag forces on the body via the drag equation 

𝐷 = −
1

2
𝜌𝑥4

2𝑆𝑟𝑒𝑓𝐶𝐷, where 𝜌 is density in kilograms per cubic meter,  𝐶𝐷 is a Mach dependent 

drag coefficient for a generic reentry body specified in section 12.4.1 of [55], and 𝑆𝑟𝑒𝑓 is the 

body reference area.  

 

Table 2. Earth Parameters 

Standard Gravitational Parameter (𝜇) 3.986e14 m^3/s^2 

Mean Radius (𝑅) 6378140 m  

Angular Velocity (𝜔) 7.292116e-5 rad/s 

Acceleration Due to Gravity (𝑔) 9.81 m/s^2 
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Figure 43. 1976 U.S. Standard Atmosphere Altitude vs. Density 

 

Table 3. Reentry Body Parameters 

Reference Area (𝑺𝒓𝒆𝒇) 4 m^2 

Mass (m) 350 kg 

 

The reentry problem is first assessed deterministically. The problem space is integrated using 

Matlabs® ODE45 Runge-Kutta function both forward and backward in time to ensure time 

symmetry of the reentry equations of motion. The simulation is run for the first 200 seconds of 

reentry given the initial conditions depicted in Table 4. Figures 44, 45, and 46 depict forward 

responses of the reentry vehicle.  
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Table 4. Earth Reentry Deterministic Initial Conditions 

Longitude (𝑥1) 0 deg 

Latitude (𝑥2) 0 deg  

Radius (𝑥3) 6579.9e3 m  

Velocity (𝑥4) 7589.30 m/s 

Flight Path Angle (𝑥5) -0.5468 deg 

Heading (𝑥6) 45 deg 

 

 

Figure 44. Forward Deterministic Earth Reentry Altitude 
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Figure 45. Forward Deterministic Earth Reentry Speed 
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Figure 46. Forward Deterministic Earth Reentry Position 

 

The reverse responses are computed similarly to the previous deterministic examples. The final 

response at 200 seconds is set as the initial condition and the equations of motion are reversed. 

Errors are indistinguishable when observing similar response plots for the reverse deterministic 

calculation. The errors for each state are on order with the integration tolerance (10-7). The 

errors observed for each state are depicted in the figures below, demonstrating time symmetry 

of these reentry equations of motion. 
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Figure 47. Reentry Deterministic Reverse Computation Errors 

 

Uncertainty is then applied to the initial conditions. All initial conditions are treated as 

normal distributions with means about the deterministic values portrayed in Table 4. Standard 

deviations about latitude and longitude are set to approximately 3 degrees, 10 km for radius, 

500 m/s for velocity, and 1 degree for flight path angle. The heading is held constant at 45 

degrees. Standard deviations of 3 degrees for latitude and longitude equate to significant 

uncertainty within these positions. These uncertainties are purposefully overexaggerated for 

better visualization within resulting graphics. Monte Carlo simulations provide statistical data 

that are compared with Fokker-Planck results. Statistical outputs for each of the states depict 

high correlation between latitude and longitude. The remaining variables are weakly correlated 

to latitude and longitude for the variations provided above. The correlation of the variables is 

an important note for reducing dimensionality of the Fokker-Planck formulations discussed 
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later. A contour of the latitude and longitude is depicted in Figure 48. The variability 

surrounding the position due to uncertain initial conditions is obvious due to the 

overexaggerated uncertainties. Achieving convergence for each states mean standard error 

requires approximately 800 simulations. The high probability density region is in concurrence 

with the deterministic solution described above.  

 

  

Figure 48. Forward Earth Reentry MCS 

 

Before solving this problem set using the FP equation, additional results are presented which 

reinforce the correlation of each state variable to latitude and longitude. It is observed that 

relatively small uncertainties about the other variables have a minimal impact on the response 

distribution from Figure 48. Figure 49 depicts the latitude and longitude for the same system 

with increased standard deviations of 6 degrees about latitude and longitude, 100 km about 

radius, 1000 m/s about speed, and 3 degrees about the flight path angle. The larger 

uncertainties associated with the initial conditions here depict a much more even distribution in 
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the response (lower probability density) and requires a significant increase in the number of 

MCS to obtain convergence. 

 

  

Figure 49. Forward Earth Reentry MCS, Increased Variability 

Although the general position of the response distribution remains the same, the distribution 

overall trends toward uniformity as the variance of the other states approaches infinity. 

Additional MCS iterations are also required for convergence of the state means due to the 

increased variability.  

 Forward computation of the FP equation using the ADI method is depicted below. A 2-D 

case is first assessed where only the latitude and longitude are uncertain, resulting in an FP 

equation of the form: 

 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −
𝜕

𝜕𝑥1
[
𝑥4 cos(𝑥5) sin(𝑥6)

𝑥3 cos(𝑥2)
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

−
𝜕

𝜕𝑥2
[
𝑥4 cos(𝑥5) cos (𝑥6)

𝑥3
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

(57) 
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Grid sizes containing 500 nodes for each state is adequate to negate ADI instabilities. 

The uncertainty bounds are kept at 3 degrees for both latitude and longitude. All other 

variables have zero variability and begin at their mean values depicted in Table 4. The 

simulation is again run for 200 seconds of flight to compare with MCS results.   

 

 

Figure 50. Forward Earth Reentry, Time = 0 sec 
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Figure 51. Forward Earth Reentry, Time = 100 sec 

 

 

Figure 52. Forward Earth Reentry, Time = 200 sec 
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 The resulting joint distribution observed in Figure 52 is comparable to the results 

depicted from MCS, demonstrating validity of the approach with this set of equations. The 

response in Figure 52 is then set as the initial conditions for the reverse case. The equations of 

motion are reversed and computed for 200 seconds. The reverse probability density is depicted 

inf Figures 53-55.  

 

 

Figure 53. Reverse Earth Reentry, Time = 0 sec 
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Figure 54. Reverse Earth Reentry, Time = 100 sec 

 

 

Figure 55. Reverse Earth Reentry, Time = 200 sec 
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Assessing the error between the actual initial conditions and the computed initial conditions is 

done in Figure 56. Probability density error is on the order of 10-11, lower than relative 

tolerances set for Runge-Kutta integration of the deterministic and MCS examples. 

 

 

Figure 56. Earth Reentry Initial Condition Error 

 

The two-dimensional case is then extended to 3-dimensions consisting of latitude, longitude, 

and radius as uncertain variables where the FP equation is now: 
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𝜕

𝜕𝑡
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)

= −
𝜕

𝜕𝑥1
[
𝑥4 cos(𝑥5) sin(𝑥6)

𝑥3 cos(𝑥2)
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

−
𝜕

𝜕𝑥2
[
𝑥4 cos(𝑥5) cos (𝑥6)

𝑥3
𝑝(𝒙, 𝑡|𝒙0, 𝑡0)]

−
𝜕

𝜕𝑥3

[𝑥4 sin(𝑥5) 𝑝(𝒙, 𝑡|𝒙0, 𝑡0)] 

 

(58) 

 

The forward case is depicted below with latitude-longitude surface plots and longitude-

altitude surface plots of the probability distribution. Variability about the latitude and longitude 

remain the same, the radius is given a standard deviation of 100 km. 
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Figure 57. Forward 3D Earth Reentry Latitude, Time = 0 sec 

 

Figure 58. Forward 3D Earth Reentry Latitude, Time = 100 sec 
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Figure 59. Forward 3D Earth Reentry Latitude, Time = 200 sec 
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Figure 60. Forward 3D Earth Reentry Altitude, Time = 0 sec 

 

 

Figure 61. Forward 3D Earth Reentry Altitude, Time = 100 sec 
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Figure 62. Forward 3D Earth Reentry Altitude, Time = 200 sec 

 

 

Figure 63. Reverse 3D Earth Reentry Latitude, Time = 0 sec 
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Figure 64. Reverse 3D Earth Reentry Latitude, Time = 100 sec 
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Figure 65. Reverse 3D Earth Reentry Latitude, Time = 200 sec 

 

 

Figure 66. Reverse 3D Earth Reentry Altitude, Time = 0 sec 
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Figure 67. Reverse 3D Earth Reentry Altitude, Time = 100 sec 

 

 

Figure 68. Reverse 3D Earth Reentry Altitude, Time = 200 sec 



86 
 

Error between the true initial condition and reverse computed initial conditions is depicted in 

the following two figures. Figure 69 depicts the error for the joint distribution of latitude and 

longitude. Joint distribution for altitude and longitude is illustrated in Figure 70. 

 

 

Figure 69. 3D Earth Reentry Position Error 
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Figure 70. 3D Earth Reentry Altitude Error 

 

5.3 MARS REENTY 

For the Martian atmosphere, a NASA exponential model [56] depicted in Equations (59)-

(62) is used, where ℎ is altitude from the Martian surface, 𝑇 is temperature in degree Celsius, 𝑝 

is pressure in kiloPascals, and 𝜌 is density in kilograms per cubic meter.   

 ℎ > 7000: 𝑇 = −23.4 − 0.00222ℎ  (59) 

 

 ℎ < 7000: 𝑇 = −31 − 0.000998ℎ  (60) 

 

  𝑝𝑟 = 0.699𝑒−0.00009ℎ  (61) 
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 𝜌 =
𝑝𝑟

0.1921(𝑇 + 273.1)
  (62) 

This atmospheric model begins to break down at an altitude of 112 kilometers. This occurs 

due to Equations (59) and (60) approaching and dropping below absolute zero. For many Earth 

applications, a 100-kilometer altitude relative to mean sea-level is used as the defining line 

between the atmosphere and space called the Karman line [57]. The Karman line is derived 

from computations on winged bodies where the velocity required to generate lift reaches 

orbital speeds. Although the Martian atmosphere is thinner than that of Earth, reduced 

gravitational pull on the atmosphere results in a larger scale height (approximately 11.1 

kilometers more than Earth) on Mars [58]. Due to this phenomenon, it is assumed that the 

Karman line is similar on Mars. Figure 71 depicts the atmospheric density of Mars up to the 

Martian Karman line. 
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Figure 71. Mars Atmospheric Density 

 

The thin atmosphere requires a scaling of the Mach dependent drag coefficients to 

attain feasible reentry computations. The original drag coefficients are increased by a factor of 

five for Mars reentry computations. Martian celestial properties are also different from Earth. 

Table 5 lists the Martian properties for use in the reentry equations of motion [58].  

 

Table 5. Mars Parameters 

Standard Gravitational Parameter (𝜇) 4.2828e13 m^3/s^2 

Mean Radius (𝑅) 3389500 m  

Angular Velocity (𝜔) 7.094834e-5 rad/s 

Acceleration Due to Gravity (𝑔) 3.73 m/s^2 
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As described in Chapter 1, the desired response of the reentry vehicle is to land within 

the Holden crater given some variability about a central landing location. It is assumed that at 

an altitude of 11 kilometers and velocity of 420 meters per second is required for a parachute 

apparatus to deploy and slow the vehicle down to a safe landing speed [59]. The desired system 

response to reach these conditions over the Holden crater is overlayed on a Mars map in Figure 

72, along with ending states before parachute deployment in Table 6. Again, a 3-degree 

standard deviation is defined as the desired response conditions for the final joint probability of 

the landing zone. The 3-degree standard deviation allows for ease of visualizing the transient 

distribution on a map of Mars. 

 

 

Figure 72. Mars Desired Response 
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Table 6. Mars Desired Response States at Parachute Deployment 

Longitude (𝑥1) -34 deg 

Latitude (𝑥2) -26.4 deg  

Radius (𝑥3) 3400500 m  

Velocity (𝑥4) 420 m/s 

Flight Path Angle (𝑥5) -28 deg 

Heading (𝑥6) 315 deg 

 

The desired response depicted above is deterministically solved first. The reverse 

equations of motion terminate at a reentry altitude of 100 kilometers. Figures 73-74 depict the 

reverse deterministic altitude and speed for the Mars Reentry vehicle.  

 

 

Figure 73. Mars Reverse Deterministic Reenty Altitude 
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Figure 74. Mars Reverse Deterministic Reenty Speed 

 

The reverse computation yields a time of 77 seconds to attain an altitude of 100 

kilometers. The 4.5 kilometers per second entry speed observed at 77 seconds is a comparable 

atmospheric reentry speed relative to other models [59].   

Verification of the forward and reverse reentry problem using the ADI method has been 

demonstrated in previous examples. Using Mars inputs in lieu of Earth and leveraging the same 

reentry body parameters and Equation (57), the ADI method is applied to a desired response of 

the reentry body. An end time (as determined by the deterministic solution) is set at 77 seconds 

with a time step of 0.5 seconds. The two-dimensional case where only latitude and longitude 

are uncertain is assessed. Grid sizes of 1500 nodes are used for both latitude and longitude. 

Initial conditions for all other variables are listed in Table 6. The short timeline and high speed 
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of the reentry vehicle results in a relatively small haversine ground range of approximately 209 

kilometers. Haversine distance is a well-documented algorithm in literature using the following 

equations to compute the shortest spherical distance between two points, where 𝜙 is latitude 

in radians, 𝜆 is longitude in radians, and R is the sphere radius: 

 𝑑𝜙 = 𝜙2 − 𝜙1 (63) 

 

 𝑑𝜆 = 𝜆2 − 𝜆1 (64) 

 

 𝑎 = 𝑠𝑖𝑛2 (
𝑑𝜙

2
) + cos(𝜙1) cos (𝜙2)𝑠𝑖𝑛

2 (
𝑑𝜆

2
) (65) 

 

 𝑐 = 2 tan−1(√𝑎, √1 − 𝑎) (66) 

 

 𝑑 = 𝑅𝑐 (67) 

 

Zooming in on the area of interest provides a better top-view visualization of the 

changes occurring about the uncertain latitude and longitude. Figures 75-78 depict the 

transient joint distribution of latitude and longitude from the desired response to atmospheric 

entry.  
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Figure 75. Reverse Mars Reentry, Time = 0 sec 
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Figure 76. Reverse Mars Reentry, Time = 28 sec 
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Figure 77. Reverse Mars Reentry, Time = 52 sec 
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Figure 78. Reverse Mars Reentry, Time = 76 sec 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

This final chapter discusses findings from the results to include computation time 

comparison of ADI and MCS, ADI grid sizing comparison and accuracy, and limitations of the 

presented methodology. Concluding remarks summarize the capabilities and limitations of the 

presented approach. Future work is discussed in areas of finite difference optimization, 

uncertainty in controlled systems, high dimension optimization of FP equation, and 

metamodeling for reduction of high order systems. 

6.1 RESULTS DISCUSSION 

Two-dimensional cases leveraging the ADI method for computing the FP equations of 

forward and reverse dynamic problems proved to be as computationally efficient as running 

Monte Carlo simulations of the same equations of motion. The MCS are run until convergence 

of the mean square error in each output is achieved, providing solution sets of the uncertainty 

that are treated as truth. The truth solutions support verification of ADI results, providing 

evidence of ADI accuracy. Small errors are observed between the MCS results and ADI results. 

As the number of dimensions (uncertain values) increases, the efficiency of the ADI numerical 

method drastically decreases. Table 7 depicts computational times for varying MCS run 

numbers and ADI grid sizes. Highlighted rows depict MCS run numbers required for solution 

convergence and ADI nodes size that eliminates response instabilities. 
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Table 7. Linear Oscillator Computational Times 

 

 

For the linear oscillator, time to compute the solutions presented above are slightly 

faster (near negligible) using the ADI method. Nonlinear 2-D problem spaces do not significantly 

change the difference between MCS and ADI as depicted in Table 8, although MCS is slightly 

faster. In the final row of the reentry problem where an additional uncertain variable is applied, 

a significant change in computational time is observed for ADI.   

 

Table 8. Trim and Earth Reentry Computational Times 

 

 

Due to computational limitations, a 500x500x500 grid was not feasible (ADI tables 

exceeded computer memory). A 100x100x100 grid demonstrates a significant increase in 

computational time, while displaying some instabilities within the solution set. The addition of 

extra dimensions to ADI quickly becomes inefficient from a computational standpoint, 

MCS Runs MCS time [sec] ADI Nodes ADI Time Step ADI Time [sec]

100 0.96 200x200 0.01 1.37

200 1.75 200x200 0.001 15.04

300 2.85 200x200 0.005 2.82

500 5.23 300x300 0.005 6.52

700 7.31 400x400 0.005 14.83

1000 12.47

Linear Oscillator

MCS Runs MCS time [sec] ADI Nodes ADI Time Step ADI Time [sec]

500 4.63 300x300 0.01 4.83

MCS Runs MCS time [sec] ADI Nodes ADI Time Step ADI Time [sec]

800 20.5 500x500 1 22

1200 28 100x100x100 1 156

Nonlinear Trim

Earth Reentry
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especially in a case where all six states of the reentry problem are uncertain. Not only are 6-D 

tables a cause for concern computationally but are also a problem both intuitively and 

functionally. The finite difference grids required at each state for response stability is not 

feasible for standard memory specifications. Fine grids in each dimension scale each other, 

rapidly consuming computational resources. In a 6-D case where each dimension is composed 

of 100 nodes, the tables required to solve the FP equation via an ADI method are 100 to the 

sixth power! Leveraging Matlabs® sparse matrix function is not enough to reduce these massive 

tables to manageable memory sizes. Now consider the extra dimension of time. Each of the 

1006 nodes must be solved at each time step over the span of interest. For reentry problems 

where times can extend to thousands of seconds, the infeasibility of the presented method 

becomes even more apparent. 

Intuitively, a 6-D probability density table is not easy to observe or extract data from. 

Consider the 3-D case only involving longitude, latitude, and velocity. If the means maintain the 

deterministic values of Table 4 and standard deviation is set to 3 degrees and 500 m/s, the joint 

multivariate normal distributions may be constructed as a 3-D table of probabilities. Visualizing 

these distributions can only be done for two dimensions at a time. Grid sizes of 500 are set for 

the latitude and longitude. Velocity grid size is set to 1000 (to capture the much larger span of 

velocity points). Assessing surface plots for latitude and longitude now requires a sweep of 

plots over all 1000 velocity nodes. Fortunately for the initial condition it is known that the 

velocity starts off centered about 7589 m/s. The latitude and longitude may then be assessed at 

that node of the velocity grid as seen in Figure 79. 
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Figure 79. 3-D Initial Condition at 7589 m/s 

 

Assessment of latitude and longitude at the velocity mean immediately depicts 

probability densities that are lower than values obtained in previous 2-D examples (by orders of 

magnitude). This is due to a change in the scale of the probability distribution function with the 

addition of velocity (which has much higher values than latitude and longitude). The scale of 

these values trends toward extremely small probability density values with the addition of 

altitude uncertainty. This problem can be resolved with appropriate scaling techniques, but this 

adds additional complexity to the problem space. Observing the latitude and longitude 

probability distribution at the same time over different velocity points is illustrated in Figures 

80 and 81. 
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Figure 80. Initial Conditions at 7000 m/s 

 

 

Figure 81. Initial Conditions at 0 m/s 
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The magnitude of the probability density changes over each velocity node. As the 

velocity trends further from its higher probability density, the latitude and longitude density 

decrease but does not change shape or position. Now, extend this to an all-up problem set with 

6 uncertain variables. Already high computational times are further increased to find peak 

densities among uncertain parameters for visualization of 2 variables. Correlations also develop 

among 2, 3, and even 4 factors that have a significant effect on output relationships between 

the variables. The computational and intuitive barriers are major drivers for the limited 

assessment of only 3 uncertain variables for reentry problems.  

Additional verification of the ADI methodology is presented in the forward and 

backward computation of results. Forward computation is performed for each case first, as 

seen in academic and reentry problems presented in Chapters 4 and 5. Realistic and 

representative responses are found from the forward case, lending initial conditions that are 

applied to the reverse computations of each dynamic system. Minimal errors are observed in 

the predicted initial conditions as compared to actual initial conditions used to generate a 

desired response of each system.  

6.2 CONCLUSIONS/FUTURE WORK 

An uncertainty quantification scheme is derived and applied to a series of example 

problems demonstrating its applicability toward solving uncertain initial conditions given the 

desired response of a dynamic system. This method is demonstrated for 2-dimensional 

academic problems and extended to higher dimensional atmospheric reentry dynamics. A use 

case for this method is applied for a Mars reentry mission knowing final conditions necessary 

for parachute deployment and uncertainty bounds required about latitude and longitude. The 



104 
 

initial entry conditions are computed for a FP equation using the ADI method applied to reverse 

reentry equations of motion that are shown to be time symmetric. The uniqueness of this 

research resides in the study of uncertainty bounds about reversible dynamic systems. MCS and 

ADI methods are used to quantify the transient nature of probabilistic uncertainty allowable in 

a system response. The ability to predict uncertainty bounds about the initial conditions of 

dynamic systems quickly and accurately provides additional insights necessary for system 

design and mission planning. 

The MCS and ADI methods are shown to be comparable for 2-dimensional cases in both 

solution space and computational time. As the number of dimensions are increased, the ADI 

method quickly becomes infeasible. A 3-dimensional reentry example is demonstrated using 

ADI, showing an exponential increase in computational time. In addition to computational 

resources, the ability to extract and observe data from ADI multi-dimensional tables becomes a 

limitation of the method as well. This is primarily due to the sheer number of nodes that must 

be assigned for solution stability within the finite differencing of each variable space.  

Many realistic engineering problems require the assessment of more than 2 uncertain 

variables. Not only is this prevalent in system modeling and simulation but becomes much more 

dominant in system-of-systems modeling or when assessing future systems that lack 

specification requirements. As the demand signal for uncertainty quantifications grows, the 

presented methodologies must be improved upon and applied in other novel ways. A few areas 

that could be improved include ADI finite difference and time step optimization for solution 

stability, in-line running of ADI with controlled systems, higher dimensional optimization for 

solving FP equation, and metamodeling for reduction of high order systems. 
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The ability to optimize the ADI finite difference sizes and time step provide efficient 

methods for efficient setup of computational scripts that result in stable solutions while 

minimizing required computational resources. For the work presented above, heuristics were 

applied to grid sizes and time steps that achieved stable solutions. Incrementally adding to 

table sizes eventually results in solution stability but takes a significant amount of time for 

algorithm setup. These grids are most likely not the most effective to achieve solution stability, 

particularly with higher dimensional problems that not only need to weight significant factors 

but also consider significant factor interactions. As problem spaces become more complex and 

of higher dimensions, the demand for optimal/variable grid sizes and time steps increases [60]. 

The alternatives to researching this topic further include long algorithm setup times and high 

computational resource demand. Computational resources and setup time may be alleviated 

with the use of high-performance computing centers and a setup procedure that overestimates 

grid size requirements.  

Controlled dynamic systems generally have a feedback loop that influences an input to 

the equations of motion. This is inherent in stochastic model predictive control [61] where 

uncertainty and random noise make control difficult. Exploration of running the methodologies 

presented in line with controlled dynamic systems could present solutions for predictive control 

algorithms or real-time uncertainty characterization. This research could add value to adaptive 

control schemes, sensitivity analysis, and instrument calibrations. 

Solving for higher dimensional problems is a vital aspect of this research. It is possible 

using the ADI method but proves to be difficult and computationally expensive. The use of the 

ADI method is shown to be efficient in handling large variable spaces (as compared to other 



106 
 

numerical finite difference methods) but is still limited as the number of uncertain variables 

increases. Efficient handling of additional uncertain variables is an obvious point of additional 

research stemming from the presented effort. Obtaining feasible run times using ADI as 

compared to MCS allows for efficient transient computation of probability distributions per 

each variable. For reasons discussed above, these probability distributions are useful in 

characterizing the statistics of a system at any given point in time. Alternatively, other methods 

may be developed that more efficiently solve the FP equation for higher dimensional equations 

of motion. Ultimately, the alternatives to MCS (which also becomes computationally expensive 

with higher orders of uncertainty) is a prominent area for continued research in the discipline 

of uncertainty quantification.  

Mathematical models are composed of numerous inputs that characterize a specific 

system. Simulations then instantiate these models over time using a variety of methods such as 

the MCS and ADI methods presented in this research. As was discussed previously, high order 

models are observed to be computationally expensive pending the research of new 

methodologies or optimization schemes. One way to reduce this computational load is to 

reduce the order of the models being instantiated. This can be done through meta-models, 

defined as “a model about a model” [62]. A meta-model provides a characterization of an entire 

space given only critical inputs (or inputs that have been found to be major contributors to 

outputs of interest). Further research of meta-modeling complex, multi-dimensional spaces 

that reduce the order or a model may save significant computational resources. This could 

result in uncertainty assessments of large trade spaces efficiently without the loss of accuracy.  
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Many exciting prospects remain for further research in the field of uncertainty 

quantification. The application of uncertainty methods for solving forward and reverse dynamic 

systems is demonstrated in this work, fulfilling the objective of this research effort. Uncertainty 

characterization will continue to be a major topic of discussion as engineers work toward more 

realistic representations and analysis of the world around us.  
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APPENDIX A 

COMPUTER CODES 

 

MATLAB® by Mathworks was utilized as the base coding platform. Computations were 

run on an AMD Ryzen 7 4800H 2.90 GHz processor with Radeon Graphics and 8.0 GB of RAM. 

The MATLAB® version utilized is R2022a. The following sections depict MATLAB® scripts and 

functions created to produce results illustrated in this report. 

Appendix A.1 leverages the primary run file (solveFPE.m) to run both the forward and 

reverse dynamic case for the nonlinear trim example problem. Additional functions required to 

run this example include ADI_fwd.m, ADI_rvs.m, matrix_fwd.m, matrix_rvs.m, matrixTridiag.m, 

and solveTridiag.m. Addition comments are provided within scripts to guide users on where in 

apply inputs and algorithm uses. 

Appendix A.2 uses a primary run file named MCS_NonlinearTrim.m to run a specific 

number of Monte Carlo Simulations for the same nonlinear trim problem solved using Appendix 

A.1. The function MCS_contour.m is called to produce contour plots from the aggregate MCS 

data. 

A.1. NONLINEAR TRIM FP EQUATION USING THE ADI METHOD  

solveFPE.m 
 
%% Forward/Backward Trim Flight Characterization 
% AUTHOR: Troy Newhart 
 
% DATE: 4 April 2023 
% ORGANIZATION: Old Dominion University 
 
% DESCRIPTION: Uses an Alternating Directions Implicit method to solve the 
% Fokker-Planck PDE, finding the transient joint probability distribution 
% of the response. 
 
% REFERENCES: 
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% [1] "Numerical Solution of the Fokker-Planck Equation by Finite 
% Difference and Finite Element Methods - A Comparative Study," L. Pichler, 
% A. Masud, and L.A. Bergman. 
 
% FUNCTION CALLS: 
% matrix_fwd.m, matrix_rvs.m ADI_fwd.m,, ADI_rvs.m matrixTridiag.m, solveTridiag.m  
 
%% Initialize 
clear 
clc 
 
%% User Inputs 
dt = 0.005; % Finite difference timestep 
T_end = 3; % End time 
M1 = 0.5; M2 = 0.5; % Grid bounds for y(1) = [-M1,M1] and y(2) = [-M2, M2] 
N1 =990; N2 = 990; % Number of nodes along each variable axis 
 
%% Solve the forward problem 
[D1,D2,x1,x2]=matrix_fwd(M1,N1,M2,N2); % Formulate the tridiagonal matrices of each 
state variable 
[t,p]=ADI_fwd(D1,D2,x1,x2,dt,T_end,N1,N2); % Alternating Directions Implicit Method 
to solve FP PDE for p 
 
%% Solve the backward problem using response PDF from above as initial conditions 
p_response = p(:,:,end); 
clearvars -except p_response t dt T_end N1 N2 M1 M2 p 
[D1,D2,x1,x2]=matrix_rvs(M1,N1,M2,N2); % Formulate the tridiagonal matrices each 
state variable 
[t_rvs,p_rvs]=ADI_rvs(p_response,D1,D2,dt,T_end,N1,N2); % Alternating Directions 
Implicit Method to solve FP PDE for p 
           
 
%% Plot desired time steps 
time = 3; % Specify the time step of interest 
t_ind = time/dt + 1; % Time index of the specified time of interest 
 
surf(x2,x1,p(:,:,t_ind),'edgecolor','none') 
view(90,90) 
xlabel('x_2') 
ylabel('x_1') 
title("Reverse Nonlinear Trim, time = "+time+" sec") 
cb = colorbar();  
ylabel(cb,'density') 

 

ADI_fwd.m 

function [t,p]=ADI_fwd(D1,D2,x1,x2,dt,T_end,N1,N2) 
 
% INPUTS: Tridiagonal matrices for each variable (D1, D2), variable grid 
% (x1, x2), timestep (dt), end time (T_end) 
% OUTPUT: time points and joint transient PDF 
% FUNCTION CALLS: solveTridiag.m 
 
t=(0:dt:T_end)'; 
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p=zeros(N1,N2,length(t)); % Initialize for speed 
 
% Create A matrix and b vector for solving A*p = b 
rhs_first = sparse(speye(N1*N2)+.5*dt*D1.matrix); % First A matrix 
rhs_second = sparse(speye(N1*N2)+.5*dt*D2.matrix); % Second A matrix 
     
a_first =-.5*dt*D2.a; 
b_first =ones(N1*N2,1)'-.5*dt*D2.b; 
c_first =-.5*dt*D2.c; 
     
a_second =-.5*dt*D1.a; 
b_second =ones(N1*N2,1)'-.5*dt*D1.b; 
c_second =-.5*dt*D1.c; 
 
[X1,X2] = meshgrid(x1,x2); % Mesh the discretized spatial domain 
 
%% Assign Initial Conditions 
mu = [0, 0.4]; sigma = 0.001*eye(2); % Uncertain Initial conditions 
p(:,:,1) = reshape(mvnpdf([X1(:) X2(:)],mu,sigma),length(x2),length(x1))'; % Joint 
PDF of uncertain initial conditions 
 
%% Compute the numerical solution to the Fokker-Planck Equation 
p = reshape(p,N1*N2,length(t)); % Shape p into a vector for computations 
 
tic()     
for j=2:length(t) 
 
    % Track progress of the computations 
    if rem(j,100)==0 
        fprintf('Number of Iteration %d out of %d finished...\n',j,length(t)); 
    end 
     
    % Solve for p^(n+1/2) 
    reshaped_r = reshape(reshape(rhs_first*p(:,j-1),N1,N2)',N1*N2,1); 
    p_half = solveTridiag(a_first,b_first,c_first,reshaped_r); 
     
    % Solve for p^(n+1) 
    reshaped_r = reshape(reshape(rhs_second*p_half,N2,N1)',N1*N2,1); 
    p(:,j) = solveTridiag(a_second,b_second,c_second,reshaped_r);  
 
end 
toc() 
 
p = reshape(p,N1,N2,length(t)); % Reshape into matrix for surface plotting 

 

ADI_rvs.m 

function [t,p_rvs]=ADI_rvs(p_response,D1,D2,dt,T_end,N1,N2) 
 
% INPUTS: Tridiagonal matrices for each variable (D1, D2), variable grid 
% (x1, x2), timestep (dt), end time (T_end) 
% OUTPUT: time points and joint transient PDF 
% FUNCTION CALLS: solveTridiag.m 
 



116 
 

t=(0:dt:T_end)'; 
p_rvs=zeros(N1,N2,length(t)); % Initialize for speed 
 
% Create A matrix and b vector for solving A*p = b 
rhs_first = sparse(speye(N1*N2)+.5*dt*D1.matrix); % First A matrix 
rhs_second = sparse(speye(N1*N2)+.5*dt*D2.matrix); % Second A matrix 
     
a_first =-.5*dt*D2.a; 
b_first =ones(N1*N2,1)'-.5*dt*D2.b; 
c_first =-.5*dt*D2.c; 
     
a_second =-.5*dt*D1.a; 
b_second =ones(N1*N2,1)'-.5*dt*D1.b; 
c_second =-.5*dt*D1.c; 
 
%% Assign Initial Conditions 
p_rvs(:,:,1) = p_response; % Joint PDF of uncertain initial conditions 
 
%% Compute the numerical solution to the Fokker-Planck Equation 
p_rvs = reshape(p_rvs,N1*N2,length(t)); % Shape p into a vector for computations 
 
tic()     
for j=2:length(t) 
 
    if rem(j,100)==0 
        fprintf('Number of Iteration %d out of %d finished...\n',j,length(t)); 
    end 
     
    % Solve for p^(n+1/2) 
    reshaped_r = reshape(reshape(rhs_first*p_rvs(:,j-1),N1,N2)',N1*N2,1); 
    p_half_rvs = solveTridiag(a_first,b_first,c_first,reshaped_r); 
     
    % Solve for p^(n+1) 
    reshaped_r = reshape(reshape(rhs_second*p_half_rvs,N2,N1)',N1*N2,1); 
    p_rvs(:,j) = solveTridiag(a_second,b_second,c_second,reshaped_r);  
end 
toc() 
 
p_rvs = reshape(p_rvs,N1,N2,length(t)); % Reshape into matrix for surface plotting 

 

matrix_fwd.m 

function [D1,D2,x1,x2]=matrix_fwd(M1,N1,M2,N2) 
 
% INPUTS: Discretized the spatial domain: x1 = [-M1, M1], x2 = [-M2, M2] 
%   with number of nodes N1 and N2 (matrix size = (N1*N2)x(N1*N2) and vectors 
%   (N1*N2)x1 
% OUTPUT: D1,D2 tridiagnal matrices and x1, x2 grid points 
% FUNCTION CALLS: matrixTridiag.m 
 
%% Initialize finite difference grid 
dx1=2*M1/(N1-1); 
if(dx1<0) 
    disp('Discretization of x1 cannot be negative.'); 
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    return; 
end 
x1=(-M1:dx1:M1)';  
 
dx2=2*M2/(N2-1); 
if(dx2<0) 
    disp('Discretization of x2 cannot be negative'); 
    return; 
end 
x2=(-M2:dx2:M2)'; 
 
%% Compute tridiagonal matrix over x1 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N2 
    a_coeff = (x1(1:end-1)*0 + x2(i))./(2*dx1); 
    c_coeff = (x1(1:end-1)*0 - x2(i))./(2*dx1); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D1.a = a; D1.b = b; D1.c = c; 
D1.matrix = matrixTridiag(a,b,c); 
 
%% Compute tridiagonal matrix over x2 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N1 
    a_coeff = (-5*0.1*(1-x1(i).^2)*x2(1:end-1)-9*sin(x1(i)))./(2*dx2); 
    c_coeff = (5*0.1*(1-x1(i).^2)*x2(1:end-1)+9*sin(x1(i)))./(2*dx2); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D2.a = a; D2.b = b; D2.c = c; 
D2.matrix = matrixTridiag(a,b,c); 

 

matrix_rvs.m 

function [D1,D2,x1,x2]=matrix_rvs(M1,N1,M2,N2) 
 
% INPUTS: Discretized the spatial domain: x1 = [-M1, M1], x2 = [-M2, M2] 
%   with number of nodes N1 and N2 (matrix size = (N1*N2)x(N1*N2) and vectors 
%   (N1*N2)x1 
% OUTPUT: D1,D2 tridiagnal matrices and x1, x2 grid points 
% FUNCTION CALLS: matrixTridiag.m 
 
%% Initialize finite difference grid 
dx1=2*M1/(N1-1); 
if(dx1<0) 
    disp('Discretization of x1 cannot be negative.'); 
    return; 
end 
x1=(-M1:dx1:M1)';  
 
dx2=2*M2/(N2-1); 
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if(dx2<0) 
    disp('Discretization of x2 cannot be negative'); 
    return; 
end 
x2=(-M2:dx2:M2)'; 
 
%% Compute tridiagonal matrix over x1 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N2 
    a_coeff = -(x1(1:end-1)*0 + x2(i))./(2*dx1); 
    c_coeff = -(x1(1:end-1)*0 - x2(i))./(2*dx1); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D1.a = a; D1.b = b; D1.c = c; 
D1.matrix = matrixTridiag(a,b,c); 
 
%% Compute tridiagonal matrix over x2 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N1 
    a_coeff = -(-5*0.1*(1-x1(i).^2)*x2(1:end-1)-9*sin(x1(i)))./(2*dx2); 
    c_coeff = -(5*0.1*(1-x1(i).^2)*x2(1:end-1)+9*sin(x1(i)))./(2*dx2); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D2.a = a; D2.b = b; D2.c = c; 
D2.matrix = matrixTridiag(a,b,c); 

 

matrixTridiag.m 

function [ Mat ] = matrixTridiag( a,b,c ) 
% OUTPUT: a sparse tridiagonal matrix given a, b, c 
 
%% Ensure vectors are the same length 
N = length(a); 
if (length(b) ~= N || length(c) ~= N) 
    fprintf('Length of a, b, c not the same.\n'); 
end 
 
%% Formulate tridiagonal matrix 
x_indx = [2:N,1:N,1:N-1]; % Index in the first dimension  
y_indx = [1:N-1,1:N,2:N]; % Index in the second dimension 
trid = [a(2:end),b(1:end),c(1:end-1)]; % Tridiagonal matrix 
 
Mat = sparse(x_indx,y_indx,trid,N,N); % Remove zeroes to save space on memory 
 
end 

 

solveTridiag.m 
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function d_prime = solveTridiag(a,b,c,d) % Use Thomas algorithm to efficiently solve 
inverse of tridiagonal matrix 
% INPUTS: LHS tridiagonal vectors and RHS matrix 
% OUTPUT: Probability density 
% REFERENCES: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm 
 
% Initialize variables 
N = length(a); 
d_prime = zeros(N,1); 
c_prime = zeros(N,1); 
 
b_tilde = b(1) ; 
d_prime(1) = d(1)/b_tilde ; 
% Decomposition of the special case of Gaussian elimination 
for j = 2:N 
    c_prime(j)=c(j-1)/b_tilde; 
    b_tilde=b(j)-a(j)*c_prime(j); 
    d_prime(j)=(d(j)-a(j)*d_prime(j-1))/b_tilde; 
end 
% Backward substitution to find all of the unknowns 
for j = 1:(N-1) 
    k = N-j ; 
    d_prime(k) = d_prime(k) - c_prime(k+1)*d_prime(k+1); 
end 

 

A.2. NONLINEAR TRIM MCS  

MCS_NonlinearTrim.m 

%% Forward Trim Flight Characterization 
% Author: Troy Newhart 
 
% Date: 4 April 2023 
% Organization: Old Dominion University 
 
% Description: Using Matlabs ODE45 function, solve and plot the forward 
% solution of the differential equation provided from ref. 1. 
 
% References 
% [1] "Advanced Flight Dynamics with Elements of Control," Chapter 2, Box 
% 2.2. 
 
% Function Calls 
% ODE45.m 
 
%% Initialize 
clear 
clc 
 
%% Monte Carlo Simulation 
tic 
for i = 1:1:800 %% SEM = s/sqrt(n), want SEM to be 1%, s is 1/9 
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    %% Constants for integrating the forward and reverse dynamics 
    tspan = 0:0.005:3; 
    opts = odeset('RelTol',1e-6,'AbsTol',1e-10); 
     
    %% Compute the forward and reverse dynamics 
    y0 = [normrnd(0,sqrt(0.001)); normrnd(0.4,sqrt(0.001))]; % Forward initial 
conditions 
    ode = @(t,y) linOsc(t,y); 
    [t,y] = ode45(ode, tspan, y0, opts); % Forward dynamics 
     
    y_mcs{i} = y; 
 
    if i > 1 
        y_total = [y_total;y]; 
        stddev = std(y_total(:,1)); 
        plot(i,stddev,'*') 
        grid on 
        hold on 
        title ('Standard Error of the Mean') 
        xlabel('Run No.') 
        ylabel('Standard Deviation of x_1') 
    else 
        y_total = y; 
        stddev = std(y_total(:,1)); 
        plot(i,stddev,'*') 
        grid on 
        hold on 
        title ('Standard Error of the Mean') 
        xlabel('Run No.') 
        ylabel('Standard Deviation of x_1') 
    end 
 
    clearvars -except y_mcs i y_total tspan 
end 
toc 
%% Post process the MCS data 
for j = 1:1:numel(y_mcs) 
    ytar = y_mcs{j}; 
    y1_t0(j,1) = ytar(1,1); 
    y2_t0(j,1) = ytar(1,2); 
    y1_t10(j,1) = ytar(end,1); 
    y2_t10(j,1) = ytar(end,2); 
end 
 
MCS_contour(y2_t10,y1_t10,-0.5:0.025:0.5,-0.5:0.025:0.5) 
xlabel('x_1') 
ylabel('x_2') 
title('Nonlinear Trim MCS, time = 3 sec') 
 
%% Equation of motion functions 
% Forward Dynamics 
function dydt = linOsc(t,y) 
    dydt = [y(2); -9*sin(y(1))-5*0.1*(1-y(1)^2)*y(2)]; 
end 
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MCS_contour.m 

function [] = MCS_contour(y2, y1, sizey2, sizey1) 
    [N,Xedges,Yedges] = histcounts2(y2,y1,sizey2,sizey1,'Normalization','pdf'); 
    % Compute bin centers 
    Xcnt = Xedges(2:end) - abs(diff(Xedges(1:2))/2);  
    Ycnt = Yedges(2:end) - abs(diff(Yedges(1:2))/2);  
    figure() 
    contour(Xcnt,Ycnt, N) 
    grid off 
    set(gca,'YDir','reverse') 
    % show bins 
  
    arrayfun(@(x)xline(x,'Color',[.8 .8 .8]),Xedges) 
    arrayfun(@(y)yline(y,'Color',[.8 .8 .8]),Yedges) 
    % colorbar 
    cb = colorbar();  
    ylabel(cb,'density') 
end 

 

A.3. NONLINEAR TRIM WITH DIFFUSION 

solveFPE.m 

%% Forward/Backward Trim Flight Characterization 
% AUTHOR: Troy Newhart 
 
% DATE: 4 April 2023 
% ORGANIZATION: Old Dominion University 
 
% DESCRIPTION: Uses an Alternating Directions Implicit method to solve the 
% Fokker-Planck PDE with diffusion, finding the transient joint probability 
distribution 
% of the response. 
 
% REFERENCES: 
% [1] "Numerical Solution of the Fokker-Planck Equation by Finite 
% Difference and Finite Element Methods - A Comparative Study," L. Pichler, 
% A. Masud, and L.A. Bergman. 
 
% FUNCTION CALLS: 
% matrix_fwd.m, matrix_rvs.m ADI_fwd.m,, ADI_rvs.m matrixTridiag.m, solveTridiag.m  
 
%% Initialize 
clear 
clc 
 
%% User Inputs 
dt = 0.005; % Finite difference timestep 
T_end = 3; % End time 
M1 = 0.5; M2 = 0.5; % Grid bounds for y(1) = [-M1,M1] and y(2) = [-M2, M2] 
N1 =990; N2 = 990; % Number of nodes along each variable axis 
Ds = [0, 0.01]; % Scaling factor for Gaussian white noise on diffusion 
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%% Solve the forward problem 
[D1,D2,x1,x2,DF1,DF2]=matrix_fwd(M1,N1,M2,N2,Ds); % Formulate the tridiagonal 
matrices of each state variable 
[t,p]=ADI_fwd(D1,D2,x1,x2,dt,T_end,N1,N2,DF1,DF2); % Alternating Directions Implicit 
Method to solve FP PDE for p 
 
%% Plot desired time steps 
time = 3; % Specify the time step of interest 
t_ind = time/dt + 1; % Time index of the specified time of interest 
 
surf(x2,x1,p(:,:,t_ind),'edgecolor','none') 
view(90,90) 
xlabel('x_2') 
ylabel('x_1') 
title("Reverse Nonlinear Trim, time = "+time+" sec") 
cb = colorbar();  
ylabel(cb,'density') 

 

matrix_fwd.m 

function [D1,D2,x1,x2,DF1,DF2]=matrix_fwd(M1,N1,M2,N2,Ds) 
 
% INPUTS: Discretized the spatial domain: x1 = [-M1, M1], x2 = [-M2, M2] 
%   with number of nodes N1 and N2 (matrix size = (N1*N2)x(N1*N2) and vectors 
%   (N1*N2)x1 
% OUTPUT: D1,D2 tridiagnal matrices and x1, x2 grid points 
% FUNCTION CALLS: matrixTridiag.m 
 
%% Initialize finite difference grid 
dx1=2*M1/(N1-1); 
if(dx1<0) 
    disp('Discretization of x1 cannot be negative.'); 
    return; 
end 
x1=(-M1:dx1:M1)';  
 
dx2=2*M2/(N2-1); 
if(dx2<0) 
    disp('Discretization of x2 cannot be negative'); 
    return; 
end 
x2=(-M2:dx2:M2)'; 
 
%% Compute tridiagonal drift matrix over x1 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N2 
    a_coeff = (x1(1:end-1)*0 + x2(i))./(2*dx1); 
    c_coeff = (x1(1:end-1)*0 - x2(i))./(2*dx1); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D1.a = a; D1.b = b; D1.c = c; 



123 
 

D1.matrix = matrixTridiag(a,b,c); 
 
%% Compute tridiagonal drift matrix over x2 span 
a = []; b = zeros(N1*N2,1)'; c = []; 
for i=1:N1 
    a_coeff = (-5*0.1*(1-x1(i).^2)*x2(1:end-1)-9*sin(x1(i)))./(2*dx2); 
    c_coeff = (5*0.1*(1-x1(i).^2)*x2(1:end-1)+9*sin(x1(i)))./(2*dx2); 
 
    a = [a, 0, a_coeff']; 
    c = [c, c_coeff', 0]; 
end 
D2.a = a; D2.b = b; D2.c = c; 
D2.matrix = matrixTridiag(a,b,c); 
 
%% Compute tridiagonal diffusion matrix over x1 span 
a = []; b = []; c = []; 
for i=1:N2 
    a = [a, 0, Ds(1)*(ones(N1-1,1)./(dx1^2))']; 
    c = [c, Ds(1)*(ones(N1-1,1)./(dx1^2))',0]; 
    b = [b, -2*Ds(1)*(ones(N1,1)./(dx1^2))']; 
end 
DF1.a = a; DF1.b = b; DF1.c = c; 
DF1.matrix = matrixTridiag(a,b,c); 
 
%% Compute tridiagonal diffusion matrix over x2 span 
a = []; b = []; c = []; 
for i=1:N1 
    a = [a, 0, Ds(2)*(ones(N2-1,1)./(dx2^2))']; 
    c = [c, Ds(2)*(ones(N2-1,1)./(dx2^2))',0]; 
    b = [b, -2*Ds(2)*(ones(N2,1)./(dx2^2))']; 
end 
DF2.a = a; DF2.b = b; DF2.c = c; 
DF2.matrix = matrixTridiag(a,b,c); 
 

ADI_fwd.m 

function [t,p]=ADI_fwd(D1,D2,x1,x2,dt,T_end,N1,N2,DF1,DF2) 
 
% INPUTS: Tridiagonal matrices for each variable (D1, D2), variable grid 
% (x1, x2), timestep (dt), end time (T_end) 
% OUTPUT: time points and joint transient PDF 
% FUNCTION CALLS: solveTridiag.m 
 
t=(0:dt:T_end)'; 
p=zeros(N1,N2,length(t)); % Initialize for speed 
 
% Create A matrix and b vector for solving A*p = b 
rhs_first = sparse(speye(N1*N2)+.5*dt*(D1.matrix+DF1.matrix)); % First A matrix 
rhs_second = sparse(speye(N1*N2)+.5*dt*(D2.matrix+DF2.matrix)); % Second A matrix 
     
a_first =-.5*dt*(D2.a+DF2.a); 
b_first =ones(N1*N2,1)'-.5*dt*(D2.b+DF2.b); 
c_first =-.5*dt*(D2.c+DF2.c); 
     
a_second =-.5*dt*(D1.a+DF1.a); 
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b_second =ones(N1*N2,1)'-.5*dt*(D1.b+DF1.b); 
c_second =-.5*dt*(D1.c+DF1.c); 
 
[X1,X2] = meshgrid(x1,x2); % Mesh the discretized spatial domain 
 
%% Assign Initial Conditions 
mu = [0, 0.4]; sigma = 0.001*eye(2); % Uncertain Initial conditions 
p(:,:,1) = reshape(mvnpdf([X1(:) X2(:)],mu,sigma),length(x2),length(x1))'; % Joint 
PDF of uncertain initial conditions 
 
%% Compute the numerical solution to the Fokker-Planck Equation 
p = reshape(p,N1*N2,length(t)); % Shape p into a vector for computations 
 
tic()     
for j=2:length(t) 
 
    % Track progress of the computations 
    if rem(j,100)==0 
        fprintf('Number of Iteration %d out of %d finished...\n',j,length(t)); 
    end 
     
    % Solve for p^(n+1/2) 
    reshaped_r = reshape(reshape(rhs_first*p(:,j-1),N1,N2)',N1*N2,1); 
    p_half = solveTridiag(a_first,b_first,c_first,reshaped_r); 
     
    % Solve for p^(n+1) 
    reshaped_r = reshape(reshape(rhs_second*p_half,N2,N1)',N1*N2,1); 
    p(:,j) = solveTridiag(a_second,b_second,c_second,reshaped_r);  
 
end 
toc() 
 
p = reshape(p,N1,N2,length(t)); % Reshape into matrix for surface plotting 
 

matrixTridiag.m 

function [ Mat ] = matrixTridiag( a,b,c ) 
% OUTPUT: a sparse tridiagonal matrix given a, b, c 
 
%% Ensure vectors are the same length 
N = length(a); 
if (length(b) ~= N || length(c) ~= N) 
    fprintf('Length of a, b, c not the same.\n'); 
end 
 
%% Formulate tridiagonal matrix 
x_indx = [2:N,1:N,1:N-1]; % Index in the first dimension  
y_indx = [1:N-1,1:N,2:N]; % Index in the second dimension 
trid = [a(2:end),b(1:end),c(1:end-1)]; % Tridiagonal matrix 
 
Mat = sparse(x_indx,y_indx,trid,N,N); % Remove zeroes to save space on memory 
 
end 
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solveTridiag.m 

function d_prime = solveTridiag(a,b,c,d) % Use Thomas algorithm to efficiently solve 
inverse of tridiagonal matrix 
% INPUTS: LHS tridiagonal vectors and RHS matrix 
% OUTPUT: Probability density 
% REFERENCES: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm 
 
% Initialize variables 
N = length(a); 
d_prime = zeros(N,1); 
c_prime = zeros(N,1); 
 
b_tilde = b(1) ; 
d_prime(1) = d(1)/b_tilde ; 
% Decomposition of the special case of Gaussian elimination 
for j = 2:N 
    c_prime(j)=c(j-1)/b_tilde; 
    b_tilde=b(j)-a(j)*c_prime(j); 
    d_prime(j)=(d(j)-a(j)*d_prime(j-1))/b_tilde; 
end 
% Backward substitution to find all of the unknowns 
for j = 1:(N-1) 
    k = N-j ; 
    d_prime(k) = d_prime(k) - c_prime(k+1)*d_prime(k+1); 
end 
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