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ABSTRACT
CONCEPTUAL DESIGN OF CAM

MECHANISMS USING GRAPH THEORY

This paper presents the theory of graphs and how they

can be applied to the conceptual design of dual-cern

mechanisms. The graph theory was used to validate the
results of previous authors (Hain and Pryor). Several

applications of dual cern mechanisms are reviewed.

Algorithms using a process of bit mapping were used to
developed all possible non-isomorphic graphs for various

classes of mechanisms. A classification method was

developed using common occurring substructures found in the

graphs. This classification scheme was used for conversion

of graphs into schematics. Once the results of Hain were

verified, the investigation turned to mechanisms with two

cams. The generated schematics represent the basic
configurations for all the non-isomorphic mechanisms

studied.

The graph theory was able to generate seven colored

graphs for five-bar, 1 D.O.F. mechanisms with one cam. For

six-bar, 1 D.O.F. 'ual cern mechanisms, over 110 colored



graphs were generated. Finally, 12 colored graphs were

generated for five-bar, 2 D.O.F. dual cam mechanisms. Two

designs of mechanisms using dual cams were examined. The

graphs of the mechanisms were checked against the tables of

graphs developed during this investigation.
The method presented in this paper has shown to be

both exhaustive and complete. The graphs developed are non-

isomorphic (unique). The method is not limited to single
degree of freedom mechanisms nor is it limited to the

number of desired links. This was a problem encountered in
previous investigations. The application of graph theory to
the generation of mechanisms did not exhibit these
limitations.
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1. Introduction
The purpose of this investigation is to analyze and

synthesize mechanisms with one or more cern-contact pairs. A

method for generating and enumerating mechanisms is
developed and applied to particular classes of cam

mechanisms. The major emphasis in this work is the
development of an algorithm for the enumerating and

modeling mechanisms with one or more cam-pairs using graph

theory. This algorithm is then used during the generation

of dual-cam mechanisms.

Much work has already been conducted in the study of

structural classification of mechanisms. Hain [1]

investigated mechanisms with one cern-contact pair. Hain

used a well-known method of replacing a single link in a

multi-link mechanism with a cam-pair. He applied this
method and developed 21 different cam-pair mechanisms. He

also noted the limited applications of these mechanisms and

issued a challenge for engineers and designers to design

better cams.

Pryor et al. [2) expanded on Hain's work and proposed

an alternative method for classifying and enumerating



mechanisms with cams which they termed, cam-modulated

mechanisms. His method was similar to that used by Hain in
that it involved the conversion of more complicated

mechanisms into cam-modulated mechanisms by replacing some

of the links in the mechanisms. Pryor's method may have

been an improvement on Hain's method but it too, had

several limitations. One such limitation lies in the
difficulty of determining non-isomorphism. It is possible
that when one proceeds to remove links and their associated
joints and replace them with cam-contact pairs, several
mechanisms may be generated that are structurally
identical. This method therefore, does not lead to unique

mechanisms or with a ready means to determine if a

converted mechanism is non-isomorphic. Chapter 4 provides

further detail on the method used by Hain and Pryor and the
problem with isomorphism. This author is proposing a

different approach to enumerating conceptual designs of

cern-modulated mechanisms, by using graph theory and

algorithms developed for this study. The proposed method

does not rely on the existence of structurally complicated

mechanisms.

This thesis is divided into seven chapters. Chapter 1

gives an introduction and brief summary of the remaining

chapters. Chapters 2 and 3 provide the background material
on the algorithms used to develop the graphs presented in



this thesis. Chapters 4, 5 and 6 present the classification
and enumeration process of Five-bar and Six-bar cam-

modulated mechanisms. Chapter 7 discusses a few

applications of dual-cam-modulated mechanisms.

Chapter 2 provides a discussion on the theory of

graphs as well as the key concepts in the combinatorial
enumeration of all possible concepts. The concept of bit
mapping is developed into a method of performing the
permutations required to generate all possible unique

mechanisms. The degree-of-freedom equation and matrix

representation are also discussed in this chapter.
Chapter 3 gives an overview of the key algorithms

written for this thesis. This chapter documents the key

elements used by the permutation algorithms. Each of the
major algorithms that make up the source code are
documented in this chapter, to provide a means to reference
the graphs that were generated in Chapters 4, 5 and 6.

Chapter 4 describes five-bar mechanisms with a single
cam and a single degree-of-freedom. The analysis of Hain's

work as it relates to graph theory is then compared to the
results found through using the permutation algorithms.
This chapter also describes the method of conversion of

mechanisms into cam-modulated mechanisms as used by Hain.

Chapter 5 details the enumeration of six-bar
mechanisms with dual-cams and one degree-of-freedom. This



chapter describes the method of classifying graphs based on

various types of subgraphs and how the subgraphs are
converted into schematics of mechanisms.

Chapter 6 describes the structural enumeration of

five- link dual-cern mechanisms with two degrees-of-freedom.

The method of structural classification based on sub-graphs

is discussed along with several tables that tabulate the
classifications of all the colored-graphs generated by

structural synthesis. The fundamental graphs along with

their respective non-isomorphic colored graphs are also
illustrated in this chapter.

Chapter 7 contains a survey of several designs for
variable valve-timing mechanisms which use dual-cam

mechanisms. A detailed analysis of a six-bar dual-cam

mechanism used for automobile sunroofs is also found in
this chapter.

1.2 Discussion of Earlier Work

Hain [1] systematically derived 21 different five-link
cern mechanisms from the six-link Watt and Stephenson

linkage mechanisms. This was accomplished by taking each of

the fundamental six-link mechanisms mentioned and replacing
a single link and two connecting joints with a single cam-

contact pair. This method reduces the number of links by

one but maintains the degrees-of-freedom of mechanism. Each



of these mechanisms contained only one cern-contact pair
with one degree-of-freedom. Hain [1] stated that the

mechanisms shown, represented all single degree-of-freedom

single-cern mechanisms that converted the rotating cam input

into an oscillating output. The purpose of this
investigation is to apply a different method of enumeration

than that used by Hain and Pryor and determine if indeed

the 21 cam-contact pairs are the only possible mechanisms.

This investigation will also apply kinematic synthesis to
this class of mechanisms and higher link cam-modulated

mechanisms.

1.3 Taking the Challenge

The first step in taking up the challenge issued by

Hain [1] was to analyze what Hain and Pryor had already

accomplished. One goal was to verify Hain's work [1] and

determine if indeed the 21 mechanisms that are shown in his

paper are the only possible five-bar single degree-of-

freedom single-cern mechanisms.

The next step was to determine if an alternative
method of enumeration existed that could be applied to this
problem. Based on past investigations [9(10111(12]g Graph

theory has shown to be a useful tool for the generation of

new kinematic structures. Algorithms based on graph theory

were then developed for this research. The purpose of these



algorithms was to enumerate all possible non-isomorphic

graphs for five- and six-link mechanisms with two cam-

contact pairs. From this list of mechanisms, certain
criteria can then be applied to each mechanism, in order to
reduce the total number of mechanisms. The final list of

mechanisms can then be compared to the list of mechanisms

generated from previous research.
The final step was to continue the search for more

complicated mechanisms using the graph theory algorithms.
In particular, both five-bar and six-bar mechanisms with

two cam-contact mechanisms were investigated.



CHAPTER 2

2. Background Theory

In this chapter, a background is presented on

combinatorial mathematics and the theory of graphs. Matrix

representation of graphs is discussed along with the
degree-of-freedom equation. Finally, important algorithms

such as bit mapping and matrix permutations are discussed.

2.1 Combinatorial Mathematics

Combinatorial mathematics is a branch of mathematics

with many applications in engineering and has become more

useful with the wide use of computers. Various applications
and manipulations of sets can be carried out that several
years ago were either too lengthy to do by hand or required
only the most expensive computers. With the availability of

computers and the cost of computing time constantly
dropping, engineers are finding numerous computer

applications for combinatorial mathematics. One particular
branch of combinatorial mathematics used by engineers is
graph theory. Graph theory will be used to describe the



relationship among sets or elements in the mechanical

system so that it can be used to enumerate mechanisms.

2.2 Graph Theory

A graph is defined in reference [5] to be the ordered

pair (A,B), where A is a set and B is a binary relation on

A. The elements of A are called vertices and the ordered

pairs in B are called edges of the graph. An edge is said

to be incident with the vertices it joins. Figure 2.1(a)
shows a simple four-bar mechanism and the graph that is
used to describe it. The links (vertices of the graph) are

labeled A, B, C and D. In this example, edge (A,B) of the

graph is incident to vertices A and B. Two vertices are

said to be adjacent if they are joined by an edge. There

are four edges shown in the figure. Edge ()1 joins or

connects vertices A and B, Edge ()2 joins vertices B and C,

Edge ()3 joins vertices C to D, and Edge ()4 joins vertices D

t,o A.

2.3 Isomorphism

Two graphs are said to be isomorphic if there is a

one-to-one correspondence between their vertices and edges

such that incidence is preserved. This means that for any

given edge between two vertices in one graph, there is a

corresponding edge between the corresponding vertices in



the second graph. Non-isomorphic Graphs are unique in that
they describe a relationship that is not found in another

graph, no matter how the graph is redrawn or rearranged.
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Two structurally equivalent mechanisms are said to be

isomorphic if they meet the following criteria:
1 — number of vertices are the same

2 — number of edges are equal

3 — number of vertices with the same degree

4 — topologically the same for each resulting qraph

Figure 2.1(b) illustrates two isomorphic graphs. Even

though the vertices are labeled the same, the graphs appear

somewhat differently, by close comparison between the edge

vertex relationships of the first graph, with the second

graph shows that both graphs are indeed isomorphic.

Obviously, there must exist analytical means by which one

can determine isomorphism.

Uicker and Raicu [7] proposed a method for solving the

problem of isomorphism. This method is discussed in greater
detail in section 2.4.3.

2.4 Matrix Representation of Graphs

The binary relationships between the two sets allows

one to describe the relationship in matrix form. The

adjacency matrix "A" of a graph with "N" vertices is a NxN

matrix. In this matrix, the (i,j)th entry is one if there
is an edge joining the ith and jth vertices, and is zero

otherwise.
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2.4.1 Relationship Between the Mechanism and Its Graph

Since graph theory is used to describe the
relationship of sets in a graphical manner, graphs can then

be used to describe the relationships between various

members of a linkage. Each link in the mechanism may be

represented by an edge in the graph and each joint in the
mechanism is represented by a vertex in the graph.

A matrix is said to be symmetric if every element

A[i,j] is equal to element A[j,i]. In the case of

mechanisms, if link "A" connects to link "B", then it can

also be said that "B" is connected to "A". The adjacency

matrix used to describe a mechanism is therefore symmetric.

This property of the adjacency matrix of a graph is useful
because in the process of permuting the matrix, only the

upper half of the matrix need be considered.

2.4.2 Graph to Matrix Conversion

The process of converting a graph to a matrix form is
quite simple. Each vertex in the graph represents a link in
the mechanism. These links (vertices) are then represented

in the matrix as a row and column of the matrix. For

instance, link $ 3 is denoted by row 3 and column 3 of the
matrix. A joint between links 43 and $ 4 is shown by the
elements [3,4] or [4,3]. The equivalent adjacency matrix

for the Four-bar mechanism shown in Fig. 2.1(a) is shown
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elements [3,4] or [4,3]. The equivalent adjacency matrix

for the Four-bar mechanism shown in Fig. 2.1(a) is shown

below:

0100
1010
0101
0 010

The edge A-B of the graph is represented in the matrix as

row 1 and column 1. The vertex A is equivalent to the

element (1,1) in the matrix and is assigned the value of

zero. This is due to the fact that the vertex is not

allowed to connect to itself. Vertex A is joined to vertex

B and D. Vertex B is row 2 column 2 of the matrix. We set
elements (1,2) and (2,1) in the matrix equal to one to show

that vertex "A" connects to vertex "B". Likewise, the
elements (1,4) and (4,1) are also equal to one.

2.4.3 Matrices and Isomorphism

One advantage to representing graphs of mechanisms

with matrices, is the readily available algorithms used for
the analysis of matrices and the applications of computers

in manipulating matrices. Computers can be used to perform

permutations and generate various graphs. A method of

determining isomorphism is necessary if one is interested
in generating unique graphs.
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Dicker and Raicu [7] proposed a method for solving the
problem of isomorphism. They showed that the problem of

isomorphism reduced to that of assuming a eigenvalue

solution to the permutation matrix and solving for the
determinant. This determinant was unique for each non-

isomorphic graph.

Another variation of this method for checking for
isomorphism is to map the adjacency matrix (represented by

a matrix of integer numbers) of a graph& into a matrix of

real numbers. If one assumes an arbitrary eigenvalue and

determines the determinant of the resulting matrix, non-

isomorphic graphs in general will generate unique

determinants. While this method lends itself well to a

quick and efficient computer solution, the method does have

some limitations. There does exist the possibility that
this method may eliminate from consideration a mechanism

which is actually non-isomorphic. This situation may arise
from some non-isomorphic graph that yields the same

determinant as that of another non-isomorphic graph.

2.5 Degrees-of-Freedom

In covering the background information on degrees-of-

freedom, this section describes the theory and how it
applies to mechanisms.
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2.5.1 Degrees of Freedom of a Rigid Body

The degree of freedom of a moving object in free space

is the number of coordinates used to fully describe the

position and orientation of that object at any instant in
time. If one uses the cartesian coordinate systems a basis
for a three dimensional space, the location of an object
requires three coordinates to describe its location and

three more coordinates to describe the orientation/rotation
of the object. The total number of degrees-of-freedom for
this spatial object in three dimensional spaces is six. If
we constrain that object to move in a planar motion only,
the number of degrees-of-freedom for the mechanism is then

reduced to three.

2.5.2 Mechanisms and Degrees-of-Freedom

Often mechanisms are classified by the number of

inputs required to generate a particular output. By this,
we mean the degrees of freedom for the entire mechanism.

If for example, a link is constrained to move in a

plane, the motion consists only of translation and

rotation, resulting in three degrees of freedom. Two

degrees of freedom arise from the two coordinates required
to describe the translation of the link. The third degree

of freedom comes from the rotation of the link about the
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axis normal to the plane of motion. Therefore, the
constrained rigid link is said to have three degrees of

freedom. An assembly of N links posses a total of N degrees

of freedom when they are joined together to form a linkage
system. As links are joined, there is a resultant loss of

degrees of freedom in the total system.

A pin joint between two links removes two degrees of

freedom of relative motion. From this observation, one can

write an equation which governs the degrees-of-freedom of
an N-link chain connected by N number of pin joints. Ground

is considered as one of the links being fixed. The equation
then becomes

E~3(P-I) -2'here

F is the total degrees-of-freedom of the
mechanism, (N-l) is the number of mobile links and Fl is
the number of single degree-of-freedom joints in the
system. Equation [2.1] is known as Greubler's equation.

Several joints provide one degree of freedom. The

slider joint for example, provides one degree of freedom in
translation only. The revolute or pin joint also allows

only one relative degree-of-freedom but in rotation. In

this text, all single degree-of-freedom joints are shown as

pin (or revolute) joints. It is assumed that any pin joint
may be replaced with any joint with one degree of freedom.
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2.6 Algorithms of Bit Mapping

This section describes binary numbers and the

algorithms which use them.

2.6.1 The Binary Number

Binary numbers are often used when describing how

computers store numbers internally. Our counting system has

a base of ten. The right-most digit of any number has the

weight of one. The next digit to the left has a weight of

ten. For example, the number 21 consists of two tens and

one. For binary numbers, the base is two. The right hand

position weight is one, just as in the decimal system. The

value of any number in the right hand position is always

one for any system because any number raised to the power

of zero is one. The next position to the left has the

weight of two (two raised to the power of one). The next

position moving in the left direction has the weight of

four (two raised to the power of two). Each position to the
left increases in the power of two. Each binary digit is
called a bit, which is a contraction for "BInary digiT".

Any number in the decimal system can be converted into
a binary representation. The number 50 for instance is
eguivalent to 110010 in the binary system. To understand

this, let us take a look at the six binary digits used for
the number 50. The second digit from the right is in the
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ones position. This means the number two is raised to the

power of one. This represents the number two. The fifth
digit is one raised to the power of four or 16. Finally,
the sixth digit is two raised to the power of five or 32.

Add each of the values and we get 32 + 16 + 2 = 50.

By making use of the binary system and examining each

bit representation, it is possible to use an algorithm of

bit mapping in enumeration. Starting with the integer 0 and

incrementing by 1, one can examine each bit and enumerate

every possible combination of zero and one. For example, if
one is looking for every possible combination of 1 6 0

using two digits the combinations are 00, 01, 10, and 11.

These combinations could have been found by incrementing an

integer from 0 to 3 and examining each bit. An algorithm

based on bit mapping was used to develop graphs for
kinematic synthesis. The bits are mapped into a matrix

which represents a graph. Each graph is stored in the

computer if the graph is new and is non-isomorphic.

2.6.2 Bit Mapping and Matrices

There are several methods used for the enumeration of

graphs. The process used throughout this study is one of

bit mapping and decoding of bits for the purpose of

permuting matrices that can be used to represent graphs.

The process involves the incremental step increase in an



integer number and the decoding of the bits used internally
to represent that number. By considering only the upper

portion of the matrix of a graph, the task of enumeration

becomes one of generating all possible combinations of ones

and zeros. Each matrix generated by this process must then
be evaluated on certain criteria as follows:

1 — Each row must have at least two elements equal

to one

2 — Each column must have at least two elements

equal to one

The process of enumerating mechanisms begins with the
generation of all fundamental non-isomorphic graphs. This

is accomplished by incrementing a number, performing a bit
mapping operation, decoding the bits in order to load a

matrix and then determining if the resultant matrix is non-

isomorphic. Once the fundamental matrices have been

determined using the above mentioned algorithm, the same

process is applied again to the fundamental graphs in order
to generate all non-isomorphic colored-graphs. Color is
used to distinguish the edges of a graph that are different
from the other edges. In the case of cam mechanisms, color
is used to denote the cern-contact pair.



CHAPTER 3

3. Overview of Algorithms

This chapter provides an overview of the algorithms

developed during this research. Section 3.1 describes the
main algorithm. Key algorithms are documented in sections
3.2 through 3.4. of this chapter.

3.1 General Steps

The main algorithm "SYNTH" is responsible for
controlling the other algorithms and maintaining central
storage in the computer memory for intermittent and final
results. SYNTH makes use of two important algorithms
"PERMUT" and "COLGRA". The first performs permutations on a

matrix, the second finds all possible combinations of

colors for a matrix (graph). SYNTH invokes PERMUT first to
generate all possible fundamental non-isomorphic graphs and

then passes the results to COLGRA. The results from COLGRA

represent the final results of the permutation process.

20
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3 2 Algorithm PERMUT

PERMUT is responsible for determining all possible
non-isomorphic matrices (graphs). This is accomplished by

looking at the order of an NxN matrix and determining the
number of bits required to represent the upper-half of a

symmetrical square-matrix. This number is used as a looping

index. For example, a 5x5 matrix requires ten ( 4+3t2+I )

bits to represent the upper half of the matrix. Each

element of the matrix is represented by a bit. All elements

along the diagonal are equal to zero because the vertices
are not allowed to connect to themselves.

PERMUT also makes use of the algorithm DECODE to
examine the bits of the loop index and map the 1 bits into
a symmetrical matrix. After the permuted matrix is
generated, PERMUT examines the number of incident edges for
each row looking for matrices with two or more edges per
row. Those matrices which pass this initial screening

process are then passed to another algorithm FDETER which

calculates the determinant of the matrix. The results from

this process are passed to the algorithm ISOMOR to
determine if the matrix represents a non-isomorphic matrix.

If the matrix is non-isomorphic, it is added to the array
of saved matrices.
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3.3 Algorithm COLGRA, For Coloring Graphs

COLGRA receives an adjacency matrix of order N and

determines all possible permutations of that matrix using

the number of colors passed. The method of bit mapping is
once again used for generating all permutations.

COLGRA takes the adjacency matrix passed in and copies

the upper half of the matrix into a one dimensional integer
array called BIT1. The matrix is then colored by using the
bit mapping of an integer number that is initialized to one

and incremented by one. Each time the integer is
incremented, the bits are tested for the value of one. The

number of one bits are summed. If the number of bits turned
on is equal to the number of elements that have a value of

one in the matrix, the algorithm SETBIT is invoked to copy

the bit map into a second one dimensional integer array
called BIT2. Arrays BIT1 and BIT2 are then compared element

by element. If the arrays have at least two elements that
match (the number of edges to color) the matrix is passed

to the algorithm COLMAT for coloring. Colored maps differ
from fundamental matrices (graphs) in that the integer
number three is used for color.

3.4 Checking for Isomorphism (ISOMOR)

The purpose of the algorithm ISOMOR is to determine if
a given matrix is non-isomorphic when compared to a list of
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matrices that are stored in memory. If the matrix is non-

isomorphic, it is added to the list of non-isomorphic

matrices. The determinant of the matrix is determined by

first mapping the integer matrix into a matrix of double

precision real numbers and calculating the determinant of

the second matrix. Once the determinant has been

calculated, this value is compared against an array of

saved determinants using the following equation.

X ( newdeter — savedeter ) / newdeter [3-1]

If X is less than or equal to some very small number, say

1.0E-S, then the determinant is considered a match. Once a

match is found, ISOMOR invokes the algorithm COPMAT to copy

the matrix and it's determinant into an array of saved non-

isomorphic matrices and determinants.

3.5 Coloring the Graph (COLGRA)

The algorithm for coloring a graph is called COLGRA.

COLGRA receives the one dimensional array "BIT2" and

examines the upper half of graph which is to be colored.
Each element of the upper half of the matrix is compared

with a corresponding element in the array BIT2. If both

elements are equal to one, the element of the matrix is
colored (indicated by setting the element equal to three).
The colored graph is then passed to the invoking algorithm.



CHAPTER 4

4. Analysis of Hain's Work

In order to understand the work that Hain conducted in
structural synthesis, it is necessary to understand the
methods he used in obtaining various permutations of

mechanisms. We begin with the examination of the degree of

freedom equation. This equation will be used to determine

the number of one and two degree-of-freedom joints required

for a single degree-of-freedom mechanism. Once these values

are found, the graph theory approach can then be used to
enumerate all possible permutations of mechanisms meeting

the same requirements as those investigated by Hain.

The primary difference between the graph theory

approach and the approach used by Hain, is that Hain's

method of permutation relied on existing linkages that
could be converted into mechanisms with higher ordered

pairs (cam-pairs in particular) and fewer links ( ie. six
links with no cam-contact-pairs converted to five-link, one

cam-contact-pair mechanisms). The graph theory method is an

exhaustive method which generates a complete list of graphs

from which mechanisms may be developed.

24
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This approach removes the requirement that one must apply a

conversion method to kinematic linkages in order to
generate the desired linkages.

4.1 Degree-of-Freedom Equation

The degree-of-freedom equation may be written as

Ea 3( L — (JI + JB) — 1 ) + Jf + 2sJZ [4.1]

Where F is the total number of degrees-of-freedom for
the mechanism, Jl is the number of single degree-of-freedom

joints and J2 is the number of two degree-of-freedom

joints. For a five-bar mechanism, one can set the number of

links L equal to five. Substitute this value into equation

[4.1] and solve for the number of single degree-of-freedom

joints required for a single degree-of-freedom mechanism.

Equation [4.1] then becomes

1 3 s (5 — (JI + J2) — 1) JI +2'f

the number of two degree-of-freedom joints J2 = 1,

then from Eq. [4.2]

JI 5
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Therefore, in order for the linkage towave a single
degree of freedom, the number of single degree-of-freedom

joints is equal to five and the number of two degree-of-

freedom joints is equal to one. The total number of joints
for the mechanism is equal to six.

4.2 Hain's Method of Enumeration

As mentioned earlier in section 1.2, Hain used a well-

known method of replacing a binary link and its two single
degree-of-freedom joints with a higher cern-contact pair in

order to enumerate all five-bar single cam-contact pair
mechanisms.'In doing so, Hain developed 158 five-bar cam-

modulated-linkages from four types of six-link mechanisms.

These linkages were Watt's mechanism, Stephenson's

mechanism, a six-link with one double joint and a six-link
two degree-of-freedom chain with two double joints. From

this list of 158 mechanisms, Hain reduced the list down to
21 mechanisms that represented all possible arrangements of

mechanisms in which the rotating input was converted into
oscillating swinging motion output.

The mechanisms were grouped according to the following

functions;

1 — cern rotates on an axis that is fixed to frame

2 — cam is stationary and is fixed to frame



27

3 — cam moves, follower is fixed to frame

4 — cam is attached (mounted on) to a coupler of a

four-bar

5 — basic five link chain with cam 6 follower used

to relate movement of two of these links

Hain was able to obtain such a large number of

mechanisms by performing various permutations on the newly

generated five-bar mechanisms. One such method involved the
placement of various pin joints when links are joined to
the ground link. In the case of the cam link acting as the
ground link, the connecting links may be shown to connect

to pin joints which are not physically located on the link
itself. Figure 4.1(c) shows two permutations of a single
schematic generated by applying this method. In Fig.
4.1(c), the cam link is considered as the ground link. This

particular link happens to be a ternary link. The first
permutation of this schematic involves removing the pin
joint that connects Link ()5 to the cern. The link is shown

to be connected to Link ()5 but at a location that is not on

the link itself.
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The second permutation involves link ()3. This

schematic which shows the same mechanism with both pin
joints removed from the actual cern link. Hain considered

the first schematic (Fig 4.1(a)) and it's two permutations

as three mechanisms when he developed his 158 mechanisms.

Another method of performing permutations involves the
grounding different links. This process is known as

kinematic inversion. Figure 4.1(b) shows five different
permutations of the same linkage obtained by varying the
link that is considered as the ground link.

4.3 Hain's Kinematic Structures
In determining the various structures used by Hain,

each of the 21 mechanisms are converted into graph form.

Results from this process are shown in Fig. 4.1(a). It is
interesting to note that all of the 21 mechanisms are
permutations of the two basic graphs shown in Fig. 4.1(a).
From the graphs of the mechanisms, the mechanisms can be

classified according to properties found in the graphs.

Classification of the mechanisms can then be used by the
designer of mechanisms when selecting mechanisms to perform

specific functions based on structural classification.
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4.4 Graph Theory for Enumeration

There are several advantages in using the graph theory

approach for the enumeration and permutation process. The

first reason is that this method is independent of results
obtained from other processes and methods. It provides a

check for other enumeration methods. By using the

algorithms to generate all possible combinations and then

apply criteria to reduce the list of possible mechanisms,

one is forced to consider all cases generated. This method

is thorough in that it is exhaustive in its enumeration of

mechanisms, leaving none unfound. The graph theory method

is independent of function, and motion and is not limited

to either the number of links or the degrees of freedom

desired in the linkages under study.

The graph theory method of permutation was used to
find all possible non-isomorphic fundamental graphs. A

second application of graph theor'y was then applied to the

fundamental graphs in order to find all possible non-

isomorphic colored graphs. For the permutation process, the

following input parameters were used by the various

algorithms were as follows;

degrees-of-freedom

number of linkages

number of joints = 6
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The graph theory method generated a total of eleven

fundamental graphs whereby each of the graphs were numbered

from one to eleven. However, not all of the graphs

represented single degree-of-freedom mechanisms. This was

due to the varying number of joints found in each of the
graphs. From list of eleven fundamental graphs, only three
graphs met the required number of joints (six) for a single
degree-of-freedom mechanism. These graphs are shown in Fig.

4.2(a) and are numbered ¹1, ¹2 and ¹3. Examination of Graph

¹2 reveals that although the graph has the required number

of joints (six), this graph does not represent a working

mechanism because there are two totally independent loops

found in the graph. Graph ¹2 is shown in Fig. 4.2(a) for
reference only because it was generated from the
permutation algorithms. From the remaining two fundamental

non-isomorphic graphs, seven non-isomorphic colored graphs

were generated. Each graph has only one color, denoted with

a double line, representing the cam-contact pair. Figures

4.2(b) and 4.2(c) show the non-isomorphic colored-graphs

generated from two of fundamental graphs shown in Fig.

4.2(a).
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4.5 Classification of Graphs

From the eleven colored-graphs generated by the
graphical method, there were several substructures that
were found to be common in the graphs. These substructures

were used as means of classifying the graphs generated from

the algorithms and aided in the process of converting the

graphs into their respective schematics.

4.5.1 Type I Substructure

The first substructure found in the graphs is shown in
Fig. 4.3(a). This substructure shows a cam-contact-pair

connected to two other links. The cern-contact is labeled 1

and 2. Two basic permutations arise from this substructure.
Either one of the connecting links may be considered as the

ground link. Figure 4.3(a) shows these permutations along

with the substructure.

4.5.2 Type II Substructure

The second substructure is shown in Fig. 4.3(b). This

substructure represents a rigid structure. As each link is
added to the linkage, one degree of freedom is removed

until the total degrees of freedom for this substructure is
zero. One possible arrangement of links for this structure
is shown. As drawn, from the Fig. 4.3(b) one can see that
the links in this substructure cannot move.
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4.5.3 Type III Substructure

The third substructure consists of a four-bar linkage
and is shown in Fig. 4.3(c). There are three possible
permutations for this structure. As shown, the cern and

follower makeup two of the links in the four-bar linkage.
Three permutations are shown along with the substructure.

4.5.4 Type IV Substructure

The fourth substructure found in the graphs is shown

in Fig. 4.3(d). It consist,s of the two links in the cam-

contact pair connecting to a common third link. Two

permutations are possible from this configuration and are
shown with their respective subgraphs.

4.6 Tables of Mechanisms

Using the three types of subgraphs described in the
previous sections, the colored graphs were classified and

listed in Tables 4.1 and 4.2. Table 4.1 lists the first set
of colored graphs corresponding to Graph 41. The

substructures found in these graphs are listed with each

respective graph in the table. Table 4.2 lists all the
colored graphs generated from Graph ()3. As mentioned in
section 4.4 Graph ()2 was not colored.
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Table 4.1 Classifications of Fundamental Five-Bar

Mechanisms Generated from Graph fl

Table 4.2 Classifications of Fundamental Five-bar

Mechanisms Generated from Graph 43

4.7 Promising kinematic Concepts

After generating all the non-isomorphic colored-

graphs, the graphs were classified according to
substructures and expanded into schematics according to the

permutations shown with each of the classes of

substructures. These schematics do not represent every

possible permutation, but rather the most general

permutations.
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There are several methods which can be used to
generate additional permutations from the fundamental

schematics but the intent of this investigation is to
determine if there are fundamental mechanisms that were

overlooked or not considered by Hain due to the particular
method he chose for his enumeration. While this method uses

the computer for the enumeration process, the graph theory

method of enumeration is exhaustive. One must apply

particular criteria in order to reduce the total number of

valid non-isomorphic mechanisms.

4.8 Analysis of Results

Comparisons between Hain's schematics and the

schematics developed for this study using structural
kinematic synthesis can now be made. Of the 21 mechanisms

that Hain developed, the graphical method was unable to

generate any additional graphs or configurations of

mechanisms which were not permutations of one of the 21

mechanisms. However, this comparison does provide a check

for the validity and completeness of the graph theory

approach. With this in mind, the graph theory method was

used to examine other types of more complicated cam-

modulated mechanisms.
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In particular, this study includes the following types of

mechanisms:

l. Six-bar mechanisms with two cam-contact pairs
and one degree-of-freedom (see Chapter 5).

2. Five-bar mechanisms with two cern-contact pairs
and two degrees-of-freedom (see Chapter 6).



CHAPTER 5

5. Dual-Cam Mechanisms With Six Links and One D.O.F.

The analysis of six-link dual-cern mechanisms with one

degree of freedom begins with the degree-of-freedom

equation. The equation as shown in Chapter 4 may be written
as

3' ( L — ( ZX + Z2 ) — 1 ) + ZI + Z2 [5-l]

In this case, we set the number of links L equal to 6 and

the number of two degree-of-freedom joints, J2, equal to 2.

Equation [5.1] may now be written as

1 3 (8) — 3' 3 (2) — 3 + ZX + 2(2) [5.2]

so that

J1 ~ 6 [5.3]

From Eq. [5.3], the number of single degree-of-freedom

joints is equal to six. The total number of joints for the

39
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mechanisms is equal to eight (six one degree-of-freedom

joints and two two degree-of-freedom joints). The results
from the degree-of-freedom equation are used as input
parameters for the structural synthesis algorithms. To

summarize, the input parameters are as follows:

degrees-of-freedom = 1

total 4 of links = 8

of joints with 1 degree-of-freedom = 6

of joints with 2 degrees-of-freedom = 2

5.1 Graphs

The graph theory algorithms generated nine fundamental

non-isomorphic graphs that met the criteria for six-link
one degree-of-freedom dual-cern-contact mechanisms. Each of

these graphs have been expanded into all the possible non-

isomorphic colored graphs by the graph theory approach to
synthesis.

The results of the algorithms are shown below with

each fundamental graph and the total number of non-

isomorphic colored graphs generated by the algorithms shown

to the right.
graph 41 — 2 permutations

graph 42 — 10 permutations

graph 43 — 17 permutations

graph 84 — 15 permutations
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graph 45

graph S6

graph $ 7

graph 48

graph 49

26 permutations

15 permutations

5 permutations

10 permutations

10 permutations

Figures 5.1 through 5.5 show each of the fundamental

graphs and each colored graph that was developed from the
respective fundamental graph. A total of 110 non-isomorphic

colored graphs were generated. Section 5.2 discusses the
methods used to classify these graphs and how the graphs

are converted into schematics of mechanisms.
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5.2 Classification of Graphs

Faced with the task of converting all of the 110

colored graphs into schematics, a method was needed to
identify only those graphs that were capable of generating
working mechanisms. A method was needed by which the
schematics could easily be developed from the colored
graphs. The basic arrangements of links was desired when

the schematics were being drawn. Once the basic schematics

were generated, the methods of permutation discussed in
Chapter 4 ( ie. kinematic inversion) could be applied by

the designer to the basic arrangements developed during
this investigation. During the process of examining the
graphs prior to conversion into schematics, several
substructures appeared over and over again. These

substructures were identified and used to classify all 110

colored graphs. Six fundamental substructures were

identified. These substructures are shown in Fig. 5.6 and

discussed in further detail in the following sections.

5.2.1 Type "I" Substructure

The first basic substructure shown in Fig. 5.6(a)
involves the sharing of a common element between the two

cern-contact pairs. This may be either a shared cam or
follower.
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There are four possible combinations of cams and

followers that arise for this particular sub-structure.

They are listed as follows:

l. cern — follower — cam

2. follower — cam — follower

3. follower — cam — cern

4. cern — cern — follower

Note that the cam-to-earn contact is a permissible cam-

contact pair. It is also apparent that arrangements $ 3 and

44 are the same. This reduces the number of possible

arrangements to three. These permutations are shown along

with the substructure in Fig. 5.6(a).
This arrangement reduces the number of links which

must be considered from four links to just three links.
This allows for the remaining links to participate in other

arrangements such as four-bar linkages with the overall
mechanism.

For the arrangement of the three links, if one link is
desired as the input link and a second link as the output

link, the shared link between the cam contact-pairs can be

used to transmit the input from the input link to the

output link. Altering the location of the common link can

alter or vary the movement of the output link.
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5.2.2 Type "II" Substructure

Figure 5.6(b) depicts the second class of

substructures found. In this structure, one link from each

cam-pair is pinned to a link from the other cam-pair. This

may be a cam-to-cam or a cam-to-follower pinning. The

possible permutations of links for this substructure are

shown below

1. cam — follower — follower — cam

2. cern — follower — cam — follower

3. follower — cam — cam — follower

This arrangement allows one of pinned links to move if
the other pinned link is fixed. The arrangement of links
along with the associated substructure are shown in the

figure.

5.2.3 Type "III" Substructure

The next configuration found is the double pinning of

links from each of the cam-contact pairs. Figure 5.6(c)
shows this substructure. Each member of the pair is pinned

to a member of the opposite pair. There are only two

possible combinations for this configuration. They are

listed below and shown in Fig. 5.6(c) along with the
substructure.

1. cam — follower — follower — cam

2. cam — follower — cam — follower
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In the Fig. 5.6(c), the links labeled ()1 and ()4 are pinned

together. Links ()2 and ()3 are also pinned. This arrangement

tightly couples the movement in one cam pair to the

movement of the other pair.

5.2.4 Type "IV" Substructure

Figure 5.6(d) shows the fourth substructure found. It
is essentially the same substructure as a Type I, with the

exception that the remaining links from each of the cam-

pairs are pinned together. This may be a cern-to-

cam/follower-to-follower, or a cern-to-follower/cam-to-

follower pinning arrangement. This substructure reduces the
number of links involved in the two cern-pairs to three.

5.2.5 Type "V" Substructure

Figure 5.6(e) illustrates a substructure that appears

quite often in the various graphs. This substructure

consists of three links joined together by three joints.
All of the joints have one degree-of-freedom. For this
reason, the total degree-of-freedom for the substructure is
zero. The links cannot move and therefore, represent a

rigid structure. Any graphs having this substructure can be

eliminated from any further study. This single substructure

eliminated 51 percent of the 110 colored graphs from

further investigation.



52

5.2.6 Type "VI" Substructure
The final type of substructure considered for

classification is shown in Pig. 5.6(f). This substructure
consists of a four-bar linkage. Any link that participates
in the cern-contact pair and appears in this substructure is
a part of a four-bar mechanism. There are several
permutations possible if a cern or follower is a link in the
four-bar substructure. The permutations are shown in Fig.
5.6(f).

5.3 Tables of Mechanisms

Using the classifications detailed in the previous

section, all non-isomorphic colored graphs generated by the
algorithms were examined and classified. In most cases,
graphs were found to contain more than one sub-class of

structure. Some of the classes are subsets of other
classes. Tables 5.1 through 5.8 list each of the
fundamental graphs with the numbers assigned to each graph

by the algorithms and all non-isomorphic colored graphs

along with the substructures found in each graph.



Table 5.1 Classification of Six-Bar Graphs fl and 42
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Table 5.2 Classification of Six-Bar Graph 43
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Table 5.3 Classifications for Graph f4
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Table 5.4 Classifications for Graph f5



Table 5.5 Classifications for Graph 4 6
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Table 5.6 Classifications for Graph 4 7
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Table 5.7 Classifications for Graph f8

Table 5.8 Classifications for Graph 49
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5.3 Possible Mechanisms

Using the tables of mechanisms from section 5.2 and

the possible fundamental arrangements of links shown for
each type of subgraph, Figs. 5.7 through 5.11 depict the
fundamental schematics for each of the colored graphs that
were expanded from Tables 5.1 through 5.8. Only 50 graphs

were expanded into schematics because 60 of the colored

graphs contained Type V substructures (rigid structures).
From the Tables 5.1 through 5.8 only four graphs ( Graph

()6-6, Graph ()7-2, Graph ()8-3 and Graph ()8-4) did not

contain any of the substructures used to classify the
colored graphs.

The substructures can be easily identified when

examining each colored graph. The designer can use the

tables in this chapter to identify linkages with similar
characteristics when consideration is being made during the
design of particular mechanisms. When manufacturing is
taken into consideration during the design process, the
designer may use the tables to identify linkages which

possess the same characteristics.
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5.4 Analysis of Results

There are several means of classifying the six-bar
dual- cam mechanisms. One method, discussed in chapter 4,

used substructures to classify the mechanisms. This was a

useful classification for expanding the graphs into
mechanisms. Another possible classification of the
mechanisms is based on the schematics. This classification
is shown below;

single rotating cern

both cams rotating
cams pinned together

2 cams 1 follower

1 cern 2 followers

cern fixed to ground

1 floating cam

four-bar sub structure

If for example, a designer wishes to use a mechanism

in which both cams are pinned together, then referring back

to section 5.2, we see that a Type II substructure will
meet this requirement. Using this information, one may

proceed to look through the graphs listed in Tables 5.1

through 5.7. Once the graphs have been identified, Figs.
5.7 through 5.11 illustrate the schematics of the
corresponding graphs.



CHAPTER 6

6. Dual-Cam Mechanisms with Five Links and Two Degrees-of-

Freedom

Just as we began in Chapters 4 and 5, the analysis of

five-link dual-cern mechanisms with two degrees-of-freedom

begins with the degree-of-freedom equation. Greubler's
equation may be written as:

F 3 ( I — ( (7X + Z2 ) -1 ) + ZX + J2 [6-1]

If we set the number of links L equal to 5 and the number

of two degree-of-freedom joints, J2, equal to 2, then by

collecting terms, Eq. [6.1] becomes

2 ~ 3 (5) — 3 — 3a7l — 3 (2) + &71 + 2 (2) [6.2]

Solving for Jl,

[6.3]
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Prom Eq. [6.3], the number of single degree-of-freedom

joints is equal to 4. The total number of joints for the

mechanism is equal to 6. The results from the degree-of-

freedom equation can be used as input parameters for the

algorithm SYNTH.

6.1 Graphs

From the main algorithm SYNTH, eleven fundamental non-

isomorphic graphs were generated. Of these graphs, only two

graphs met the criteria for the number of joints (six).
These fundamental graphs are shown in Fig. 6.1(a). The

algorithm also generated all non-isomorphic colored-graphs

for each of the fundamental graphs representing five-bar
mechanisms with two degrees-of-freedom. The graphs contain

two colors which represent the two cern-contact pairs. The

number of colored-graphs are shown below along with the
number of the colored graphs generated for each fundamental

graph to the right.

graph () 1 — 3 colored graphs

graph () 2 — 9 colored graphs
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From the two fundamental graphs, a total of 12 non-

isomorphic colored graphs were generated. The colored-

graphs are shown in Figs. 6.1(b) and 6.1(c).

6.2 Tables of Mechanisms

Using the classification method developed in Chapter

Five, all of the non-isomorphic colored graphs were

classified. The results from this classification are

tabulated into Tables 6.1 and 6.2. After classifying the

graphs, the graphs were then converted into schematics of

mechanisms. The results from this process are shown in

Figs. 6.6 through 6.9.

and converted into schematics.

Table 6.1 Classifications of Fundamental Graph fl (Five-
Bar, Two Degrees-of-Freedom)
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Table 6.2 Classifications of Fundamental Graph 4 3 (Five-
Bar, Two Degrees-of-Freedom)

6.3 Possible Mechanisms

Figure 6.1 shows each type of subgraph and the

various permutations that can be generated for that graph.

This data is used for expanding the graphs. Figure 6.2

illustrates the schematics for each colored graph.

In addition to the possible schematics shown in the

figures, there are at least four other permutations

possible for each of the mechanisms shown. These

permutations are found by kinematic inversion and by

placement of the links joined to the ground link.
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6.4 Analysis of results
The process of enumerating five-bar two degrees-of-

freedom mechanisms using Graph theory resulted in two

fundamental graphs which generated a total of 12

fundamental colored-graphs. Two of the graphs contained

rigid structures and were therefore not converted into
schematics of mechanisms. From the remaining 10 graphs,
each colored-graph was converted into the fundamental

schematics using the same classification technique as found

in section 5.2. Of the 10 graphs, eight graphs were

converted into scematics in which both cams pinned

together. Five of the 10 graphs required the sharing of

either a follower or cern between the two cern-contact pairs.
Graph $ 3-1 was the only graph in which the common or shared

cam/follower had only two two-degree-of-freedom joints.



CHAPTER 7

7. Applications of Dual Cam Mechanisms

There are many applications of dual-cam-contact

mechanisms. This research investigates two such mechanisms

and how the tables of classified graphs and their
associated schematics found in Chapters 5 and 6 can be

used.

7.1 Variable Valve Timing

One application of dual-cam mechanisms is found in
mechanisms with variable valve timing. Typically, a cam

(rotating input) is used to open an intake or exhaust valve

for a particular length of time as the crankshaft of an

engine rotates. This allows for the passage of gasses into
and out of the cylinder. As the engine revolutions increase

to a certain threshold, additional horsepower can be

obtained if the dwell on the intake valves can be varied

(opened longer). This allows more fuel mixture to enter the

cylinder. The problem for the designer is to find a

mechanism that will vary the valve timing.
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This can be accomplished through several methods. One such

method involves a mechanism with two cern-contact pairs.
7.2 Variable Valve Timing with Dual-Cam-Contact Pairs

Several configurations of linkages can be used for
variable valve timing. One such linkage makes use of pinned

cams which share a common follower. By changing the

alignment of the cams with respect to each other, one can

alter the dwell of the overall mechanism. Such a mechanism

requires two inputs. One input is required to drive the

cams while the second input is required to change the
relative positions of each cern. In order to reduce the
number of moving parts, it is desired to use five-bar
mechanisms with two cam-contact-pairs. However, this
requires the mechanism to also use two inputs

(two degrees-of-freedom).

7.3 The Five-Bar Dual-Cam Mechanism

One such linkage was proposed by CHEW [8] in which the

valve timing is varied by changing the position of the

common or shared cern-contact. Figure 7.1 shows this
particular mechanism. The analysis of this mechanism begins

with the detailed description of each link and it'
function in the linkage. After the analysis of each link,
the information derived in Chapter Six will then be applied

to this mechanism.
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7.3.1 Analysis of the Five-Bar Dual-Cam Mechanism

The following descriptions detail each of the

individual links in the mechanism, as to their purpose and

their interaction with each of the other links as shown in
Fig. 7.1.

Link 41 — This link is the follower link and produces the

output motion of the mechanism. The follower

moves along a sliding joint with the ground link.
The follower links receives its'nput from the
movement of link ()4.

Link ()2 — Link ()2 is referred to as the driving cern (input

link). This link rotates 360 degrees and provides

the primary source of input for the mechanism.

Link ()3 — This link is known as the slider link and

provides the second source of input. As the

slider link moves along the ground link the

position of link ()4 is changed.

Link ()4 — As shown in the Fig 7.1, the position of this
link relative to link ()2 causes the input from

the driving cam (link ()2) to vary the position
and motion of the follower (link ()1). The

position of this link changes as the position of

the slider link (Link ()4) moves back and forth.
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Link ()5 — This link is the ground link. Link () 1 is
joined to this link via a sliding joint. Link «2

is also pinned to the ground link.

The analysis of the Five-Bar variable valve timing
mechanism continues with the application of Graph theory to
this mechanism. After labeling each of the links, the
mechanism was converted into graph form. Figure 7.1(b)
illustrates the Graph used to describe this mechanism.

Using the colored-graphs of Chapter Six (Fig. 6.1), we

note that this mechanism is similar to Graph ()1-2.

Using the subgraphs described in Chapter 5, we see

that this particular mechanism contains a Type I subgraph.

Tables 6.1 through 6.3 can be used to determine what the
configuration of the schematic should look like. There are
three possible schematics drawn for this mechanism in Fig.
6.2. One of the schematics is shown in Fig. 7.1(c).
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7.4 The Sunroof Mechanism

Another application of dual-cam mechanisms is found a

particular design of automobile sunroofs. In this design,

one input is used to generate two different types of

motion. The first type of motion is the retraction of the
sunroof. During this motion, the sunroof slides along a

track in the roof until the opening in the roof of the
vehicle is completely open. The second motion causes the
rear end of the sunroof to tilt open approximately one to
two inches while the front of the sunroof stay stationary.
Both motions are generated through the use of a single
motor supplying a single input to the mechanism. The

mechanism is illustrated in Fig. 7.2(aj. This particular
mechanism consists of six links. Two of the links are cams

contact pairs. The total degree-of-freedom for the

mechanism is one.
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In order to describe the mechanism in detail, each

link is discussed separately so that one may understand the

motion of each link and the interaction with the other
links.

Link ()1 — Link ()1 (Fig.7.2(c)) is the input link who'

motion is restricted by the track it slides along

(Link ()6). A cable is attached from this link to
the motor. As the motor winds and unwinds the

cable, Link ()1 moves along the track and provides

the input for the mechanism.

Link ()2 — This link is a slider link which moves along the

ground link- This link is connected to Link ()4

via a pin joint

Link ()3 — Referring to Fig. 7.2(a), the sunroof lid is
shown as link ()3. This link is a ternary link
with a joints connecting it to the ground link
(track), a pin joint connecting it to Link ()4,

and a cern-contact-pair joint with Link ()5.



Bl

Link ()4 — This link provides stability to the sunroof lid
(Link ()3) when the sunroof is in the upward

tilted position. Otherwise, this link helps the

sunroof lid to maintain alignment when the lid is
retracting.

Link ()5 — Link ()5 is referred to as the tilting cam. This

cern is the key to the operation of the entire
mechanism and is shown in Fig. 7.2(b). It
converts the input provided by link ()1 into the

tilting motion of the sunroof or pulls the

sunroof back into the roof of the vehicle.

Link ()6 — This link is the ground link and is the track in
which the Links ()1, ()2 and ()3 slide along. There

is a stop pin mounted onto the track (ground

link) such that the pin acts as a follower when

the tilting cern moves into the proper position
along the track.

As with the linkage discussed in section 7.3, This

mechanism was also converted into graph form. Using the

colored-graphs of Chapter 5, The mechanism was not found in

the atlas of graphs. The mechanism as described contains a
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total of nine joints. The mechanisms of Chapter Five

considered only eight joints with two cern-contact-pairs.

The Sunroof mechanism maintains only eight joints while the
sunroof is retracting. However, as the input link drives
the tilting cern towards the front of the vehicle, the

tilting cam engages with the protruding pin mounted on the

track (Link 46). This pin acts as a follower and forces the

cam to tilt in an upward position. Figure 7.3 shows the

interaction of the tilting cern with the stationary cern as

the tilting cern engages with the pin mounted on Link 41.

Figure 7.3(a) shows the cam mounted under the sunroof lid.
The tilting cern is detailed in Fig 7.3(c). Figures 7.3(c)

through Fig. 7.3(f) depict the motion of the cern as it
tilts into position and forces the sunroof lid to tilt
open.
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Figure 7.3(g) shows the relative position of the
tilting cern as the input link pulls the sunroof along the
track. The pin mounted to the track hits the lower surface
of the tilting cern and forces cam in a downward motion.

This causes the sunroof to tilt downward until it is in the
position to slide along the track. While this mechanism may

seem complicated, it illustrates the usefulness of dual-
cam-modulated mechanisms. The schematics shown in Chapters

5 and 6 should aid the designer when considering alternate
configurations of linkages.

7.5 Concluding Remarks

This investigation has proposed an alternative method

to enumerating mechanisms structurally using Graph Theory.

Through the use of a bit mapping algorithm, all possible
non-isomorphic graphs were enumerated. Each of the colored-

graphs were then expanded into schematics of mechanisms.

Finally several applications of dual-cern-contact mechanisms

were shown in order to illustrate that the enumeration

scheme and tables of classified graphs {mechanisms) can be

used by the designer to either verify the existence of

isomorphism or generate mechanism from the tables and

schematics. The selection of mechanisms based on the
characteristics of the subgraphs shown in Chapter 5 and 6

could be added to an engineering database. Once added to a
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database, Artificial Intelligence could be used to aid the
designer in the selection of mechanisms based on the
subgraphs, the number of joints, the number of links and

the number of degrees-of-freedom.
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