
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 1990

Diagnostics Software for Concurrent Processing Computer Diagnostics Software for Concurrent Processing Computer

Systems Systems

Robert L. Jones III
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer and Systems Architecture Commons, Systems Architecture Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Jones, Robert L.. "Diagnostics Software for Concurrent Processing Computer Systems" (1990). Master of
Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/tc3h-
hm22
https://digitalcommons.odu.edu/ece_etds/383

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fece_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Fece_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/383?utm_source=digitalcommons.odu.edu%2Fece_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A GENERIC OBJECT-ORIENTED SERVER MODEL

by

Brian Douglas Jones
B.S. December 1997, Old Dominion University

A.S. December 1995, Tidewater Community College

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING
May 2000

Approved by:

Roland Mielke (Member)

ABSTRACT

A GENERIC OBJECT-ORIENTED SERVER MODEL

Brian Douglas Jones
Old Dominion University, 1999
Director: Dr. James Leathrum

The purpose of this paper is to introduce a generic, object-oriented model for the

simulation of networks of queues. Generic simulation modeling provides robust ways of

laying out processes in stochastic, event driven simulations. The approach taken is to

define a methodology that will be implementation independent, termed the Generic

Server Simulation Model (GSSM); thus, leaving the implementers to choose the best

(most suited for their use) means of implementation. GSSM uses many object-oriented

concepts to provide its basic structure and has in its design the ability to take advantage

of these object-oriented concepts, including reuse of (existing) code. GSSM constructs

provide a natural way to easily build network (nodal) models, allowing these constructs

to transform easily into a graphical representation. The key use of GSSM will be in its

adaptability or mutability. By design, it handles easily and naturally the insertion and

deletion of processes, as well as increases or decreases in the number of object types

serviced by these processes. The model is demonstrated using a port simulation.

I dedicate this paper and work to a special friend who did not let me forget that I had
better finish this paper.

ACKNOWLEDGMENTS

I thank Dr. Leathrum for his collaboration and advice. I also thank Frank Palathingal for

his work on the implementation of GSSM project.

TABLE OF CONTENTS

Page

TABLE OF FIGURES .

Chapter

..1x

I. INTRODUCTION ..
Thesis Organization

.....I
.....2

II. BACKGROUND.
ARENA
Visual Simulation Environment .

Justification for an Object-Oriented Model .

Summary

......3

......3

......6

......7
.....8

III. Object-Oriented Server Modeling .

Hierachial Structure for a Server Model
The Generic Server Simulation Model (GSSM) ...
The Basic Components of the Node
The Basic Components of the Link
Modeling Conditions (Constraints) .

Parameter Object .

Network Model
Implementation
How to Build a Model Using GSSM .

genericQueueObj .

conditionObj
serverObj
resourceObj
baseObj .

parameterObj .

Process Flow
Initialization .

.......9
.....9
...... 1 I

11

....14
..... I 5

......1 6
......17
....18
...... I 8

.....19

.....20

......21

......23
.....24
.....26
....27
.....28

IV. GSSM Example: Port objects in PORTSIM
The Gate in PORTSIM .

An Intersection

.....33

....34
..35

V. Conclusion37

BIBLIOGRAPHY

APPENDICES
A. OBJECT STRUCTURES .

.....38

...40

B. IMPLEMENTATION CODE .

VITA

LIST OF FIGURES
Figure

l. ARENA'S Server Dialog Box

2. The Object-Hierarchy Model .

Page

3. The Server-Queue Model10

4. The Components of the Node ... 12

5. The Components of the Link ...14

6. The Super Node

7. The Gate Node

8. The Network Model

.....16

...33

....34

9. Conflict Point Insertion35

10. Conflict Point Resolution . .36

I. INTRODUCTION

A common problem encountered in the simulation of processes is the need for the

serving of queues given available resources. When developing a simulation as a network

of queues, while the individual servers, queue implementations, and resource pools may

be distinctly different, the basic model of the individual processes is just an instance of an

abstract model. Frequently, the individual processes are developed totally independently

without this concept in mind. However, when faced with the task of easily modifying the

network of queues to insert a new process, one does not relish the possibility of having to

generate a new model each time and grappling with the interconnection of the models.

While the concept of modeling networks of queues is well understood (6,7,8,11)',

frequently the support at the design and implementation level does not encourage the use

of sound modeling constructs. Languages such as ModSim III (3) may provide support

in the form of predefined queue constructs, though not in the form of a complete server

model. The Generic Server Simulation Model (GSSM) attempts to provide a useful

model for the easy development of complex networks of queues and to modify those

networks efficiently.

The Virginia Modeling, Analysis, and Simulation Center (VMASC) originally

designed GSSM as a mechanism to easily incorporate commercial conflict points into a

purely military port model called PORTSIM (9). PORTSIM was originally designed to

model the flow of military traffic through a commercial port; however, it ignored the

ongoing commercial traffic. To inject new conflict points that resulted from commercial

'The thesis format is based on /BE Transactions sumittai guidelines located at
h://www.ieee.or or anizations/ ubs/ieeetran.zi and thesis manual guiidiines.

traffic flows not apparent in military only traffic (such as intersections), an appropriate

modeling construct was necessary with an appropriate template for the easy development

of new server models. The resulting model is applicable to other server models as well,

such as manufacturing and computer systems.

Thesis Organization

This paper is organized into five chapters: the introduction, background, theory

and implementation, example, and conclusion. The background chapter describes the

current technologies from which this thesis draws its theory. From the theory, a specific

example and implementation are derived. The conclusion is a brief summary of what this

paper is trying to accomplish and what still needs to be accomplished to make GSSM

viable.

II. BACKGROUND

With all the emphasis today in the software engineering and simulation societies

on object-oriented design, there is little in the way of a reevaluation of the basic designs

intrinsic to object-oriented simulations. What is missing are the intimate relationships

found within the basic foundations of simulation. While some simulation software-

makers present nice, well-known object based components (e.g., resources, queues, and

servers), there seems to be an insufficient, unified endeavor to present a common

fundamental hierarchy between them. While independent implementations abound, with

one of them described here, they seem to skip over the theory and implementation of their

server/queuing models (perhaps for proprietary reasons). So, presented here are popular

independent modeling constructs taken apart to find the commonalties of basic server-

queuing systems. This will consist of an analysis of a popular, plug-n-play simulation

tool like System Modeling's ARENA (1,5) and then applying object-oriented simulation

modeling techniques (4) to develop an object-oriented server-queuing model that will

allow for generic plug-n-play capabilities.

ARENA

System Modeling's ARENA 3.0 is a wonderful, complex tool that simplifies the

creation of event-driven simulations. It is an incorporation of many different tools.

These tools include complex data analysis, high-level and special purpose modeling

components, and animation. Of particular interest to this paper are the high-level

components. While ARENA's underlining language is SIMAN, a flexible and a general-

purpose simulation language, it is not in essence an object-oriented language, even

though it supports many high-level components and constructs (1,5).

ARENA takes these high-level components a step further by combining them to

make for even a higher-level of components or modules called jointly the Common

Templates. Example Common Templates include the Arrive, Depart, Server, Inspector,

Advanced Server, Processor„Queue, Resource, Sets, Statistics, and Variables modules for

example. These modules can be strung together by simply dragging and dropping the

components, as is common in most windowing environments. By clicking on one of

these components, the user can modify and customize specific features of each. Thus, it

simplifies the designing of the model while still meeting the needs of the modeler. For

example, the user can modify the arrival conditions of entities entering the system. The

user gets a dialog box to choose the interarrival distribution from an ample supply of

predefined distributions and then supplies the parameters, like the mean or standard

deviation. Furthermore, the user can choose the next "station" to which the new entities

will go either fiom a drop-down or by drawing a route from the Arrive component to

perhaps another "station."

Ofparticular interest are the Server, Inspector, Advanced Server, and the

Processor modules, all of which are just variations of each other. We concentrate on the

Server module. The following is an abbreviated view of the elements of the Server

module derived from ARENA 3.0.

Figure 1. ARENA's Server Dialog Box (I)

While this paper is not to be taken as a tutorial or guide to ARENA, it is necessary

to look at the individual elements of the Server to get a complete picture of the inner

workings.

Note the components of the server in Figure 1:

~ a label

~ a Resource,

~ a process time,

~ a Queue,

~ a transfer out Station,

~ a Route Time,

~ and possibly others (depends on which options are chosen from dialog).

Again note that ARENA allows for "sets" of Stations, Queues, and Resources,

which means that the each member of the set can be associated or chosen 'ependingupon state of the system or other aspects (e.g., the entity in question).

These components are freely interchangeable and allow adequate modeling

flexibility for most users.

ARENA presents a solid framework for defining a server model. The issue is to

abstract this model so that a new model can be developed for supporting simulation

development in simulation languages. The key lies in the effective use of object-oriented

modeling (1,4).

Visual Simulation Environment

The Visual Simulation Environment (VSE) is a graphical object-oriented

simulation and model-building tool. The tool provides a high-level graphical user

interface (GUI) that allow the modelers to drag and drop reusable objects into and around

the development workspace. By double-clicking on the objects or graphical components,

the modeler can transverse through the class hierarchy. The VSE tool allows the user the

ability to view the multi-model hierarchy during runtime; thus, the user can see the

higher-level simulation and then hone down into the graphical display of the underlining

sub-models. Being a general-purpose tool, the user can create libraries of reusable

objects derived from a basic library of objects provided by VSE. VSE like ARENA

provides customizable animation and statistical analysis tools and components. Unlike

ARENA, it is a fully object-oriented tool (2).

Justification for an Object-Oriented Model

There are some very good reasons for an object-oriented server model. Many of

these reasons explain why ARENA is not the perfect tool to accommodate a

simulationist's needs.

The first benefit of using a language like C++ (or object-oriented simulation

languages like ModSim III (3) or C++SIM (10)) is access to legacy code. With all the

legacy code around, programmers are now just placing within object wrappers to

maintain the previous investments. This task would be difficult to accomplish with

ARENA.

Second, although ARENA is very flexible, it is not perfectly flexible. There are

limited options from the dialog boxes. While this is quite appropriate for beginning

modelers or particular high-level models, its constructs are limiting to the advanced

modeler. An example is the difficulty in adapting ARENA to participate in a distributed

environment. Object-oriented languages can provide almost the same plug-n-play

features without being limiting, if the modelers design with this in mind. The use of

inheritance can provide the mechanisms to facilitate the plug-n-play features of object-

oriented simulations. Take for example the Server module above. If a modeler needs a

special queuing arrangement that ARENA does not support, the modeler is practically out

of luck, possibly requiring development of SIMAN code. Even though ARENA has

some advanced features, i.e., calls to external applications, such as Uisual Basic, it does

not support them directly. If modeling with the proposed object-oriented server design,

the programmer could derive the special queue from the base queue object and

implement it anyway needed.

Third, portability is another issue that must be considered. Object-oriented

modeling goes beyond a language or a program, meaning that once a system is modeled

in an object-oriented manner, the implementation can be in C++, Java (although it does

not support multiple inheritance), ModSim III (3), C++Sim (10), etc.

Summary

While ARENA provides an attractive environment for the rapid development of

discrete-event simulations, it has limitations imposed by the interface structure.

Development in a programming language removes these limitations but is more difficult

due to the lack of simulation construct support. As the server model is one of the most

common simulation constructs, an object-oriented server model is presented to empower

the programmer with capabilities found in tools such as ARENA, even allowing him to

go beyond those capabilities.

III. OBJECT-ORIENTED SERVER MODELING

ln this chapter, the theory and the implementation of GSSM is discussed. The

derivation, creation, and destruction of a simple GSSM model is described.

Hierachial Structure for a Server Model

The goals of developing an object-oriented model for servers are to achieve:

~ well defined server components,

~ reusable components, and

~ flexibility available in general programming.

The object-oriented modeling features that support these goals are described

below.

a. Aggregation b. Inheritance

Figure 2. The Object-Hierarchy Model

c.) Dual

Figures 2a, 2b, and 2c are the depictions of the graphical forms used to represent

typical object hierarchies (4). These object hierarchies are defined by:

aggregation - the composite of all sub-objects,

~ inheritance — a form of generalization, and

~ dual — a combination of the previous two.

10

Using the object hierarchies defined above, Figure 3 represents an object model of

the server model described for ARENA.

Figure 3 illustrates some of the components that make the ARENA's Server

subsystems, as well as some of the interrelations and object hierarchies. Note that there is

more than one way to describe ARENA's components in an object-oriented manor, and

the choice depiction found in Figure 3 is the object hierarchy of GSSM.

Figure 3. The Server-Queue Model

Left out of the diagram are the attributes, methods, and ARENA's "Sets" module.

In dealing with Sets, there are at least two possible approaches. The first approach is to

consider the Server Object to be composed of arrays of objects (queues, resources, etc.).

The second approach is with linked lists of objects. Either way, the code can iterate

through the set.

Certain items in Figure 3 need further discussion. The Arrival Conditions in

ARENA's Server module are simply the mechanisms that choose one of the queues from

the set of queues upon the arrival of the entity to the Server module. The Departure

Conditions are dependent on the type of output routing that is chosen from the Server's

dialog box. If a Transport is used to transport the entity from one Server to the next and

the transport is not available, the entity is then queued in the Output Queue. This

decision is determined by the Departure Conditions.

The Children object is another object that needs explanation. In ARENA, there

are a couple of options as to how the routing between components is accomplished.

Routing can be done by physically connecting components together or by specifying

what station is next. The Children object represents a linked list of the next "stations,"

which can be Servers or one of the other components.

The Generic Server Simulation Model (GSSM)

The mechanism behind GSSM is based upon two object constructs: the node and

the link. The node encapsulates the basic server model while the link provides a

mechanism to route entities between nodes. Both of these constructs, along with some

modeling philosophies (constraints), make up the whole of GSSM. The nodes and links

connect to form a network of queues. A specific application may use some derived form

of the abstract model. The model's design is robust to allow the definition of any object

types. The model is presented in an abstract sense, but the basic template for the

development of new server models is realized in ModSim III later.

The Basic Components of the Node

The node models the servicing of an object by available resources. A node

consists of Arrival Conditions, input and output Queues, a Process Handler (Server), and

Departure Conditions as illustrated in Figure 4. A discussion of each is presented.

Arrival Conditions: Arrival Conditions are the set of conditions mapping an

object arriving at a node to a queue where it will be placed. The conditions are based

upon the arriving object's type and state that define the set of resources required by the

object.

Figure 4. The Components of the Node

Input Queues: A Queue is one of the queues in the set of queues associated with a

node. Anytime an arriving object enters a node, its Queue is determined by the Arrival

Conditions. Once placed in the queue, the arriving object remains there until the server

takes the object out. The object can leave the queue only if the server is IDLE and if the

resource, or set of resources with which it associates, is FREE.

13

Process Handler: A Process Handler services the arriving object. This service

could be the allocation/release or association/disassociation of resources to the arriving

object. Typically, a time period is defined for which the simulation waits to simulate the

processing of a specific operation for the arriving object during this stage. The Process

Handler may serve each arriving object distinctly depending on the Arrival Conditions

and the properties of the arriving object. The processing parameters could also depend on

the properties of the particular resource that is allocated to that object for service.

Departur e Conditians: A Departure Condition is a determination process that uses

the object's type and state to determine to which exit point to send the object. Note that

the processing done at the Process Handler may involve the creation of new objects, and

these newly created objects are then sent to the Departure Condition to determine where

to go next. Thus, the object type that comes into a node may not be the same as the one

that exits the node.

Output Queues: In many cases, there might be a need for storing the object in the

node aller processing it and passing it through the departure conditions. Typically, this

case would arise if the transfer of entities to the next node or link were constrained by

some conditions. Then, the entity would have to wait in the current node until the

constraint has been satisfied before it can go to the next activity in the simulation. Thus,

the output Queues serves the purpose of temporary storage of entities before they are

forwarded.

Resources: Every server in a node may be associated with resources or pools of

resources. It would be inaccurate to say that a resource belongs to a node if other nodes

could also reserve those resources. Hence, it is not a good practice to build the resources

within the node and constrain it as a private attribute of a node. Hence, a resource is

envisioned as a floating object that is acquired by a server if it is available and released

back into the pool after the service has been carried out.

Figure 5. The Components of the Link

The Basic Components of the Link

A link models the transfer of an object from one process to the next. The link

consists of Arrival Conditions, Queues, and Process Handlers as described for a node.

The structure of the link is illustrated in Figure 5. The link is essentially a subset of the

node. A link has exactly one entry point and one exit point, although it may have

multiple internal queues. A link never has resources associated with it. Thus, a link may

only have a delay operation associated with it. This wait duration could be dependent on

the link properties or the entity properties. It is assumed that any extra logic that has to

be associated with the delay function in the link is called separately. This reduces the

complexity of the link node and keeps it as generic as possible.

Modeling Conditions (Constraints)

While using this methodology, a designer should consider some general

guidelines. These guidelines are in no way meant to be an artificially imposed constraint,

but are chosen for their ease of generating a nodal construct.

General Guidelines:

~ Each pair of nodes has at most one link in each direction in common.

~ Each node has exactly one entry point.

~ Each link has exactly one entry and one exit point.

~ A link has no resources associated with it besides time.

~ No objects are generated in links.

~ Nodes are distinguished by links.

The above allows the model to be abstracted to create a hierarchical view of the

design. To this end, two or more nodes may be logically joined to create Super Nodes as

shown in Figure 6.

Figure 6. The Super Node

One of the uses of Super Nodes is to ease the incorporation of multiple resource

type needs for a particular process. Thus, if an arriving object needs a series of resources

before it can be processed, using the Super Node process allows this to be done without

the use of algorithms that may be complex or lead to starvation. Note from Figure 6 that

the first node distributes the objects into what could be parallel tasks.

Parameter Object

The GSSM aims at providing a clean interface between the various blocks of the

simulation. The main cause for an ambiguous interface in any simulation model is due to

the need for message passing throughout the model. The complexity of the simulation

model increases if the task ofpassing information is built into the model. A cleaner

manner of achieving a message passing mechanism is to tag the information with the

entity itself. The entity is the only object that flows through the simulation model and

could be effectively used as a vehicle to carry information from one point in the model to

17

another. The point to be noted here, however, is that the information that is being passed

along may not be information that pertains to the entity at all and should not be confused

with the entity's attributes. Thus, information of this type has to be carried by the entity

using a separate object that is simply a record of the data that has to be carried along with

the entity. Hence, the parameter object is simply an aggregation of the entity object and

the record object.

Network Model

The crucial feature in any simulation is the interfaces between objects in the

simulation. The interface acts as a mechanism to transfer information through the logic of

the simulation. The GSSM is designed to address this issue clearly. The rigid design

constants of nodes and links along with the parameter object helps define a clear interface

between any processing elements in the simulation. The added advantage of these

constructs is the ease with which an unwanted object could be removed from the

simulation and the interfaces between the remaining blocks rebuilt with ease. Thus, the

network model would consist of a network of nodes and links with the entities flowing

through it.

18

Implementation

The GSSM is implemented in MODSIM III (3) as a proof of concept. MODSIM

provides an appropriate object-oriented language for simulation development. It provides

appropriate management for queues and resources, but lacks management support for an

integrated server model. The MODSIM implementation of GSSM is described below.

The node is the main building block and has to be built first in order to fully

understand the functionality that is provided within the model. The node is developed

using a basic template for a server model, discussed above, and includes all the basic

building blocks necessary for the node. Maintaining a purely object-oriented structure, all

the building blocks are developed as objects and then associated together in a node or

link. First, we shall discuss the implementation of the internal blocks of the node and then

the basic template that forms the node. The link is merely a subset of the node and hence

can be derived from the same template. The following sections discuss the definition of

these objects that build up the GSSM.

How to Build a Model Using GSSM

The code that follows in the appendix implements a basic server queuing model.

The ModSim III implementation follows this general approach to building:

~ Abstract and componentize your model into a network of queues.

~ Build up the individual component objects from the baseline virtual objects.

~ Merge all the components together.

The basic object templates are:

~ entityObj

~ recObj

~ parameterObj

~ genericQueueObj

~ conditionObj

~ resObj

~ baseObj

~ serverObj

Their interplay and dependencies combine to form the overall communication

mechanism for the model. See Appendix A for another table view of the mod files with

each object where each object shows its methods, attributes, and inherited object.

genericQueueObj

The genericQueueObj is the queue object in the server model, and it is derived

from the BasicGroupObj. The rules associated with the queue are kept as generic as

possible using this derivation and can be modified depending on the type of node or link

the queue is being implemented in. The genericQueueObj is defined by:

genericQueueObj = OBJECT(BasicGroupObj);

ASK METHOD insertObject(INOUT param:parameterObj);

ASK METHOD removeObject(INOUT param:parameterObj);

END OBJECT {genericQueueObjl;

20

The two methods, insertObject and removeObject have been created to allow

the programmer to define the insertion and deletion rule associated with a particular

GSSM. These rules could be derived or could be a separate logic. Any queue associated

with a node or a link in the simulation are derived from the genericQueueObj and

modified to the needs of the GSSM.

conditionobj

The conditionObj forms the base object for the condition blocks that exist in the

GSSM. It is defined by:

conditionObj = OBJECT;

ASK METHOD modiryparameters(INOUT param: parameterObj);

ASK METHOD mapToQueue(INOVT param: parameterObj);

ASK METHOD init(INOUT anyqueue: ANYARRAY);

PRIVATE

quarray: ARRAY INTEGER OF genericQueueObj;

END OBJECT (conditionObj);

The mapToQueue method performs the function of mapping the arriving object

into the correct queue based on the logic that is appropriate for the node and the type of

the entity object. In many cases, it might be necessary to modify the attributes of the

arriving object based on the node. This can be accomplished using the

modifyparameters method in the conditionObj. The init method is called to carry out

any initialization of the condition object that has to be done during the setting up of the

object. The arrival and departure conditions of a node are derived from the conditionObj

21

because the functionality of both the objects is the same. The conditionObj also needs to

have references to the queues. Hence, the conditionObj has within its attribute list an

array of references to queue objects.

serverObj

The serverObj is the center of activity in the node or a link. The primary

difference between the server in a node and a server in a link is that the server in the node

has resources associated with it. The remaining functionality in the two types of servers is

the same and hence could be derived from a common serverObj as defined by:

serverStateType = (IDLE, BUSY, DOWN);

serverObj = OBJECT;

WAITFOR METHOD process;

ASK METHOD init;

PRIVATE

inQ: ARRAY INTEGER OF genericQueueObj;

outQ: ARRAY INTEGER OF genericQueueObj;

state: serverStateType;

loca(Param: parameterObj;

ASK METHOD timeComputation(IN param: parameterObj);REAL;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

ASK METHOD getQindex: INTEGER;

END OBJECT (serverObj);

As the link and node servers are derived from the common serverObj, there is no

resource associated with this object. This would indicate that each node's server object,

22

derived from serverObj, would have as an attribute an array of references to the

resources. Unless the link object's server requires any additional functionality, it could

be directly defined as a serverObj.

The process method in the server object is the method that carries out the actual

time elapsing operation that simulates the processing time of the node or the link. The

process method in a node first checks for availability of server and resource and then

removes a parameter object from the queue. It then calls a WAIT function on the

parameter object to elapse time. In the link, the resource is not a constraint that is

considered, as there are no associated resources with it. The process removes the

parameter object from the queue using the getFromQ method, which in turn calls the

get@index to obtain the appropriate queue that is to be used. The server to simulate the

processing of the current parameterObj calls the timecomputation method to obtain the

time duration value that must elapsed.

In addition to these methods, the serverObj has attributes associated with it. The

server needs to have a state associated with it to enable it to be active or down. The

stateType attribute is an enumerated data type and varies according to the possible states

in which the server could be. The server also needs to have references to the input and

output queues associated with the node so as to enable it to remove objects from the input

queue and place them in the output queue after processing. The server also has a

reference to the parameter object that it is currently handling.

The servers associated with nodes would have in addition to the above-mentioned

nodes, an extra attribute, which is a set of references to the resources associated with it.

23

These resources are from a pool of resources and are not an integral part of the node.

Hence, it becomes essential to explicitly define the references.

resourceObj

The resource object is envisioned to be a stand-alone object in a pool of resources.

The servers of nodes require associated resources. Hence, every server that requires a

particular resource would set up a reference to that resoureeObj from within its resource

attribute. The resourceObj is defined by:

stateType = (NONE,NS,WE,UP,DOWN);

resoureeObj = OBJECT;

state: stateType;

ASK METHOD query(OUT qState: stateType);

END OBJECT;

Since the resource is a stand-alone object, there are very few methods and

attributes associated with it. The resource primarily has an attribute that stores the

current state of the resource. The state attribute is an enumerated data type, and the

values depend on the resource. The only method associated with the resource is a method

that the server would call to query the current state of the resource. Any additional

functionality provided to the resource has to be done in the derived resource object.

24

baseObj

The baseObj is the foundation on which the node or link is built. The base object

is simply a template that brings together the various blocks that make up the GSSM.

Thus, the baseObj mainly includes the references to the blocks of the node or link and

methods that carry out some of the operations for parmeterObj handling between the

blocks and between the GSSMs.

baseObj = OBJECT;

ASK METHOD query(INOUT param: parameterObj): BOOLEAN;

ASK METHOD accept(INOUT param: parameterObj); BOOLEAN;

ASK METHOD setName(IN nam: STRING);

ASK METHOD init(INOUT arrcond: conditionObj; INOUT depcond: conditionObj; INOUT

inarray: ANYARRAY; INOUT outarray: ANYARRAY; INOUT serv: serverObj);

ASK METHOD setChildren(INOUT child: ANYARRAY);

ASK METHOD requestToSend(INOUT param: parameterObj): BOOLEAN;

ASK METHOD send(INOUT param: parameterObj);

ASK METHOD callProcess;

PRIVATE

name: STRING;

incond: conditionObj;

outcond: conditionObj;

inqueue: ARRAY INTEGER OF genericQueueObj;

outqueue: ARRAY INTEGER OF genericQueueObj;

server: serverObj;

children: ARRAY INTEGER OF baseObj;

END OBJECT;

25

The name attribute is used to identify the node or link using a unique string. The

children attribute is an array of references to the nodes and links that immediately follow

the parent node. By using these references, the node or link can establish the various

options that are available as exit destinations. It is very helpful in passing the ownership

of the parameterObj from one GSSM to another. The remaining attributes of the

baseObj are simply references to the blocks that make up the node or link.

The query method of a baseObj is called by its parent baseObj to verify if the

parameterObj of which it is looking to pass ownership to is acceptable or not. The point

to note here is that the query method does not pass over the ownership of the

parameterObj from one GSSM to another. The accept method, on the other hand, is

called following a positive response from the query method and actually passes

ownership from one GSSM to another.

The requestToSend method is called by the GSSM to access the query method of

its child GSSM. Once a positive response is received on the requestToSend method, the

send method is called to activate the accept method of its child GSSM. The

requestToSend and send method are simply wrappers around the query and accept

method and are used to call the query and accept method of all the children GSSM.

The setName method and the init methods are used to initialize the GSSM once it has

been created. The caHprocess method is activated by the GSSM to begin the processing

action of the server. The process method is self-maintaining and has to be simply called

once before it can maintain itself for the remaining simulation.

26

parameterObj

The parameter object has been defined for moving an entity across the simulation

model and to bring along other necessary information blocks along with it. The object is

defined by:

parameterObj = OBJECT;

entity: entityObj;

rec: recObj;

END OBJECT;

From the above definition of the parameter object, it can be observed that the

parameter object is an aggregation of the entity and record object. The entity object is a

physical entity that is flowing through the simulation model. The record object, on the

other hand, is basically an object that gets assigned information that it is responsible for

carrying from one node to the other. Thus, if a node has to pass information to another

node, it uses the parameterObj. The node first checks if the entity would go through the

destination node, and if so, the information is assigned to its recourceObj. The

parameterObj then simply carries on with its flow through the model. When the

parameterObj arrives at the destination node, the node reads out the information from

the recourceObj. In such a fashion, the communication interface between the nodes and

links is kept as simple as possible.

27

Process Flow

Once an entity is created, it will enter into the network in the form of a parameter.

The node in which it is entered is ASKed to accept it. If accepted, the node will then ask

its incond object to mapToQueue the parameter. The node will then call its own method

startmeup. startmeup calls the node's server with a WAIT for process. The server will

then check its state and its required resource(s) state, and if it is available or idle, it will

then process the entity. The server will determine a queue with getFromQ

(implementation dependent) and take the parameter object from it, change its state if

appropriate, calculate wait time, wait that time, modify the parameters entity or record,

and then send the entity to the outcond queues. The server will then call the node's

requestToSend in order to let the node know that its outqueue has an item in it. The

server will now put itself in a self-maintaining loop. If there are entities in its queues that

it could not have processed because it was busy, it will now call getFromQ to start the

process again. If the queues are empty or it has no resources available to it, it sets its

state to IDLE and stops processing.

Once the server calls its node's send, the send method will determine which of

the possible links or nodes from the current node's children list to send it to by asking it

to accept the parameter object. Any kind of scenarios is possible for acceptance and

denial of the requestToSend and it is completely implementation dependent. Typically

in basic models, it is assumed automatically accepted, but if the model needs a more

robust mechanism, GSSM makes accommodations by providing for the possibility of a

denial but leaves the implementation to the modeler.

28

Initialization

As with object-oriented coding in particular, initialization is extremely methodical

and intensively tedious, but if the object model is properly designed, once initialized

there is little other code to the main program, since all the objects in the model are self-

maintaining. This makes for very well structured and maintainable code. In addition,

note that being "extremely methodical and intensively tedious," it is straightforward and

well suited to be automated (hint/hint). Thus, a well-designed graphical users interface or

GUI to help eliminate syntactical and procedural mistakes or "bugs" can eliminate a lot

of the overhead of this type of object-orientated code.

Below is an example of the way every node or link in the GSSM model is

initialized if using an object-oriented language like MODSIM. First, create a variable of

each object in the node.

For example the Gate Node:

gate: gateNodeObj;

gatein: gateIncondObj;

gateout: gateOutcondObj;

gatelnQ: genericQueueObj;

gateOutQ: genericQueueObj;

gateserver: gateServerObj;

gateRes: gateResObj;

gateQinArray: ARRAY INTEGER OF genericQueueObj;

gateQoutArray: ARRAY INTEGER OF genericQueueObj;

gateChildren: ARRAY INTEGER OF baseObj;

29

Then instigate each object and initialize where appropriate with the name and sub-

objects and associated the objects in the node.

Note that a node has the sub-objects hierarchy:

{node object}

{in condition object)

{in queue array object)

{in queue object}

{out condition obj)

{out queue array object}

{out queue object}

{server)

{Resource)

{children array)

{node or link object}

For example the Gate Node:

{initialize)

{gate node object}

NEW(gate);

ASK gate TO setName("Gate");

{in condition obj}

NEW(gatein);

{in queue object}

NEW(gateQinArray, l .. l);

NEW(gatelnQ);

gateQinArray[1]:= gatelnQ;

30

ASK gatein TO init(gateQinArray);

(out condition obj}

NEW(gateout);

(out queue object}

NEW(gateOutQ);

NEW(gateQoutArray, 1..1);

gateQoutArray [1]:= gateOutQ;

ASK gateout TO init(gateQoutArray);

(server}

NEW(gateserver);

(Resource}

NEW(gateRes);

ASK gateRes TO init(gate);

ASK gateserver TO init(gate);

ASK gateserver TO initRes(gateRes);

ASK gate TO init(gatein, gateout,gateQinArray,gateQoutArray,gateserver);

(end of gate init}

The last step once all the nodes and links have been internally initialized is to

build the network. This step is for the most part quite simple, and it consists essentially

of instigating the children object array and assigning the next nodes or links in the

network to it by reference.

(setup model structure)

NEW(gateChildren, 1 .. 1);

31

NEW(linkChildren,l .. I);

interChildren:= NILARRAY;

gateChildren[1]:= baseObj(link);

linkChildren[1]:= baseObj(intersection);

ASK gate TO setChildren(gateChildren);

ASK link TO setChildren(linkChildren);

ASK intersection TO setChildren(interChildren);

Note that we never instigate the interChildren array, and we safely assigned to

NULL because it is the last node in the network with no children. This completes the

network, and now all it needs is the entity/parameter generator to begin.

NEW(custGenerator);

{main program)

TELL custGenerator TO initSimulation;

TELL custGenerator TO GenCustomers;

StartSimulation;

{end main program}

OUTPUT("THE END");

Once the simulation is completed, dispose the objects to free up all allocated

memory. Below is an example for the Gate Node:

ASK gateinQ TO Empty;

ASK gateOutQ TO Empty;

{cleanup}

DISPOSE(gatein);

DISPOSE(gateQinArray);

32

DISPOSE(gateInQ);

DISPOSE(gateout);

DISPOSE(gateOutQ);

DISPOSE(gateQoutArray);

DISPOSE(gateserver);

DISPOSE(gateRes);

DISPOSE(gate);

DISPOSE(gateChiidren);

Note that it is good practice to dispose of all sub-objects before disposing of the

base object (mainly for record keeping ease). The network is disposed last (although it

could have been destroyed at any time, preferably first).

33

IV. GSSM EXAMPLE: PORT OBJECTS IN PORTSIM

Figure 7. The Gate Node

The aim of this simulation project is to display the ease with which the nodes and

links could be applied to a simulation scenario. PORTSIM simulates the military traffic

through a port. The required functionality in PORTSIM is the passing of the commercial

traffic along with the military traffic.

34

The Gate in PORTSIM

The current implementation of port gates in PORTSIM would require a separate

logic for the gate processing for commercial vehicles. By employing GSSM to model the

gates, the commercial traffic could be handled by the very same gate object that handles

the military traffic by simply identifying the entities in the arrival condition block of the

gate object. However, this is beyond the scope of this example.

In this implementation, we also assume that the gate has only one lane and hence

only one vehicle can pass through the gate at a time. However, multiple lanes could be

added to the model by simply adding multiple input queues and making necessary

changes in the conditions in the server and the arrival condition. Thus, in the

implementation of a gate, in this project the gate object is simply a base object as all the

functionality necessary for the gate object exists within the base object. The model is

presented in Figure 7. Figure 8 shows the gate node, the link, and the staging area

network.

Figure 8. The Network Model

35

An Intersection

One of the strengths of GSSM is its ability to easily insert new nodes into an

existing model. In this project, an existing port model is considered which was developed

such that vehicles are transported from one node (the Gate) to another node (a staging

area) as shown in Figure 8. This is done to display the ease with which new nodes can be

plugged into the model without having to undergo an extensive redesigning process.

The model now has an intersection added to it between the gate and the staging

area as shown in Figure 9. The designer simply creates a new node to model the rail

crossing and the link that connected the gate and the staging nodes is removed. Lastly,

two new links that link the gate to the crossing and the crossing to the staging are

injected. The new model is demonstrated in Figure 10. What makes GSSM particularly

good at accomplishing this task is that once a generic rail crossing is created, it can be

reused with perhaps only slight modification.

Figure 9. Conflict Point Insertion

36

Thus, the main advantage that can be observed in the use of the GSSM is the

reusability of the templates that are created in the generic model. The intersection is

developed from the basic objects that are defined as templates with minimal

modifications. Then links are defined based on the needs of transfer of entities from one

GSSM to another. It is also now possible to reuse the node that was created for the rail

intersection anywhere in the code with minimal modifications to represent other rail

intersections. All these possibilities together prove a very strong case for the application

of GSSM in simulation modeling.

Figure 10. Conflict Point Resolution

37

V. CONCLUSION

With GSSM, the idea is to develop a reusable product, that is, a product that will

last beyond its use in PORTSIM. The aim is to develop a vast repository ofNodal and

link objects from which we will be able to draw upon for use in other models. Such

repositories will allow for perhaps on the fly (pre-compile time) design modification of

PORTSIM or other models based upon GSSM, Thus using GSSM, one has a

mechanism that allows the quick insertion, deletion, and modifications of the network of

server queues in our simulation products. GSSM is essentially a high-level abstraction to

the low-level server-queuing models, and it attempts to bring into discussion the interiors

of simulation engines that usually hide behind GUIs.

Some further work with GSSM will be necessary to truly make it useful to the

general simulation public. This includes a refinement of the resource pool. The current

state of the resource management is lacking in generic features. These guidelines should

be made to handle the communications of the resources and the nodes they serve.

Another portion that is currently missing is the GUI. GSSM could be the backend

structure behind some easy to use tool. With those two items, GSSM should give a

modeler the power to build programming constructs quickly from abstract models.

38

BIBLIOGRAPHY

(1) ARENA Version 3.01, Online Documentation. CD-ROM. System Modeling. 1997.

(2) Balci, O. and R.E. Nance. 1992. "The Simulation Model Development Environment:

An Overview." In Proceedings of the 1992 Winter Simulation Conference

(Arlington, VA, Dec. 13-16). IEEE, Piscataway, NJ, 726-736.

(3) CACI Products Co., ModSim Reference Manual. La Jolla, California: CACI

Products Company, 1997.

(4) Fishwick, Paul A., Simulation Model Design and Execution, Building Digital

Worlds. Englewood Cliffs: Prentice Hall, 1995.

(5) Kelton, W. David, Randall P. Sadowski, and Deborah A. Sadowski. Simulation with

ARENA. Boston: WCB McGraw-Hill, 1998.

(6) Kleinrock, L., Queuing Systems, Vol. I, Theory. New York: John Wiley & Sons,

1975.

(7) Kleinrock, L., Queuing Systems, Vol. II, Computer Applications. New York:

John Wiley & Sons, 1975.

(8) Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis. New

York: McGraw-Hill, 1991.

(9) Leathrum, J, R. Mielke, M. Meyer, J. Joines, C. Macal, and M. Nevins. "Strategies

for Integrating Commercial and Military Port Simulation. " Proceedings of the

1997 National Conference of the American Society for Engineering

Management. Oct. 1997. Virginia Beach, VA. pp 37-42.

(10) Little, M. C., D. L. McCue, "Construction and Use ofa Simulation Package in

C++, "Computing Science Technical Report, University ofNewcastle upon

39

Tyne, Number 437, July 1993 (also appeared in the C User's Journal Vol. 12

Number 3, March 1994). http: //cxxsim.ncl.ac.uk/papers.html

(11) Trivedi, K., Probability dc Statistics with Reliability, Queuing, and Computer

Science Applications. Englewood Cliffs, NJ: Prentice-Hall, 1982.

40

APPENDIX

A. OBJECT STRUCTURES

~ModSim III object.

41

42

43

B. GSSM CODE

(dcondi tion, rnodj

DEFINITION MODULE condition;

FROM genericqueue IMPORT genericQueueObj;

FROM parameter IMPORT parameterObj;

VAR

TYPE

conditionObj = OBJECT;

ASK METHOD modifyParameters(INOUT param; parameterObj);

(Modifying the parameters of parameterObj based on the type of node or link)

ASK METHOD mapToQueue(INOUT param: parameterObj);

ASK METHOD init(INOUT anyqueue: ANYARRAY);

PRIVATE

quarray: ARRAY INTEGER OF genericQueueObj;

END OBJECT (conditionObj);

gatelncondObj = OBJECT(conditionObj);

END OBJECT;

gateOutcondObj = OBJECT(conditionObj)

END OBJECT;

intersectionlncondObj = OBJECT(conditionObj)

END OBJECT;

intersectionOutcondObj = OBJECT(conditionObj)

END OBJECT;

END MODULE.

44

(dbase. mod)

DEFINITION MODULE base;

FROM parameter IMPORT parameterObj;

FROM condition IMPORT conditionObj;

FROM server IMPORT serverObj;

FROM resource IMPORT gateResObj;

FROM resource IMPORT intersectionResObj;

FROM resource IMPORT resObj;

FROM genericqueue IMPORT genericQueueObj;

VAR

TYPE

baseObj = OBJECT;

(returns true if node can accept parameterObj at that time.

DOES NOT TRANSFER OWNERSHIP)

ASK METHOD query(INOUT param: parameterObj): BOOLEAN;

(returns true if node can accept parameterObj at that time. TRANSFERS OWNERSHIP}

ASK METHOD accept(INOUT par: parameterObj):BOOLEAN;

TELL METHOD startmeup;

ASK METHOD setName(IN nam: STRING);

ASK METHOD init(INOUT arrcond: conditionObj; INOUT depcond: conditionObj; INOUT inarray:

ANYARRAY; INOUT outarray: ANYARRAY; INOUT servObj: serverObj);

ASK METHOD setChildren(INOUT child: ANYARRAY);

ASK METHOD requestToSend(INOUT param: parameterObj): BOOLEAN;

ASK METHOD send(INOUT param: parameterObj):BOOLEAN;

TELL METHOD ca!IProcess;

{PRIVATE }

name: STRING;

45

incond; conditionObj;

outcond: conditionObj;

inqueue: ARRAY INTEGER OF genericQueueObj;

outqueue: ARRAY INTEGER OF genericQueueObj;

serv: serverObj;

children: ARRAY INTEGER OF baseObj;

(param: parameterObj;)

END OBJECT;

nodeObj = OBJECT(baseObj); (TEMPLATE)

PRIVATE

res: ARRAY INTEGER OF resObj;

END OBJECT;

linkObj = OBJECT(baseObj);

END OBJECT;

gateNodeObj = OBJECT(baseObj);

gateRes: gateResObj;

END OBJECT;

intersectionNodeObj = OBJECT(baseObj);

intersectionRes; intersectionResObj;

END OBJECT; (intersectionNodeObj)

END MODULE.

46

{Dgeneriequeue. modj

DEFINITION MODULE genericqueue;

FROM GrpMod IMPORT BasicGroupObj;

FROM parameter IMPORT parameterObj;

VAR

TYPE

genericQueueObj = OBJECT(BasicGroupObj);

ASK METHOD insertObject(INOUT param:parameterObj);

ASK METHOD removeObject(INOUT param:parameterObj);

END OBJECT (genericQueueObj };

END MODULE.

47

I'Dparameter. mod)

DEFINITION MODULE parameter;

VAR

TYPE

entityObj = OBJECT;

ASK METHOD setArraySize(IN size: INTEGER);

ASK METHOD setAttribute(IN index: INTEGER; IN item:STRING): BOOLEAN;

ASK METHOD getAttributes(IN index: INTEGER; OUT item: STRING): BOOLEAN;

ASK METHOD setName(IN Name: STRING);

ASK METHOD getName: STRING;

ASK METHOD setType(IN Type: STRING);

ASK METHOD getType(OUT Type: STRING);

PRIVATE

(name: STRING;)

type: STIUNG;

arraysize: INTEGER;

attribute: ARRAY INTEGER OF STRING;

END OBJECT;

recObj = OBJECT;

ASK METHOD setAttribute(IN index: INTEGER; IN item: STRING):BOOLEAN;

ASK METHOD setArraySize(IN size: INTEGER);

ASK METHOD getAttributes(IN index: INTEGER; OUT item: STRING):BOOLEAN;

48

PRIVATE

attribute: ARRAY INTEGER OF STRING;

arraysize: INTEGER;

END OBJECT;

parameterObj = OBJECT;

ASK METHOD setName(IN Name: STRING);

ASK METHOD getName: STRING;

entity: entityObj;

rec: recObj;

name: STRING;

END OBJECT;

END MODULE.

49

(Dresource, mod)

DEFINITION MODULE resource;

FROM base IMPORT gateNodeObj;

FROM base IMPORT intersectionNodeObj;

YAR

TYPE

stateType = (NONE,NS,WE,UP,DOWN);

resObj = OBJECT;

state: stateType;

ASK METHOD query(OUT qState: stateType);

END OBJECT;

gateResObj = OBJECT(resObj);

ASK METHOD init(INOUT acqnode: gateNodeObj);

TELL METHOD startBuss;

(wait for 12 hours and if not DOWN call

processor function of server}

PRIVATE

(state: stateType;}

nodeinst: gateNodeObj;

OYERRIDE

ASK METHOD query(OUT qState: stateType);

END OBJECT (gateresObj };

50

intersectionResObj = OBJECT(resObj);

ASK METHOD init(INOUT acqnode: intersectionNodeObj);

TELL METHOD startBuss; (5 minute tight switching}

PRIVATE

{state: stateType;}

nodeinst: intersectionNodeObj;

OVERRIDE

ASK METHOD query(OUT qState: stateType);

END OBJECT;

END MODULE.

(Dserver. mod)

DEFINITION MODULE server;

FROM resource IMPORT resObj, stateType;

FROM genericqueue IMPORT genericQueueObj;

FROM parameter IMPORT parameterObj;

FROM base IMPORT baseObj;

VAR

TYPE

serverStateType = (IDLE, BUSY, DOWN);

serverObj = OBJECT;

WAITFOR METHOD process;

(Carrying out the preprocessing and resource capture before service}

ASK METHOD init(INOUT Node:baseObj);

PRIVATE

servRes: resObj;

node: baseObj;

state: serverStateType;

locaiParam: parameterObj;

ASK METHOD timeComputation(IN param: parameterObj):REAL;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

ASK METHOD getQindex: INTEGER;

count: INTEGER;

END OBJECT (serverObj);

gateServerObj = OBJECT(serverObj);

ASK METHOD initRes(INOUT resServ: resObj);

OVERRIDE

ASK METHOD timeComputation(IN param: parameterObj):REAL;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

ASK METHOD getQindex: INTEGER;

WAITFOR METHOD process;

(Carrying out the preprocessing and resource

capture before service)

END OBJECT;

interServerObj = OBJECT(serverObj);

ASK METHOD initRes(INOUT resServ: resObj);

OVERRIDE

ASK METHOD timeComputation(IN param: parameterObj):REAL;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

ASK METHOD getQindex; INTEGER;

WAITFOR METHOD process;

(Carrying out the preprocessing and resource

capture before

service }

END OBJECT;

END MODULE.

(Ibase. modj

IMPLEMENTATION MODULE base;

OBJECT baseObj;

ASK METHOD query(INOUT param: parameterObj): BOOLEAN;

VAR

BEGIN

RETURN TRUE;

END METHOD; (query)

ASK METHOD accept(INOUT par: parameterObj):BOOLEAN;

VAR

BEGIN

ASK incond TO mapToQueue(par);

TELL SELF TO startmeup;

RETURN TRUE;

END METHOD;

TELL METHOD startmeup;

VAR

temp: INTEGER;

tbooi;BOOLEAN;

BEGIN

OUTPUT(name, " Map to Queue");

(ASK incond TO mapToQueue(param);)

WAIT FOR serv TO process;

END WAIT;

(OUTPUT(name, " Sent to OutQ");}

54

ASK outcond TO mapToQueue(param);

tbool:= ASK SELF TO requestToSend(param);

tbool:= ASK SELF TO send(param);

END METHOD;

ASK METHOD setName(IN nam: STRING);

VAR

BEGIN

name:= nam;

END METHOD;

ASK METHOD init(INOUT arrcond: conditionObj; INOUT depcond: conditionObj; INOUT inarray:

ANYARRAY; INOUT outarray: ANYARRAY; INOUT servObj: serverObj);

BEGIN

incond;= arrcond;

outcond:= depcond;

inqueue:= inarray;

outqueue:= outarray;

serv:= servObj;

incond.init(inarray);

outcond.init(outarray);

END METHOD; (init}

ASK METHOD setChildren(INOUT child: ANYARRAY);

VAR

55

BEGIN

children:= child;

END METHOD;

ASK METHOD requestToSend(INOUT param:parameterObj): BOOLEAN;

VAR

temp: INTEGER;

tbool: BOOLEAN;

BEGIN

IF(children = NILARRAY)

OUTPUT("ERROR: CHILDREN IS NilArray");

RETURN FALSE;

END IF;

temp:= LOW(children);

tbool:= ASK children[temp] TO query(param);

RETURN tbool;

END METHOD;

ASK METHOD send(INOUT param: parameterObj):BOOLEAN;

VAR

temp:INTEGER;

tbool: BOOLEAN;

BEGIN

IF(children = NILARRAY)

OUTPUT("ERROR: CHILDREN IS NilArray");

RETURNFALSE;

END IF;

56

temp:= LOW(children);

OUTPUT(name, " sent to ",children[temp].name);

IF param = NILOBJ

OUTPUT("parameter = NILOBJ");

tbool:= FALSE;

ELSE

ASK outqueue[1] TO RemoveThis(param);

tbool:= ASK children[temp] TO accept(param);

END IF;

RETURN tbool;

END METHOD;

TELL METHOD callProcess;

VAR

BEGIN

OUTPUT(name, "processing ");

WAIT FOR serv TO process;

END WAIT;

END METHOD

END OBJECT; (baseObj]

END MODULE.

57

{Icondition. mod}

IMPLEMENTATION MODULE condition;

OBJECT conditionObj;

ASK METHOD modifyParameters (INOUT param: parameterObj);

VAR

BEGIN

{modify the parameters of parameterObj if the node or link has to make any modification)

END METHOD;

ASK METHOD mapToQueue(INOUT param: parameterObj);

VAR

temp:INTEGER;

BEGIN

temp:= LOW(quatray);

IF(quarray = NILARRAY)

OUTPUT("ERROR: quarray is NilArray");

ELSE

ASK quarray[temp] TO insertObject(param);

END IF;

END METHOD;

ASK METHOD init(INOUT anyqueue: ANYARRAY);

BEGIN

quarray:= anyqueue;

END METHOD {initcond);

END OBJECT; {conditionObj)

OBJECT gatelncondObj;

END OBJECT;

58

OBJECT gateOutcondObj;

END OBJECT;

OBJECT intersectionlncondObj;

END OBJECT;

OBJECT intersectionOutcondObj;

END OBJECT;

END MODULE. (Condition Module)

59

{Igenericgueue. modj

IMPLEMENTATION MODULE genericqueue;

OBJECT genericQueueObj;

ASK METHOD insertObject(INOUT param: parameterObj);

VAR

BEGIN

(Add object to the Queue)

ASK SELF Add(param);

END METHOD;

ASK METHOD removeObject(INOUT param:parameterObj);

VAR

BEGIN

(Remove the object from the Queue}

param:= ASK SELF Remove;

END METHOD;

END OBJECT;(myQueueObj}

END MODULE. (myqueue}

60

(Iparameter. modj

IMPLEMENTATION MODULE parameter;

OBJECT entityObj;

ASK METHOD setArraySize(IN size: INTEGER);

VAR

BEGIN

arraysize:= size;

NEW(attribute, O..size-l);

END METHOD;

ASK METHOD setAttribute(IN index: INTEGER; IN item: STRING): BOOLEAN;

VAR

BEGIN

IF arraysize & 0

attribute[index]:= item;

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

END METHOD;

ASK METHOD getAttributes(IN index: INTEGER; OUT item: STRING): BOOLEAN;

VAR

BEGIN

IF arraysize & 0

item:= attribute[index];

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

END METHOD;

ASK METHOD setName(IN Name: STRING);

VAR

BEGIN

name:= Name;

END METHOD;

ASK METHOD getName:STRING;

VAR

BEGIN

RETURN name;

END METHOD;

ASK METHOD setType(IN Type: STRING);

VAR

BEGIN

type:= Type;

END METHOD;

ASK METHOD getType(OUT Type: STRING);

VAR

BEGIN

Type:= type;

END METHOD;

END OBJECT;(entityObj)

OBJECT recObj;

ASK METHOD setArraySize(IN size: INTEGER);

62

VAR

BEGIN

arraysize:= size;

NEW(attribute, O..size-l);

END METHOD;

ASK METHOD setAttribute(IN index: INTEGER; IN item: STRING): BOOLEAN;

VAR

BEGIN

IF arraysize & 0

attribute[index]:= item;

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

END METHOD;

ASK METHOD getAttributes(IN index: INTEGER; OUT item: STRING): BOOLEAN;

VAR

BEGIN

IF arraysize & 0

item:= attribute[index];

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

END METHOD;

END OBJECT;(recObj}

63

OBJECT parameterObj;

ASK METHOD setName(IN Name: STRING);

VAR

BEGIN

name:= Name;

END METHOD;

ASK METHOD getName:STRING;

VAR

BEGIN

RETURN name;

END METHOD;

END OBJECT; (parameterObj }

END MODULE.

64

(Iresouree. modj
IMPLEMENTATION MODULE resource;

OBJECT resObj;

ASK METHOD query(OUT qState; stateType);

VAR

BEGIN

END METHOD;

END OBJECT;

OBJECT gateResObj;

ASK METHOD query(OUT qState: stateType);

VAR

BEGIN

qState:= state;

END METHOD;

ASK METHOD init(INOUT acqnode: gateNodeObj);

VAR

BEGIN

state:= UP;

nodeinst:= acqnode;

END METHOD;

TELL METHOD startBuss;

VAR

waitTiru: REAL;

BEGIN

65

waitTime:= 43200.0; { I2 hours of gate open time)

WHILE (TRUE)

WAIT DURATION waitTime

IF state = UP

state:= DOWN;

ELSE

state:= UP;

END IF;

END WAIT;

TELL nodeinst TO callProcess;

END WHILE;

END METI-IOD;

END OBJECT; (resourceObj)

OBJECT intersectionResObj;

ASK METHOD query(OUT qState: stateType);

VAR

BEGIN

qState:= state;

END METHOD;

ASK METHOD init(INOUT acqnode: intersectionNodeObj);

VAR

BEGIN

state:= WE;

nodeinst:= acqnode;

END METHOD;

TELL METHOD startBuss;

VAR

waitTime: REAL;

66

BEGIN

waitTime:= 3000.0;(5 minutes time between light changes)

WHILE (TRUE)

WAIT DURATION waitTime

IF state = WE

state:= NS;

ELSE

state:= WE;

END IF;

END WAIT;

TELL nodeinst TO callProcess;

END WHILE;

END METHOD;

END OBJECT; (intersectionResObj)

END MODULE. (resource)

67

(Iserver. modj

IMPLEMENTATION MODULE server;

FROM SimMod IMPORT SimTime;

OBJECT serverObj;

ASK METHOD init(INOUT Node:baseObj);

VAR

BEGIN

count:= 0;

state:= IDLE;

node:= Node;

END METHOD;

WAITFOR METHOD process;

VAR

tbool: BOOLEAN;

tempi: INTEGER;

temp2: REAL;

BEGIN

IF (state = IDLE)

tempi:= ASK SELF TO getQindex;

localParam:= getFromQ(temp I);

WHILE(localParam && NILOBJ)

state:= BUSY;

temp2:= timeComputation(localParam);

WAIT DURATION temp2;

END WAIT;

68

OUTPUT("FINISH: ",node.name, "", count," ",SimTime());

ASK node.outcond TO mapToQueue(localParam);

tbool:= ASK node TO requestToSend(localParam);

tbool:= ASK node TO send(localParam);

tempi:= ASK SELF TO getQindex;

localParam:=
getFromQ(tempi);

END WHILE;

state:= IDLE;

END IF;

END METHOD;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

VAR

par: parameterObj;

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ =— NIIArray");

RETURN NILOBJ;

END IF;

IF node.inqueue[qindex].First = NILOBJ

OUTPUT("node.inQ[qindex]=NILOBI");

RETURN NILOBJ;

ELSE

par;=ASK node.inqueue[qindex] TO First;

OUTPUT("REMOVED ",par.getName," from ",node.name);

RETURN node.inqueue[qindex].Remove;

END IF;

END METHOD;

ASK METHOD getQindex: INTEGER;

VAR

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ =— NIIArray");

RETURN -I;

END IF;

RETURN LOW(node.inqueue);

END METHOD;

ASK METHOD timeComputation(IN param: parameterObj):REAL;

VAR

BEGIN

RETURN 2.0;

END METHOD;

END OBJECT;

OBJECT gateServerObj;

ASK METHOD initRes(INOUT resServ: resObj);

VAR

BEGIN

servRes:= resServ;

state:= IDLE;

END METHOD;

WAITFOR METHOD process;

VAR

tbool: BOOLEAN;

70

temp: stateType;

tempi:INTEGER;

BEGIN

IF (state = IDLE)

tempi:= ASK SELF TO getQindex;

localParam:= getFromQ(tempi);

WHILE(localParam && NILOBJ)

ASK servRes TO query(temp);

IF(temp && DOWN)

state;= BUSY;

WAIT DURATION timeComputation(localParam);

END WAIT;

count:= count + I;

OUTPUT("FINISH: ",node.name, " ", count," ",SimTime());

ASK node.outcond TO mapToQueue(localParam);

tbool:= ASK node TO requestToSend(localParam);

tbool:= ASK node TO send(localParam);

tempi:= ASK SELF TO getQindex;

localParam:= getFromQ(temp I);

ELSE

localParam:= NILOBJ;

END IF;

END WHILE;

state:= IDLE;

END IF;

END METHOD;

ASK METHOD getFromQ(IN qindex: INTEGER):parameterObj;

VAR

par:parameterObj;

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ == NilArray");

RETURN NILOBJ;

END IF;

IF node.inqueue[qindex].First = NILOBJ

OUTPUT("node. inQ[qindex]=NILOBI");

RETURN NILOBJ;

ELSE

par:=ASK node.inqueue[qindex] TO First;

OUTPUT("REMOVED ",par.getName," from ",node.name);

RETURN node.inqueue[qindex].Remove;

END IF;

END METHOD;

ASK METHOD getQindex: INTEGER;

VAR

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ = NilArray");

RETURN -I;

END IF;

RETURN LOW(node.inqueue);

END METHOD;

ASK METHOD timeComputation(IN param: parameterObj):REAL;

VAR

BEGIN

72

RETURN 2.0;

END METHOD;

END OBJECT;

OBJECT interServerObj;

ASK METHOD initRes(INOUT resServ: resObj)I

VAR

BEGIN

servRes:= resServ;

state:= IDLE;

END METHOD;

WAITFOR METHOD process;

VAR

tbool:BOOLEAN;

str: STRING;

temp; stateType;

tempi: INTEGER;

BEGIN

IF (state = IDLE)

tempi:= ASK SELF TO getQindex;

localParam:= getFromQ(tempi);

WHILE(localParam && NILOBJ)

ASK servRes TO query(temp);

IF(temp && NS)

state:= BUSY;

WAIT DURATION timeComputation(localParam);

END WAIT;

count:= count+ I;

73

OUTPUT(aaassaassaaaasaaaaaaaaaaaaaaaaa

OUTPUT("FINISH: ",node.name, " ", count," ",SimTime());

str:= ASK localParam TO getName;

OUTPUT("DISPOSED ",count," ",str);

OUTPUT(aaaaaaaaaaasaag4gggsgggg4ggasss
)

OUTPUT(" ");

DISPOSE(localParam);

tempi:= ASK SELF TO getQindex;

localParam:= getFromQ(temp I);

ELSE

localParam:= NILOB1;

END IF;

END WHILE;

state:= IDLE;

END IF;

END METHOD;

ASK METHOD getFromQ(IN qindex; INTEGER):parameterObj;

VAR

par:parameterObj;

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ == NIIArray");

RETURN NILOBJ;

END IF;

IF node.inqueue[qindex].First = NILOBJ

OUTPUT("node. inQ [q index]=NILOBJ");

RETURN NILOB1;

74

ELSE

par:=ASK node.inqueue[qindex] TO First;

OUTPUT("REMOVED ",par.getName," from ",node.name);

RETURN ASK node.inqueue[qindex] TO Remove;

END IF;

END METHOD;

ASK METHOD getQindex: INTEGER;

VAR

BEGIN

IF (node.inqueue = NILARRAY)

OUTPUT("inQ == NIIArray");

RETURN -I;

END IF;

RETURN LOW(node.inqueue);

END METHOD;

ASK METHOD timeComputation(IN param: parameterObj):REAL;

VAR

BEGIN

RETURN 1.0;

END METHOD;

END OBJECT;

END MODULE.

75

fMproj. modj

MAIN MODULE proj;

FROM base IMPORT gateNodeObj;

FROM base IMPORT intersectionNodeObj;

FROM base IMPORT linkObj,baseObj;

FROM condition IMPORT gatelncondObj, gateOutcondObj;

FROM condition IMPORT intersectionlncondObj, intersectionOutcondObj;

FROM condition IMPORT conditionObj;

FROM genericqueue IMPORT genericQueueObj;

FROM server IMPORT gateServerObj, interServerObj,serverObj;

FROM resource IMPORT gateResObj, intersectionResObj;

FROM parameter IMPORT parameterObj,entityObj,recObj;

FROM SimMod IMPORT StartSimulation,SimTime,StopSimulation;

TYPE

GeneratorObj = OBJECT

TELL METHOD initSimulation;

TELL METHOD GenCustomers;

END OBJECT;

VAR

i,j,k: INTEGER;

ch:CHAR;

gate: gateNodeObj;

intersection: intersectionNodeObj;

gatein: gatelncondObj;

gateout: gateOutcondObj;

76

interin: intersectionlncondObj;

interout; intersectionOutcondObj;

gatelnQ: genericQueueObj;

gateOutQ: genericQueueObj;

interlnQ: genericQueueObj;

interOutQ: genericQueueObj;

gateserver: gateServerObj;

interserver; interServerObj;

gateRes: gateResObj;

gateQinArray: ARRAY INTEGER OF genericQueueObj;

gateQoutArray: ARRAY INTEGER OF genericQueueObj;

interQinArray: ARRAY INTEGER OF genericQueueObj;

interQoutArray: ARRAY INTEGER OF genericQueueObj;

interRes: intersectionResObj;

link: linkObj;

linklnQ: genericQueueObj;

linkOutQ: genericQueueObj;

linkserver: serverObj;

linkin: conditionObj;

linkout: conditionObj;

linkQinArray: ARRAY INTEGER OF genericQueueObj;

linkQoutArray: ARRAY INTEGER OF genericQueueObj;

gateChildren: ARRAY INTEGER OF baseObj;

linkChildren: ARRAY INTEGER OF baseObj;

interChildren: ARRAY INTEGER OF baseObj;

result: BOOLEAN;

77

(parameter obj }

transporter: parameterObj;

transArray: ARRAY INTEGER OF parameterObj;

OBJECT GeneratorObj;

TELL METHOD initSimulation

VAR

endtime: REAL;

BEGIN

endtime:= 300.0;

WAIT DURATION endtime;

END WAIT;

StopSimulation;

END METHOD;

TELL METHOD GenCustomers

VAR

chl:CHAR;

tbool: BOOLEAN;

BEGIN

tbool:= FALSE;

{ NEW(transArray, 1..100);}

OUTPUT("TIME", SimTime());

IF tbool && TRUE

tbool:= TRUE;

FOR i:= I TO 100

NEW(transporter);

78

ASK transporter TO setName(INTTOSTR(i));

{ transArray[i]:= transporter;}

result;= ASK gate TO accept(transporter);

WAIT DURATION 0.50;

END WAIT;

END FOR;

END IF;

END METHOD; { GenCustomers }

END OBJECT;

custGenerator: GeneratorObj;

BEGIN

{ initialize)

{gate node object)

NEW(gate);

ASK gate TO setName("Gate");

{in condition obj}

NEW(gatein);

{in queue object)

NEW(gateQinArray, I .. I);

NEW(gatelnQ);

gateQinArray[l]:= gatelnQ;

ASK gatein TO init(gateQinArray);

{out condition obj)

NEW(gateout);

79

{out queue object)

NEW(gateOutQ);

NEW(gateQoutArray, 1..1);

gateQoutArray[1]:= gateOutQ;

ASK gateout TO init(gateQoutArray);

(server}

NEW(gateserver);

{Resource)

NEW(gateRes);

ASK gateRes TO init(gate);

ASK gateserver TO init(gate);

ASK gateserver TO initRes(gateRes);

ASK gate TO init(gatein, gateout,gateQinArray,gateQoutArray,gateserver);

{end of gate init}

(intersection node object}

NEW(intersection);

ASK intersection TO setNamne "Iintersectio"";

{in condition obj}

NEW(interin);

{in queue object)

NEW(interQinArray, I .. I);

80

NEW(interlnQ);

interQinArray[1]:= interlnQ;

ASK interin TO init(interQinArray);

{out condition obj}

NEW(interout);

{out queue object}

NEW(interOutQ);

NEW(interQoutArray, 1..1);

interQoutArray[1]:= interOutQ;

ASK interout TO init(interQoutArray);

{server}

NEW(interserver);

{Resource}

NEW(interRes);

ASK interRes TO init(intersection);

ASK interserver TO init(intersection);

ASK interserver TO initRes(interRes);

ASK intersection TO init(interin, interout,interQinArray, interQoutArray, interserver);

{end of intersection init}

{link object)

NEW(link);

ASK link TO setName("Link");

{in condition obj}

NEW(linkin);

{in queue object}

NEW(linkQinArray, 1 ..1);

NEW(linklnQ);

linkQinArray[1]:= 1inklnQ;

ASK linkin TO init(linkQinArray);

{out condition obj}

NEW(linkout);

{out queue object}

NEW(linkOutQ);

NEW(linkQoutArray, 1..1);

linkQoutArray[1]:= linkOutQ;

ASK linkout TO init(linkQoutArray);

{server}

NEW(linkserver);

ASK linkserver TO init(link);

ASK link TO init(linkin, linkout,linkQinArray, linkQoutArray, linkserver);

{end of link init}

{set up model structure}

NEW(gateChildren, 1 .. 1);

NEW(linkChildren, 1 .. 1);

82

interChildren:= NILARRAY;

gateChildren[1]:= baseObj(link);

linkChildren[1]:= baseObj(intersection);

ASK gate TO setChildren(gateChildren);

ASK link TO setChildren(linkChildren);

ASK intersection TO setChildren(interChildren);

NEW(custGenerator);

(main program}

TELL custGenerator TO initSimulation;

TELL custGenerator TO GenCustomers;

StartSimulation;

(end main program)

OUTPUT("THE END");

ASK gatelnQ TO Empty;

ASK gateOutQ TO Empty;

ASK interlnQ'O Empty;

ASK interOutQ TO Empty;

ASK linklnQ TO Empty;

ASK linkOutQ TO Empty;

(FOR i:= I TO 100

transporter:~ansAtray[i];

DISPOSE(transporter);

83

END FOR;

DISPOSE(transArray);

(cleanup}

DISPOSE(gatein);

DISPOSE(gateQinArray);

DISPOSE(gatelnQ);

DISPOSE(gateout);

DISPOSE(gateOutQ);

DISPOSE(gateQoutArray);

DISPOSE(gateserver);

DISPOSE(gateRes);

DISPOSE(gate);

DISPOSE(intersection);

DISPOSE(interin);

DISPOSE(interQinArray);

DISPOSE(interlnQ);

DISPOSE(interout);

DISPOSE(interOutQ);

DISPOSE(interQoutArray);

DISPOSE(interserver);

DISPOSE(interRes);

DISPOSE(link);

DISPOSE(linkin);

DISPOSE(linkQinArray);

DISPOSE(linklnQ);

DISPOSE(linkout);

DISPOSE(linkOutQ);

DISPOSE(linkQoutArray);

DISPOSE(linkserver);

DISPOSE(gateChlldren);

DISPOSE(linkChildren);

OUTPUT;

OUTPUT("Enter a character to quit.");

INPUT(ch);

END MODULE.

CURRICULUM VITA
for

BRIAN DOUGLAS JONES

NAME: Brian Douglas Jones

DEGRESS:
Master of Science (Computer Engineering), Old Dominion University, Norfolk,

Virginia, August 2000.
Bachelor of Science (Computer Engineering), Old Dominion University, Norfolk,

Virginia, December 1997.
Associates of Science (Computer Engineering), Tidewater Community College,

Portsmouth, Virginia, December 1995.

PROFESSIONAL CHRONOLOGY:
Space and Naval Warfare System Center, San Diego, California.

Deputy Chief of Information Systems for the Joint Warfighting Center,
August 1998 — Present.

Old Dominion Research Foundation, Norfolk Virginia.
Research Assistant for the Virginia Modeling and Simulation Center,
Suffolk, Virginia. May 1998 — May 1999.

	Diagnostics Software for Concurrent Processing Computer Systems
	Recommended Citation

	tmp.1722525870.pdf.7uW86

