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Abstract. The hamster is a useful model of human reproductive biology because its oocytes are similar to those in 
humans in terms of size and structural stability. In the present study we evaluated fecundity rate, ovarian follicular 
numbers, ova production, mitochondrial number, structure and function, and cytoplasmic lamellae (CL) in young 
(2–4 months) and old (12–18 months) Syrian hamsters (Mesocricetus auratus). Young hamsters had higher fertilisation 
rates and larger litters than old hamsters (100 vs 50% and 9.3 � 0.6 vs 5.5 � 0.6, respectively). Ovarian tissue from 
superovulated animals showed a 46% decrease in preantral follicles in old versus young hamsters. There was a 39%
reduction in MII oocyte number in old versus young hamsters. Young ova had no collapsed CL, whereas old ova were 
replete with areas of collapsed, non-luminal CL. Eighty-nine per cent of young ova were expanded against the zona 
pellucida with a clear indentation at the polar body, compared with 58.64% for old ova; the remaining old ova had 
increased perivitelline space with no polar body indentation. Higher reactive oxygen species levels and lower 
mitochondrial membrane potentials were seen in ova from old versus young hamsters. A significant decrease in 
mitochondrial number (36%) and lower frequency of clear mitochondria (31%) were observed in MII oocytes from old 
versus young hamster. In conclusion, the results of the present study support the theory of oocyte depletion during 
mammalian aging, and suggest that morphological changes of mitochondria and CL in oocytes may be contributing factors 
in the age-related decline in fertility rates.

Additional keywords: aging, lamellae, mitochondria, organelle structure, reactive oxygen species (ROS).
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Introduction

Age-related decline in fertility begins at the age of 30 years in
humans and falls steadily until menopause (Alviggi et al. 2009).

The quantity and quality of ovarian follicles with their associ-
ated ova are primary contributing factors in the reproductive
aging process. A decline in mitochondrial energy metabolism
and enhanced oxidative stress are also important contributors to

aging (Lee and Wei 2012). Mitochondria are considered
essential organelles in the aging process of ovarian follicles
(Jansen and Burton 2004) and are involved in specialised

processes, including signal transduction, calcium homeostasis
and oxygen sensing, in addition to ATP production (Bunn and
Poyton 1996; Pozzan et al. 2000; Quintero et al. 2006; Van

Blerkom 2008). Mitochondrial proliferation occurs in parallel
with increased cellular metabolism and increased ATP needs of
the oocyte, which are generally associated with increasing
cytoplasmic volume (Jansen and Burton 2004). Age-related

functional and morphological changes have been well docu-
mented in oocytes and oocyte mitochondria of humans, mice
and rats. These changes include increased mitochondrial matrix
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density and change of distribution (de Bruin et al. 2004; Nagai
et al. 2006), increased reactive oxygen species (ROS) produc-

tion (Tatone et al. 2011), increased mitochondrial (mt) DNA
mutations, decreased mitochondrial membrane potential (DCm;
Zeng et al. 2009) and decreased mitochondria–smooth

endoplasmic reticulum (M-SER) and increased mitochondria–
vesicle aggregates (Bianchi et al. 2015). However, studies on the
age-related changes of oocytes rarely include hamsters, and such

age-related mitochondrial changes in hamster oocytes have not
been studied to date.

Hamsters are an excellent animal model for the study of
oocytes for several reasons: (1) the hamster ovum (120mm) is

closer in size to the human ovum (150–200mm) than the mouse
ovum (80–100mm;Griffin et al. 2006); (2) female hamsters show
a regular and predictable 4-day oestrous cycle (Hendry et al.

2002); (3) large numbers of oocytes (30–60) per young female can
be obtained from a single superovulation; (4) the optimal light
cycle of the hamster is 14 h light and 10 h dark, which is closer to

that of humans (optimal 9 h sleep) than to the12 h light–12 h dark
cycle for other rodents, such as the mouse; (5) the hamster is
relatively free from spontaneous disease (Fox 1985); and (6) the
short 16-day gestation period and 4-day oestrus cycle make the

Syrian hamster a more efficacious model than large animals to
manipulate for reproductive research. Mizoguchi and Dukelow
(1981) reported that, much like the situation in humans, fertilisa-

tion rates in hamsters decrease with age and suggested that
defective ova were one of the major factors resulting in increased
preimplantation loss in aged hamsters.

The primary aim of the present study was to investigate
oocyte depletion during aging and to identify microscopic
variations of mitochondria in oocytes from young and old

hamsters.

Materials and methods

Animals and reagents

Female golden Syrian hamsters (HsdHan; AURA, Harlan
Laboratories) were grouped into a young hamster group

(2–4 months) and an old hamster group (12–16 months)
according to the classification of Parkening et al. (1982). The
hamsters were housed in a temperature- and light-controlled

room. All experimental protocols and animal handling proce-
dures were conducted in accordance with the National Research
Council (NRC) publicationGuide for Care andUse of Laboratory

Animals (National Academy of Science 1996), as reviewed and
approved by the Old Dominion University Institutional Animal
Care and Use Committee (IACUC; Protocol no. 10-035).

Fecundity rate counting

In order to confirm the higher fecundity rate of young versus
old hamsters, eight young female hamsters and eight old
female hamsters were mated with a group of male hamsters of

the same age.

Superovulation

Old female hamsters selected at random with regard to oestrous
cycle were induced to superovulate by intraperitoneal (i.p.)
injection of 5 IU per 50 g hamster weight; 30 IU per old hamster

and 20 IU per young hamster pregnant mare’s serum gonado-
tropin (PMSG; Sigma-Aldrich) followed 54 h later by human

chorionic gonadotropin (hCG; Sigma-Aldrich) 30 IU per old
hamster and 20 IU per young hamster. Superovulated females
were killed by cervical dislocation after anaesthesia via sodium

pentobarbital (Sheris) approximately 17 h after hCG injection
for MII oocyte retrieval.

Histological preparation and evaluation of ovarian follicles

In order to evaluate and compare preantral follicles in young and
old ovarian tissue, ovaries were collected from superovulated
Syrian hamsters and processed in 10% buffered formalin
through a series of dehydration steps, paraffin embedded, serial

sectioned (8 mm) with a Leica RM2265 microtome, mounted on
slides and stained with haematoxylin and eosin (HE) for pre-
antral follicle counts. Preantral follicles of hamsters contained a

germinal vesicle and either a single layer of squamous epithelial
cells or one to three layers of cuboidal epithelial (granulosa)
cells with follicular antra according to previous descriptions

(Griffin et al. 2006; Araújo et al. 2014).

Collection of superovulated MII oocytes

Oviducts excised from anaesthetised hamsters were placed in

sterile 35-mm polystyrene Nunclon culture dishes with 3mL of
M199TE medium as described by Yamauchi et al. (2002).
Under a Zeiss dissecting stereomicroscope at �20 magnifica-
tion, watchmaker forceps were used to slide the fimbriae onto a

26-gauge sterile needle attached to a 1-mL sterile syringe.
Cumulus–oocyte complexes (COCs) were irrigated from the
oviducts with medium expressed from the syringe with mod-

erate force. COCs from individual hamsters were placed in a
drop of 1% hyaluronidase (Sigma-Aldrich) under mineral oil
and evaluated continuously for cumulus cells dissociating from

the oocytes. Oocytes that were close to being cell free were then
picked up with a hand-pulled glass micropipette (,100mm
lumen inner diameter) and washed three times through
hyaluronidase-free M199TEmedium with vigorous pipetting to

remove all cumulus cells. Normal MII stage eggs (judged by
minimal perivitelline space (PVS) with one small polar body
pressed against the oolemma) were evaluated at �32 magnifi-

cation and collected from the fourth wash droplet to a Petri dish
with M199TE medium for the experimental protocols.

Evaluating oocyte perivitelline space

All ovulated oocytes were counted. Those oocytes that were
expanded tightly against the zona pellucida (minimal PVS) with

a clear indentation at the polar body were judged to be healthy
oocytes (Graham et al. 1994; Xia 1997). Oocytes with a wide
PVS were judged poor in quality and discarded.

Fluorescence labelling of mitochondria with JC-1
and confocal microscopy

The potential-sensitive fluorescence dye 5,50,6,60-tetrachloro-
1,1,3,30-tetraethylbenzimdazoylcarbocyanine iodide (JC-1;
Invitrogen), was used to measure DCm and thereby to assess the
activity of the mitochondria. The process was performed as
described previously (Thouas et al. 2004; Zeng et al. 2009).

B Reproduction, Fertility and Development F. Li et al.



Low-polarised mitochondria with DCm ,100mV (negative
inside) generally show green fluorescence under the confocal

microscope because of accumulation of the monomer form of
JC-1 within the organelle. Highly polarised mitochondria (DCm

.140mV) are indicated by red fluorescence because of JC-1

aggregate formation. In the present study, retrieved oocytes
were incubated in the JC-1 working solution (1 mM) for 30min
at 378C. Fluorescence was evaluated under a Zeiss LSM-510

confocal laser scanningmicroscope equippedwith aKr–Ar laser
to produce an excitation wavelength of 488 nm; a 530 nm
dichroic mirror was used for the emission wavelength.
A Z-section scan at 5-mm intervals through the centre of the

oocyte was used to analyse fluorescence intensity, as described
by Van Blerkom et al. (2002).

Quantification of ROS in oocytes with MitoTracker
Red CM-H2XRos

Intracellular ROS was quantified using MitoTracker Red CM-
H2XRos (MRR, Invitrogen).MRR is oxidisedbyROS,mainly by

superoxide and hydrogen peroxide, and trapped in mitochondria
by its chloromethyl moiety (Kweon et al. 2001). The reduced
formof this dyemay also be used to determine intracellular levels
of ROS (Park et al. 2006). Experiments were performed in a

similar way to those described for JC-1 staining above. The final
working solution was 1mM MRR in M199TE buffer. Fluores-
cence emitted from MRR passed through a 600 long pass (LP)

emission filter. Images of JC-1 and MRR fluorescence were
processed and the fluorescence intensity in the oocytes was
measured using MetaMorph 7.5 (JH Technologies).

Oocyte preparation for transmission electron microscopy

The preparation of oocytes for transmission electron micros-
copy (TEM) used a modification of procedures described by
Britton et al. (1991). Oocytes were collected as described above

and were fixed in 2.5% glutaraldehyde (GA) in 0.1M phosphate
buffer (PB) for 4 h at 48C. Subsequently, oocytes were washed
twice in 0.1M PB and then once in 10% bovine serum albumin

(BSA) in Dulbecco’s phosphate-buffered saline (PBS) before
being transferred to a Beem capsule (flat bottom Size 3, Electron
Microscopy Sciences) containing 1 drop of 10% BSA. Fol-

lowing 30min rest, capsules were spun in a swinging bucket
centrifuge at 1800g for 15min at room temperature. Three drops
of GAwere carefully overlaid on the surface of the BSA to avoid
mixing. The capsules were centrifuged horizontally 1800g for

1 h at room temperature and subsequently filled with GA and
refrigerated at 48C overnight. The following morning, the GA
was poured off and the fixed protein–oocyte mould was trans-

ferred from the Beem capsule to a 1-mL vial. The mould was
washed twice in 0.1M PB and post-fixed with osmium tetroxide
(1% osmium tetroxide in 0.1M PBS) for 2 h and then washed

twice in PB. Themould was dehydrated in ethanol gradients and
infiltratedwith pure propylene oxide twice for 15min each time.
The mould was then infiltrated in 1 : 1 EMBed 812 (Electron

Microscopy Sciences) mixture and propylene oxide for 1 h,
followed by pure EMBed 812 for 1 h. The EMBed 812 mixture
was made from an EMBed 812 kit (Electron Microscopy
Sciences) with 20mL EMBed 812, 9mL dodecenyl succinic

anhydride (DDSA), 12mL methyl-5-norbornene-2,3-dicarbox-
ylic anhydride (NMA) and 0.75mL dimethylaminomethyl

phenol (DMP-30). The mould was aligned into a Beem capsule
filled with EMBed 812 mixture and polymerised in a 608C oven
for 48 h. The samples were cut with an RMC-MT2C ultra

microtome (RMC Boeckeler). Thin sections were collected on
G200-Cu grids (Electron Microscopy Sciences), stained
sequentially with uranyl acetate and lead citrate and examined

on a JEM-1200EXI electron microscope (Jeol USA, Inc.). The
analysis was performed with ImageJ with plug-ins downloaded
from the National Institute of Health following the method
described by Weibel et al. (1966).

Statistical analysis

Data were analysed using SPSS version 18.0 (SPSS Inc.). The
PVS of oocytes and ratio of dark to light mitochondria were

evaluated with Student’s t-test after transformation to arcsine.
Other results were compared using Student’s t-test. Results are
presented as the mean� s.e.m., and two-tailed P # 0.05 was

considered significant.

Results

Decline in fecundity rate from young to old hamsters

Fertilisation rates were found to be 100% for young hamsters

and 50% for old hamsters (n¼ 8), with the average numbers of
pups being 9.3� 0.6 and 5.5� 0.6 for young and old hamsters
respectively, suggesting that young hamsters have higher ferti-
lisation rates and larger litters than old hamsters. These reduc-

tions in fecundity and litter size for the aging hamster are in
agreement with the decline in fertility seen in other species
(David et al. 1975; Giesel 1979).

Evaluation of ovarian tissue and number
of superovulated oocytes

Ovaries collected from old and young hamsters showed a 46%

decrease in the number of preantral follicles in old compared
with young hamster ovaries (48.3� 3.5 vs 90.0� 12.5; Fig. 1).
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Fig. 1. Number of ovarian follicles and superovulated oocytes. Black

columns show the number of follicles per ovary (young ovaries, n¼ 6; old

ovaries, n¼ 4); grey columns show the number of superovulated oocytes per

hamster (n¼ 20 in each group). Data are the mean� s.e.m. *P, 0.01.
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A 39% reduction in the number of ovulated MII oocytes was
observed in superovulated old versus young hamsters
(22.6� 3.6 vs 37.1� 3.7 respectively; P, 0.05, Student’s

t-test; Fig. 1). These results indicate an age-related decline in the
number of preantral follicles and ovulated MII oocytes in
hamsters.

Evaluating the perivitelline space of oocytes

Of 522 oocytes retrieved from 14 young hamsters, 403 were
predominantly expanded against the zona pellucida (minimal

PVS) with a clear indentation at the polar body (Fig. 2), thus
qualifying these as ‘healthy’ oocytes (Xia 1997; Rienzi et al.
2008). However, only 189 of 322 oocytes from 17 old

hamsters could be described in this way. The remaining ‘non-
healthy’ old oocytes had a wide PVS with no indentation from
the polar body. These data indicate that young hamsters
produce a higher percentage of morphologically healthy-

appearing oocytes than old hamsters (88.7� 2.7% vs
58.6� 6.6% respectively). This result reflects a significant,
age-related, 33.9% decrease of healthy oocytes in old versus

young hamsters (P, 0.001, Student’s t-test with arcsine
transformation).

DCm in MII oocytes from Young and Old Hamsters

The potential-sensitive fluorescent dye JC-1 was used to mea-
sure DCm. As seen in Fig. 3, the red fluorescence intensity of

oocytes from young hamsters was significantly higher than that
from old hamsters (81.9� 4.7 vs 59.5� 3.9 respectively;
n¼ 30; P, 0.01, Student’s t-test). The young oocytes had a

significantly higher ratio of JC-1 red/green fluorescence inten-
sity than old oocytes (6.0� 2.8 vs 3.7� 1.0 respectively;
P, 0.01, Student’s t-test; Fig. 3). This indicates that oocytes

from young hamsters contain more mitochondria (,62%more)
with higher DCm than oocytes from old hamsters.

ROS levels in MII oocytes from young and old hamsters

MRR was used to evaluate changes in ROS levels in young and

old oocytes. The fluorescence in oocytes from old hamsters
(90.9� 4.5) incubated with MRR showed a significant increase
(P, 0.05; n¼ 30) in ROS production compared with young

hamsters (75.7� 3.1; Fig. 4).
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Fig. 2. Morphological differences between oocytes from young and old

hamsters. (a) Young hamsters have a significantly higher percentage of

‘healthy-appearing’ oocytes (88.68%; n¼ 14) than old hamsters (58.64%;

n¼ 17). Data are the mean� s.e.m. of 522 oocytes from 14 young hamsters

and 322 oocytes from17 old hamsters. *P, 0.01 (b, c) Representativemicro

photographs showing that young oocytes (b) were expanded against the zona

pellucida with a minimal perivitelline space (PVS) and a clear indentation at

the polar body, whereas old oocytes (c) had wide PVS with no indentation

from the polar body.
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Mitochondrial morphological differences between young
and old hamster oocytes by TEM

Fig. 5 shows examples of mitochondrial morphological differ-

ences between MII oocytes from young and old hamsters, with
representative images from six young (Fig. 5a) and six old
(Fig. 5b) female hamsters. There was a significant 36% decrease

in mitochondrial number in aged versus young hamster oocytes
(75.5� 2.8 vs 55.4� 2.8 per 100mm2 respectively; P, 0.01,
Student’s t-test with arcsine transformation; Fig. 5g).

Both young andold oocytes containedclearmitochondriawith
distinct cristae, as well as some dark mitochondria with large
amounts of electron-dense areas (Fig. 5c, d), but old oocytes, on
average, contained a significantly lower (31%) frequency of clear

mitochondria than young oocytes (38.6� 1.4% vs 55.6� 2.1%
respectively; P, 0.01; Fig. 5h). At higher magnification,
collapsed cytoplasmic lamellae were seen within old oocytes

(Fig. 5f ), but not in young oocytes (Fig. 5e).

Discussion

The number and functionality of oocyte and embryonic mito-
chondria have been recognised as major determinants of both

pregnancy potential and successful progression through fetal
development and birth. Decreased fecundity with increasing age
has been observed in several mammalian species (Giesel 1979).

Because structural and functional changes have been shown to
occur in aged mammalian mitochondria, several groups have
investigated the relationship between aging, mitochondrial

function and fertility (Jansen and Burton 2004; Thouas et al.
2004; Van Blerkom 2008; Zeng et al. 2009). However, even
though the hamster has become a very useful animal model for

reproduction studies, a review of the literature finds relatively
few analyses of oocytes and mitochondrial structure and/or
function in this animal. Mizoguchi and Dukelow (1981) repor-
ted that defective oocytes with chromosomal abnormality

represent one major factor leading to increased preimplantation
loss in the aging hamster. We have reported previously
decreased ATP and mtDNA number in individual oocytes from

old hamsters (Simsek-Duran et al. 2013). In the present study,
we found morphological differences between young and old
hamster oocytes by light, transmission electron and fluores-

cence microscopy. Old hamsters produced a significantly lower
percentage (33.87% lower) of healthy-appearing oocytes with
minimal PVS compared with those in young hamsters. A large
PVS has been related to lower fertilisation rates in humans

(Rienzi et al. 2008). This is in agreement with our finding of
lower fecundity rates in old compared with young female
hamsters, which is in agreement with an earlier observation in

hamsters (Mizoguchi and Dukelow 1981).
Oocyte quality has been associated with the size of the

mitochondrial population (Reynier et al. 2001). Oocyte energy

is derived primarily from mitochondrial ATP, so healthy
mitochondria are needed in sufficient numbers to maintain
the ATP levels necessary for oocyte development and fertilisa-

tion. In a previous study, we showed that mtDNA number, and
by extension the number of mitochondria, decreased signifi-
cantly in MII stage oocytes from old compared with young
hamsters (Simsek-Duran et al. 2013).

Ultrastructural evaluation of mitochondria further confirmed
the significant difference in mitochondrial number in oocytes

from young and old hamsters. The TEM analysis in the present
study showed that oocytes from young hamsters contained, on
average, 36% more mitochondria than those from old hamsters.

Mitochondrial quantity and quality are both important for
normal oocyte development and fertilisation.

DCm is another important index of mitochondrial function.

A decrease in DCm reflects mitochondrial dysfunction and is
related to a series of mitochondrial functional changes such as
increased ROS production, decreased ATP levels and irregular
calcium regulation (Van Blerkom 2011; Bellanti et al. 2013;

Duicu et al. 2013). Based on the increased red fluorescence in
JC-1-stained oocytes, mitochondria in young oocytes have a
higher polarisation of their innermembrane than old oocytes. To

avoid bias from the difference in mitochondrial quantity
between young and old oocytes, we used the ratio of red to
green fluorescence intensity to reliably describe this change.

The ratio of red : green fluorescence intensity was significantly
lower in oocytes from old compared with young hamsters.
According to the characteristics of JC-1, this implies that a
greater percentage of the mitochondria in young oocytes main-

tain a higher polarisation than those in old oocytes. Because the
energy stored in the mitochondrial membrane potential drives
ATP synthesis, reduced polarisation in mitochondria from old

oocytes would lead to reduced ATP production. It remains to be
determined whether decreased DCm is an inducer or a subse-
quent event of the apoptotic pathway (Klamt and Shacter 2005;

Boren and Brindle 2012); in either case, the decrease in DCm

indicates the possibility of increased apoptosis occurring in
older oocytes. This decrease in DCm may contribute to the poor

development of old oocytes and low fecundity of old hamsters.
ROS levels were significantly higher in oocytes from old than
young hamsters, suggesting that there is an accumulation of
defective mitochondria with higher ROS production in oocytes

from old hamsters. Elizur et al. (2014) found that high-quality
embryos were derived from follicles with lower ROS levels,
whereas poor-quality embryos developed from follicles with

higher ROS levels. Increased intracellular ROS has also been
shown to cause the fragmentations seen in porcine MII oocytes
during aging (Tang et al. 2013). Conflicting reports have been

published on changes in DCm and ROS generation (Brookes
2005). Some studies show mitochondrial uncoupling as a
cytoprotective strategy to limit ROS generation, whereas others
think the collapse in DCm induces ROS generation (Roy et al.

2004; Speakman et al. 2004). The relationship between ROS
production and apoptosis has been well documented and we
propose that the increase in ROS production demonstrated

herein also contributes to mitochondrial dysfunction.
Evaluation of morphological changes in mitochondrial ultra-

structure indicated that old oocytesmanifested a higher frequency

of dark mitochondria with few or absent distinct cristae. These
observations of hamster oocyte morphology agree with the
increase in cristae complexity and electron density seen in

the mitochondrial matrix with both in vivo and in vitro human
oocyte aging (Sathananthan 1997). Mitochondrial morphology
changes with follicular development. It has been reported that the
electron density of the mitochondrial matrix and the complexity

Altered mitochondria and fertility in aged hamster Reproduction, Fertility and Development E
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higher frequency of dark mitochondria without distinct cristae (P, 0.01). (e, f) Collapsed cytoplasmic lamellae

(filled arrows) and normal cytoplasmic lamellae (open arrows) in old ( f ) but not young (e) young oocytes. (g, h)

Graphical representation of the significant 36% decrease in mitochondrial number in old versus young hamster

oocytes (g) and the percentage of mitochondria with clear cristae (h). Old oocytes contained significantly (31%)

fewer clear mitochondria with distinct cristae than young oocytes. Data are the mean� s.e.m. of independent

experiments for six female golden hamsters in each group. *P, 0.05 .
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of cristae increase in the rapidly enlarging oocyte until follicular
antrum formation, declining thereafter (Weakley 1976; Weakley

and James 1982). It has also been suggested that during differen-
tiation of the embryo there is a gradual change frommitochondria
with dense matrices to elongated mitochondria with less dense

matrices and numerous cristae (Motta et al. 2000). Ishida et al.
(1979) suggested that high electron density may be the result of
the sequestration and storage of calcium. Therefore, the intensity

of the electron density in the matrix of the aged hamster
mitochondria seen in the present study may reflect, in part, the
mature nature of the oocytes and the changing role of mitochon-
dria in calcium regulation due to aging.

The density changes inmitochondria are intimately associated
with the SER (Weakley and James 1982). The TEM results in the
present study did not reveal changes in regular vesicle SER, but

we observed some CL. CL are a conformational change in the
SER (Banno and Kohno 1996) and collapsed forms of these
structures were observed only in oocytes from old hamsters. A

decrease in M-SER aggregates has been reported both during
reproductive aging and in in vitro aged oocytes (Motta et al. 2000;
Bianchi et al. 2015). The abnormalities of both CL and mito-
chondria together may indicate a dysfunction in the regulation of

calcium concentration in the cytoplasm and mitochondrial
matrix, because mitochondria and SER play important roles in
regulating calcium concentration. Changes in cortical granules

(CG) have also been associated with fertility differences in cows
and mice (Ducibella et al. 1990; Båge et al. 2003; Bianchi et al.
2015), but we did not findmorphological changes in CG between

oocytes from old and young hamsters (F Li, W Ford, FJ Castora,
RJ Swanson, unpubl. data).

In addition to showing differences in oocyte quality and

quantity in young and old hamsters, the present study illustrates
both mitochondrial dysfunctions and morphological changes in
oocytes from old versus young hamsters. These parameters most
likely contribute to lower fertility and fecundity rates through

decreased ATP production, abnormal regulation of calcium
concentration and transfer and increased levels of ROS, in
addition to other mechanisms that have not yet been elucidated.

The data we present herein (a reduction in fecundity, fertilisa-
tion rate and litter size with advanced age in the hamster
correlating with increased levels of ROS, decreased mitochon-

drial membrane potential and a variety of morphologic changes)
further support the conclusion that these molecular and
morphological changes contribute to, if not determine, the
age-related difficulties in mammalian conception, development

to term and delivery of healthy offspring in the hamster. We
believe that these molecular and morphological changes in the
aged hamster oocyte mimic those of the human, making

the hamster a preferred animal model for studying human
fertilisation and embryonic development.
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