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bNIBIB/CDRH, Joint Laboratory for the Assessment of Medical Imaging System, FDA

cUniformed Services University of the Health Sciences, Bethesda, Maryland
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ABSTRACT

Colonic polyps appear like elliptical protrusions on the inner wall of the colon. Curvature based features for
colonic polyp detection have proved to be successful in several computer-aided diagnostic CT colonography (CTC)
systems. Some simple thresholds are set for those features for creating initial polyp candidates, sophisticated
classification scheme are then applied on these polyp candidates to reduce false positives. There are two objective
functions, the number of missed polyps and false positive rate, that need to be minimized when setting those
thresholds. These two objectives conflict and it is usually difficult to optimize them both by a gradient search.
In this paper, we utilized a multiobjective evolutionary method, the Strength Pareto Evolutionary Algorithm
(SPEA2),1 to optimize those thresholds. SPEA2 incorporates the concept of Pareto dominance and applies
genetic techniques to evolve individual solutions to the Pareto front. The SPEA2 algorithm was applied to colon
CT images from 27 patients each having a prone and a supine scan. There are 40 colonoscopically confirmed
polyps resulting in 72 positive detections in CTC reading. The results obtained by SPEA2 were compared with
those obtained by our old system, where an appropriate value was set for each of those thresholds by a histogram
examination method. If we keep the sensitivity the same as that of our old system, the SPEA2 algorithm reduced
false positive rate by 76.4% from average false positive 55.6 to 13.3 per data set. If the false positive rate is
kept the same for both systems, SPEA2 increased the sensitivity by 13.1% from 53 to 61 among 72 ground truth
detections.

Keywords: Computer-Aided Detection, Pattern recognition, Statistical methods, Multiobjective Evolution,
Genetic algorithm

1. INTRODUCTION

Colon cancer is the second leading cause of cancer deaths in the US.2 It is known that colorectal cancer can be
prevented if a screening procedure is done and any colon polyps found are removed. Virtual colonoscopy, also
known as computed tomographic colongraphy (CTC), has been studied as a screening procedure for the past
10 years and shows promising results. Computer-aided polyp detection (CAD) CTC systems have been under
investigation by a number of institutes to improve the performance of CTC. In order for the CTC CAD system
to prevail, it must be both sensitive and specific. Summers et al. describe recent work on a version of computer
automated polyp detection that uses geometric and volumetric features, acquired from the CT data, as the basis
for polyp detection.3, 4

In the CTC procedure, hundreds of CT scans are taken for a patient both from supine and prone views. The
CTC CAD system under development by our group5 takes the following four ordered steps to detect colon polyps.
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After a computer reads all CT images, the CAD program first segments the colon surface by a region growing
method. The CAD program then identifies initial polyp candidates along the colon surface based on curvature
and geometry information. The third step is to determine the 3D segmentation of each surface detection polyp
candidate in the 3D CT volume and to calculate quantitative features for the polyps. Finally, a decision of true
polyp or false positive is made by a classifier based on the features that are proved clinically relevant. Previous
efforts were more focused on optimization classification schemes such as neural network, decision tree or support
vector machine, while little work was put on how to optimize the initial polyp detections due to lack of closed-
form solutions. In the initial polyp detection, some simple thresholds are set for features such as curvature
and size of lesion to cluster vertices on the colon surface as an initial detection. These thresholds were either
empirically chosen or derived from mathematical modelling.6, 7 In this paper, we investigate a multiobjective
optimization algorithm for setting the optimal thresholds for the initial polyp detection task.

Setting optimal thresholds for curvature-based features to create polyp candidates on the colon surface is
characterized by the presence of two conflicting objectives: minimizing both the number of missed polyps and the
false positive rate. Both objective functions are difficult, and perhaps impossible, to be expressed in closed form.
A practical solution is to look at this parameter setting problem as a multiobjective evolutionary problem. We
used the SPEA2 algorithm1 to find the Pareto optimal set, which is a set of non-inferior or admissible solutions
for the problem. This optimal set provides more freedom for a decision maker when making trade-offs between
the two objectives. In the following sections, we first describe several curvature features used in the initial
detection procedure. We then describe the goal and some technical details associated with the goal. Finally, the
proposed method utilizing SPEA2 algorithm is outlined and results for optimization of colonic polyp detection
are presented.

2. METHOD

In this section, we describe the features used in the detection procedure and how they are used, we then describe
the proposed optimization algorithm.

2.1. Clustering Polyp Candidates
Colonic polyps appear as elliptical protrusions on the inner wall of the colon. Colonic polyps can be characterized
by surface curvatures. Surface curvatures are local geometric properties which quantitatively describe how the
surface curves or bends locally. This surface shape can be characterized by two principal curvatures which are
the maximum k1 and minimum k2 normal curvatures along the principal tangent directions. These principal
curvatures are calculated by a kernel method, and polyps can be identified as regions with negative k1 and k2.8

After the two principal curvatures are calculated, the mean curvature H and the Gaussian curvature K are
defined for each vertex on the colon surface as, {

H = k1+k2
2 ,

K = k1 · k2.
(1)

For a given CT scan, a region growing method was used to segment the colon and an iso-surface was created
at its border. The mean curvature H and Gaussian curvature K were then calculated for each vertex on the
surface using a kernel method.8 Those vertexes will be included into a cluster if

x1 < H < x2 and x3 < K < x4 (2)

where xi, i = 1, . . . , 4 are preset thresholds to be optimized. After all vertices are examined, two additional
features, mean sphericity Sm and number of vertices N , were calculated for each formed cluster,

Sm = 2
∣∣∣∣ 1

N

∑
k2 − 1

N

∑
k1

1
N

∑
k2 + 1

N

∑
k1

∣∣∣∣ (3)

where the summations are over the formed cluster. The sphericity denotes how round a surface is and ranges
from 0 (sphere) to 2 (ridge). Any intermediate value represents an ellipsoid. If

x5 < Sm < x6 and N > x7 (4)
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where x5, . . . , x7 are again thresholds to be optimized, the cluster will be counted as an polyp candidate and be
delivered to the next step for further processing (polyp segmentation).9

2.2. Problem Formulation

Let f1(−→x ), f2(−→x ) denote the number of missed polyps and average number of false positives per data set,
respectively, where −→x is a 7-dimensional threshold vector

−→x = {x1, . . . , x7|x1, . . . , x6 ∈ R, x7 ∈ I} (5)

Our multiobjective minimization problem (MOP) can be stated as follows,

min−→x
−→
f (−→x ) = {f1(−→x ), f2(−→x )} (6)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ [−10, 0),
x2 ∈ [−10, 0),
x1 < x2,

x3 ∈ [0, 50],
x4 ∈ [0, 100],
x3 < x4,

x5 = 0,

x6 ∈ (0, 2],
x7 ∈ [6, 30].

(7)

The range for the each threshold was determined experimentally such that it is wide enough to include all
solutions of interest. The global optima of an MOP is the Pareto front determined by evaluating each member
of the Pareto optimal solution set.10 The Pareto optimal set consists of solutions that are not dominated by
any other solutions. A solution −→x 1 is said to dominate (�) −→x 2 if objective vector

−→
f (−→x 1) is less than or equal

to
−→
f (−→x 2) in all attributes, and strictly less than in at least one attribute,{−→x 1 � −→x 2, iff

∀i ∈ {1, 2} : fi(−→x 1) ≤ fi(−→x 2) ∧ ∃j ∈ {1, 2} : fj(−→x 1) < fj(−→x 2)
(8)

The space formed by the objective vectors of Pareto optimal solutions is called the Pareto front. It is clear that
any final design solution should preferably be a member of the Pareto optimal set. Therefore, identifying a set
of Pareto optimal solutions is key for a decision maker’s selection of a “compromise” solution(s) satisfying the
objectives as best as possible. In this study, we utilized the SPEA2 to obtain the Pareto optimal set for our
thresholds.

2.3. Algorithm Background

The study of multiobjective optimization began in 1985.11 Subsequently, many multiobjective optimization
algorithms have been proposed in the literature.12–15 In We are interested in the SPEA2 algorithm because
of its fast convergence rate.16 Speed is important for our task due to the expensive computation on the colon
surface. In this section we describe the main parts of the optimization procedure. For details of SPEA2 and
background about genetic algorithms, are given in.1, 17

In a standard genetic algorithm, there are usually four steps in the optimization procedure: 1) randomly
initialize the solution population, 2) evaluate and assign a fitness value for each individual in the population
according to its performance, 3) select individuals based on their performances so that better individuals are
more likely to be selected for producing the next generation and 4) use crossover and mutation to produce the
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next generation from the selected individuals. In step 2, either a high or a low fitness value can be used to
represent a better performance. In this paper and in the SPEA2 algorithm, a smaller fitness value indicates a
better performance. Step 2 through step 4 are repeated until a specified generation number is reached. The
SPEA2 algorithm differs from the standard genetic algorithm in the following three aspects,1

Environmental Selection: Besides the regular population in a genetic algorithm, there is an archive
maintained to contain all the nondominated solutions from the previous generation. An individual in the archive
is removed only if 1) a solution has been found in the current generation that dominates it or 2) the maximum
archive size is exceeded and its performance is worse than that of other solutions in the archive.

Fitness Evaluation: The fitness evaluation for the individuals is based on both the population and the
archive, and a good individual is assigned a smaller fitness value. Let Pt and P̄t denote the population and the
archive respectively, each individual i in the Pt and P̄t is assigned a strength value S(i), the number of solutions
it dominates,

S(i) = ||{j|j ∈ Pt + P̄t ∧ i � j}|| (9)

where || · || represents the cardinality of a set, + stands for multiset union and the symbol � corresponds to the
Pareto dominance relation. Based on the value of S(i), a raw fitness value, R(i), is given to the individual i,

R(i) =
∑

j∈Pt+P̄t,j�i

S(j) (10)

The final fitness value is assigned by adding a density value. The density function value, D(i), is estimated in
objective space,

D(i) =
1

δk
i + 2

(11)

where δk
i denotes the kth nearest distance for the ith individual among Pt and P̄t in objective space. k is usually

set as
√

N + N̄ , where N is the population size and N̄ , the archive size. Finally, the fitness value for the ith
individual is calculated as,

F (i) = R(i) + D(i). (12)

From the definition above, a better solution will be assigned a smaller fitness value.

Mating Selection: In the standard genetic algorithm, the probability of an individual to be selected for
producing the next generation is proportional to its performance. In SPEA2, all candidates are selected from
the archive using a binary tournament selection scheme. In the binary tournament selection, we first randomly
select two individuals and only the better one survives.

2.4. Algorithm Outline

We now outline the algorithm used for optimizing thresholds in the initial polyp clustering procedure.

1. Initialization: Set N = 100 (population size),
N̄ = 100 (archive size),
T = 200 (generation number),
Randomly initialize Pt with sets of thresholds and generate an empty archive P̄t. All individuals are coded
into 8-bit binary strings.

2. Fitness evaluation: In the evaluation procedure, a separate clustering program takes each individual
set of thresholds in Pt and P̄t and run the clustering algorithm on each colon surface, it then returns the
number of missed true detections and the average false positive rate. The fitness value for each individual
is then calculated using the method described above.

3. Termination check: If t > T or other specified condition is satisfied, return nondominated individuals in
P̄t as the final result.
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4. Environmental selection: Copy all nondominated individuals in Pt and P̄t to P̄t+1. If the size of P̄t+1

exceeds N̄ , truncate P̄t+1 by deleting the worst solutions (highest fitness values) in P̄t+1. If the size of P̄t+1

is less than N̄ , copy the dominated solutions in Pt having smaller fitness values (better solutions) into P̄t

such that the size of P̄t+1 equals to N̄ .

5. Mating selection: Select 100 individuals in P̄t with replacement using the binary tournament procedure.

6. Reproduce: Reproduce the next generation using the standard crossover and mutation procedures. The
crossover and mutation probability were set as 0.9 and 0.01 in our experiments. Store the results in Pt+1.
Set t = t + 1 and go to step 2.

In the evaluation process, it is possible that some of the individuals are not feasible due to the constraints in
equation (7). We used the simplest approach to handle the constraints. An individual not meeting the constraints
was rejected until one feasible solution was produced. See17, 18 for other strategies to handle constraints.

2.5. Data Acquisition

The CTC procedure was performed on 27 patients with a high suspicion of colonic polyps. All patients had at
least one polyp and each polyp was verified by follow-up optical colonoscopy. These patients were chosen from a
larger cohort who underwent a screening CTC procedure. Selection criteria included patients having at least 1
polyp > 5 mm. The majority of the polyps were identified on both the prone and supine views. There were 40
colonoscopically confirmed polyps (32 viewable in both scans, 3 in the supine, and 5 in the prone only) resulting
in 72 positive detections in CTC reading. Fig. 1 shows one colon surface produced by the CTC CAD system.

3. RESULTS AND DISCUSSION

Fig. 2 shows the results obtained by SPEA2 and by our previous system. It is clear that the Pareto front provided
a set of solutions for our initial polyp detection while our previous system only resulted in one solution which
was dominated by the optimized Pareto front solutions. If we keep the sensitivity the same for both systems (the
number of missed true positive detections is 19), the SPEA2 algorithm reduced false positives by 76.4% from
average 55.6 to 13.3 per data set. This reduction will significantly mitigate the computation load for further
processing. If the false positive is kept the same for both systems (around 56), SPEA2 increased the sensitivity
by 13.1% from 53 to 61 among 72 viewable detections.

Fig. 3 shows some polyp examples produced by two different sets of thresholds for the initial polyp detection
on colon surface. One threshold set is from our previous system which was determined based upon histogram
examination. This old set of thresholds missed 19 true detections with an average false positive rate of 55.6
per data set. Another set of thresholds is chosen from the optimal set of solutions produced by the SPEA2
algorithm. The chosen optimized thresholds missed 11 true detections with a false positive rate of 58.1 per data
set. With a similar false positive rate, the optimized thresholds detected 8 more true detections than that of
the previous thresholds. We show in Fig. 3 some true detections missed by our previous threshold setting (in
the first column) but picked by the optimized thresholds (in the second column). The blue dots in the figure
are ground truth for the polyp on the surface, where each dot represents one vertex on the surface. The green
dots represent detected ground truth vertices on the surface. Note that it is not necessarily to detect all ground
truth vertices for a polyp, any detected portion of a polyp leads to a successful detection.

Fig. 4 shows some false positive detections produced by CTC CAD system with another two sets of thresholds.
Again, one set is from our previous system (Fig. 4 a) and another set is chosen from the optimal sets produced
by the SPEA2 algorithm (Fig. 4 b). The chosen optimized thresholds missed the same number of true detections
as that of our previous setting (missed 19 true detections) but with a much lower false positive rate of 13.3 per
date set. Recall that our previous thresholds setting had an average false positive rate of 55.6 per data set. The
red dots in the image are false detection vertices on the colon surface. There are three false positive detections in
the shown area using our previous thresholds setting, however, all the three false detections disappear if we used
the optimized thresholds setting. It is clear that though the two sets of thresholds produced the same number
of false negatives, the optimized thresholds produced much fewer false positives.

Proc. of SPIE Vol. 6144  61445E-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 May 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. CONCLUSION

We have implemented a multiobjective evolutionary algorithm, SPEA2, for optimizing a CAD polyp detection
system. This is the first introduction of such algorithms into the CTC CAD research field. The SPEA2 algorithm
showed not only the potential for optimizing our CAD system but also the capability of providing a Pareto optimal
set, which gives a decision maker more freedom and confidence to make trade-offs between false negative and
false positive rates. If we kept the sensitivity the same as that of our old system, the SPEA2 algorithm generated
a new set of thresholds that reduced the false positive rate by 76.4%. If the false positive rate is kept the same
as that of our old system, we could choose another set of thresholds optimized by the SPEA2 algorithm which
increased the sensitivity by 13.1%.
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Figure 1. Colon surface generated by the CTC CAD system
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Figure 2. The solution provided by our old system and the Pareto front from the SPEA2 algorithm
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(a) Polyp size = 0.8cm, Supine view

(b) Polyp size = 0.6cm, Supine view

(c) Polyp size = 0.8cm, Supine view

(d) Polyp size = 0.7cm, Prone view

Figure 3. Polyp detection samples comparison. The first column consists of missed true detection examples by our
old system and the second column represents the same detections picked by one set of optimized thresholds, which is
chosen from the Pareto optimal set. The old system missed 19 true detections while the optimized thresholds had 11 false
negatives, both systems produced approximately the same amount of false positives per data set (55.6 for our old system
and 58 for the optimized thresholds). The blue dots in the images are ground truth vertices on the colon surface. If the
detected vertices match the ground truth, those vertices will be colored as green. Note that the blue dots appear darker
than green ones if they are printed in a black and white image.
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(a). False positives produced by our old system

(b). The same portion of colon produced by the optimized system

Figure 4. False positives comparison, the upper image is the output of our old system and the lower image is from
one using SPEA2-optimized filter thresholds. The new method produced 13.3 false positives per data set and the same
number of false negatives (19) as the old system. The red dots in the image denote the falsely detected vertices on the
colon surface.
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