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Introduction

Termites may contribute significant amounts of nitro-
gen to terrestrial ecosystems because their microbial
gut flora include nitrogen-fixing bacteria (Breznak
et al. 1973; Potrikus & Breznak 1977). The newly
fixed nitrogen is incorporated into termite tissues and
can be distributed throughout the colony by social
feeding (trophallaxis) (Bentley 1984; Waller & La
Fage 1987). Through this process, termites supple-
ment their nitrogen-poor diet and contribute to the
biogeochemical cycling of nitrogen in terrestrial
ecosystems (Schaefer & Whitford 1981; Pandey,
Waller & Gordon 1992; Slaytor & Chappell 1994;
Tayasu et al. 1994). However, the amount of nitrogen
fixed by termites is unknown. Furthermore, most ter-
mites lose their nitrogen-fixing ability within 24 h of
laboratory storage and may not regain it until many
weeks in the laboratory (Lovelock, O’Brien & Slaytor
1985). Nitrogenase activity in termites is most reli-
ably measured directly after removal of the insects
from the field (Pandey et al. 1992). Therefore, some
reported nitrogen fixation rates are unreliable for cal-
culating ecosystem-level nitrogen inputs by termites.

Termite nitrogen fixation rates vary among termite
species (Breznak 1982), and intraspecific variation
results from differences in food quality, termite caste,
termite size and seasonal factors (Breznak et al. 1973;
Prestwich, Bentley & Carpenter 1980; Waller,
Breitenbeck & La Fage 1989; Curtis & Waller 1995).
Nitrogenase activity is higher in soldiers than workers
in some termite species and lower than workers in
other species (Prestwich et al. 1980). Larvae have
been reported to fix 300-fold more nitrogen than
workers in Coptotermes formosanusShiraki (Breznak
1982). Both nitrogen fixation rates and the propor-
tions of different castes may vary seasonally.

Therefore, long-term studies are needed to determine
the effects of seasonal factors and colony dynamics on
the nitrogen contribution of termites to ecosystems.

In the present study, termite worker nitrogen fixation
rates were examined monthly for 35 months in a tidal
forest in coastal Virginia, USA. Seasonal caste composi-
tion was determined every 2 months throughout the
study period, and the nitrogen fixation rates of the differ-
ent termite castes were measured when they were avail-
able. We also estimated termite numbers in logs and
calculated the amount of nitrogen contributed per log.

Materials and methods

TERMITES

Wood infested with Reticulitermes flavipes(Kollar)
and Reticulitermes virginicus(Banks) was collected
monthly from the headquarters of the Virginia Coast
Reserve (VCR) Long-term Ecological Research
(LTER) site located in Nassawadox, on the Eastern
Shore of Virginia, USA, from June 1993 to April
1996, for the worker assays. Environmental tempera-
ture data were obtained from a database maintained
by the VCR-LTER (Krovetz & Porter 1993–1996).
Termites were also collected from other sites in south-
eastern Virginia, for worker, soldier, presoldier,
nymph, larva and alate assays. Reticulitermes flavipes
and R. virginicusare common to all our study sites.
However, termites were not identified to species when
no alates were present. Voucher specimens have been
deposited at Old Dominion University.

ACETYLENE REDUCTION ASSAY

The acetylene reduction assay was used to determine
nitrogenase activity for each termite colony. The assay
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is based on the ability of nitrogenase to reduce acety-
lene (C2H2) to ethylene (C2H4) at three times the rate
it converts dinitrogen (N2) to ammonia (NH3) (Hardy,
Burns & Holsten 1973; Bentley 1984). The following
protocol is adapted from Pandey et al. (1992).

Fifty worker termites, removed from their nest
material and weighed to the nearest 0·1 mg, were
placed in an 8·5-ml glass vial with a rubber sleeve cap
septum. One millilitre of air was removed and 1·0 ml
of acetylene was added to the vial, resulting in a final
atmosphere of ≈ 12% acetylene. Three replicate vials
per colony were incubated at 22 ± 2 °C for 30 min.
Following incubation, a 200-µl sample of head space
was removed with a 0·5-ml Hamilton Gas Tight
syringe (Hamilton Company, Reno, NV, USA) and
injected into a Varian® 3600 gas chromatograph
(Varian Instrument Company, Walnut Creek, CA,
USA) equipped with a flame ionization detector and a
Porapak® N column (Alltech, Deerfield, IL, USA).
Ethylene peaks were analysed using a standard con-
centration curve with known amounts of ethylene to
determine the moles of ethylene produced for each
sample. Final nitrogen fixation rates are expressed as
dinitrogen fixed (µg) termite fresh mass (g)–1 day–1.
There were three replicate samples for each colony.
Ten colonies per month were sampled for 35 consecu-
tive months. Nitrogenase activity was also measured
for the different castes present. All acetylene reduc-
tion assays were performed on termites immediately
removed from logs within 4 h of taking the logs from
the field.

The monthly nitrogen fixation rates of worker ter-
mites were analysed using a completely randomized
design analysis of variance (ANOVA) to test if there was
a difference among the 35 months of the study
(α = 0·05) (SAS statistical package, SAS Institute
1990). The nitrogen fixation rates of each termite
caste were analysed with a completely randomized
design analysis of variance (ANOVA) to test for a differ-
ence in nitrogenase activity among the different ter-
mite castes over the study period (α = 0·05) (SAS
statistical package, SAS Institute 1990) and the Tukey
honestly significant difference (HSD) multiple com-
parison test was used to compare means.

CASTE PROPORTION

Every other month from February 1994 to April 1996,
the proportion of different caste members was deter-
mined for the same 10 termite colonies that were col-
lected from the VCR and used in the worker
nitrogenase activity assays. Termites were removed
from their nest material and placed in a 3-mm aperture
wire sieve to remove large debris. The volume of the
sifted material, including termites, was measured. In
three replicate samples, each with a volume contain-
ing 250 termites, counts were made for all termites in
the following six castes: worker, soldier, presoldier,
nymph, larva and alate.

Caste ratio data were transformed (arc-sine square-
root) and analysed with a completely randomized
design analysis of variance (ANOVA) to test for differ-
ences in caste proportion over the study period
(α = 0·05) (SAS statistical package, SAS Institute
1990). A completely randomized analysis of variance
(ANOVA) was used to test for differences in the abun-
dance of each caste over the season (α = 0·05).

TERMITE ABUNDANCE

Estimates of the number of R. virginicusin two logs at
the VCR were made by a mark–release–recapture
method using the ingestible dye marker Nile blue in
March and April 1996. The logs were 7·4 m
long × 11 cm in diameter and 2·7 m long× 30 cm in
diameter, respectively. Termites were collected from
sections of logs in the field, taken to the laboratory,
removed from the wood, and fed filter paper impreg-
nated with 0·1% (w/w) of the dye Nile blue for 5 days.
A week later, marked termites were counted and
released to the original host logs. After 7 days, a 30-
cm long section of each log was collected, returned to
the laboratory and broken to expose all termites. The
broken pieces were then placed into a 3-mm aperture
wire sifter to remove the wood particles from the ter-
mites. Marked and unmarked individuals were
counted and log population estimates were calculated
using the Lincoln Index (Petersen method) (Krebs
1989):

CM
N = –––– , eqn 1

R

where N = population estimate, M = number of worker
termites marked, C = number of worker termites
recaptured and R = number of worker termites in the
recapture sample that were marked.

Confidence limits (95%) were calculated using the
following formula (Krebs 1989):

R R
(1 – f) –– 1 – –– 

R √ ( C ) ( C ) 1
–– ± Za ––––––––––––––––––– + – C ,        eqn 2
C { ( C – 1 ) 2 }
where f = fraction of total population sampled in the
recapture sample ≈ R/M, 1/2C = correction for continu-
ity and Zα = standard normal deviate for (1 –α) level
of confidence = 1·96 (for 95% confidence limits).

Results

NITROGENASE ACTIVITY

There was a significant difference among monthly ter-
mite nitrogen fixation rates for the 35 months of the
study (F = 37·02; df = 34, 1015; P < 0·0001) (Fig. 1).
These differences were related to seasonal variation in
nitrogenase activity with the highest rates occurring in
the moderate temperatures of spring and autumn and
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the lowest rates occurring in the extreme temperatures
of winter and summer. Winter rates were lowest,
approximating zero. There was a significant differ-
ence in nitrogen fixation rates among the different ter-
mite castes (F = 24·78; df = 5, 165; P < 0·0001)
(Fig. 2). Worker termites had the highest nitrogenase

activity of all termite castes (1·58 ± 0·27µg N2 fixed
termite fresh mass (g)–1 day–1) (Tukey HSD).

CASTE PROPORTION

There was a significant difference in the caste propor-
tion of termites (F = 1282·9; df = 5, 63; P = < 0·001)
from 1994 to 1996. Worker termites represented the
highest proportion per colony for each collection
period (87%), but their caste ratios differed signifi-
cantly over the bimonthly collections (F = 2·02;
df = 13, 126; P = 0·024) (Fig. 3a). Larvae, the second
most abundant caste, did not differ significantly in
caste ratio over time (F = 1·55; df = 13, 126; P = 0·11)
(Fig. 3b) but their proportions tended to be the oppo-
site of worker proportions. There was a significant
difference in the relative abundance of soldiers over
the study period (F = 2·21; df = 13, 126; P = 0·012)
(Fig. 3c). Soldier proportion was lowest in June
(0·5%) and highest in April (2·1%). There was a sig-
nificant difference in the abundance of presoldiers
over the study period (F = 8·81; df = 13, 126;
P ≤ 0·0001) (Fig. 3d). Presoldier proportion was high-
est in August. There was no significant difference in
the abundance of nymphs (F = 0·74; df = 13, 126;
P = 0·72) or alates (F = 0·92; df = 13, 126; P = 0·53)
over the months of the study (Fig. 3e, f).

TERMITE ABUNDANCE

The population estimates for two R. virginicus
colonies in logs were 0·49× 106 worker termites for
the log measuring 7·4 m long× 11 cm in diameter and
1·78 × 106 worker termites for the log measuring
2·7 m long× 30 cm in diameter (Table 1). Based on
these log abundance data, R. virginicusis capable of
contributing 15·3 mg N log–1 day–1 and 5·6 g N log–1

year–1.

Discussion

Nitrogen fixation has been demonstrated in all termite
families (Slaytor & Chappell 1994). Given their
global distribution, termites may have widespread
importance in the biogeochemical cycling of nitrogen
in terrestrial ecosystems. Pandey et al. (1992) esti-
mated that Reticulitermes spp. contribute
125·5–445·3 g N ha–1 year–1 in a forest ecosystem,
while Schaefer & Whitford (1981) estimated
Gnathamitermes tubiformans(Buckley) contributes
66 g N ha–1 year–1 in a desert ecosystem. However,
those studies did not measure seasonal variation in
nitrogen fixation rates.

Termites inhabit fallen logs that occur throughout
forest ecosystems. Although nitrogen inputs to ecosys-
tems are usually given per unit area, termite nitrogen
contributions may be more ecologically relevant if
viewed as a mosaic of nitrogen ‘hot-spots’ concen-
trated in termite-infested logs. The uneven distribution
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Fig. 1. Termite nitrogen fixation rates (mean ± SE) and monthly mean temperature
from June 1993 to April 1996. Each point for dinitrogen fixed is the mean of 30 repli-
cate samples, three each from 10 separate Reticulitermesspp. colonies. Replicate
samples contained 50 termites.

Fig. 2. Nitrogen fixation rates (mean ± SE) of each termite caste: n = replicate group;
for workers each group contained 50 termites, for soldier, presoldier, nymph and alate
each group contained at least 20 termites, and for larva each group contained at least
200 termites.



of nitrogen input by termites may contribute to the
nutrient-patchiness of forest soils. We estimated the
population size of two R. virginicuscolonies in fallen
logs to have 0·49 and 1·7× 106 worker termites. This
figure represents an upper limit because
mark–release–recapture abundance estimates may be
up to 12 times higher than the actual population (Curtis
& Waller 1997). Based on these abundance data, ter-
mites may contribute up to 15·3 mg N log–1 day–1 to
logs. This nitrogen may accumulate over a season and

be released even during low rates of termite nitrogen
fixation. Nitrogen augmentation increases log decom-
position by fungi (Swift 1977), so termite nitrogen fix-
ation may speed nutrient release from infested wood.

Workers had the highest rates of nitrogenase activity
of any caste. Previous studies have indicated that larvae
may fix 300 times as much nitrogen as workers in the
rhinotermitid Coptotermes formosanus(Breznak
1982). In our study, Reticulitermesspp. larvae fixed
more nitrogen than other castes except workers.
Soldiers of Nasutitermesspp. have been reported to
have four times the nitrogen fixation rates of workers
(Prestwich et al. 1980). However, in our study the nitro-
gen fixation rates of Reticulitermesspp. soldiers and
presoldiers were significantly less than workers. The
nitrogenase activity of nymphs and alates was also sig-
nificantly less than the workers. Perhaps the inability to
supplement their nitrogen-poor diet through nitrogen
fixation explains why some newly flown alates feed on
the nitrogen-rich cambium layer of logs when they ini-
tiate new colonies (Shellman-Reeve 1994).
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Fig. 3. Percentage abundance (mean ± SE) of (a) worker, (b) larva, (c) soldier, (d) presoldier, (e) nymph and (f) alate from February 1994 to April 1996.

Table 1. Termite abundance data as calculated by the Lincoln index (Peterson
method)

Log Date M C R N± SE

7·4 m× 11 cm March 1996 16 190 8 881 81 1 775 104 ± 397 623
2·7 m× 30 cm April 1996 15 170 18 361 567 491 245 ± 39 201

M = number of worker termites marked, C = number of worker termites recaptured,
R = number of worker termites in recapture sample that were marked, N = estimated
number of worker termites in the log and standard error (SE).



The low rates of nitrogenase activity in non-worker
castes coupled with their low numbers in our density
samples indicate that their nitrogen contributions to
forests are minimal. However, higher numbers of
these castes might occur in termite nests deep within
the soil. Nitrogenase activity in Reticulitermes
increases with decreasing oxygen levels (Curtis &
Waller 1996), which may occur in subterranean nests.
Therefore, nitrogen contributions by termite colonies
might be higher than estimated here.

Seasonal fluctuation in the proportion of soldiers in
our study was similar to the findings of Howard &
Haverty (1981). Soldier proportion varied seasonally
with a peak in spring at ≈ 2%. The seasonal low in sol-
dier proportion (≈ 1%) in summer was immediately
followed by a peak abundance in presoldiers at ≈ 1%.
The decrease in soldier proportion occurred at the
same time as alate reproductive proportion peaked,
perhaps because soldiers were lost while protecting
alates.

In conclusion, we showed that termite nitrogen fix-
ation rates varied seasonally and rates were highest in
the moderate temperatures of autumn and spring. The
seasonal lows in termite nitrogen fixation rates
occurred in summer and winter when temperatures are
at extremes. Because the nitrogen fixation rates and
abundance were low for the non-worker castes, their
nitrogen contribution to forests is likely to be mini-
mal. The pattern in which termites deposit nitrogen to
forests may influence the nutrient-patchiness of forest
soils and may therefore affect the distribution of other
species in that habitat.
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