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Temporal and Spatial Scales of Correlation in Marine
Phytoplankton Communities
A. M. Kuhn1, S. Dutkiewicz2, O. Jahn2, S. Clayton3, T. A. Rynearson4, M. R. Mazloff1,
and A. D. Barton1

1Scripps Institution of Oceanography, University of California, San Diego, CA, USA, 2Massachusetts Institute of
Technology, Cambridge, MA, USA, 3Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University,
Norfolk, VA, USA, 4Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA

Abstract Ocean circulation shapes marine phytoplankton communities by setting environmental
conditions and dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes
and mixing) affect the community structure by modulating environmental variables that determine in situ
growth and loss rates. Understanding the scales over which phytoplankton communities vary in time
and space is key to elucidate the relative contributions of local processes and ocean circulation on
phytoplankton distributions. Using a global ocean ecosystem model, we quantify temporal and spatial
correlation scales for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this
analysis, we address these questions: (1) Over what timescales do perturbations in phytoplankton
populations persist? and (2) over what distances are variations in phytoplankton populations synchronous?
We find that correlation timescales are short in regions of strong currents, such as the Gulf Stream and
Antarctic Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies
persist for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and
narrow boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic
spatial correlation fields where current speeds are small, or where mixing acts roughly equally in all
directions. Phytoplankton timescales and length scales also vary coherently with phytoplankton body size.
In addition to aiding understanding of phytoplankton population dynamics, our results provide global
insights to guide the design of biological ocean observing networks and to better interpret data collected at
long‐term monitoring stations.

Plain Language Summary Using a global model of the marine planktonic ecosystem, we
quantify the temporal and spatial correlation scales of diverse types of phytoplankton. The timescales
reflect the persistence of anomalies in time and the stability of the planktonic system. The spatial scales
measure over what distances variations in phytoplankton populations are synchronous. We find that
timescales and length scales vary with cell size and that global patterns of correlation are shaped by ocean
currents. These results provide valuable insights for the design of ocean observing systems with a unique
ecological perspective. We also discuss how regional differences in phytoplankton community correlation
scales are relevant for interpreting data collected at long‐term monitoring stations.

1. Introduction

Marine phytoplankton generate roughly half of the global net primary production (Field et al., 1998). Their
community structure, including both size and taxonomic diversity, determines the local transfer of energy to
higher trophic levels, as well as carbon export to the deep ocean (Legendre & Le Fèvre, 1995; Richardson &
Jackson, 2007; Smetacek, 1999). Themechanisms that shape the diversity of phytoplankton communities are
complex and vary among ocean regions and temporal scales (Acevedo‐Trejos et al., 2015; Barton et al., 2010;
de Vargas et al., 2015; Fuhrman et al., 2008). Quantifying the temporal and spatial persistence of individual
phytoplankton phenotypes and groups is essential for disentangling the underlying controls of phytoplank-
ton diversity globally. This task, however, is difficult due to the continuous dispersal of phytoplankton com-
munities and the sparseness of phytoplankton observations even in the most sampled regions of the ocean.
Here we quantify global temporal and spatial scales of correlation for a diverse set of modeled phytoplank-
ton, spanning a broad range of cell sizes and traits. Specifically, we analyze 24 years of output from the
Massachusetts Institute of Technology general circulation model (MITgcm), where a range of phytoplank-
ton and their predators, as well as ocean biogeochemical cycles of N, P, Si, and Fe, are embedded in a
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high‐resolution (1/5°) ocean state estimate. We address how temporal and spatial correlation structures vary
across phytoplankton phenotypes and how these properties are affected by circulation and mixing in the
ocean surface. Additionally, we compare phytoplankton correlation scales to sea surface temperature and
nitrate correlation scales.

Several previous studies have analyzed the temporal and spatial scales of correlation of physical and chemi-
cal ocean properties, such as sea surface temperature (SST), sea surface height (SSH), and dissolved inor-
ganic carbon, often with the purpose of informing the design of sampling strategies and observing systems
(e.g., Kessler et al., 1996; Kuragano & Kamachi, 2000; Mazloff et al., 2018). For example, Kessler et al.
(1996) analyzed the scales of thermal variability in the equatorial Pacific using SST and thermocline depth
data from the Tropical Atmosphere‐Ocean moored buoy array, concluding that the distance between buoys
needed to be reduced to adequately sample signals with periods between 1–2 months. Kuragano and
Kamachi (2000) used global spatial correlation scales obtained from altimeter data to design an optimal
interpolation method that improved the correlation between interpolated satellite altimeter data and in situ
sea levels from tide gauges. Most recently, Mazloff et al. (2018) addressed the needs for the biogeochemical‐
Argo floats observational networks in the Southern Ocean by estimating spatial correlation scales for ocea-
nic dissolved inorganic carbon, heat content, and carbon and heat exchanges. Their results suggested that a
minimum of 100 Argo floats are required to monitor biogeochemical properties in the Southern Ocean
(Mazloff et al., 2018). Correlation scales are also necessary to improve optimal interpolation and data assim-
ilation methods for operational forecasts and evaluation of high resolution ocean models (Gaillard et al.,
2009; Glover et al., 2018; Ninove et al., 2016).

Ocean currents are likely to play a key role in setting spatial and temporal correlation scales in biological and
physical properties. For example, spatial correlations in surface chlorophyll have been found to decrease fas-
ter along currents than in more quiescent regions (Denman & Abbott, 1994). In highly dynamic locations,
power spectra of SST and chlorophyll are very similar, suggesting that dispersal by strong ocean currents
is more important than ecological interactions in determining phytoplankton spatial patterns in these
regions (Denman &Abbott, 1994). At global scales, satellite chlorophyll length scales andmixing scales have
been shown to vary seasonally and temporally in coherence with biological and physical factors such as
upwelling and western boundary currents (Doney et al., 2003; Glover et al., 2018).

Modeling studies also increasingly emphasize the role of physical dispersal in shaping the diversity of plank-
tonic ecosystems (Adjou et al., 2012; Barton et al., 2010; Bracco et al., 2009; Clayton et al., 2013; Lévy et al.,
2014). For example, systematically introducing dispersal by vertical mixing, horizontal currents, and eddies
increased phytoplankton diversity in an idealized model representing the North Atlantic and the Gulf
Stream (Lévy et al., 2014). At global scales, hot spots of phytoplankton diversity appear related to ocean areas
with high eddy kinetic energy (Barton et al., 2010; Clayton et al., 2013). We follow up on these modeling stu-
dies and investigate how the differences in the temporal and spatial scales of correlation for different pheno-
types relate to current speed and cell size. The results of this study thus provide a framework to improve our
understanding of the distribution of marine phytoplankton phenotypes and traits in the ocean.

The goals of this study are (1) to quantify and contrast patterns of temporal and spatial correlation scales for
a broad range of model phytoplankton phenotypes, functional groups, and cell sizes and (2) to discuss how
these patterns vary across regions, and how dispersal by ocean currents and eddy activity affects them. We
investigate variations across cell size because it is often considered a master trait constraining many physio-
logical rates (e.g., growth rate and nutrient uptake kinetics), as well as predator‐prey interactions (e.g.,
Hansen et al., 1994, 1997; Marañón et al., 2013). After a brief description of the model and methodology,
we organize this paper into two main sections. In the first part of our study we estimate correlation time-
scales. In essence, we ask: how long do perturbations in phytoplankton surface biomass persist? We
hypothesize that phytoplankton populations that exhibit rapid temporal changes will have short correlation
timescales that may be linked to strong dispersal and mixing of organisms or to high variability in environ-
mental conditions imposed by advection, mixing, or air‐sea interactions. In contrast, regions with relatively
sluggish circulation and relatively invariant environmental conditions over time may have relatively long
correlation timescales.

In the second part of our study we quantify the spatial patterns of correlation between each grid point and
the surrounding waters. We ask: over what distances are variations in surface phytoplankton populations
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synchronous? We address this question in two‐dimensions and discuss how the shape of the spatial correla-
tion field contains information about the processes and physical features driving the correlation patterns.
When the dispersal of phytoplankton is greater in one direction (i.e., anisotropic), such as along ocean cur-
rents, we hypothesize that elongated phytoplankton spatial correlation fields will resemble the physical fea-
tures affecting it. In contrast, round correlation fields would develop when mixing or environmental forcing
is approximately equal in all directions (i.e., isotropic). We discuss our results in the context of ocean
dynamics and trait differences in phytoplankton groups, taking into consideration the scales of correlation
found in previous studies for physical variables known to affect phytoplankton distributions.

2. Model Description

We use output from a coupled physical‐ecosystem model using the MITgcm (https://doi.org/10.6075/
J0BR8QJ1; Jahn et al., 2019). The physical component of the model uses the ECCO2 physical configuration
with a resolution of 1/5°, permitting the formation of eddies and narrow currents (Menemenlis et al., 2008).
The ecosystem and biogeochemical components include a complex plankton community model and resolve
the cycling of carbon, phosphorus, nitrogen, silica, iron, and oxygen. The ecosystem model is based on
Dutkiewicz et al. (2015) and incorporates both functional and size diversity of plankton (with parameteriza-
tions based on Ward et al., 2012), resolving a total of 51 plankton types (35 phytoplankton and 16 zooplank-
ton). Phytoplankton are subclassified into six functional groups: prokaryotes, picoeukaryotes,
coccolithophores, diazotrophs, diatoms, and mixotrophic dinoflagellates (see supporting information
Figure S1). All groups are modeled using Monod kinetics with constant C:N:P:Fe stoichiometry over time.
Phytoplankton functional groups differ in nutrient requirements, maximum growth rates, pigment compo-
sition, and palatability to predators. Phytoplankton cell sizes increase logarithmically from 0.6 to 228 μm in
equivalent spherical diameter, with each functional group having a characteristic range of sizes (Figure S1).
Cell size determines differences in maximum growth rates, grazing, and sinking, as described in Dutkiewicz
et al. (2019). Following observations, the smallest phytoplankton (the prokaryotes and picoeukaryotes) have
the lowest nutrient affinity, and the fastest growing are in the 3 μm cell size range (Marañón et al., 2013). The
zooplankton graze, using a Holling III function, on plankton 5 to 15 times smaller than themselves, but have
a preference for organisms 10 times smaller than themselves.

The model represents with fidelity the regional and seasonal patterns of total chlorophyll and the distribu-
tion of chlorophyll concentrations between key size classes in the ocean surface (Figures S2 and S3). Output
from this model has been used in previous studies on community structure (Benoiston et al., 2017;
McParland & Levine, 2019; Tréguer et al., 2018). Here we analyze 3‐day means of biomass output for each
of the 35 phytoplankton phenotypes over 24 years (1992–2016). We analyze surface (upper 10 m) averaged
output from the physical and marine ecosystem model components. The 10 m output are representative
of the mixed layer. Our study is focused on the mixed layer community and do not take into account the dee-
per “shade” communities such as in the deep Chl a maximum. Additionally, we use surface current speed
and SST model output to provide context and discuss the correlation patterns obtained.

3. Analysis of Correlation Scales

We estimate temporal and spatial scales of correlation for each of the 35 phytoplankton types in the model

simulation, Pi (mmol N m−3), (where i = 1,…,35), as well as for total phytoplankton biomass ∑
35

i¼1
Pi (mmol

N m−3). The temporal correlation analysis indicates how fast the phytoplankton community at a particular
location becomes uncorrelated with itself, while the spatial analysis shows how far the phytoplankton com-
munity at a given point varies in synchrony with the communities in surrounding locations.

In order to identify the effects of dispersal, we focus our analyses on the intra‐annual variability of phyto-
plankton biomass. For this reason, we first remove the seasonal and long‐term fluctuations in the series.
We remove seasonality by subtracting daily climatological mean fields from the surface biomass values.
Additionally, we remove long‐term fluctuations by subtracting a 90‐day running average filter from the ser-
ies. The method effectively dampens interannual variability and other long‐term oscillations (Figure S4). We

refer to the resulting, derived data as biomass anomalies (P′

i) and use these data to estimate both the temporal
and spatial correlation scales.
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While we perform the analyses for all phenotypes, we highlight the differences between phytoplankton func-
tional groups by comparing organisms classified as gleaners and opportunists throughout the results and dis-
cussion (Figure S1). Gleaners and opportunists, also known as K versus r strategists (Kilham & Hecky, 1988;
Mac Arthur & Wilson, 1967), have strongly contrasting ecological dynamics and impacts on food webs and
biogeochemical cycles (Dutkiewicz et al., 2009). The gleaners are phytoplankton types with relatively high
nutrient affinity that typically dominate in oligotrophic regions (Edwards et al., 2012). The gleaners here
include the four smallest size classes simulated by the model (i.e., prokaryotes and picoeukaryotes with
≤2 μm equivalent spherical diameter). In order to compare the same number of phenotypes, the opportu-
nists are represented by the four smallest and most abundant size classes of diatoms (3–10 μm equivalent
spherical diameter). These small diatoms can be considered opportunists because of their high maximum
specific growth rates relative to other phytoplankton (Marañón et al., 2013). Diatoms such as these typically
dominate during seasonal blooms (e.g., Bruland et al., 2001; Klais et al., 2011; Leblanc et al., 2018). In order
to analyze the relationships between cell size and timescales and spatial scales, we use a second classification
to differentiate between small cells (≤3 μm; 7 phenotypes) and large cells (>3 μm; 28 phenotypes). Hence,
the small phytoplankton group includes all gleaners, the smallest of the opportunist diatoms, the smallest
coccolithophore, and the smallest diazotroph. All other phenotypes are included in the large phytoplankton
group (Figure S1). This classification is based both on typical allometric scaling for various phytoplankton
rates (e.g., Marañón et al., 2013) and on the emergent properties of the present analysis (see sections 4.2.1
and 4.2.3).

Additionally, we estimated correlation scales for SST and nitrate (NO3) in order to provide context about the
physical and chemical drivers of phytoplankton growth. In the next sections (sections 3.1 and 3.2), we
describe the methods in terms of phytoplankton biomass only.

3.1. Temporal Correlation

Temporal correlation scales for phytoplankton are estimated through the autocorrelation function of the
biomass anomalies. For each model grid point, we calculate the temporal autocorrelation function (ri(τ)),
where τ is the time lag in days. The autocorrelation function (ri(τ)) is

ri τð Þ ¼ 1
n−1ð Þσ2i

∑
n�τ

t¼1
P

0
i;t−P

0
i

� �
P

0
i;tþτ−P

0
i

� �
(1)

where t refers to the model timestep in days, P′

i is the time mean of the biomass anomalies for each pheno-
type i, σ2i is the temporal variance of the biomass anomalies for each phenotype, and n is the number of data
points in the time series. In general, autocorrelation is high at shorter time lags and decreases with increas-
ing time. We define an autocorrelation decay timescale as the e‐folding correlation timescale, τe, which is the
first lag (day) when the autocorrelation drops below ri(τe) = e−1 ≈ 0.37. We call τe the “correlation timescale”
hereafter. The e‐folding timescales are a commonly used measure of decorrelation for intraseasonal or
“short‐term” timescales, such those considered in this study. This method differs from integral timescales,
which are the time lag at which the area under the autocorrelation function is maximum (Talley, 2011).
In general, integral timescales tend to be longer than timescales estimated using a fixed correlation thresh-
old. We anticipate that locations where biomass anomalies are highly variable in time will have short corre-
lation timescales, whereas locations that are stable through time will have long correlation timescales
(Figure 1a).

3.2. Spatial Correlation

We next calculate the phytoplankton spatial scales of correlation from the biomass anomaly time series. This
analysis correlates time series of biomass anomaly at each grid point to that of surrounding grid points to
assess the similarity of population dynamics in space (e.g., Figure 1b). We calculate the spatial correlation
field ri(hx, hy) at time lag = 0, where hx and hy are horizontal distances away from a grid point of interest
k, which has coordinates xk,yk. To simplify the notation, we drop the coordinate and time subscripts and
define ri(hx, hy) = ri(h) as
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ri hð Þ ¼
∑
n

t¼1
P

0
i;k−P

0
i;k

� �
P

0
i;kþh−P

0
i;kþh

� �
ðn� 1Þσi;kσi;kþh

; (2)

here n is the number of data points in the time series, and σi, kand σi,k+h
are the standard deviations of the biomass anomalies series of each pheno-
type i at the grid point k and at k plus a given distance (k + h), respectively.
We evaluate the correlation between the central grid point and all grid
points within 15° of latitude and longitude in order to avoid comparing
phytoplankton dynamics at distant locations, for example, across ocean
basins. For computational efficiency, we do not calculate the length scales
for every grid point, but central grid points are selected once every 10 grid
points (2° of latitude and longitude) globally. In regions with horizontal
current speeds higher than 20 cm s−1, we calculate the length scales every
2 grid points (~0.4°).

In general, points closer to the central grid point are highly correlated,
whereas points further away are less correlated (Figure 1b). Correlation
fields can be either isotropic or anisotropic. For example, population
dynamics along a zonal front could be correlated over a great distance of
longitude but decorrelate rapidly with latitude. Along Western
Boundary Currents, such as the Gulf Stream, spatial correlation could
be high in the direction of the current but low across the orthogonal axis
of the current. Alternatively, the correlation could be equal in all direc-
tions (isotropic). The shape of the correlation field therefore contains
information about the underlying processes that link adjacent ocean
regions. Thus, to approximate correlation length scales, we fit an ellipsoi-
dal or two‐dimensional Gaussian function bri hð Þ to the correlation field:

ln bri hð Þð Þ ¼ −
xkþh−xkð Þ cos θð Þ þ ykþh−yk

� �
sin θð Þ� �2

a2
þ xkþh−xkð Þ sin θð Þ þ ykþh−yk

� �
cos θð Þ� �2

b2

" #
;

(3)

where x and y refer to the coordinates of the central grid point k (xk, yk)
and its neighbors (xk + h, yk + h). The parameters a and b are the two axes
of the Gaussian fit to the correlation field, and θ is the angle. If a is equal to
b, the correlation field is isotropic or equal in all directions (i.e., a circle). If
a and b are different, the correlation field is anisotropic or elongated (i.e.,
an ellipse). The longest of the two axes is referred as the major axis and the
shortest as the minor axis. We use the major‐to‐minor axes aspect ratio
(AR = max(a,b)/min(a,b)) to determine whether the shape of the fitted
ellipse is anisotropic or isotropic. The angle θ is given as absolute values
ranging from 0° to 180°, such that if θ is 0° or 180°, it means that the cor-
relation field is elongated zonally or along lines of constant latitude. If θ is
90°, the correlation field is elongated along lines of constant longitude
(i.e., meridionally elongated).

Parameters a, b and θ are estimated using a weighted least squares fit to
the Gaussian function, where the weight ω = h−1 decreases the impor-
tance of fitting locations further away from the grid point k. A priori para-
meter guesses (a*, b*, θ*) are defined by finding the maximum zonal and
meridional distances from the center k to the contour ri(h) = 0.5, and
the corresponding angle. A priori values are assigned a 90% uncertainty.
This 2‐D Gaussian fit methodology is based on the approach used for spa-
tial scales of heat and carbon content in the Southern Ocean by Mazloff
et al. (2018), where the importance of a priori parameter guesses and

Figure 1. Diagrams of the methods used to estimate phytoplankton tem-
poral and spatial scales of correlation. (a) Idealized examples of the auto-
correlation function for locations with long and short timescales. The
timescale value, τe, is defined as the time lag when the autocorrelation
function falls below e−1 and is marked for the short timescale example.
(b) Idealized example of spatial correlation field and its corresponding 2‐D
Gaussian fit. The central grid point k is marked with red + marker. The
major and minor axes length scales are defined using the e‐folding contour
(bri hð Þ ¼ e−1) of the fitted 2‐DGaussian (outer ellipse, black bold line). In this
example, the major axis length is the distance between the two black dots
located in the east‐west direction, and the minor axis length is the distance
between the two white dots located in the north‐south direction. The inner
ellipse (black dashed line) represents bri hð Þ ¼ 0:5 for reference.
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uncertainty considerations is stressed. As spurious correlations may develop at long distances, the a priori
guess and weighting factors used in our application ensure that the structure closest to the point of interest
is influential in determining the shape of the ellipse. Various other functions and models have been used to
fit spatial correlation coefficients; however, the 2‐D Gaussian approach has been shown effective in deter-
mining physical length scales in the ocean (Kuragano & Kamachi, 2000; Mazloff et al., 2018). The strength
of our approach fitting a 2‐DGaussian function to spatial correlation fields is that it allows us to test in a sys-
tematic way across the oceans whether correlation fields tend to be elongated or isotropic.

4. Results
4.1. Model Environment

To contextualize the temporal and spatial correlation analysis, we first describe the simulated global patterns
of climatological mean phytoplankton biomass (mmol N m−3), SST (°C), ocean sea surface current speed
(cm s−1), and eddy kinetic energy (cm2 s−2). Eddy kinetic energy, or the energy associated with turbulent

motions in the ocean, is calculated asEKE ¼ 1
2

u′2 þ v′2
� �

, where (u′,v′) are horizontal velocities anomalies

from the climatological mean (e.g., Richardson, 1983). While current speed is a measure of the magnitude of
ocean currents, EKE is a measure of the magnitude of variability in currents through time.

The model captures global patterns of phytoplankton biomass: subtropical gyres exhibit low annual average
phytoplankton biomass, while high biomass exceeding 3 mmol N m−3 is found in the high latitudes, equa-
torial regions, and major coastal upwelling areas (Figure 2a). Strong gradients in annual average sea surface
temperature are apparent, for example, crossing from the South Pacific subtropical gyre into the Southern
Ocean or from the subtropical to subpolar North Atlantic (Figure 2b).

Simulated mean ocean current speeds and EKE values in Figures 2c and 2d agree well with those estimated
from global drifter data (Lumpkin & Johnson, 2013). In the Southern Ocean, the Antarctic Circumpolar
Current (ACC) shows both strong jets and regions of weaker current speed (Figure 2c), and its position is
bounded by ocean fronts (Lumpkin & Johnson, 2013). The Sub‐Antarctic Front at ~55°S corresponds to
the northern boundary, while the Southern Boundary Front (typically with SST < 0°) limits the ACC to
the south (Carter et al., 2008). The equatorial current systems are prominent in the Atlantic, Indian, and
Pacific Oceans with mean speeds higher than 40 cm s−1 (Figure 2c). The model resolution is eddy permitting
and resolves regions of high current speeds and enhanced EKE associated with narrow western boundary
currents and their corresponding extensions (Figures 2c and 2d). All major western boundary currents are
prominent in the climatological mean current speed: the Gulf Stream, the Kuroshio Current, the Agulhas
Current, the Somali Current, and the Brazil Current. Correspondingly, EKE is high in eddy dominated
regions, as well as in the path of the North Brazil Current and the Brazil‐Malvinas Confluence. EKE is also
high in the equatorial currents due to the energy of tropical instability waves (Chelton et al., 2000; Lumpkin
& Johnson, 2013). The eastern North Pacific, eastern South Pacific, eastern South Atlantic, and western
South Atlantic have low EKE and correspond to regions classified as “eddy deserts” (Lumpkin &
Johnson, 2013).

In our analysis, we consider separately the four smallest phytoplankton types with the highest nutrient effi-
ciencies (“gleaners”) and the four fastest growing types (the four smallest diatoms, the “opportunists”).
Gleaners dominate in the most oligotrophic parts of the ocean, while the opportunists dominate in the
highly productive regions (Figures 3a, 3b, and S1). We also examine how cell size impacts our results and
differentiate “small” (≥3 μm) and “large” (>3 μm) phytoplankton (Figures 3c, 3d, and S1). We separate phy-
toplankton by size in this manner because the allometric scaling for specific growth rates has a unimodal
shape: it peaks for cells approximately 3 μm in equivalent spherical diameter but decreases for smaller
and larger cells (Dutkiewicz et al., 2019; Marañón et al., 2013). Much like for gleaners and opportunists,
small phytoplankton dominate in oligotrophic regions while larger phytoplankton dominate in more seaso-
nal and eutrophic regions (Figures 3c and 3d).

4.2. Phytoplankton Correlation Timescales (τe)
4.2.1. Correlation Timescales and Ocean Dynamics
In general, the phytoplankton correlation timescales, or τe, estimated from biomass anomaly time series are
shorter than 30 days. The median phytoplankton τe is 18.7, 19.5, and 18 days for gleaners, opportunists, and
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total biomass, respectively (Figure 4). Correlation timescales of 30 days or shorter for gleaners, opportunists,
and total biomass correspond to 85%, 68.5%, and 95.9% of ocean area, respectively. Correlation timescales of
15 days or shorter for gleaners, opportunists, and total biomass correspond to 37%, 37%, and 48.5% of the
ocean area, respectively.

Here we differentiate and discuss regions of the ocean with short (τe ≤ 15 days) and long (τe > 15 days) cor-
relation scales. The overall spatial patterns in τe between gleaners, opportunists, and total biomass are qua-
litatively similar. Short correlation timescales (<15 days) occur in the Southern Ocean (Figures 5b and 5d),
equatorial zones, and subpolar North Pacific (Figures 4a–4c), as well as in in Western Boundary Currents
such as the Gulf Stream (Figures 5a and 5c). Short correlation timescales along the westward traveling equa-
torial currents (located to the north and south of the equator) in the Pacific and Indian Oceans, and to a les-
ser extend in the Atlantic, may be tied to variable currents (Masumoto et al., 2005) and tropical instability
waves (Han et al., 2008; Kessler et al., 1996), which generate high‐frequency variations in the environmental
conditions in this region (Han et al., 2008; Kessler et al., 1996; Lyman et al., 2005). Correlation timescales are
short in the subpolar North Pacific but do not correspond closely to enhanced currents or EKE (Figures 2c
and 2d). However, this short τe area coincides with the location of the Aleutian Low, a zone of high storm
frequency comprising the subpolar North Pacific and Bering Sea (Pickart et al., 2009). Correlation timescales
are also short in the ACC, but increase both north and south of the ACC (Figures 4a–4c and 5b and 5d).

Figure 2. Model annual average: (a) total surface phytoplankton biomass, (b) sea surface temperature (SST), (c) surface current speed, and (d) eddy kinetic energy
(EKE). Ocean currents and gyres discussed throughout the text are indicated in (c): AC = Agulhas Current, ACC = Antarctic Circumpolar Current, BC = Brazil
Current, BMC = Brazil = Malvinas Confluence, GS = Gulf Stream, KC = Kuroshio Current, KCE = Kuroshio Current Extension, LC = Labrador Current,
NAC = North Atlantic Current, NBC =North Brazil Current, NPSG = North Pacific Subtropical Gyre, SC = Somali Current, and SPSG = South Pacific Subtropical
Gyre. Markers in (c) indicate the location of illustrative regions also used in Figure 6e. Long‐term monitoring stations ALOHA (A Long‐term Ocean Habitat
Assessment) and BATS (Bermuda Atlantic Time Series), also referred to in Figures 8f and 8g, are marked for reference.
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In contrast, longer phytoplankton τe (>15 days) occur in subtropical regions and large parts of the Southern
Ocean, specifically north of the Subtropical Front at ~45°S and south of the Sub‐Antarctic Front at ~55°S,
approximately denoted by the 6 and 12 °C contours, respectively (Carter et al., 2008). These areas of very long
correlation timescale broadly, though not exclusively, coincide with regions of low current speed and low
EKE (Figures 2c and 2d).

Compared with gleaners, opportunist phytoplankton exhibit stronger spatial gradients in correlation time-
scales (compare Figures 4b and 4c). Opportunists have both shorter and longer correlation timescales than
gleaners depending on the region (Figure 4d). Regions of long correlation timescales for opportunists are pri-
marily found in the subtropical gyres and in polar zones, with portions of the subtropical and subpolar
regions having long τe of up to several months. The longest correlation timescales for opportunists (exceed-
ing 100 days) are found in the Subtropical Front at ~45°S extending from the coast of Chile to the south of
Australia (Figures 4b and 5d), and the shortest timescales are found in the central equatorial Pacific and sub-
polar Pacific (Figure 4b). In contrast, correlation timescales for gleaners are more uniform in space
(Figure 4c) and exhibit a slightly narrower distribution of timescales globally (Figure 4d). The longest corre-
lation timescales are found in the Subtropical Front at ~45°S off the coast of Chile and east of the Weddell
Sea area of the Southern Ocean up to 60°E (Figures 4c and 5e). The shortest timescales are found north of
the equator in the central Pacific (Figure 4c).

Using the same methodology as we did for estimating phytoplankton correlation timescale (see section 3),
we estimated correlation timescales for SST and surface NO3 using the MITgcm model output. SST exhibits
long timescales exceeding 45 days in subtropical and certain temperate latitudes, while polar and tropical

Figure 3. Model annual average: (a) total gleaners phytoplankton biomass (i.e., the two prokaryotes and two picoeukaryotes with ≤2 μm equivalent spherical dia-
meter); (b) total opportunists phytoplankton biomass (i.e., the 4 smallest diatoms with equivalent spherical diameter ranging from 3 to 10 μm); (c) small
phytoplankton biomass (including 2 prokaryotes, 2 picoeukaryotes, 1 coccolithophore, 1 diazotroph, and 1 diatom); and (d) large phytoplankton biomass (including
4 coccolithophore, 4 diazotrophs, 10 diatoms, and 10 mixotrophic dinoflagellates). Contours indicate lines of constant SST (°C; contours are the same as Figure 2b).
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latitudes and areas of high kinetic energy show correlation timescales under 45 days and down to 15 days
(Figure S5a). Long persistence of SST anomalies, typically 3–5 months, is known to occur in the North
Atlantic and North Pacific Oceans, as a consequence of the high heat capacity of the ocean (Deser et al.,
2003; Frankignoul, 1985; Frankignoul & Hasselmann, 1977; Kushnir et al., 2002). Surface NO3 correlation
timescales exhibit long timescales in subpolar latitudes and short timescales in the tropical and
subtropical oceans, as well as polar regions (Figure S5b). In tropical and subtropical oceans,
phytoplankton growth quickly consumes any nitrate available (e.g., nutrients supplied by the passing of
eddies), yielding short NO3 correlation timescales. In regions with deeper winter mixed layers and
seasonal limitation of phytoplankton growth by temperature or light, nutrients may accumulate, leading
to longer NO3 correlation timescales. Our analysis also shows that in most of the ocean, phytoplankton
timescales are shorter than the timescales of both SST and NO3 (Figures S5c and 5d). This contrast is
consistent with the different dominant timescales of the processes influencing each variable: days to
weeks in the case of phytoplankton growth and weeks to months in the case of SST, for example. In
regions of high EKE, such as the Gulf Stream, the differences between SST, NO3 and phytoplankton
correlation timescales are relatively small, suggesting that in these regions the dynamics of biotic and
environmental conditions are tied to ocean mixing and currents (Figures S5c and 5d).

Figure 4. Correlation timescales, τe, estimated for (a) total biomass, (b) opportunists, and (c) gleaners. Gleaners include the four smallest size classes simulated by
the model (i.e., prokaryotes and picoeukaryotes with ≤2 μm equivalent spherical diameter), and opportunists include the four smallest size classes of diatoms
(3–10 μm equivalent spherical diameter). In the case of total biomass, the correlation timescale is calculated from total biomass anomaly time series. In the case of
gleaners and opportunists, τe is estimated individually for each phenotype in the group and then averaged. White regions indicate where total biomass is below
10−6 mmol Nm−3 or group biomass is below 1% of total biomass. Contours indicate lines of constant SST (°C; contours are the same as Figure 2b). The color scale is
logarithmic to improve visualization and comparison between maps. (d) The bars represent the area‐weighted, normalized frequency distribution of global
correlation timescales for total biomass anomalies, gleaners, and opportunists. Solid lines represent the corresponding probability density functions. Vertical dashed
lines represent the median value for each group.
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In agreement with our estimates, chlorophyll correlation timescales in the North Atlantic Ocean show
shorter timescales than measured for the physical variables (Boss et al., 2008), while Denman and Abbott
(1994) found equal timescales for SST and chlorophyll in dynamic areas of the California Current System
region. As expected, we find a tighter relationship between NO3 timescales and phytoplankton timescales,
particularly within nutrient limited areas in the tropics and subtropics, where light is sufficient to sustain
phytoplankton growth year round.

Overall, phytoplankton populations and total biomass in most of the ocean have relatively fast decorrelation
timescales, and opportunists and gleaners exhibit similar spatial patterns in correlation timescales that differ
in magnitude. Next, we examine more closely how these spatial patterns and differences across gleaners and
opportunists in correlation timescale may be linked to variations in current speed in the ocean and cell sizes
across phytoplankton types.
4.2.2. Correlation Timescales and Current Speed
For both gleaners and opportunists, short correlation timescales (≤15 days) occur more frequently where
mean current speed is relatively high (Figures 6a–6d). Conversely, long correlation timescales (>15 days)
occur more frequently where mean current speed is relatively low (Figures 6a–6d). This is more clearly
represented in the marginal frequency distributions (Figures 6c and 6d) by the larger area of blue bars

Figure 5. Regional examples of correlation timescales: (a) average τe estimated from biomass anomalies of gleaners in the Gulf Stream and (b) in the Antarctic
Circumpolar Current (ACC) region. (c) Average τe estimated from biomass anomalies of opportunists in the Gulf Stream and (d) in the ACC region. Current
velocity vectors are indicated by black arrows and the color scale is truncated at 35 days to improve visualization. Low biomass areas (group biomass below 1% of
total phytoplankton biomass) are masked in white.
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(short timescales) at current speeds >10 cm s−1, in comparison to the area of red bars (long timescales) for
the same speeds. In areas of strong advection by currents, such as the Gulf Stream, Kuroshio Current, or
Antarctic Circumpolar Current, short correlation timescales of the phytoplankton biomass anomalies may
be due to dispersal of phytoplankton driven by advection, assuming upstream phytoplankton
communities are different from the location of interest. Similarly, short correlation timescales of the
phytoplankton community also occur where horizontal mixing due to mesoscale and submesoscale
processes facilitates dispersal, such as in equatorial zones and western boundary currents (Abernathey &
Marshall, 2013; Cole et al., 2012).

In addition to the dispersal of organisms, both advection and mixing introduce environmental variability,
including temperature, nutrients, and light, which can influence phytoplankton growth. Regions of stronger
currents and EKE tend to have greater variability in SST anomalies (Deser et al., 2010), for example. We find
a similar pattern linking current speed to SST variance in our model (Figure 6e). For six selected, illustrative
regions, SST variance through time increases with mean current speed. Thus, the increased variability in the
environment through time is likely to promote shorter correlation timescales within the phytoplankton
populations. The present analysis in a Eulerian framework is, however, unable to differentiate whether
the correlation timescales are more closely tied to rapid transport of organisms or intermittent favorable con-
ditions for phytoplankton growth. We suggest that further study using a Lagrangian perspective will be use-
ful to separate the different effects.
4.2.3. Correlation Timescales and Cell Size
In order to evaluate why gleaners and opportunists have different correlation timescales, we consider the
ecological importance of cell size. Cell size is a critical trait constraining important physiological rates, such
as the growth rate (e.g., Marañón et al., 2013), and predator‐prey interactions (Hansen et al., 1994, 1997). We
find that in vast ocean areas, large phytoplankton tend to have longer correlation timescales, while small
phytoplankton tend to have shorter correlation timescales (Figure 7b). In Figure 7, red means that

Figure 6. Relationship between current speed, timescales, and environmental variability. Contour plots show the bivariate normalized frequency distribution of
correlation timescales with respect to current speed for (a) gleaners and (b) opportunists. Histograms show normalized frequency distributions of current speed
and their corresponding probability density functions summarized for areas with short timescales (≤15 days) and long timescales (>15 days) for (c) gleaners
and (d) opportunists. The probability density functions for the whole ocean (black line) are shown for reference. The distribution of current speeds for areas with
short and long timescales are significantly different (Kolmogorov–Smirnov test, p < 0.01). In plots (a) to (d), the frequency of grid points is area weighted and
normalized to the maximum frequency in the dataset. (e) Relationship between current speed and variance in sea surface temperature anomalies at six 1° by 1°
illustrative regions: the Antarctic Circumpolar Current at the South Pacific and South Atlantic portions (ACC at 141°W, 57°S and 57°W, 57°S, respectively), the
North Pacific Subtropical Gyre (NPSG), the South Pacific Subtropical Gyre (SPSG), the Kuroshio Current (KC), and the Gulf Stream (GS). Regions are color coded
and ordered from colder (dark blue) to warmest (dark red), according to mean SST. The corresponding locations are indicated in Figure 2c using the samemarkers.
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Figure 7. Analysis of the relationships between timescales and cell size. (a) Total number of phytoplankton phenotypes (“richness”), defined as the number of phy-
toplankton phenotypes with abundance larger than 1% the total biomass in each grid point. Relationship (Pearson correlation coefficient, r) between cell size and
correlation timescales (τe) for (b) all cell sizes, (c) only phytoplankton smaller ≤3 μm, and (d) only larger phytoplankton >3 μm. Note that cell size increases
logarithmically (Figure S1). White patches in (b)–(d) mask areas where linear correlations are non‐significant (p> 0.1). Areasmarked with a square and an inverted
triangle mark the locations used for (e). Two scatterplots with contrasting examples of relationships between cell size (bottom x axes) and correlation timescales.
For reference, the top x axes show the corresponding carbon specific maximum growth rates (d−1), which peak at a cell size of 3 μm. The scatterplots show the
timescales of all phenotypes at grid points in an area of 1° by 1° centered at 138.9°W, 60.7°S and 156.7°W, 7.5°S (Southern Ocean and central equatorial Pacific,
respectively). Different phenotypes are identified with differentmarker colors.We fit a second‐order polynomial function to the relationship between cell size and τe
relationships at each grid point (gray lines). The thick black line shows the average fit for all grid points.
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correlation timescale becomes shorter with increasing cell size (negative relationship), while blue means
that correlation timescale becomes longer with increasing cell size (positive relationship). Because the num-
ber of species present in the community (here defined as phytoplankton phenotypes with abundance larger
than 1% the total biomass) varies in space (Figure 7a), this pattern linking cell size to correlation timescale
spans a different number of cell sizes or phenotypes by location.

We separated the connections between cell size and correlation timescale into two size classes: the 7 pheno-
types that are 3 μm or smaller and the 28 phenotypes larger than 3 μm (Figures 7c and 7d). Though there are
many regions with no significant relationship between cell size and correlation timescale (white areas in
Figures 7b–7d), small and large phytoplankton phenotypes exhibit contrasting relationships between corre-
lation timescale and cell size in some regions. In the Southern Ocean, correlation timescales are shorter with
increasing cell size for small phytoplankton (≤3 μm; Figure 7c), but longer with increasing cell size for large
phytoplankton (>3 μm; Figure 7d). In the tropical Pacific, correlation timescale is longer with increasing cell
size for small phytoplankton (≤3 μm; Figure 7c) but is shorter with increasing cell size for larger phytoplank-
ton (>3 μm; Figure 7d). Upon further inspection, we find that the relationship between cell size and correla-
tion timescale for locations in the tropics is characterized by a “humpback” shape or convex curve, whereas
the relationship for locations in the Southern Ocean is characterized by a “U” shape or concave
curve (Figure 7e).

The distinct and spatially coherent regional patterns in the relationship between cell size and correlation
timescales, particularly the concave and convex patterns with an inflection point occurring at around 3–5
μm (Figure 7e), suggest an underlying ecological origin. Phytoplankton in the 3–5 μm size range have higher
growth rates than both smaller and larger phytoplankton (e.g., Marañón et al., 2013), as parameterized in
our model. They also have relatively high nutrient and light affinities compared with larger phytoplankton
(e.g., Edwards et al., 2012). These opportunist phytoplankton are therefore well positioned to take advantage
of pulses of nutrients, however scarce. In nutrient limited regions of the ocean (such as the tropical Pacific,
Figure 7e), we speculate that the relatively long correlation timescale of opportunist phytoplankton may be
caused by episodic blooms due to nutrient anomalies, for example, driven by the passage of eddies (Chelton
et al., 2011). Microzooplankton predators ultimately graze down the bloom, but returning to the prebloom
biomass takes longer because the peak of the bloom of these phenotypes is higher in magnitude.
Phytoplankton larger and smaller than these fast‐growing opportunistic phytoplankton would not bloom
to the same extent, either due to their higher nutrient requirements or because they are grazed down more
quickly than the blooming opportunist, thus yielding faster decorrelation timescales.

In regions with generally high nutrient supply (such as the Southern Ocean, Figure 7e), the underlying
dynamics may be different. The U‐shaped pattern here may reflect three contrasting regimes for very small
(0.6–2 μm), small (3–5 μm), and large phytoplankton (>5 μm). The smallest phytoplankton in this region
have very low and relatively constant biomass (Figure 3a). Small phytoplankton (3–5 μm) have rapid growth
timescales, but they are also grazed readily by microzooplankton grazers, such that blooms do not persist for
long. In contrast, large phytoplankton (>5 μm) have large microzooplankton grazers (e.g., B. Hansen et al.,
1994), which have lower specific ingestion and growth rates than smaller microzooplankton (e.g., Hansen
et al., 1997), as captured in themodel parameterization (Ward et al., 2012). In habitats such as this, the growth
of the largest phytoplankton would be periodically decoupled from their grazers, allowing a positive biomass
anomaly to persist for a longer duration than for smaller phytoplankton. This may explain the very long cor-
relation timescales for the largest phytoplankton types. Thus, the concave and convex shaped patterns in
Figure 7e may reflect the relative importance of distribution patterns (Figures 3c and 3d), resource acquisi-
tion, growth traits, and predator‐prey imbalances in shaping the persistence of phytoplankton anomalies.

4.3. Spatial Scales of Correlation
4.3.1. Length Scales and Ocean Dynamics
Over what distance do phytoplankton populations vary synchronously? To answer this, we calculated the
spatial correlation structure of phytoplankton populations on a point by point and phenotype by phenotype
basis with no time lags. A feature of our analysis is that we are able to quantify the shape of the correlation
fields, not just the correlation length scales. A key shape property is the aspect ratio of spatial correlation
structure. If the aspect ratio is equal to one, (AR = 1), the spatial correlation is roughly equal in all directions;
we term this isotropic. Isotropic correlation structures may be due to horizontal mixing homogenizing local
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properties, such as nutrient concentrations and temperature, or equal dispersal of organisms in all direc-
tions. An elongated spatial correlation field has AR > 1, possibly indicating the presence of strong advection
or persistent frontal zones (Figure 8). We call this type of correlation structure anisotropic.

In general, spatial correlation patterns are similar for gleaners and opportunists (Figures 9a–9d and S8). The
longest correlation scales (major axis) occur in the subpolar oceans exceeding 2,000 km (Figures 8a, 9a, and
9b) and coincide roughly with the position of strong frontal zones in both hemispheres and with the location
of the ACC in the Southern Ocean (Figures 2b–2d). Major axis length scales range between 150 and 500 km
in the equatorial regions (Figure 8c) and between 150 km and 250 km along boundary currents (Figures 8b
and 8d). The shortest major axis scales, up to 100 km, occur in subtropical regions (Figure 8f) and in some
areas near Western Boundary Currents and their corresponding extensions (Figures 9a and 9b). Previous
studies have suggested that long correlation length scales in phytoplankton can be achieved via rapid advec-
tion and turbulent mixing (Lévy et al., 2014), whereas long correlation length scales in SST have been also
attributed to synoptic forcing over large distances leading to uniform conditions in the upper ocean
(Hosoda & Kawamura, 2005). The minor axes are, by definition, shorter than the major axes (Figures 9c
and 9d) but exhibit similar spatial patterns as for major axes correlation length. In general, the orientation
of the correlation structures aligns well with the direction of the mean flow (Figure 8).

We find that regardless of regional differences in correlation length scales, the spatial correlations of phyto-
plankton biomass anomaly in the ocean are predominantly anisotropic (Figures 9e and 9f). The total ocean
area with isotropic correlation fields (AR = 1) is very small and aspect ratios below 2:1 (AR < 2) represent
only 8.5% and 12.3% of the global ocean for gleaners and opportunists, respectively. The median AR for glea-
ners and opportunists is 2.9 and 3.1, respectively (Figure S8). High aspect ratios ranging between 2.5 and 5
occur along the ACC andWestern Boundary Currents (Figures 8a, 8c, and 8d). In some cases, the elongation
of the correlation contours due to the presence of an ocean current is most obvious near the core of the cur-
rent but decreases rapidly away from the center of the current (Figure 8e). The effect of some of the narrow
boundary currents is apparent in the Alguhas Current flowing southward along the east coast of South
Africa, the Kuroshio Current to the southwest of Japan, and the Somali Current along the coast of
Somalia and Oman in the western Indian Ocean (Figures 9e and 9f). The most elongated shapes (AR > 6)
are found within the eastern equatorial regions (Figure 8c), and roughly coinciding with major extratropical
ocean fronts (Figures 9e and 9f), including the Subpolar Front in the North Pacific (approximately located
between 40°N and 45°N, at isotherms ranging from 9 °C to 18 °C, Yuan & Talley, 1996), the Subpolar
Front in the North Atlantic (which typically follows the NAC and is approximately located south of the 18
°C SST contour in Figures 9e and 9f), and the region between the Southern and Subantarctic Fronts in the
Southern Ocean (typically defined by the 6 °C and 12 °C SST contours), including the Polar Front (Carter
et al., 2008). The meridional length scales (i.e., minor axis, orthogonal to the front) become shortened in
the vicinity of the front, while zonal length scales are long. For example, in the South Pacific sector of the
ACC (Figures 8a and 9), the average flow of the ACC is roughly west to east and AR = 4.

Our estimates of phytoplankton population correlation length scales broadly agree with regional length
scales estimated from physical and chemical variables from the same model simulation (Figures S6 and
S7) and from previous studies (Hosoda & Kawamura, 2005; Kessler et al., 1996; Kuragano & Kamachi,
2000; Mazloff et al., 2018). In general, phytoplankton and environmental correlation length scales are long
in the Southern Ocean and equatorial Pacific but shorter in western boundary currents and subtropical
regions. A recent analysis of satellite derived and simulated values of low‐passed filtered SSH, SST, heat,
and carbon content in the Southern Ocean suggests large correlation length scales on the order of 500 to
4,000 km zonally and 500 and 1,000 km meridionally (Mazloff et al., 2018). Zonal length scales from in situ
SST and thermocline depth in the equatorial Pacific are about 10.2° (~1,110 km) and 11.6° (~1,280 km),
respectively (Kessler et al., 1996). In the Kuroshio region, the spatial correlation analysis of satellite SST
revealed correlation length scales between 78 and 230 km, with the smallest length scales observed in the
most dynamical regions (Hosoda & Kawamura, 2005). In a global analysis using TOPEX‐POSEIDON SSH
anomaly data from 1993 to 1996, Kuragano and Kamachi (2000) found large zonal length scales in the equa-
torial region (1,300–2,600 km), as well as in the subpolar gyres (470–960 km) and small length scales in the
subtropical gyres and boundary currents (100–260 km). Though we do not directly correlate the length scales
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Figure 8. Spatial correlation structures (color background) and corresponding 2‐DGaussian fit (red ellipsemarking thebr ¼ e−1 contour) obtained from the biomass
anomalies of the smallest gleaner in key regions of interest. The central grid point k for each spatial correlation structure is marked with a red + symbol. Mean
velocity vectors are shown in black, emphasizing the elongation of correlation length scales along currents at (a) the Antarctic Circumpolar Current, (b) the
Kuroshio Current, (c) the eastern equatorial Pacific, (d) the Gulf Stream, and (e) the Malvinas Current. Spatial correlation for the long‐term observational stations
ALOHA in Hawaii and BATS are shown in (f) and (g), respectively. Each spatial correlation structure details its corresponding axes length scales (a and b), the
major‐to‐minor aspect ratio (AR = max(a,b)/min(a,b)), and the angle of orientation (θ).
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Figure 9. Spatial correlation scales of gleaners and opportunists: (a, b) major axis, (c, d) minor axis, (e, f) major‐to‐minor aspect ratio, and (g, h) angles. Angles are
reported from 0° to 180°, such that meridional patterns correspond to 90° and zonal patterns correspond to either 0° or 180°. White areas are where opportunist
biomass is very low (group biomass below 1% of total phytoplankton biomass).
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of physical variables to the modeled phytoplankton variables in this study, the available evidence suggests
that the gradients in correlation length scales are qualitatively similar.
4.3.2. Length Scales and Current Speed
As with the earlier discussion of correlation timescales, we now consider how correlation length scales may
be tied to advection. In this case, the relationship between current speed and length scales or aspect ratio is
complicated due to the many possible drivers of spatial correlation structure.

Very large length scales and aspect ratio can occur in areas of the ocean with relatively low average cur-
rent speed, due to large‐scale uniform synoptic forcing (e.g., Hosoda & Kawamura, 2005). Turbulent mix-
ing may also disperse and homogenize phytoplankton further away from the region of direct influence of
an ocean current. Western Boundary currents have elongated spatial correlation fields, but their length
scales are shorter and aspect ratios smaller. For example, the correlation structure in the poleward flow-
ing Gulf Stream (Figure 8d) has a smaller aspect ratio than the zonal ACC (Figure 8a). This suggests that
when the direction of the correlation structure is across strong environmental and biomass gradients,
such as the Gulf Stream flowing northward from tropical to temperate waters (Figure 8d), synoptic atmo-
spheric forcing and eddy activity along the current edges modify the major and minor axes. This creates
overall smaller and less elongated correlation structures than in zonal currents. The short minor axis
length scales in Western Boundary Currents also reflect the limited cross‐jet exchange with the adjacent
water masses.

If we focus on only those regions with a major axis length scale less than 300 km (i.e., the maximum length
scales found at boundary currents), a clearer picture of the relationship between current speed and the elon-
gation of correlation structures emerges. This subset of the global ocean represents 51.2% and 59.7% of the
ocean area for gleaners and opportunists, respectively. The subset includes western boundary currents,
coastal upwelling areas, and subtropical gyres but excludes the Southern Ocean, open waters in the North
Pacific, the central and eastern North Atlantic, and certain equatorial areas. Differences in the distribution
of AR for gleaners and opportunists are negligible for this subset (Figure 10a), as for the entire global results
(Figure S8). The median AR of the subset is 2.36 for gleaners and 2.34 for opportunists, and the first quartile
is approximately AR = 2 for both types of phytoplankton (Figure 10a). We use this threshold to distinguish
regions with more or less anisotropic correlation structures. Elongated correlation structures (AR > 2) are
more common in regions of relatively high current speed, and more isotropic correlations structures (AR
< 2) are more common in regions of relatively low currents speeds (Figures 10b and 10c). Thus, we conclude
that current speed is an important factor affecting the spatial correlation of phytoplankton communities in
this subset of the global ocean. Nevertheless, some regions of strong advection have low aspect ratios. This
effect occurs mainly in the eastward extensions of Western Boundary Currents, which are ocean regions
characterized by large numbers of eddies (Chelton et al., 2011). In these eddy dominated areas, the disper-
sing effect of turbulent mixing in all directions is a relatively important driver of tracer distributions com-
pared with other regions of the ocean.

Figure 10. (a) Frequency distribution of global aspect ratios from biomass anomalies of gleaners and opportunists for areas with length scales below 300 km. The
25th percentile of both distributions is found at approximately AR = 2 (black dashed line). This value is used as a threshold for the comparisons of frequency
distributions of current speed in areas with very elongated correlation structures (AR ≥ 2) and more isotropic structures (AR < 2) for gleaners (b) and opportunists
(c). Distributions of current speed with AR ≥ 2 and AR < 2 are significantly different (Kolmogorov–Smirnovtest p < 0.01).
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Figure 11. Analysis of the relationship between cell size and aspect ratio (AR) derived from length scales of correlation:
(a) Pearson correlation coefficient (r) of the relationship between cell size and AR considering all significantly
abundant phytoplankton phenotypes. The number of the significantly abundant phytoplankton phenotypes used in the
correlation is the same as Figure 7a; (b) same analysis as (a) but considering only phenotypes ≤3 μm; (c) same analysis as
(a) but considering only phenotype >3 μm.
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4.3.3. Length Scales and Cell Size
Smaller phytoplankton have, on average, larger aspect ratios than larger phytoplankton cells (Figure 11a;
indicated by areas of negative correlation, in red, between aspect and cell size). The negative relationship
between cell size and aspect ratio is most apparent in the Southern Ocean, Western Boundary Currents,
and the Subtropics (Figure 11a). Similar spatial patterns are observed when we analyze large phytoplankton
(≥3 μm; Figure 11c), with mostly negative correlations between cell size and aspect ratio. For small cells (<3
μm; Figure 11b), correlations between aspect ratio and cell size are negative in the tropics but more varied
and equivocal elsewhere, likely due to the fewer number of taxa included in this category. We speculate that
the overall negative relationship between aspect ratio and cell size may be related to the abundance of each
phytoplankton phenotype, which generally decreases with size. Smaller phytoplankton have larger popula-
tions and disperse greater distances than do larger phytoplankton (Villarino et al., 2018).

5. Discussion and Conclusions

In this study, we estimated global timescales and spatial scales of correlation in a state‐of‐the‐art physical‐
ecosystem ocean model, with 35 simulated phytoplankton phenotypes covering a broad range of phyto-
plankton functions and sizes. By calculating and using biomass anomalies, we focus on the intra‐annual
variability of phytoplankton biomass, which is more likely to reflect the effects of dispersal. The correlation
timescale analysis provides information about the persistence of anomalies and the stability of the plank-
tonic system. The results from the spatial correlation analysis indicate the extent of regions in the ocean
which act in concert, driven by advection, mixing, synoptic events, or a mixture of all these drivers.

Although the model we use here is unique in its ecosystem complexity, it still only represents a few tens of
phytoplankton phenotypes compared to the many thousands of species in the real ocean. Additionally, the
model resolution is about 18 km, which permits the development of eddies and narrow currents, but does
not capture submesoscale processes. Submesoscale processes are also likely to affect both spatial and tem-
poral timescales of phytoplankton communities, and understanding their impacts would require investigat-
ing model output at much higher spatial resolution and temporal frequency. Even though the model
resolution is nominally 18 km, coastal regions and inland seas may not be simulated with fidelity.
Therefore we focus our interpretation of the results on the pelagic ocean. The results presented in this study
should be considered as a first step in defining the phytoplankton community correlation scales globally.
Previous studies of biogeochemically important scales in the oceans have been mostly limited to satellite
chlorophyll (Doney et al., 2003; Fuentes et al., 2000; Glover et al., 2018). These previous studies have largely
focused on quantifying the impact of mesoscale features and using different methodologies to overcome data
gaps due to the presence of clouds. In a different type of study, Henson et al. (2016) used model output from
Earth system models to explore the role of temporal and spatial scales on trend detection in several biogeo-
chemical variables (e.g., chlorophyll, primary production, and pH), and their implications for Earth obser-
ving systems. In that study, the footprint of existing and planned time series stations were obtained based
on statistical similarity in terms of means and variability for surrounding grid cells.

Here for the first time, we instead look at timescales and spatial scales of correlation of ecological variables,
and we provide robust point by point evaluations of these scales. Our results provide information for any
future observing system design from an ecologically relevant perspective. For instance, we find that regions
with fast currents are more likely to exhibit short correlation timescales (Figures 4–6). Conversely, in more
quiescent regions such as the cores of the subtropical ocean gyres, phytoplankton anomalies persist for long
periods. As such, observing these different systems would require different sampling strategies: much more
frequent in the former than the latter. In the northern hemisphere high latitudes, mesoscale currents and
eddy activity imprint a signal of short timescales (Figures 5a and 5c), again suggesting that monitoring sys-
tems in these regions would require more frequent sampling. Phytoplankton timescales are shorter than the
timescales of physical and chemical variables that control phytoplankton growth, such as temperature and
nitrate. In the case of temperature, the large heat capacity of the ocean imprints a general pattern of long
timescales on the order of several months. In the case of nitrate, the decoupling of timescales is prevalent
at high latitudes where light, rather than nutrients, is a seasonal limiting factor for phytoplankton growth.

Monitoring of different types of phytoplankton is also likely to be complicated. The relationships between
correlation timescales and cell size are noisy and complex but exhibit spatial coherence globally
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suggesting underlying dynamical or ecological origins. Overall, we find that larger phytoplankton tend to
have longer correlation timescales than smaller phytoplankton (Figure 7b), but there are contrasting pat-
terns for the smallest (≤3 μm) and largest (>3 μm) phytoplankton, as well as by region (Figures 7c–7e).
We separate phytoplankton into these two size categories as observations suggest that there are contrasting
patterns of correlation between growth rates and size: growth rates increase with cell size in the smaller cate-
gory and decrease with size in the larger category (e.g., Marañón et al., 2013). This characteristic is also cap-
tured in the model configuration and emergent in the correlation timescales results (Figure 7e). In the
Southern Ocean, correlation timescales decrease with increasing body size for small phytoplankton (nega-
tive relationship) but increase with body size for larger phytoplankton (positive relationship). Conversely,
in the subtropics correlation timescales increase with body size for small phytoplankton (positive relation-
ship) but decrease with increasing body size for larger phytoplankton (negative relationship). The relation-
ships can be thus characterized by a humpback shape or convex curve in the subtropics and by a U shape or
concave curve in the Southern Ocean (Figure 7e). These patterns may reflect trade‐offs between resource
acquisition and predation. In the model, the smaller category has nutrient affinity decreasing with cell size
(e.g., Edwards et al., 2012), the growth rate increasing (Marañón et al., 2013), and the predators grazing rates
decreasing (Hansen et al., 1997). In the larger size class, nutrient affinity, grazing, and growth rate all decline
with cell size (e.g., Edwards et al., 2012; Hansen et al., 1994; Marañón et al., 2013). These factors lead to dif-
ferent regional distributions, with the smaller category having a much more regionally uniform distribution
(Figure 3). Monitoring the differences in correlation scales between phytoplankton phenotypes could there-
fore help us understand some of the major controlling mechanisms across sizes. These differential relation-
ships between cell size and correlation timescales also imply that sampling frequency may need to be
different for different phytoplankton phenotypes.

Our study of correlation length scales provides a mechanism to understand how far (in distance) a single sta-
tion observation can provide insight into phytoplankton community dynamics. We find that spatial correla-
tion fields in the global ocean are predominantly anisotropic (Figures 9 and S8). The strongest anisotropic
features are zonal, along the equatorial region, in the ACC, and along major ocean fronts. In such regions
an observational site will provide context and insight for extensive regions in the east‐west direction, but less
insight to the north and south. Elongated spatial correlation fields also occur inWestern Boundary Currents,
but their length scales are shorter because of strong eddy mixing, limited cross‐jet exchange, and meridional
variations in local forcing, such as heat fluxes. Thus, biological measurements taken within a current jet pro-
vide insight about processes along flow, but very little information of across‐current processes. More isotro-
pic correlation structures are present where current speeds are low and where eddies or recirculation
disperse phytoplankton equally in all directions. In contrast with correlation timescales (Figures 7b–7e),
the correlation length scales have a predominantly negative relationship with cell size across most areas
of the ocean (Figure 11). This implies that resolving spatial dynamics of large cells requires denser spatial
observations than for small cells and that this relationship does not vary strongly in space.

Our results could also be a starting place to explore implications for our existing observing systems. For
instance, the correlation timescales for total biomass at ALOHA and BATS are 13 and 6 days. Given that
sampling at these stations is monthly, our results suggest that transient nonseasonal changes to their phyto-
plankton communities are not adequately captured by the current sampling strategy (though clearly seaso-
nal and interannual variability are captured by these sites). The spatial correlation structures and fitted
ellipses we calculated for these locations (Figures 8f and 8g) indicate the regions that will have similar
responses to what is seen at these time series sites. For a small prokaryote, the major axis length scales we
estimate for these two locations are 41.1 and 680.6 km. Thus, we suggest that variability seen at the time ser-
ies may be relevant only over these spatial scales, and the stations do not provide insight into the full subtro-
pical gyres as is sometimes assumed.

This study thus offers a quantitative, global‐scale estimation of the temporal and spatial scales of correlation
in phytoplankton communities, with a unique ecological perspective that cannot be obtained with current
observations alone. Its results provide unprecedented background information to explore regional differ-
ences, as well as differences between subpopulations of the planktonic system. Understanding the scales
of correlation of different phytoplankton phenotypes can also influence our understanding of global patterns
of distribution of their predators, including zooplankton and larval fish. As in the case of correlation scales
from physical ocean variables, this information can potentially aid in the design of biological ocean

10.1029/2019JC015331Journal of Geophysical Research: Oceans

KUHN ET AL. 20



observing networks and monitoring campaigns by guiding decisions about optimal sampling frequency and
distance between monitoring stations in different regions. This is particularly important as new biological
sampling methods capable of acquiring massive amounts of data, such as genomics and biogeochemical‐
Argo, become more widely used in the study of marine microbial ecology.
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