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Real-time anomaly detection in full motion video  
Glenn Konowicz and Jiang Li  

Old Dominion University, Norfolk, VA 

ABSTRACT  

Improvement in sensor technology such as charge-coupled devices (CCD) as well as constant incremental improvements 
in storage space has enabled the recording and storage of video more prevalent and lower cost than ever before. 
However, the improvements in the ability to capture and store a wide array of video have required additional manpower 
to translate these raw data sources into useful information. We propose an algorithm for automatically detecting 
anomalous movement patterns within full motion video thus reducing the amount of human intervention required to 
make use of these new data sources. The proposed algorithm tracks all of the objects within a video sequence and 
attempts to cluster each object's trajectory into a database of existing trajectories. Objects are tracked by first 
differentiating them from a Gaussian background model and then tracked over subsequent frames based on a 
combination of size and color. Once an object is tracked over several frames, its trajectory is calculated and compared 
with other trajectories earlier in the video sequence. Anomalous trajectories are differentiated by their failure to cluster 
with other well-known movement patterns. Adding the proposed algorithm to an existing surveillance system could 
increase the likelihood of identifying an anomaly and allow for more efficient collection of intelligence data. 
Additionally, by operating in real-time, our algorithm allows for the reallocation of sensing equipment to those areas 
most likely to contain movement that is valuable for situational awareness. 

Keywords: Anomaly detection, trajectory clustering, feature tracking, traffic monitoring 
 

1. INTRODUCTION 
In a complex video scene with many moving objects there are many challenges involved in identifying and isolating 
anomalous behavior. This paper present a framework for identifying moving objects within a scene, tracking those 
objects to identify patterns of behavior, and clustering behaviors to identify those patterns that have not occurred before 
thus might warrant additional investigation by another system or a human operator.  The focus of the paper was on speed 
of the algorithm and its ability to run in parallel rather than achieving perfect accuracy.  This system is designed to run 
on a camera with a fixed position.  However, it does accommodate changes in lighting and shadows as well as changes 
in motion patterns over time. 

Our object tracking algorithm is a simplistic implementation of a template matching algorithm.  Similar object tracking 
techniques that have been investigated before for traffic analysis from a fixed point of view1, and some of them used 
more sophisticated algorithms with a moving camera2.  The use of template matching while also taking into account 
motion regions was also explored3.  Other systems used a pool of Kalman models to track objects4.  A number of 
algorithms have been studied for anomaly detection in video sequences such as TRACLUS5 which works by combining 
trajectories of line segments based on the perpendicular distance, parallel distance, and angle distance from each other, 
and the use of spectral clustering6. The method for anomaly detection proposed in this paper involves matching new 
trajectories to existing clusters of trajectories and highlighting those trajectories that do no match any existing clusters. 
We focus on the implementation of a real-time anomaly detection system that can efficiently and reliably detect an 
anomaly in a video sequence. 

2. METHODOLOGY 
This system combined portions of several different algorithms in an attempt to minimize the total amount of computation 
for determining anomalous motion patterns within a given scene. 
 
2.1 Anomaly Detection Framework 

The system diagram for anomaly detection is show in Figure 1.  Each block was implemented as a C++ class with the 
basic data passing methods being defined as pure virtual functions.  The instantiation of each different block occurs 
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through a factory create method.  The actual differences in implementation are hidden behind the virtual functions to 
allow for easily swapping between different algorithms for the same basic functionality.  This allows us to compare the 
accuracy and computational cost between similar algorithms. 

 

 
Figure 1. Block diagram of the proposed anomaly detection system. 

2.2 Motion detection 

Our efficient algorithm for determining which portions of the image contains motion creates a basic background image 
and then subtracts the background image from the current frame.  After that, pixels above a predefined threshold are 
determined to be in motion.  We used a Gaussian average model for modeling the background and it was updated 
iteratively according to the following equation: 

 1+tB  = tt IB αα +− )1(  (1) 

where B,t is the background image at time t, It is the current frame of a video sequence at time t, and α is the updating 
constant in between 0 and 1.  This model for background modeling is very efficient and uses less memory compared to 
other algorithms.  The Gaussian average filter is best suited for scenes where the background is in slow changing. 
Though this model is not effective at handling multi-valued background distributions, the disadvantage can be 
minimized if the errors are relatively small in terms of pixel size1 and can result in a very fast discernment of the 
background from foreground.  It has been used successfully in other real-time video analysis algorithms7. 

The output of the motion detection is a set of square regions consists of blobs of motion regions.  Each motion region is 
defined as a series of square center x, y, and its width and height.  Additionally, the motion detection algorithm outputs a 
black and white image with all pixels below the threshold being black and all pixels above the threshold being white. 

2.3 Object tracking 

The proposed system performs object tracking by region matching. Region matching is done in terms of a set of features 
calculated from the motion mask at the previous locations such as sizes and colors. Our object tracking algorithm 
consists of two steps. In the first step, it tries to identify the best location in the next video frame for each feature that is 
already being tracked, and in the second step, it identifies each potential motion region that represents a new feature to 
be tracked.  Once the new locations and sizes for all tracked locations have been determined, we iterate through each 
potential motion region.  Any motion region whose bounding box does not overlap the bounding box of an existing 
feature already being tracked is added as a new feature to be tracked. 

The first step starts by scaling the last few images of the feature to a square image of fixed size.  All of the existing 
images are then combined to form a mean image.  This mean image is constructed by averaging the pixel values for each 
pixel location and excluding those pixels which are not marked as different from the background image.  A mask for the 
feature is then created as the union of all pixels which are different from the background image in any of the previous 
images.  Finally, if the difference between the minimum and maximum value for any color band is above a threshold, it 
is removed from the mask.  Figure 2 shows an example for computing the mean image and its mask.  Note the similarity 
between the shape of the motion mask in 2(b) and the mask computed in 2(g).  Also, note the black front of the vehicle 
in 2(e) and how it causes that portion of the mean image to be excluded in 2(h). 

The second step in the tracking is to create a set of possible new locations and sizes.  After that, we compute a pixel by 
pixel difference value between the object region in the current frame and that in each candidate image. All candidate 
images are normalized by dividing the difference value by the number of pixels, the number of color channels, and the 
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maximum value for the color depth.   Pixels that are not in the motion masks of both the average image and the 
candidate image to be considered are excluded from the difference computation.  The candidates with a difference value 
closest to zero are then sorted to minimize the change in size.  The size and location that minimized the change in size 
and location from the previous frame is then selected to be the new location and size of the feature. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2. An example of computing the mean image for determining the next location of a feature:  (a) The raw input image 
at time t. (b) The motion mask created by the motion detection algorithm at time t.  (c) The feature and its mask at time t4.  
(d) The feature and its mask at time t3.  (e) The feature and its mask at time t2.  (f) The feature and its mask at time t1.  (g) 
The feature and its mask at time t.  (h) The mean image and its motion mask. 

Once the current sizes and offsets for all of the existing features have been identified, our algorithm proceeds to iterate 
through the motion regions identified by the motion detection algorithm.  Any motion region which falls below a size 
threshold for width or height is ignored.  Any motion region with a bounding box that overlaps the bounding box of an 
existing region is ignored.  The remaining motion regions are then added as new features to the object tracking 
algorithm. 

2.4 Trajectory clustering 

The final step in our system is to cluster recorded trajectories into different categories. These trajectories are compared 
with all existing clusters as demonstrated in a manner similar to other tracking algirthms8.  Unlike current algorithms for 
trajectory clustering9, our algorithm does not split the trajectories up into smaller clusters, but tries to create a large 
cluster to contain an entire path for a given feature being tracked. 

In our clustering algorithm, each trajectory Ti is represented by a list of vectors tij which are the pixel locations of the 
object i at time j along the x and y axes of the frame as well as zij which is the number of frames since the first vector in 
the scene: 

}{ 1 inii ttT K=  where },,{ ijijijij zyxt =  
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By recording the frame number, our clustering algorithm is able to interpolate between frames.  This interpolation allows 
the clustering to be more successful for rapidly moving video sequences where features might jump a large amount of 
pixels between frames.  Clusters are represented as a list of trajectories and their respective time offsets ukl which is the 
non-negative time difference since the beginning of the cluster k to the first point in trajectory l: 

}{ 1 knkk ccC K=  where },{ klklkl uTc =  

The location of the cluster Ck in the scene is computed as the mean distances between all available trajectory values at a 
given time using the algorithm shown in Figure 3.  Because not all trajectories will be the same length and possible noise 
at the beginnings and ends of the trajectories, a trajectory which defines the beginning of a cluster might not extends to 
the end of the cluster and the trajectory that defines the end of the cluster might not start at the beginning of the cluster. 

• Basic algorithm for determining the cluster location.  The detailed steps are as follows 

o Create a new vector v of {xm,ym,countm} coordinates and zero all of its values 

o For each vector ckl in Ck 

 For each point tij in Tkl 

• Compute the offset o of the point as ukl+zij 

• Increment the x at offset o in v by xij 

• Increment the y at offset o in v by yij 

• Increment the count at offset o in v by 1 

o For each point {xm,ym,countm} 

 If countm is non-zero 

• Set xm to xm/countm 

• Set ym to ym/countm 

The determination of whether a trajectory belongs to a given cluster is determined by a single distance threshold DT.  To 
start the clustering algorithm, a cluster is initialized as the first trajectory added.  As a new trajectory gets added, it is 
compared with existing clusters to determine the distance from the cluster.  The first point for a given trajectory will be 
compared with all points and offsets in between points for all existing clusters.  This will allow the new trajectory to start 
in the middle or end of an existing cluster.  If the distance between the first point of a trajectory and points within 
existing clusters are not below DT, a new cluster is created for the trajectory.  As new points are added to the trajectory, 
each new point is compared with various offsets between the first and the second points within all existing clusters to see 
if the new point is below DT of an existing cluster.    If the new point is within DT, the cluster for that trajectory is 
deleted and the trajectory is moved to the matched cluster. 

As data points are added to a trajectory the mean Euclidian distance between the location of the cluster with the 
trajectory removed and the trajectory by itself are compared.  If that distance is above DT, then the trajectory is removed 
from the cluster and a new cluster is created.  Periodically, the mean Euclidian distance between clusters is compared 
and if they are below DT they are combined. 

As the algorithm progresses, older trajectories are dropped at fixed intervals to keep the total number of trajectories in 
the clustering algorithm to a manageable size.  If all trajectories in a given cluster are deleted then that cluster is deleted.  
Any time a new cluster is created it is flagged as an anomaly.  All of the first few trajectories in a given video will be 
flagged as anomalies as the clustering algorithm is being trained.  Once trained, only those trajectories that do no match 
a given trajectory will be flagged as anomalies. 
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3. RESULTS 
3.1 Data acquisition  

 
The video data used for testing the proposed system was recorded from a highway overpass where the traffic had a speed 
limit of 55mph.  This video stream allowed the large amount of data in which most of the features follow regular patters 
as dictated by the traffic laws.  Additionally, the speed at which the cars move in and out of the video field of view 
necessitated a near real-time algorithm which can be processed at a high frame rate.  Additionally, the chosen portion of 
road and time of day forces the tracking algorithm to deal with shadows from signs over the road way, partial occlusion 
from light poles, and slowly changing background as clouds shift overhead. 
 
3.2 Motion detection 

The Gaussian average model used by our algorithm is one of the most efficient techniques for segmenting background 
from foreground pixels within an image.  A Gaussian average model that does not accommodate backgrounds will have 
difficulties with constantly moving background such as trees in wind. As seen in Figure 4, this leads to much more noise 
in the background.  However, a simple morphological opening and closing operation will remove the noise (Figures 4c 
and 4d).  Once the groups of foreground pixels have been identified, bounding boxes are created for each of the large 
areas.  Since the camera was in a fixed location and most of the noise in any given frame was dispersed enough to be 
filtered out using a simple opening and closing operation, the extra computation needed to maintain a more sophisticated 
background model was not necessary. 

3.3 Object tracking 

By comparing only those images that were detected as in motion, our algorithm allows us to avoid the extra error 
introduced by comparing a template with new location candidates that also contains background.  This helps distinguish 
features in the scene such as a black car on a black road.  In this case, only the parts that are significantly different from 
the background are used in the identification of the feature and its subsequent future location and size.  Given the large 
amount of flexibility in determining both the location and size, the tracking algorithm was unlikely to select a section of 
road rather than the vehicle being tracked if the vehicle was approximately the same color as the road.  Figure 5 shows 
the output of a single frame of the object tracking algorithm as well as the internal representation of a single object.  
Each object currently being tracked is identified by an object number.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The motion detection input and output.  (a) The raw input image. (b) The difference of the background and the raw 
input image.  (c) The difference image after  opening and closing operations.  (d) The difference after opening and closing 
with a bound box. 

 
Figure 4. The output of the feature tracking algorithm.  (a) The output from the feature tracking algorithm with a bounding 
box around the feature and the object number identified 
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3.4 Trajectory clustering 

Since our application requires on-line computation of clusters from various trajectories, we were not able to use 
traditional off-line clustering algorithms such as a self-organizing map9.  Instead, we needed to focus on an algorithm 
that could be updated iteratively.  Our approach is similar to other algorithms such as the one describe by Piciarelli 10.  
However, our algorithm doesn’t try to fit parts of a trajectory into several different clusters.  Instead, it attempts to 
cluster an entire trajectory and even trajectories that might not exactly match in starting and ending locations.  The intent 
of matching an entire trajectory is to recognize those behaviors such as circling a parking lot multiple times as anomaly 
that is more likely to be identified by using the whole trajectory.  

Additionally, the trajectory clustering algorithm tries to interpolate between frames using a basic linear interpolation 
step. It helps cluster trajectories which might jump many pixels over just a few frames.  Furthermore, it gives a measure 
of resolution to the clustering algorithm.  The clustering algorithm compares the distance between trajectories by starting 
at the first frame and stepping forward by a fraction of a frame.  For instance, if the time slice was half of a frame, then 
the second point of comparison would be the linear interpolation between the first and second frame.  If the algorithm 
needs to run faster, the fraction of a frame between interpolation steps can be increased. 

One limitation to the current time based algorithm is that it would not have updates for an object that stopped for a 
period of time in the middle of its trajectory.  For instance, if a car stopped quickly in the middle of the highway then it 
would just be marked as the end of the trajectory.  However, the cars slowing down behind it or driving around the 
stopped car would be recognized as an anomaly.  This limitation provides the advantage of not having continuously 
updated trajectories for vehicle in a parking lot which are not moving.  Only those vehicles that are moving or have 
recently moved have their trajectories updated. 

 

 
(a) 

 
(b) 

Figure 5. One example output of the trajectory clustering algorithm.  (a) Early outputs  in training with dark lines indicating 
clusters which have only a few trajectories.  (b) Output after several hundred more frames with the light colored lines 
indicating clusters with multiple trajectories. 

 

3.5 Comparison of computational performance 

 

Since the basic functionality of the tracking algorithm was to take one large image and one small image and then look 
for an instance of the small image in the large image, we thought OpenCL11 might be a viable alternative to speed up the 
processing.  However, a basic implementation in OpenCL did not demonstrated sufficient speedup because of the 
overhead involved in moving the image data as well as the list of candidate locations to the video card and retrieving the 
esults for each candidate location from the video card.  The multi-threaded implementation which just involved a round-
robin approach of alternating the possible new locations of a feature on different threads running on a multi-core 
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processor was able to achieve much better results.  Table 1 summarizes the results of the performance analysis on the 
various implementations of the tracking algorithm. 

  

Table 1. Comparison of CPU times between sequential implementation, multi-threaded implementation, and OpenCL 
implementation of computing the difference number for 1,800,000 possible combinations of 2x2 feature in a larger image.  
Normally, only about 50,000 candidate combinations are checked, but a larger number was used in this instance to achieve 
more consistence timing results. 

Implementation Platform CPU Time 

Single-threaded AMD Phenom II X6 1055T 3.269s 

Single-threaded Intel Core i7-2760QM 2.020s 

Multi-threaded (6 threads) AMD Phenom II X6 1055T 0.681s 

Multi-threaded (8 threads) Intel Core i7-2760QM 0.557s 

OpenCL AMD Radeon HD6870 16.425s 

OpenCL NVidia Quadro NVS 4200M 1.429s 

 

The overall performance of the entire system was about 20 frames per second.  The test machine was a six-core AMD 
Phenom II system with 16GB of RAM.  Each frame of the video feed is 720x576 pixels, but is scaled down to 360x288 
at the first phase of processing and remains at that resolution for the rest of the algorithm.  The tracking algorithm used 
six images at 20x20 pixel resolution to represent each feature being tracked. 

4. CONCLUSIONS AND FUTURE WORK 
The current method of tracking objects in a scene using current multicore processors allows for efficient and effective 
determination of anomalous motion patterns within a scene.  In the performance tradeoff, algorithms that tend to favor 
speed over accuracy allow for near real-time computation while not significantly decreasing accuracy. 

In addition to testing in environments with just one class of object, we intend to expand our anomaly detection algorithm 
to handle multiple classes of objects.  For instance, at an intersection pedestrians would have one set of trajectories and 
automobiles would have another set of trajectories.  These trajectories would need to be clustered independently. 

An attempt to minimize the amount of data going between the CPU and the GPU will likely to increase the performance 
of our OpenCL implementation.  This could possibly be accomplished by having the OpenCL kernel compute the list of 
candidate size and location combinations and only return those combinations which resulted in the lowest difference 
value thus further reducing the amount of data transferred between the CPU and the video card. 
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