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a b s t r a c t

Sulfurization has been found to enhance organic matter preservation and petroleum formation in marine
sediments. However, we do not yet have a comprehensive understanding of sulfurization mechanisms. In
this study, we investigated several possible mechanisms of dissolved organic sulfur (DOS) formation in
the top 4.5 m of anoxic sediments of Santa Barbara Basin (SBB), California Borderland. Using Fourier
Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS), we identified chemical formulas of
potential dissolved organic matter (DOM) precursors to these DOS compounds. We also examined how
the formulas of abiotically formed DOS changed as a function of depth across a major redox gradient.
Results show that abiotic nucleophilic addition reactions involving bisulfide (HS�) and polysulfide

(HSx�) are the major sulfurization pathways that form DOS in anoxic pore waters of SBB sediments. We
identified 2124 unique DOS formulas that could be generated from the addition of HS� and HSx� to
2203 DOM formulas, and this accounted for �70% of all DOS formulas detected in these pore waters.
Examining the DOM formulas that served as reactants in the abiotic sulfurization reactions, we found that
64% contained only carbon, hydrogen, and oxygen (CHO formulas) while the remainder (34%) included
nitrogen (DON formulas). Our results revealed high reactivity toward sulfurization among many of the
CHO and DON formulas that have H/C and O/C elemental ratios that overlap with those of carboxyl-
rich alicyclic molecules (CRAM). This specific class of formulas could play an important role in the forma-
tion of organic sulfur compounds in sulfidic marine ecosystems, and in the formation of sulfur-containing
protokerogen in marine sediments. Our results further suggest that anoxic sediments are a source of DOS
compounds to the oceans.

Published by Elsevier Ltd.

1. Introduction

Sulfurization has been shown to enhance organic matter preser-
vation and protokerogen formation at low temperatures in marine
sediments (e.g. Valisolalao et al., 1984; Sinninghe Damsté and De
Leeuw, 1990; Krein and Aizenshtat, 1995; Nelson et al., 1995;
Putschew et al., 1998; van Dongen et al., 2003). Also, when consid-
ering the role of the sulfur cycle in the evolution of atmospheric O2

concentration over geologic time, the importance of organic sulfur
burial may be greater than previously thought (Werne et al., 2004).
The relative abundance of organic sulfur in sedimentary settings
varies widely, from 1 to 80% of the total reduced sulfur
(Anderson and Pratt, 1995; Werne et al., 2003), and appears to

be largely controlled by the availability of both reduced inorganic
sulfur species and reactive iron (Canfield et al., 1992, 1996;
Eglinton and Repeta, 2003). However, we do not yet have a com-
prehensive understanding of sulfurization mechanisms.

Assimilatory sulfate reduction represents one source of sedi-
mentary organic sulfur, where microbes reduce sulfate to biosyn-
thesize organic sulfur compounds such as methionine or cysteine
(e.g. Kim and Gadd, 2008). However, the sulfur content of microbial
detritus is relatively low (Sinninghe Damsté and Orr, 1990;
Eglinton et al., 1994), and in many sedimentary settings this does
not account for all of the organic sulfur that is buried (Filley
et al., 2002). Several lines of evidence indicate that abiotic sulfur-
ization of organic matter by bisulfide (HS�) and polysulfide (HSx�)
represents another formation mechanism for sedimentary organic
sulfur. For example, several studies have detected compounds that
result from sulfurization of many lipids (e.g. C28-dialkylthiophene;
C37-2,6-di-n-alkylthianaes) during early diagenesis in anoxic to
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mixed-redox sediments (e.g. Valisolalao et al., 1984; Sinninghe
Damsté et al., 1989; Wakeham et al., 1995). Other laboratory stud-
ies have examined the abiotic formation of 3-mercaptopropionic
acid from acrylic acid (Vairavamurthy and Mopper, 1987) and
the sulfurization of phytol compounds (De Graaf et al., 1992). How-
ever, these studies examined the abiotic sulfurization of a small
number of targeted compounds, and therefore do not provide a
comprehensive understanding of the role these mechanisms may
play in the formation and burial of complex mixtures of organic
sulfur compounds in marine sediments (Zhu et al., 2014). Further-
more, while the above studies contribute to the understanding of
the formation of reduced organic sulfur species, they do not
explain the formation and burial of oxidized organic sulfur species
(e.g. sulfones) in anoxic sediments (Eglinton et al., 1994; Zhu et al.,
2014).

Analysis of dissolved organic matter (DOM) by ultrahigh resolu-
tion mass spectrometry, such as Fourier Transform Ion Cyclotron
Resonance Mass Spectrometry (FTICR-MS), provides the ability to
measure a small mass differences of 3.37mDa or less between
two possible molecular formulas. Thus mass differences are
required to accurately assign sulfur containing organic molecular
formulas from other isobaric ions (for examples, formulas that con-
tain either S or O2, SH4 or C3) (Koch et al., 2007; Reemtsma, 2009).
Recently, several studies have utilized FTICR-MS to identify dis-
solved organic sulfur compounds in sediment pore waters, and to
investigate sulfurization mechanisms. Schmidt et al. (2009)
observed higher abundance of organic sulfur compounds in river-
ine sediment pore waters relative to continental shelf pore waters.
Along the same lines, Seidel et al. (2014) showed an increase of the
relative abundance of DOS formulas from recharge to discharge
zone of intertidal creek bank sediment pore waters. Both Schmidt
et al., (2009) and Seidel et al., (2014) attributed this to greater rates
of diagenetic sulfurization in sediments. It also appears that there
is a higher abundance of DOS formulas in anoxic (Schmidt et al.,
2009) versus oxic (Rossel et al., 2016) sediment pore waters, con-
sistent with higher production of organic sulfur compounds in
anoxic relative to oxic sediments (Werne et al., 2004 and refer-
ences within). Through laboratory experiments, Melendez-Perez
et al. (2018) proposed that the addition of sulfide species to
lignin-like CHO compounds (with sediment minerals acting as cat-
alysts) could serve as a possible pathway for the formation of poly-
oxygenated organic sulfur compounds (CHOS). To identify DOS
formulas that are potentially formed in shallow hydrothermal sys-
tems through abiotic sulfurization reactions, Gomez-Saez et al.
(2016) used FTICR-MS to track nine possible sulfur addition reac-
tions that involve addition or removal of hydrogen and/or oxygen
atoms (a total of 27 potential sulfurization reactions). The same
approach has been used to verify experimentally the occurrence
of abiotic sulfurization under sulfidic conditions of natural DOM,
and DOM directly derived from algal cultures (Pohlabeln et al.,
2017). This approach has also been used to follow the photochem-
ical alteration of DOS from sulfidic pore water (Gomez-Saez et al.,
2017).

To build on these past observations we carried out FTICR-MS
analyses of pore water samples collected as a function of depth
in Santa Barbara Basin (SBB) sediments, where we have previously
studied DOM production and turnover (Burdige et al., 2016a,b;
Komada et al., 2016; Abdulla et al., 2018). The main aim of this
study was to improve our understanding of DOS formation and
cycling within the context of early diagenetic processes in these
sediments (including the transition from sulfate reduction to
methanogenesis), with an emphasis on examining abiotic sulfur-
ization through nucleophilic addition reactions of both bisulfide
(HS�) and polysulfide (HSx�). Our specific objectives were to inves-
tigate: (1) the formation mechanisms of dissolved organic sulfur
(DOS) compounds in pore waters, and (2) the chemical formulas

of potential DOM reactants in the abiotic formation of organosulfur
compounds.

2. Materials and methods

2.1. Sampling and study site

Sediment cores were recovered from the center of SBB
(34.223�N, 119.983�W, 590 m water depth) using a gravity corer
and a multicorer onboard R/V Robert Gordon Sproul in August
2012, and R/V New Horizon in August 2013, and pore water sam-
ples were extracted from these cores as described previously
(Komada et al., 2016). Our previous work on these sediment cores
indicates that sulfate (SO4

2�) is consumed by organoclastic SO4
2�

reduction and anaerobic oxidation of methane (AOM), leading to
the formation of a sulfate-methane transition zone (SMTZ) at
�125 cm (Fig. 1; Komada et al., 2016; Burdige et al., 2016a,b). Dis-
solved organic carbon (DOC) concentrations increase with sedi-
ment depth from 0.28 mM at the surface to over 5 mM at the
base of the core (Komada et al., 2016; Burdige et al., 2016a). The
shape of the DOC profile and results from a DOC reaction-
transport model indicate that there is continuous and steady accu-
mulation of DOC with depth in these pore waters (Burdige et al.,
2016a).

2.2. Total dissolved sulfide (
P

H2S) measurements

Pore water samples for total dissolved sulfide (
P

H2S = [H2S]
+ [HS�] + [S2�]) analysis were fixed onboard ship by adding pore
water to an N2-degassed solution containing 5 mM ZnCl2 and
10 mM NaOH (Ingvorsen and Jorgensen, 1979) in a 10 ml serum
bottle. At the basic pH of this ‘‘fixing” solution, all dissolved
inorganic sulfide precipitates out as ZnS. The head space was then
degassed with N2 and the bottle was crimp sealed with plug-style

Fig. 1. Pore water depth profiles of sulfate and total dissolved sulfide obtained from
multiple multicores and gravity cores collected in SBB in 2012 and 2013. The sulfate
data were adopted with modification from Komada et al. (2016).
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stoppers, and refrigerated. Upon returning to the shore-based lab,P
H2S was determined spectrophotometrically using the methy-

lene blue technique (Cline, 1969). All reagents were added directly
to the serum bottle containing the ZnS suspension. For pore water
samples near the sediment surface (upper 10 cm) where sulfide
levels are low, 1 ml of pore water was added to 9 ml of the fixing
solution, whereas for deeper samples (with higher sulfide levels)
0.1 ml pore water was added to 10 ml of the fixing solution.

2.3. FTICR-MS analysis

Pore water samples for FTICR-MS analysis were immediately
flame-sealed without acidification under a stream of ultra-high-
purity N2 and stored under refrigeration at 4 �C. In total, 28 pore
water samples from multiple cores that spanned a depth range of
0.25 cm to 432 cm were analyzed using the method described in
detail in Abdulla et al. (2018). In brief, pore water samples were
prepared for mass spectrometric analysis using PPL solid phase
extraction cartridges according to the procedure recommended
by Dittmar et al. (2008). Samples were analyzed with a Bruker Dal-
tonics 12 T Apex Qe FTICR-MS operating in negative ion mode, and
were continuously infused into the instrument with an Apollo II
ESI ion source at a rate of 120 ll h�1. All mass spectra were exter-
nally calibrated with a polyethylene glycol standard and internally
calibrated using naturally present fatty acids (Sleighter et al.,
2008). A signal to noise ratio (S/N) � 3 was used as the threshold
for peak picking. The molecular formula for each peak was calcu-
lated using a molecular formula calculator (Molecular Formula Calc
version 1.0 NHMFL, 1998) with the following parameters: C4�50-
H4�200O0�20N0�10S0�3P0�3. Molecular formulas that are not chem-
ically possible were removed according to the rules described in
Abdulla et al. (2013). In summary, we applied a modified version
of the rules set in Kind and Fiehn (2007), which requires that for-
mulas satisfy the following inequalities: H/C < 2.50, O/C � 1.20,
O/P � 3.00, and N/C < 0.50. All assigned formulas were further
tested for the physical existence of chemical structures using
LEWIS and SENIOR chemical rules, again according to Kind and
Fiehn (2007). We also validated the molecular 13C isotope and
34S isotope peaks (when they were detected above the S/N thresh-
old) and the chemical building block approach (e.g. CH2 homolo-
gies series) described by Koch et al. (2007). The calculated
masses of the assigned formulas are all within 1.0 ppm of the
masses detected by FTICR-MS.

Double bond equivalents (DBE) for the assigned formulas were
calculated according to the following equation:

DBE ¼ 1þ 1
2

Ximax

i

Niðvi� 2Þ ð1Þ

where Ni is the number of atoms with valence v i. By using valences
of 4, 1, 3, 2, 2 and 5 for C, H, N, O, S, and P, respectively, DBE can be
expressed as:

DBE ¼ 1þ Cþ 1
2
� ðNþ 3 � P�HÞ ð2Þ

where C, N, P and H are the number of carbon, nitrogen, phosphorus
and hydrogen atoms present. Note that with valences of 2, O and S
atoms drop out of Eq. (2). Assigned formulas were categorized into
major organic compound classes according to their H/C and O/C
ratios following Sleighter and Hatcher (2007), Abdulla et al.
(2013) and Hertkorn et al. (2006) (Fig. S1).

The work presented here is based solely on the presence or
absence of individual DOM formulas (i.e., peaks) in a spectrum
and does not consider the relative magnitude of these peaks in
our discussions. The reason for this is because in the analysis of a

complex mixture (like DOM) with direct injection through electro-
spray ionization (ESI), changes in the intensity of peaks for a speci-
fic set of compounds is not only a function of concentration, but is
also affected by charge competition in the ESI with other back-
ground compounds. As a result, significant changes in the abun-
dance of one set of compounds will also affect the observed
intensity of peaks for other compounds.

2.3.1. Kendrick mass analysis
Kendrick mass analysis (Hughey et al., 2001; Kendrick, 1963)

was used to identify DOS formulas that can be formed by adding
each of the following groups to a reactant formula: H2S, H2S2,
H2SO, H2SO2, and H2SO3. In this calculation, we first rescaled the
IUPAC masses (where the 12C atomic mass is defined as exactly
12 Da) for all detected molecular formulas to the Kendrick mass
scale with respect to H2S, H2S2, H2SO, H2SO2, or H2SO3. For exam-
ple, rescaling with respect to H2S is represented as,

Kendrick mass ¼ IUPAC mass� ð34=33:987721Þ ð3Þ
where the values 34 and 33.987721 are the nominal (integer) and
IUPAC masses of H2S, respectively. The Kendrick mass defect
(KMD) was then calculated by subtracting the Kendrick mass of
each formula from its nominal (integer) mass,

Kendrick mass defectðKMDÞ¼ ðNominal mass�Kendrick massÞ
ð4Þ

In this example, formulas having the same chemical backbone
but differing only by the number of H2S groups will have identical
KMD values (forming a H2S homologous series). Analogous calcula-
tions were conducted by scaling the Kendrick mass with respect to
H2S2 for polysulfide addition, H2SO for sulfoxide formation, H2SO2

for sulfone formation, and H2SO3 for sulfonic acid formation. In all
of these homologous series, we identified one DOM reactant for-
mula and at least one DOS formula that had the same KMD value
but only differed by one mass unit of H2S, H2S2, H2SO, H2SO2, or
H2SO3.

2.3.2. Analysis of molecular formulas by two-dimensional correlation
Spatial variability of CHO and DOS molecular formulas was

investigated using two-dimensional (2-D) correlation analysis
according to Abdulla et al. (2013) using depth as the perturbation
factor. For each pore water sample, we created a histogram of H/C
ratios for CHO or DOS formulas (i.e., H/C ratio on the x-axis and
number of formulas on the y-axis). The H/C ratio ranged from
0.00 to 2.50 at increments of 0.01. Synchronous 2-D correlation
was conducted on this H/C matrix as described in Abdulla et al.
(2013). Correlations with an r2-value equal to or greater than 0.7,
and a p value less than or equal to 0.05 were considered significant.

3. Results and discussion

3.1. Total dissolved sulfide (
P

H2S)

Bacterial sulfate reduction results in the production and accu-
mulation of sulfide with depth in SBB sediments (Fig. 1). While
the decrease in SO4

2� concentration begins immediately below
the sediment-water interface, significant RH2S accumulation does
not begin until sediment depths of �2 cm to 9 cm. The observed
lag between the decrease in sulfate and the accumulation ofP

H2S agrees with previously reported results in SBB sediments
(Reimers et al., 1996). With increasing depth, RH2S increases and
reaches a maximum value of 6.25 mM at �150 cm near the SMTZ.
Below this depth RH2S decreases to <1 mM at the base of the pro-
file. Depth profiles of RH2S in other anoxic sediments also show

H.A. Abdulla et al. / Organic Geochemistry 139 (2020) 103879 3



similar decreases in RH2S below the SMTZ (e.g. Niewöhner et al.,
1998, Chanton et al., 1987).

Pore water profiles from SBB sediments indicate that the vast
majority of the RH2S that is produced above the SMTZ
(�125 cm) is removed within the top 450 cm of the sediment col-
umn (Fig. 1). While much of this removal is likely due to pyrite
(FeS2) formation, it may also involve abiotic formation of organic
sulfur compounds (e.g. Valisolalao et al., 1984; Sinninghe Damsté
et al., 1989; Vairavamurthy and Mopper, 1987; De Graaf et al.,
1992; Wakeham et al., 1995). The rate of pyrite formation is gener-
ally highest in the top few decimeters of SBB sediments where the
availability of reducible iron is greatest (Reimers et al., 1996;
Burdige, 2006; Raven et al., 2016a). However, sulfide removal is
also evident below the SMTZ (Fig. 1). Pyrite formation is also
known to occur at such depths where reducible iron oxides are
no longer found, and a number of possible mechanisms may be
responsible for this ‘‘deep” pyrite formation. These include the oxi-
dation of FeS by H2S (Rickard and Luther, 2006), and sulfide oxida-
tion by the more refractory ‘‘structural” Fe(III) in clay mineral
lattice sites followed by exchange of the Fe2+ that is produced by
this reaction with pore water Mg2+ (see discussions in Leslie
et al., 1990). Additionally, a small amount of deep pyrite could be
formed through reaction with iron silicates (Raiswell et al.,
1994). At the same time, removal of

P
H2S throughout the depth

profile may also involve abiotic formation of organic sulfur com-
pounds, and consistent with this possibility, organic sulfur (pro-
tokerogen sulfur) concentrations showed a gradual increase with
depth in SBB sediments and reached near-equivalent concentra-
tions to pyrite sulfur below 200 cm (Raven et al., 2016a).

3.2. FTICR-MS analysis

As previously reported (Abdulla et al., 2018), 8842 unique for-
mulas were identified in the 28 pore water samples analyzed by
FTICR-MS. Of these formulas, dissolved organic nitrogen (DON) for-
mulas represent the highest percentage (45%) followed by DOS for-
mulas (35%), CHO-only formulas (31%) and dissolved organic
phosphorous (DOP) formulas (11%). The relative number of both
DON and DOS formulas increased with depth while the relative

number of CHO formulas decreased with depth (Abdulla et al.,
2018). DOP formulas showed no obvious depth trend, and were
not investigated further. DON formulas are discussed in detail in
Abdulla et al. (2018) while DOS and CHO formulas are discussed
below.

3.2.1. CHO formulas
A van Krevelen diagram of all detected CHO compounds (2726

unique formulas from all 28 pore waters samples) (Fig. S1) shows
that the majority of these formulas (63%) fell in the region defined
by Hertkorn et al. (2006) for carboxyl-rich alicyclic molecules
(CRAM) and 26% fell in the region where most lipid-like com-
pounds are observed (e.g. Sleighter and Hatcher, 2007; Abdulla
et al., 2013). Examined as a function of depth, these CHO formulas
show a clear shift in composition towards greater unsaturation
(lower H/C) and oxygenation (higher O/C) with increasing depth
(Fig. 2a–c). Table S1 also shows that lipid-like formulas (H/
C = 1.70–2.25; O/C = 0.05–0.20) decreased with depth, while
CRAM-like formulas (H/C = 0.70–1.70; O/C = 0.10–0.60) increased
with depth. For the three samples shown in Fig. 2, lipid-like CHO
formulas decreased from 40% of the total number of CHO formulas
at 0.25 cm, to 15% at 172 cm (�middle of profile), and 3% at 432 cm
(deepest sample), respectively. In contrast, molecular formulas
that fell in the CRAM region increased from 34% of the total CHO
formulas at 0.25 cm to 66% and 88% at 172 cm and 432 cm,
respectively.

To further examine these depth tends, we analyzed the com-
plete set of 28 pore water samples using 2-D correlation analysis
(Section 2.3.2.). Two regions of significant positive correlation
(red color) were observed along the diagonal of the synchronous
2-D correlation diagram, at H/C ratios between 1.75 and 2.00
(within the lipid-like region) and 0.75–1.73 (upper part of the
CRAM region) (Fig. 3a). This indicates that the number of molecular
formulas with these H/C ratios changed significantly with depth.
The off-diagonal signal indicated a strong negative correlation
(green color) between these two regions, consistent with the
observation in Table S1 that the number of CHO formulas in the
CRAM region increased with depth, while the number of CHO
lipid-like formulas decreased with depth.

Fig. 2. van Krevelen diagrams of CHO formulas (a–c) and DOS formulas (d–f) detected in SBB pore waters at depths of 0.25 cm (a, d), 172 cm (b, e), and 432 cm (c, f).
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3.2.2. DOS formulas
Dissolved organic sulfur (DOS) formulas showed greater vari-

ability in H/C and O/C ratios relative to CHO formulas (compare
Figs. S1 and S2). Most of these formulas fell in the CRAM-like
region (67%; from hereon referred to as S-CRAM) while 15% fell
in the lipid-like region. The number of formulas that fell in the
lipid-like region decreased from 29% of the total DOS formulas at
the sediment surface (0.25 cm) to 3% and 6% at 172 cm and
432 cm, respectively (Fig. 2d–f, Table S1). In contrast, the number
of DOS formulas that fell in the CRAM region increased from 13%
at 0.25 cm to 76% at 172 cm and 82% at 432 cm. Similar to the
CHO formulas, 2-D correlation analysis of individual DOS formulas

(Fig. 3b) showed substantial changes with depth in the CRAM
region (H/C 1.00–1.65) and some changes with depth in the region
between H/C 1.90–2.30 (S-lipid-like region). The off-diagonal cor-
relations suggest that the S-lipid-like region consists of two sets
of formulas with different depth-dependent variability. The first
set showed a negative correlation with the S-CRAM region (green
horizontal or vertical lines in the off-diagonal regions), while the
second set showed a positive correlation with the S-CRAM region
(red horizontal or vertical lines in the off-diagonal regions). As seen
in Table S1, the number of S-CRAM formulas increased with sedi-
ment depth, the first set of lipid-like formulas decreased, and the
second set increased.

3.3. Abiotic formation of dissolved organic sulfur

The pH of SBB sediment pore waters is slightly basic (Reimers
et al., 1996). Therefore, nucleophilic addition reactions, where a
strong nucleophile reacts with an electrophilic p bond of an
organic molecule to form a new CAS bond, may play a major role
in abiotic formation of reduced organic sulfur compounds (e.g.
Aizenshtat et al., 1995). The average double bond equivalent
(DBE) of DOS and CHO formulas in SBB sediment pore waters sug-
gests that such sulfurization reactions may occur here. DBE values
of both DOS and CHO formulas are roughly constant with depth,
equaling 6.8 ± 0.1 and 7.7 ± 0.1, respectively (Fig. 4a). Thus on aver-
age, DOS formulas have roughly one fewer double bonds than CHO
formulas in these sediments. This constant offset in DBE values and
the increase with depth in the relative and absolute number of DOS
formulas as compared to CHO formulas (Fig. 4b, Table S1) are
consistent with the formation of new DOS compounds through
bisulfide addition to CHO compounds.

A recent study of DOS compounds in Cariaco Basin anoxic sed-
iments using compound-specific S isotope analysis also suggested
addition of bisulfide (HS�) as a mechanism for DOS formation
(Raven et al., 2015). However, they found that HS� addition alone
was insufficient to explain the observed d34S values, and hypothe-
sized the occurrence of at least one additional sulfurization
pathway. Here, we investigate the mechanisms of nucleophilic
addition reactions of the two main inorganic sulfur substances that
have been shown to act as strong nucleophiles, bisulfide (HS�) and
polysulfide (HSx�) (LaLonde et al., 1987; Vairavamurthy and
Mopper, 1987; Aizenshtat et al., 1995).

3.3.1. Bisulfide (HS�) pathway
Bisulfide acts as a strong nucleophile by attacking the double

bond (e.g. C@C or C@O) in an unsaturated DOM compound forming
newSAC andHAC/HAO covalent bonds (Fig. 5). ThroughKMDanal-
ysis (Section2.3.1) of all of thedetectedDOMformulas,we identified
1960 H2S homologous series in SBB pore waters (Fig. 6). While the
majority of theseH2Shomologous series involvedonly oneH2S addi-
tion, 22% of the homologous series involved two H2S additions (e.g.,
see the dashed circle in Fig. 6c). This indicates that some reactive
DOM compounds were involved in two sequential H2S addition
reactions, potentially involving bisulfide additions across two dou-
ble bonds in their chemical structures. A van Krevelen diagram of
the initial reactant andproductDOS formulas that resulted from this
HS� pathway (Fig. 7) shows that the DOS formulas have higher H/C
ratios relative to their initial reactant formulas, which is expected as
a result of adding the two H atoms of H2S per bisulfide addition to
eachmolecule. Fig. 7a also indicates that themajority of the reactant
and DOS formulas that are involved in the HS� pathway fall in the
CRAM region.

3.3.2. Polysulfide (HSx
�) pathway

Like bisulfide, polysulfide (HSx�) is also a highly reactive nucle-
ophile; it can attack the C@C double bond creating two new single

Fig. 3. 2-D correlation synchronous maps generated from the presence or absence
of (a) individual CHO formulas, and (b) individual DOS formulas detected in the 28
pore water samples as a function of their H/C ratio, using depth as the perturbation
factor. Red dots indicate positive correlation while green dots indicate negative
correlation, Higher color intensity indicates stronger correlation. The threshold for
significant correlations was r- values greater than or equal to 0.7 and p < 0.05. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

H.A. Abdulla et al. / Organic Geochemistry 139 (2020) 103879 5



covalent bonds (HSASAC and HAC), as illustrated in Fig. 5. After
this addition, at slightly basic pH, the HS� group can be replaced
with a OH� group, forming a HOASAC bond, or sulfoxide func-
tional group (Fig. 5). This product is readily oxidized to a sulfone
or sulfonic acid in the presence of oxidizing agents such as hydro-
gen peroxide and OH radical, which have both shown to form in
anoxic sediments by biotic and abiotic processes (e.g. Abele-
Oeschger et al., 1994; Lin et al., 2005; Page et al., 2013). Organic
sulfoxide may also form through the bisulfide pathway, but is
likely less kinetically favored relative to the polysulfide pathway.

This is because the oxidation step to form sulfoxide by hydroxyl
radical requires formation of a 2r/1r* three-electron bonded rad-
ical cation (–S:.+S–) transition state (e.g. Schoeneich et al., 1993;
Miller et al., 1996).

To assess the significance of the polysulfide reaction pathway in
SBB sediments, we used KMD calculations as described in Sec-
tion 2.3.1, but instead of scaling the Kendrick mass with respect
to H2S, we scaled the masses with respect to H2S2 for polysulfide
addition, H2SO for sulfoxide formation, H2SO2 for sulfone forma-
tion, and H2SO3 for sulfonic acid formation (reactions b_i through

Fig. 4. Depth profiles of (a) double bond equivalent (DBE) of CHO and DOS formulas, and (b) the percentage of total detected formulas that were CHO and DOS formulas.

Fig. 5. Two possible abiotic DOS formation mechanisms via: (a) bisulfide and (b) polysulfide nucleophilic addition reactions. (a_i) and (a_ii) represent single and double
nucleophilic additions of H2S, respectively. (b_i), (b_ii), (b_iii) and (b_iv) are nucleophilic addition reactions of HSx�, H2SO, H2SO2 and H2SO3, respectively.
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b_iv in Fig. 5, respectively). Using this approach, we identified the
following numbers of homologous series: 437 for H2S2, 1820 for
H2SO, 1622 for H2SO2 and 1295 for H2SO3 (see Fig. 5). A van Krev-
elen diagram of the reactant formulas and their corresponding pro-
duct DOS formulas that can be formed from the different
polysulfide (HSx�) pathway reactions (Fig. 8) shows that the DOS
formulas shift to higher H/C, and in some cases to higher O/C ratios,
relative to their reactant formula counterparts, which is expected
due to addition of H and O atoms to the CHO formulas through this
sulfur addition pathway.

3.3.3. Differentiating between bisulfide and polysulfide pathways
Approximately 70% of all unique DOS formulas detected in the

28 pore water samples could be assigned as products of the two
sulfur incorporation pathways. Of these 2124 DOS formulas, 87%
could be produced by either or both sulfurization pathways, while
8% and 5% of these abiotic DOS formulas could only be produced by
the polysulfide and bisulfide pathways, respectively. This large
overlap may stem from the fact that we only used the soft ioniza-
tion full scan mode on the FTICR-MS, which does not provide infor-
mation about molecular structure, limiting our ability to
differentiate which of these DOS formulas is explicitly produced
through a specific pathway (to do so requires the use of tandem
mass analysis (MS/MS) along with FTICR-MS, which was beyond
the scope of this study). Nonetheless, plotting these classified for-

mulas on a van Krevelen diagram (Fig. S3) demonstrates that �90%
of the DOS formulas that are only generated by the bisulfide path-
way have low O/C ratios (less than 0.4), while DOS formulas that
were only produced by the polysulfide pathway plot across a
broader range of O/C as well as H/C ratios. The relatively higher
O/C for distinct polysulfide formulas is expected, as additional oxy-
gen atoms can be added through this specific mechanism.

Detecting distinct formulas that are products of each DOS pro-
duction pathway supports our argument that both pathways may
occur in anoxic sediments of SBB. While the bisulfide nucleophilic
addition mechanism has been examined in a number of both
laboratory- and field-based studies (e.g. Valisolalao et al., 1984;
Sinninghe Damsté et al., 1989; Vairavamurthy and Mopper,
1987; Wakeham et al., 1995), only a handful of studies have looked
at the polysulfide pathway and the production of oxygenated
organosulfur compounds in anoxic sediments. However,
Vairavamurthy et al. (1994) observed that sulfonates accounted
for �20–40% of the total organic sulfur in near surface anoxic sed-
iments. Examining long (�100 m) anoxic sediment cores from the
Peruvian margin by X-ray absorption near edge structure (XANES)
spectroscopy, Eglinton et al. (1994) detected a broad array of
organosulfur oxidation states (sulfonates, sulfoxides and sulfides),
leading them to suggest that abiotic sulfur incorporation may
involve a variety of intermediates. Also using XANES spectroscopy,
Zhu et al. (2014) found comparable amounts of highly oxidized and

Fig. 6. Kendrick mass defect (KMD) analysis of all pore water samples using the H2S group. (a) All detected reactant formulas (blue square) and their corresponding detected
product DOS formulas (red circle). Panels (b) and (c) are magnified versions of panel (a). The horizontal dashed lines on panel c highlight the individual H2S homologous
series. The series enclosed in an orange dashed oval is an example of homologues series of double H2S additions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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reduced organosulfur species in the humic acid fraction of sedi-
ments in Jiaozhou Bay, China. These findings agree with our detec-
tion here of both oxygenated and non-oxygenated organosulfur
intermediates (Fig. 5).

3.4. Reactant DOM formulas

Of the formulas identified as reactants in the two abiotic sulfu-
rization pathways, 64% were CHO formulas and 34% were DON for-
mulas. Plotting these two reactant formula classes on a van
Krevelen diagram (Fig. S4) shows that the CHO formulas occur over
a wider H/C range (H/C = 0.70–2.00) than the DON formulas (H/
C = 0.88–1.55). Most of these CHO formulas (85%) fell in the CRAM
region, with the remaining 15% falling in the lipid-like region. The
occurrence of lipid-like formulas involved in abiotic sulfurization
reactions is consistent with previous studies that detected lipid
sulfurization during early diagenesis in anoxic to mixed-redox sed-
iments (e.g. Valisolalao et al., 1984; Sinninghe Damsté et al., 1989;
Wakeham et al., 1995). However, our study indicates that lipid sul-
furization only appears to account for a small fraction of the total
number of sulfurization reactions occurring in anoxic SBB pore
waters, and that instead, most reactions likely involve CHO formu-
las that fall within the CRAM region on a van Krevelen diagram (Fig
S4). This is consistent with other recent FTICR-MS studies of

hydrothermal fluids and wetland sediment pore waters that also
show that most abiotic sulfurization involves reactions with such
CHO-CRAM formulas (Gomez-Saez et al., 2016; Poulin et al., 2017).

Similar to the CHO reactant formulas, 97% of the DON reactant
formulas clustered in the middle of the CRAM region (Fig. S4).
Comparing these DON reactant formulas to the deaminated pep-
tide formulas that were detected in the same pore water samples
(Abdulla et al., 2018), we find that �20% of these DON reactant for-
mulas are also deaminated peptide formulas. This illustrates that
some deaminated peptides may undergo further diagenetic alter-
ation in the presence of sulfide. It also highlights the fact that sul-
furization reactions in SBB pore waters are not limited to CHO
formulas and also involve a wide variety of compounds including
nitrogen-containing DOM compounds. This latter point agrees
with laboratory sulfurization experiments which show that abiotic
sulfur incorporation reactions are non-selective and occur with a
wide variety of DOM compounds including DON compounds
(Pohlabeln et al., 2017; Gomez-Saez et al., 2017).

3.5. Geochemical implications of abiotic formation of DOS

With the exception of the top �2 cm, the DOS formulas pro-
duced by the bisulfide and polysulfide pathways described above
represent �80% of all DOS formulas detected in SBB sediment pore
waters (Fig. S5). The lower percentage of such DOS formulas near
the sediment surface may be attributed to the high concentration

Fig. 7. (a) van Krevelen diagram of detected CHO formulas (blue square) that were
identified as reactants in the bisulfide (HS�) nucleophilic addition reaction, and
their corresponding product DOS formulas detected in our samples (red circle). (b)
Magnified van Krevelen diagram illustrating some example abiotic nucleophilic
addition reactions involving HS�. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. (a) van Krevelen diagram of detected CHO formulas (blue square) that were
identified as reactants in polysulfide (HSx�) nucleophilic addition reactions and their
counterpart detected DOS formulas (brown circle). (b) Magnified van Krevelen
diagram illustrating examples of: (i) H2S2, (ii) H2SO, (iii) H2SO2, and (iv) H2SO3

addition reactions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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of reactive iron near the surface that competes with reactive DOM
compounds for reduced inorganic sulfur species (Canfield et al.,
1992, 1996; Werne et al., 2003). If CRAM is indeed an important
reactant in DOS formation, low levels of CRAM near the
sediment-water interface (Fox et al., 2018) could also explain this
observation.

Sulfurization of DOM in anoxic sediment pore waters is
expected to alter the geochemical reactivity of the precursor com-
pounds. For example, it may enhance adsorption of some sulfur-
ized organic compounds to sediment particles relative to their
precursor compounds. The increase with depth of protokerogen
sulfur in SBB sediments (Raven et al., 2016a) supports this possibil-
ity as do observations in the Cariaco Basin water column which
show that sulfur can be incorporated abiotically into sinking par-
ticulate organic matter on timescales of days (Raven et al.,
2016b). All told, if the abiotic formation of DOS in anoxic sediment
pore waters does play a role in the formation of sulfur-rich kero-
gen, these sulfurization reactions may play a key role in enhancing
organic matter preservation in sulfidic sediments (e.g. Sinninghe
Damsté and De Leeuw, 1990; Werne et al., 2004).

On the other hand, the production of DOS compounds in anoxic
sediment pore waters could also lead to a benthic flux of DOS to
the water column. In a recent study, Pohlabeln et al. (2017) esti-
mated that the flux of DOS from sulfidic sediments could range
from 30 to 200 Tg DOS per year, and concluded that it may be
one order of magnitude larger than the riverine DOS flux. While
we did not measure the benthic flux of DOS compounds from
SBB sediments, our past work has shown that SBB sediments are
a source of CRAM-like material to the water column (Fox et al.,
2018). As the majority of the DOS formulas we detected fall in
the CRAM region, it is likely that this S-CRAM material is a part
of the CRAM-like pool of compounds that escape from SBB sedi-
ments into the water column.

4. Summary and conclusion

Using FTICR-MS analyses, we investigated the abiotic formation
of DOS in anoxic sediments of SBB. Nucleophilic addition reactions
involving bisulfide (HS�) and polysulfide (HSx�) may account for
�70% of all DOS formulas detected in SBB pore waters. The occur-
rence of these reactions may also explain the formation of oxidized
organic sulfur species (sulfoxides, sulfones, and sulfonic acid) in
anoxic pore waters, which may then explain the broad range of
oxidation states of organosulfur compounds buried in anoxic sed-
iments previously detected by XANES spectroscopy (Eglinton
et al., 1994; Vairavamurthy et al., 1994; Zhu et al., 2014).

Our results and those of others (Gomez-Saez et al., 2016; Poulin
et al., 2017; Gomez-Saez et al., 2017) reveal high sulfurization
reactivity of many of the CHO and DON formulas that fall in the
CRAM region on a van Krevelen diagram, and this group of formu-
las could be responsible for the formation of a major fraction of
organosulfur compounds in anoxic and sulfidic sediments. If these
DOS products are precursors of sulfur-containing protokerogen,
they may play a key role in enhancing organic preservation in sul-
fidic sediments. At the same time, the apparent production of S-
CRAM formulas in SBB sediment pore waters makes anoxic sedi-
ments a potential source of S-CRAM to the open ocean.
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