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ABSTRACT 

 

TIME SERIES MODELING TO ASCERTAIN AGE IN FISHERIES MANAGEMENT 

 

Kathleen Sue Kirch 

Old Dominion University, 2024 

Director: Dr. John Klinck 

 

 

The ability to assign accurate ages of fish is important to fisheries management. Accurate 

ageing allows for the most reliable age-based models to be used to support sustainability and 

maximize economic benefit. Structures used to age include bones, scales, and most commonly 

ear bones (otoliths). Assigning age relies on validating putative annual marks by evaluating 

accretional material laid down in patterns in fish otoliths, typically by marginal increment 

analysis. These patterns often take the shape of a sawtooth wave with an abrupt drop in accretion 

yearly to form an annual band and are typically validated qualitatively. Researchers have shown 

keen interest in modeling marginal increments to verify the marks do, in fact, occur yearly. 

However, it has been challenging in finding the best model to predict this sawtooth wave pattern. 

I propose three new applications of time series models to validate the existence of the yearly 

sawtooth wave patterned data: autoregressive integrated moving average (ARIMA), unobserved 

components model (UCM) and copula. These methods are expected to enable the identification 

of yearly patterns in accretion. ARIMA and UCM account for the dependence of observations 

and error, while copula incorporates a variety of marginal distributions and dependence structure. 

Results indicate that all three models are valid to predict annuli formation. ARIMA works best 

with a sharp, distinct sawtooth wave while copula is best for data without the sharp drop.
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CHAPTER 1 

INTRODUCTION 

 

Understanding age of fish is crucial for marine ecosystem management as an integral part 

of fishery science research centers. The Magnuson-Stevens Fishery Conservation and 

Management Act requires that all fisheries in the United States have a management plan to 

ensure sustainability and maximum economic yield (2007). Poor management can lead to closure 

of the fishery or increased regulation such as size or number limits in the fish caught (Abbott and 

Haynie, 2012; Abesamis et al., 2014; Anderson, 2014; Arostegui et al., 2021).  These increased 

regulations can have a detrimental effect to fishermen and local economies. For example, for the 

year 2020, $253 billion in sales were generated from U.S. commercial and recreational saltwater 

fishing. Fisheries contributed $117 billion to gross domestic product and provided for 1.7 million 

jobs (2023). 

To create the best management plans, accurate ageing of fishes is crucial (Campana 

2001). Age-based models allow for the most accurate analysis leading to sustainability with 

maximum economic benefit (Flinn and Midway, 2021; Haddon, 2011; Quinn and Deriso, 1999). 

One of the first age structured models was proposed by Beverton and Holt in 1957 and is still 

actively used in research today (Quinn and Deriso, 1999; Thorson, 2019).  

Beverton and Holt relied on scale annuli to base their assessments of age. Since then, 

otolith-based ages have proven to be more reliable because the structure do not degrade like 

some scales. Otoliths are often sectioned to reveal double banded rings, one opaque and one 

translucent, forming an annual ring, and can be counted in a method similar to counting the rings 
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of a tree (Black et al., 2005; Godet et al., 2020). But first, it must be validated that the rings occur 

yearly, and not more or less often. 

A first method of validating ages is the release of marked fish of a known age, the most 

robust method of age validation. A second method of validating ages is using radiochemical 

dating, measuring the radioactive decay of certain elements found within the fish, typically in 

otoliths. A third method of validating ages is the mark and recapture of fish tagged chemically, 

the most rigorous method when the fish is tagged at a young age and then recaptured at an older 

age. A fourth method of validating ages is with discrete length mode samples for age proxies. 

This method follows the modes of length over a given time and does not validate absolute age or 

annuli periodicity. A fifth method of validating ages is the use of natural date specific markers. 

This is similar to radiochemical dating in that it uses major events that chemically marks an 

entire fish population. A sixth method of validating ages is the use of captive fish raised from 

birth. The main disadvantage of this method is that annuli formation depends on environmental 

factors, so an artificial environment could produce artificial annuli. A seventh method of 

validating ages is marginal increment analysis (MIA). MIA is the most commonly used method 

because it is economical and efficient. It involves collecting otoliths for each month throughout 

the year (Campana, 2001). 

MIA data is typically analyzed qualitatively through graphical and visual methods. One 

method involves graphing the monthly average measurement and visually inspecting the graph 

for a drop in accretion following a sawtooth pattern (Barbieri et al., 1994; Rodriguez-Marin et 

al., 2021). Edge analysis involves comparing the month of capture to whether the band at the 

edge of the otolith is opaque or translucent (Gebremedhin et al., 2021; Okamura and Semba, 

2009). 
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However, there are studies using quantitative methods. One such quantitative model is 

based on analysis of variance (ANOVA) (Gumus, et al., 2007; Phelps, 2019; Williams et al., 

2005). This method compares the growth measurements between months and looks for 

differences in the growth from one month to the next by reading the width of the ring.  But, if the 

data exhibits outliers, conventional statistics can lack power and analysis may fail (Okamura et 

al., 2013).  

Okamura et al. (2013) used circular statistics to model a single year’s pattern in 

Bathyraja parmifera, a ray, in the eastern Bering Sea. Their idea was to use a circular-linear 

regression model with truncated wrapped Cauchy distribution for random effects, breaking the 

annual cycle into months. They also assumed that the estimated periodicity is invariant with age.  

Both circular analysis and analysis of variance methods ignore the multi-year effects of 

continued growth. It is logical to build the model based on a time series that does not just include 

one year, but multiple years, with data partitioned by month capturing seasonality. A simple 

graphical display of that data shows patterns of the growth that mimic a sawtooth wave with an 

abrupt drop in accretion yearly to form an annual band (de Alaiza Martinez et al., 2015; 

Okamura et al., 2013).  There are many limitations in the sawtooth related to model assumption, 

validation, and temporal dependence associated with MIA. Moreover, it has been challenging in 

finding the best model to predict this sawtooth wave pattern, due to the scarcity of fitted models 

available in statistical literature.  

In addition to the sawtooth wave, fishery data is rife with missing and incomplete data 

sets (Afrifa-Yamoah et al., 2020; Afrifa-Yamoah et al., 2021). This missing data can be dealt 

with in numerous ways. It may be ignored, and the dataset will be incomplete; proxies can be 

used to estimate missing data; or it can be imputed. An important aspect of imputation in this 
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case is the ability to capture the time series setting of the data. Multiple imputation is much more 

preferred than single imputation (Azur et al., 2011; Donders et al., 2006). 

Afrifa-Yamoah et al. (2021) analyzed recreational power boat launches from March 2011 

to February 2012 and May 2013 to April 2014 in two different locations of Western Australia. 

Precipitation, temperature, humidity, wind speed, gust and direction, sea level pressure, and day 

of the week were used as covariates. They used Bayesian regression to impute missing data 

ranging from March 2012 to April 2013 and May 2014 to July 2014. With the use of posterior 

probabilities based on covariates, the analysis was able to determine the most important 

covariates for each location, and forecasted estimates were well within confidence intervals of 

observed data. So instead of ignoring missing data, recent and valid imputation methods become 

an attractive alternate to missing data. 

In this dissertation, statistical aged models, time series data will be built on two kinds of 

fish: Atlantic croaker (Micropogonias undulatus) and blackbelly rosefish (Helicolenus 

dactylopterus) and I demonstrate the value of the statistical approach to evaluating marginal 

increments (MIs) for plausible temporal behaviors. Some of the Atlantic croaker data has been 

presented in Barbieri et al. (1994), and the dissertation will use that data as a proof of concept in 

Chapter 3. Atlantic croaker and blackbelly rosefish data for the next studies in Chapter 4 and 5 

were collected by the Center for Quantitative Fisheries Ecology. These chapters extend our 

ability to analyze MI when following cohorts over time and when missing data are present for 

the first use of such statistical models in the validation of annuli through MIA. 
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CHAPTER 2 

 

REVIEW OF LITERATURE FOR TIME SERIES 

 

Time series is the analysis of data collected over time and MIA is an example of time 

series data. The MIA describes the changes in otolith accretion over months and years. However, 

MIA has never been analyzed with time series methods.  

2.1 Classical time series models 

Time series is a sequence of observations taken over 𝑛 distinct times, 𝑡1,  𝑡2, … ,  𝑡𝑛, with 

𝑡1  <  𝑡2  <  …  <  𝑡𝑛, with mean of 𝜇𝑦(𝑡) = 𝐸(𝑦𝑡) where the 𝑦𝑡 describes the distribution of the 

observations at time 𝑡. For example, the monthly catch of fish and monthly fishing effort are 

examples of time series (Elmezouar et al., 2021; Saila et al., 1980).  The autocovariance between 

two time periods, t and s, is 𝛾𝑦(𝑡, 𝑠) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑠) = 𝐸[(𝑌𝑡 − 𝜇𝑡)(𝑌𝑠 − 𝜇𝑠)] (Brockwell and 

Davis, 2002).  The covariance is used to measure of correlation between the observations at 

different time periods. Typically, the further away the time periods, the more likely the 

observations are independent. However, when the time periods are close to each other, the 

dependence needs to be included in the modeling of the observations. In most cases, time is 

discrete and equidistant. If the times are equidistant, then the time series model can be 

considered consistent, and properties associated with that time series are proposed in the 

literature. If not equidistant, imputation may be used to regain consistency over time.  

Nonconsistency in the data can be caused by lack of equidistant measurement.  It is 

common in fishery science and may be linked to different scenarios such as, but not limited to, 

collection being cost prohibitive, limited time or resources, or adverse weather conditions 

making specimen collection impossible (Benavides et al., 2023).  Benavides et al. (2023) used 
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imputation on a dataset with missing values. They found a seasonal decomposition with Kalman 

filters produced the lowest mean squared errors. Further methods to overcome lack of 

consistency in collection of the data will be described in Chapter 4. 

The time series must also be stationary to be able to build predictions. Stationary means 

(i) 𝜇𝑌(𝑡) is independent of 𝑡, (ii) autocovariance,  𝛾𝑌(𝑡 + ℎ, 𝑡), is independent of 𝑡 for each ℎ and 

(iii) (𝑌1, … , 𝑌𝑛) has the same distribution as (𝑌1+ℎ , … , 𝑌𝑛+ℎ) for any choice of n and for any lag h 

(Brockwell and Davis, 2002).  

An example of a stationary time series process is the autoregressive model (AR) of order 

1. An AR(1) is defined as  

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝜀𝑡 ,                                                                                                                                           (1) 

where 𝜀𝑡~𝑁(0, 𝜎2) and 𝜙 is a constant so that the time series process is stationary (Brockwell 

and Davis, 2002). The autocovariance function for an AR(1) is 

𝛾𝑜 =
𝜎2

1 − 𝜙2
.                                                                                                                                                 (2) 
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This leads to the assumption that |𝜙| < 1 (Cryer and Chan, 2008).   Simulated AR(1) 

data where 𝜙̂ = 0.9 is shown in Figure 1 with the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). 

An AR(2) model is defined 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝜀𝑡,                                                                                                          (3)  

where  𝜀𝑡~𝑁(0, 𝜎2), 𝜙2 + 𝜙1 < 1, 𝜙2 − 𝜙1 < 1, and −1 < 𝜙2 < 1 (Brockwell and Davis, 

2002). Simulated AR(2) data where 𝜙̂1 = 1.5 and 𝜙̂2 = −0.75 is shown in Figure 2 with the 

ACF and PACF. 

The model can be extended to an autoregressive order 𝑝, having the form 

𝑌𝑡 = ∑ 𝜙𝑘𝑌𝑡−𝑘 + 𝜀𝑡
𝑝
𝑘=1 ,                                                                                                                 (4) 

 

A 

B C 

Fig. 1: A) Plot of simulated AR(1) data where 𝜙 = 0.9. B) ACF of simulated AR(1) data 

where 𝜙 = 0.9. C) PACF of simulated AR(1) data where 𝜙 = 0.9. Reproduced from 

[33]. 
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where 𝜀𝑡~ 𝑁(0, 𝜎2) and the characteristic polynomial equation associated with AR(𝑝) is defined 

as 

1 − 𝜙1𝑧 − 𝜙2𝑧
2 − ⋯− 𝜙𝑝𝑧𝑝 = 0.                                                                                              (5) 

The equation has 𝑝 roots, and the time series is stationary if the roots are such that their 

norm is greater than 1, i.e. |𝑧| > 1 (Brockwell and Davis, 2002). When considering an AR(1) 

model, the autocovariance function of order k is defined as 

𝛾𝑘 = 𝜙𝑘 𝜎𝑒
2

1−𝜙2 ,   𝑘 = 1, 2, 3,… , 𝑝,                                                                                                  (6) 

while the autocorrelation function is 

𝜌𝑘 =
𝛾𝑘

𝛾𝑜
= 𝜙𝑘 ,  𝑘 =  1, 2, 3,… , 𝑝.                                                                                               (7) 
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In a given dataset, the choice of the order 𝑝 is associated with the PACF (Brockwell and 

Davis, 2002). The equation for the PACF of a process is defined as  

𝜌𝑘 = 𝜙𝑝1𝜌𝑘−1 + ⋯+ 𝜙𝑝(𝑝−1)𝜌𝑘−𝑝+1 + 𝜙𝑝𝑝𝜌𝑘−𝑝, 𝑘 = 1, 2, . . . , 𝑝                                             (8) 

This formulation leads to the Yule-Walker equation, written as 

[
 
 
 

1 𝜌1 𝜌2 … 𝜌𝑝−1

𝜌1 1 𝜌1 … 𝜌𝑝−2

⋮ ⋮ ⋮ … ⋮
𝜌𝑝−1 𝜌𝑝−2 𝜌𝑝−3 … 1 ]

 
 
 

[
 
 
 
𝜙𝑝1

𝜙𝑝2

⋮
𝜙𝑝𝑝]

 
 
 

= [

𝜌1

𝜌2

⋮
𝜌𝑝

],                                                                          (9) 

or simply 

𝑷𝒑𝝓𝒑 = 𝝆𝒑.     (Box et al., 2016)                                                                                               (10) 

Fig. 2: Plot of simulated AR(2) data where 𝜙1 = 1.5, 𝜙2 = −0.75. B) ACF of simulated AR(2) 

data where 𝜙1 = 1.5,𝜙2 = −0.75. C) PACF of simulated AR(2) data where 𝜙1 = 1.5, 𝜙2 =
 −0.75. Reproduced from [33]. 

 

A 

C B 
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Another case of a stationary process is obtained from the moving average (MA) model of 

order 1. A moving average process acts on the errors of the model and a MA (1) has an equation 

of 

𝑌𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1,                                                                                                                          (11) 

where 𝜀𝑡~ 𝑁(0, 𝜎2), 𝜃 is a constant and |𝜃| < 1 such that the process is stationary (Brockwell 

and Davis, 2002). Simulated MA(1) data where 𝜃 = −0.9 is shown in Figure 3 with the ACF 

and PACF. The MA(1) process has an autocovariance functions given as 

{

𝛾𝑜 = 𝜎2(1 + 𝜃2)

𝛾1 = −𝜃𝜎2

𝛾𝑘 = 0,   𝑓𝑜𝑟 𝑘 ≥ 2

,                                                                                                                  (12) 

and autocorrelation  

{
𝜌1 =

−𝜃

1+𝜃2

𝜌𝑘 = 0,   𝑓𝑜𝑟 𝑘 ≥ 2
.                                                                                                                  (13) 
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An MA(2) process is defined as 

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2,                                                                                                         (14) 

where 𝜃2 + 𝜃1 < 1, 𝜃2 − 𝜃1 < 1, and −1 < 𝜃2 < 1. Simulated MA(2) data where 𝜃1 = 1 and 

𝜃2 = −0.6 is shown in Figure 4 with the ACF and PACF.  

B C 

Fig. 3: A) Plot of simulated MA(1) data where 𝜃 = −0.9. B) ACF of simulated MA(1) data where 

𝜃 = −0.9. C) PACF of simulated MA(1) data where 𝜃 = −0.9. Reproduced from [33]. 
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The moving average formula can be extended to order 𝑞 and has the following 

formulation 

𝑌𝑡 = 𝜀𝑡 − θ1𝜀𝑡−1 − ⋯− 𝜃𝑞𝜀𝑡−𝑞  ,                                                                                                (15) 

where 𝜀𝑡~ 𝑁(0, 𝜎2) (Brockwell and Davis, 2002). 

The characteristic polynomial equation is 

1 − 𝜃1𝑧 − ⋯− 𝜃𝑞𝑧𝑞 = 0.                                                                                                           (16) 

The equation has 𝑞 roots, and the time series is stationary if the roots of the characteristic 

polynomial have norm greater than one, i.e. |𝑧| > 1. 

B C 

Fig. 4: Plot of simulated MA(2) data where 𝜃1 = 1, 𝜃2 = −0.6. B) ACF of simulated MA(2) data 

where 𝜃1 = 1, 𝜃2 = −0.6. C) PACF of simulated MA(2) data where 𝜃1 = 1, 𝜃2 = −0.6. 

Reproduced from [33]. 
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An MA (𝑞) has an autocovariance function of 

𝛾𝑜 = (1 + 𝜃1
2 + 𝜃2

2 + ⋯ + 𝜃𝑞
2)𝜎𝑒

2.                                                                                              (17) 

To help determine the order q, the autocorrelation function (ACF) can be used and is 

defined as: 

𝜌𝑘 = {

−𝜃𝑘+𝜃1𝜃𝑘+1+⋯+𝜃𝑞−𝑘𝜃𝑞

1+𝜃1
2+⋯+𝜃𝑞

2 , 𝑓𝑜𝑟 𝑘 = 1,2,… , 𝑞

0,   𝑓𝑜𝑟 𝑘 > 𝑞
.                                                                        (18) 

Combining the two ideas of autoregressive and moving average, we obtain an 

autoregressive-moving average model (ARMA). For example, the ARMA (1,1) process is 

defined as:  

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1, 𝑤ℎ𝑒𝑟𝑒 𝜙 + 𝜃 ≠ 0,                                                                             (19) 

with 𝜀𝑡~ 𝑁(0, 𝜎2), an autocovariance function  

𝛾𝑜 =
1−2𝜙𝜃+𝜃2

1−𝜙2 𝜎2,                                                                                                                       (20) 

and an autocorrelation function 

𝜌𝑘 =
(1−𝜃𝜙)(𝜙−𝜃)

1−2𝜃𝜙+𝜃2 𝜙𝑘−1.                                                                                                               (21) 

Simulated ARMA(1,1) data where 𝜙̂ = 0.6 and 𝜃 = −0.3 is shown in Figure 5 with the ACF 

and PACF. 

In the general ARMA(𝑝, 𝑞), the model becomes :  

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞,                        (22) 

with an autocovariance function  

𝛾𝑘 = 𝜙1𝛾𝑘−1 + ⋯+ 𝜙𝑝𝛾𝑘−𝑝,   𝑘 ≥ 𝑞 + 1,                                                                                 (23) 

and an autocorrelation function  

𝜌𝑘 = 𝜙1𝜌𝑘−1 + ⋯+ 𝜙𝑝𝜌𝑘−𝑝.                                                                                                     (24) 
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To achieve stationarity, (integrated) differences can be used between measurements at 

selected time points, creating an autoregressive integrated moving average process 

(ARIMA(𝑝, 𝑑, 𝑞), where 𝑑 is the differenced order), defined as: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡,                                                                                                        (25) 

where 𝜀𝑡~ 𝑁(0, 𝜎2) and B is the backshift operator; for example, (1 − 𝐵𝑑)𝑦𝑡 =  𝑦𝑡 − 𝑦𝑡−𝑑. 

Also,  𝜙(𝑧) = 1 + 𝜙1𝑧 + ⋯+ 𝜙𝑝𝑧𝑝 and 𝜃(𝑧) = 1 + 𝜃1𝑧 + ⋯ + 𝜃𝑞𝑧𝑞 (Brockwell and Davis, 

A 

C B 

Fig. 5: Plot of simulated ARMA(1,1) data where 𝜙̂ = 0.6, 𝜃 = −0.3. B) ACF of simulated 

ARMA(1,1) data where 𝜙̂ = 0.6, 𝜃 = −0.3. C) PACF of simulated ARMA(1,1) data where 

𝜙̂ = 0.6, 𝜃 = −0.3. Reproduced from [33]. 
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2002). Simulated ARIMA(1,1,1) data where 𝜙̂ = 0.7 and 𝜃 = 0.7 is shown in Figure 6 with the 

ACF and PACF. 

 

Mehmood et al. (2020) used nonstationary data from Pakistani fisheries from 1947-1997. 

They took the log of the differences to create stationarity. ARIMA was used to forecast the 

fisheries from 2017-2026. It was found that ARIMA (2,1,3) modeled the forecasting best.  

Another method of analyzing time series is with trigonometric functions, also known as 

harmonic regression. Harmonic regression is used on data that is stationary and has longer 

periodic cycles than traditional time series models. Any non-zero mean stationary process can be 

A 

B C 

Fig. 6: Plot of simulated ARIMA(1,1,1) data where 𝜙̂ = 0.7, 𝜃 = 0.7. B) ACF of simulated 

ARIMA(1,1,1) data where 𝜙̂ = 0.7, 𝜃 = 0.7. C) PACF of simulated ARIMA(1,1) data where 

𝜙̂ = 0.7, 𝜃 = 0.7. Reproduced from [33]p. 
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expressed as a collection of uncorrelated sinusoids. A function to express such an example of a 

trigonometric function is: 

𝑦𝑡 = ∑ [𝑎𝑗 cos(2𝜋𝜆𝑗𝑡) + 𝑏𝑗sin (2𝜋𝛾𝑗𝑡)]
𝑘
𝑗=1 ,                                                                              (26) 

where 𝑘 is the number of harmonic functions, 𝑎𝑗 and 𝑏𝑗 are the amplitudes of their respective 

trigonometric functions, and 𝜆𝑗 and 𝛾𝑗 are the respective frequencies (Brockwell and Davis, 

2002; Chesneau, 2020; Chesneau, 2021). The use of the tangent function is also possible, but less 

common (Figures 7 and 8).  

 

 

 

Ashrafi et al. (2020) uses harmonic regression to analyze the seasonality of catch per unit 

effort in the near shore and off-shore Norwegian cod fishery. They used a fast Fourier 

transformation to determine the number of harmonics; they found two harmonic functions to fit 

the data. Their result concluded that the near shore fishery had a seasonal component to the catch 

per unit effort, while the offshore fishery did not. 

Fig. 7: Plot of 𝑌𝑡 = −2𝑐𝑜𝑠 (
2𝜋𝑡

4
) + 3𝑠𝑖𝑛 (

2𝜋𝑡

4
). 
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2.2 Unobserved Component Models (UCMs) 

Although time series models described in Section 2.1 are efficient, issues arise when 

stationarity is not met. Under stationarity, the assumption that the variance is the same may not 

be valid. Research has proposed another type of modeling, the UCMs. The novelty resides in the 

decomposition of the series capturing its different patterns. The time series under UCM is 

decomposed into a model with trend, seasonality, cycle, and regression elements. To get a clear 

picture of the underlying process, the trend is the first characteristic one may look for. If the 

trend is monotonic, differencing was used in the usual time series model from the previous 

section. In this new formulation, the trend is described by its mean long-term change. It gives an 

idea of the general tendency associated with the time series.  

Segregating the seasonality, we get a clear understanding of periodicity of the process. 

Seasonality exists when there are consistent patterns over a fixed period of time. The cycle 

describes periods much longer than that of the seasonality, and typically uses a combination of 

sine and cosine functions.  

Fig. 8: Plot of 𝑌𝑡 = −2𝑐𝑜𝑠 (
2𝜋𝑡

4
) + 3𝑠𝑖𝑛 (

2𝜋𝑡

4
) + 2𝑡𝑎𝑛 (

2𝜋𝑡

4
). 
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The equation for this decomposition is written as 

𝑦𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝜓𝑡 + ∑ 𝛽𝑗𝑥𝑗𝑡
𝑚
𝑗=1 + 𝜀𝑡,                                                                                         (27) 

where 𝜇𝑡 represents the trend, 𝛾𝑡 represents the seasonal, 𝜓𝑡 represents the cyclical component, 

∑ 𝛽𝑗𝑥𝑗𝑡
𝑚
𝑗=1  is the regression term with 𝑥𝑗𝑡 covariates, and 𝜀𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎2) (SAS Institute, 2014). 

The regression term captures the effects of any covariates to the model. 

Bian et al. (2019) used UCM to predict monthly car volume in a New Jersey highway 

from January 2006 to October 2016. The UCM used trend, consisting of a level with no slope 

and no cyclical component and no covariates. The data were stationary after looking at the ACF 

and PACF (there were no spikes in the graphs other than the first). A seasonal component was 

also added because of an obvious pattern in the car volume. They calculated the mean squared 

deviation, mean absolute deviation, and mean absolute percentage error between their observed 

and predicted values over a year. UCM was tested compared to simple linear regression, 

ARIMA, support vector machine, and artificial neural networks. It was found that the UCM 

performed better on the data than all the other models.  

Haimerl and Hartle (2023) used UCMs to analyze COVID-19 daily cases reported by 

Johns Hopkins University from January 2020 to December 2022. Their data was non-stationary 

with changing variance over time. The model included trend that was volatile depending on the 

status of the disease at the time. The seasonality was described as six days, and cyclical 

component was captured by an AR(2). They found UCMs performed better than deterministic 

models with and without seasonality.   

2.3 Copula 

Normality and independence assumptions of the errors in the transformed time series 

model may be violated. Also, untransformed data may not be stationary. A more flexible 
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alternative is offered by the use of copula functions. A copula is a joint distribution of random 

variables whose marginal distributions have been transformed into their uniform cumulative 

distribution function (CDF) version. Kim et al. (2011) considered the joint distribution of 

bivariate time series model using copula.  

A bivariate copula function is defined as 

𝐶: [0,1]2 → [0,1] ,                                                                                                                       (28) 

which satisfies two sets of requirements. The first set being that: 

𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0, 𝐶(𝑢, 1) = 𝑢 𝑎𝑛𝑑 𝐶(1, 𝑣) = 𝑣 𝑓𝑜𝑟 0 ≤ 𝑢, 𝑣, ≤ 1,                                 (29) 

or that the marginal distributions follow a uniform [0,1] distribution, 𝑢 and 𝑣 are the CDFs of 

some datasets. The second requirement set is  

𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1) ≥ 0                                                                  (30) 

𝑓𝑜𝑟 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1,                                                                            (31) 

meaning the probability mass is non-negative (Sun et al., 2020).  

Sklar’s theorem states that for any two continuous functions 𝑋 and 𝑌, the joint 

distribution can be formulated from its marginal CDFs F(x) = Pr(X≤x) and F(y) = Pr(Y≤y), and 

there exists a copula C such that 𝑓(𝑋, 𝑌) = 𝐶(𝐹𝑥 , 𝐹𝑦|𝜃). Moreover, the copula C is unique if X 

and Y are continuous (Sun et al., 2020). However, when 𝐹𝑥and 𝐹𝑦are discrete or mixed, the 

uniqueness of the copula is within a suitable range. 

There are many different measures of goodness of fit associated with copula models. One 

of those measures of goodness of fit is the Kendall’s tau statistic. It measures the difference in 

concordance and discordance between the two variables. The Kendall’s tau is defined as the 

partial derivative of 𝐶 with respect to 𝑢 and 𝑣, or 

𝜏 = 1 − 4∬ 𝜕𝑢𝐶(𝑢, 𝑣)𝜕𝑣𝐶(𝑢, 𝑣)𝑑𝑢 𝑑𝑣,                                                                                    (32) 



20 
 

 
 

where −1 < 𝜏 < 1 (Chesneau, 2022). 

Marsh et al. (2015) used the bivariate Gaussian copula to analyze habitat preferences and 

spatial distributions of Albacore tuna in New Zealand’s Exclusive Economic Zone. Data were 

collected from 2003 to 2012 and included catch per unit effort based on four seasons in a year. 

Sea surface temperature, sea surface height, sea surface gradient, net primary productivity, and 

depth were used as covariates. They found that the catch per unit effort over the time period 

modeled using Gaussian copula provided a better model fit than the traditional models. The 

traditional models assume independence of habitat conditions, whereas the copula modeled them 

jointly.  

Rautureau et al. (2010) studied copulas to test the feasibility of a French monkfish 

derivatives market. They studied daily average prices from 44 seafood auction markets from 

January 1994 to December 2006. Size, presentation, and quality were used as covariates. 

Volatility was observed in the maximum price, but not with very low prices. Spearman’s rho and 

Kendall’s tau were calculated to check for associations between sizes. Spearman’s rho ranged 

from 0.188 to 0.705 while Kendall’s tau ranged from 0.129 to 0.529. They concluded that the 

bivariate copula modeled the non-linear dependence relationship between price indices and sizes 

of the monkfish suitably well. A derivative market for French monkfish was then a feasible price 

risk management. 

 

2.4 Imputation 

In chapter four, following a cohort of Atlantic croaker, and chapter five, time series with 

blackbelly rosefish, I consider datasets with missing data. There are three types of missing data, 

missing completely at random (MCAR), missing at random (MAR), and missing not at random 
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(MNAR). The probability that an MCAR observation is missing does not depend on anything 

observed or unobserved. The missingness can be ignored and the data can be handled as a simple 

random subsample for analysis (Baraldi and Enders, 2010; Little et al., 2014). The probability 

associated with MAR observation is based on values of observed data. The missingness is 

correlated to other collected variables. The probability associated with a MNAR observation is 

missingness may depend on something that has not been measured or is related to the missing 

values themselves (Baraldi and Enders, 2010; Little et al., 2014). The lack of data is informative 

to the analysis (Davey and Savla, 2010; Little et al., 2014). Many different probability 

distribution functions can be used. The choice depends on the type of missingness at hand.  

There are six strategies for handling missing data. The first is the complete case method 

where missing values are ignored. This method uses only complete observations (Davey and 

Savla, 2010). The second method is called available case method. This method uses information 

from both complete and incomplete observations. For example, in the case of test scores, where 

we have a pre and post evaluation; if one score is missing, it is ignored (Davey and Savla, 2010). 

Available case method works better at correcting bias with MAR data. A third method is list-

wise deletion. This method removes observations at the multivariate level that have one or more 

data points missing. It should only be used with MCAR data or else it leads to biased estimates 

(Baraldi and Enders, 2010). The fourth method is called list-wise deletion with weighting. This 

method is similar to list-wise deletion but gives weight to some observations to reduce bias. For 

example, in a gender study, if female subjects are twice as likely to complete the survey, male 

subjects have their responses counted two times (Davey and Savla, 2010). A fifth method is pair-

wise deletion. In this method, sample moments are calculated based on pairs of available 

variables (Baraldi and Enders, 2010). A sixth method is based on the expectation maximization 
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algorithm. In this method, sample moments of the variable of interest are estimated with a two-

step iterative process. In the expectation step, expected values of the variable of interest replace 

missing values; in the maximization step, maximum likelihood estimates are made of the mean 

and covariance. This iteration repeats until data convergence is achieved (Davey and Savla, 

2010). 

All of the above-described methods are well documented; however, another alternative 

method to deal with missing data is imputation. Single imputation replaces the missing data point 

with a plausible value such as the mean or estimates from a regression equation (Baraldi and 

Enders, 2010). This method is known to produce unbiased estimators in MCAR data but when 

used with MAR data, it produces standard errors that are too small (Davey and Savla, 2010). 

Such estimates lead to lower bias estimates that are misleading. Another type of imputation, 

multiple imputation, replaces missing data with multiple plausible values, based on the 

distribution, the covariates, and the frequency of the missingness in the dataset. Since multiple 

choices are available for the missing data, the variability in parameter estimates is only due to the 

uncertainty from the imputation process used (Davey and Savla, 2010; Little et al., 2014). 

In the cases of chapters four and five, the data are missing not at random. Data collection 

was limited due to adverse weather conditions. Due to the missing not at randomness of the data 

I chose to use multiple imputation. A type of multiple imputation is multiple imputation by 

chained equation (MICE). Three types of MICE are multivariate normal model, both Bayesian 

and non-Bayesian, and predictive mean matching (PMM). Multivariate normal imputation tends 

to require a large sample size to compensate for a general underestimation of variance. They also 

perform poorly when model assumptions, such as normality and homoscedasticity, are violated. 

PMM tends to be more robust to model misspecifications such as heteroscedasticity and non-
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normality since the predicted values are limited to the range of observed values which can 

preserve any non-linear relationships (Kleinke 2017). Kleinke (2017) conducted simulations with 

varying sample sizes, donor pool sizes, missing data percentages, and distribution skewness. 

PMM consistently provided better results than multivariate normal imputation in all the scenarios 

tested (Kleinke 2017).  

PMM takes several steps. First, for the entries with no missing data, marginal increment 

is regressed on time, producing a set of coefficients. Second, coefficients are randomly drawn 

from those estimated. Third, the randomly drawn coefficients are used to predict the marginal 

increment ratio of all data points. Fourth, missing points are matched with non-missing points 

whose predicted values are close. Fifth, from the close predictions, one is randomly chosen and 

assigned to the missing value. Sixth, steps two to five are repeated a set number of times. The 

mean of these repeats is used as the imputed value (Allison, 2015). In other words, for the 2008 

cohort that there is no sample in February 2010 but there is in Feb 2009, because values are 

standardized, the use of PMM to fill in the gap of the value in 2010 should lie somewhere near 

the 2009 MI proportion. In contrast to PMM, the MICE generates multiple data values, and 

captures the potential heterogeneity, or variance, as needed when building confidence interval.  
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CHAPTER 3 

 

Fitting Time Series Models To Fisheries Data To Ascertain Age 

 

3.1 Introduction 

Sustainable fisheries rely on the use of age-based demographic models that account for 

reproduction and growth to maximum economic benefit. To achieve this goal requires that fish 

be ascribed correct ages (Gebremedhin  et al., 2021). Ascribing correct ages relies on validating 

putative annual marks on fish bones (Campana, 2001). The most commonly used technique to 

validate marks is marginal increment analysis (MIA) (Campana, 2001; Foster, 2001).  MIA 

evaluates the width of newly accreted material laid down on the edge of fish ear bones measured 

over a year compared to material accreted over the previous year (Campana, 2001) (Figure 9). 

The ratio is typically averaged by month over all age groups and plotted over a single year. The 

plot shows a single dip if one band is produced yearly (Figure 10). This dip validates the pattern 

of a putative annual ring, allowing for accurate ageing of the fish to the nearest year.  

For this pattern verification, few instances exist of statistically validated quantitative approaches 

because of irregular patterns observed due to changing environmental conditions. One such 

irregular pattern often looks like a sawtooth wave with an abrupt drop in accretion yearly to 

make an annual band (de Alaiza Martinez et al., 2015; Okamura et al., 2013; Phelps et al., 2019).  

Such sawtooth wave patterns provide challenges in fitting data to statistical models.  
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Attempts have been made to overcome the difficulty of modeling the sawtooth wave 

pattern. Okamura et al. (2013) used circular statistics and conversion of the month of capture to 

the median of the month, and then another conversion of the median of the month to radians with 

accretion ratios as the linear vector. The circular method provides a short-term forecast that 

assumes the data is uniformly distributed around one preferred direction  (Landler et al., 2018). 

In contrast, Phelps et al. (2019) used analysis of variance to identify significant differences in 

increment widths between months, but not in the years’ trend. Analysis with a time series model 

Fig. 9: This is the microscopic cross-section of the ear bone of a 3-year-old Atlantic 

croaker. The age is evidenced by the three numbered dark bands. Year 1 begins at the 

nucleus and continues down the succal groove (dashed line) to band 1. Year 2 begins at 

band 1 and continues to band 2. Year 3 begins at band 2 and ends at band 3. Accretional 

growth during year 3 extends to the edge of the ear bone as indicated by the “+”. Inset: the 

marginal increment ratio is b/a. 
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is appropriate for yearly patterned data because time series models identify seasonal patterns and 

should detect a yearly accretion pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Time series of marginal increment analysis (MIA) data with one standard error interval 

from Barbieri et al. (1994). Notice the dip in May of each year. By fisheries convention, age in 

months is arbitrarily assigned a birthdate of January 1 to all fishes born in the northern 

hemisphere. The x axis has two legends. The first shows age in months, the second shows the 

distribution of months as years. 

 

 

The advantage of time series analysis is that it accounts for the dependence of the 

observations and errors in the dataset (Makridakis et al., 1983).  Time series analysis of marginal 

increments can allow for an objective determination of the temporal, seasonal, and cyclic nature 

of the growth accretion. Time series models, such as autoregressive integrated moving average 
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(ARIMA), unobserved components models (UCM) and Gaussian copula can pinpoint seasonal 

changes through time.  

A time series approach works especially well when data is complete and abundant. Other 

assumptions of ARIMA include the independence and identical distribution under the Gaussian 

nature of the error terms in the model statement, as well as the constant variance assumption, or 

stationarity. Unfortunately, the sawtooth wave pattern in MIA data complicates finding a well-

fitted time series model. 

The UCM can break a time series of data into trend, cyclical, seasonal, autoregressive, 

and lagged components  (Koopman and Ooms, 2004; Bian et al., 2019). Bian et al. (2019) gave a 

summary of UCM applications but did not include analysis in fisheries research. To our 

knowledge, this paper is the first to use UCM to model MIAs. UCMs use smoothing models that 

allow for improved analysis and put more weight onto observations that are closer to each other 

due to the non-ignorable correlation of time series measurements (Yang and Zhang, 2019). The 

single error model is in fact broken up into its component calibration.   

The Gaussian copula construction emanates from Joe (2015) and other authors (Alqawba  

et al., 2019; Sun et al., 2020). However, just as in the UCM case, its use in fisheries research is 

still in its infancy (Hosack et al., 2014; Marsh et al., 2015). Copula models easily incorporate a 

variety of marginal distributions and different dependence structures, unlike ARIMA whose 

assumptions rely on identical joint distributions at all time values and identical Gaussian 

marginal distributions (Makridakis et al., 1983). As a first advantage, the copula approach for 

parameter estimation in multi-stage models captures the dependence from the temporal samples. 

A second advantage is that the copula circumvents the non-trivial computations in the variances 

of the estimates. Gaussian copulas are very common in economics, epidemiology, time series 
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analysis, and climate change (Alanazi , 2021; Patton 2012; Alqawba et al., 2021; Yin et al., 

2022; Yin et al., 2023).  

We propose the comparison of the ARIMA, UCM, and copula-based statistical time-

series methods while incorporating serial dependence. The goal is to evaluate the feasibility and 

preliminary efficacy of the models on fish ear bone accretion data. We are fortunate in this first 

test to have an unusually complete dataset without the often-missing seasonal components due to 

conditions that prohibit fishing such as adverse weather or lack of fish availability. 

The paper is organized as follows. In Section 2, the data are described with the ARIMA, 

UCM, and copula models, and the statistical analysis methods are presented. In Section 3, the 

solutions are presented. We end with a discussion of the performance of these models using our 

complete dataset. 

 

3.2 Materials and Methods 

 

3.2.1 Data Collection 

The data for this study were extracted from the data included in Barbieri et al. (1994) 

using DataThief III, Version 1.7 (2015) to extract the data points from a graph. According to the 

authors’ methods, fish were collected each month between June 1988 and June 1991 from 

commercial fisheries in the Chesapeake Bay and brought to their laboratory. Next, individual 

biometrics were recorded, and ear bones excised.  

Fish ear bones (sagittal otoliths) were sectioned, and then mounted on microscope slides 

and magnified to a range from 1x to 8x and photographed using an Olympus DP71 camera and 

the program Cells Sense (Figure 9). The images were then uploaded to the program Image-Pro 

Plus v. 6.2.0.424 (Media Cybernetics Inc.) for marginal increment measurement, in micrometers. 
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The first marginal increment was measured from the last dark band to the outer edge of the ear 

bone. The second is measured from the last dark band to the previous dark band. These 

measurements are then combined as a ratio of the last partial accretion to the last full accretion 

band (Figure 9 inset). The average ratio was then calculated for each age class by its month of 

capture. The average was plotted by month and visually inspected for the drop in the sawtooth 

wave. Fish were categorized by the age at capture, regardless of year of capture. The youngest 

age caught was 1 year. 

 

3.2.2 Model Diagnostics and Goodness of Fit Measurements 

Consider the data as 𝑛 observations of type 𝑦1, … , 𝑦𝑛; the likelihood function can be 

written as 

𝐿(𝛩; 𝑦1, … , 𝑦𝑛) = ∏ 𝑓𝑦(𝑦𝑖; 𝛩)𝑛
𝑖=1 ,                                                                                               (33) 

where,  

𝛩 = [𝜃1, … , 𝜃𝑝]
𝑇

                                                                                                                         (34) 

is the vector of p parameters associated with the model equation. 

The log likelihood equation can then be formulated as 

𝑙𝑜𝑔(𝐿) = ∑ 𝑙𝑜𝑔 {𝑓𝑦(𝑦𝑖; 𝛩)}𝑛
𝑖=1 .                                                                                                   (35) 

Akaike’s information criterion is then calculated by 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 2𝐾,                                                                                                             (36) 

where 𝐾 = 𝑝 is the number of parameters in the model (Burnham et al., 2011; Piegorsch and 

Bailer, 2005).   

The mean squared error is formulated as 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1 ,                                                                                                            (37) 
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and the Kendall’s tau that measures the difference in the measure of concordance and 

discordance between the marginal CDFs is: 

𝜏 = 1 − 4∬ 𝜕𝑢𝐶(𝑢, 𝑣)𝜕𝑣𝐶(𝑢, 𝑣)𝑑𝑢 𝑑𝑣                                                                                     (38) 

 

  as in Sun et al. (2020), where C represents the copula function that will be described in the 

“Copula” section, with u and v capturing the marginal distribution of X and Y, respectively.  

 

3.2.3 Time Series Model 

The data from the time series process 𝑋𝑡 is described as an ARIMA (p,d,q) model and is 

defined as: 

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡,                                                                                                                      (39) 

where, p, d, and q are non-negative integers, based on a sample size of 𝑛, with: 

𝑋𝑡 = (1 − 𝐵)𝑑𝑌𝑡,                                                                                                                         (40) 

𝑍𝑡~𝑊𝑁(0, 𝜎2),                                                                                                                           (41) 

𝜙(𝑧) = 1 − 𝜙1𝑧 − ⋯ − 𝜙𝑝𝑧𝑝,                                                                                                    (42) 

𝜃(𝑧) = 1 + 𝜃1𝑧 + ⋯+ 𝜃𝑞𝑧
𝑞 .                                                                                                      (43) 

where 𝑌𝑡 is the transformed 𝑋𝑡 series with mean retrieved, and B is the backward shift operator 

(Brockwell and Davis, 2002). 

The parameter p is associated with the autoregressive portion of the process while q is 

associated with the moving average portion of the process. To help estimate the autoregressive 

parameter (p), the sample autocorrelation function can be used once graphed, 

𝜌(ℎ) =
𝛾̂(ℎ)

𝛾̂(0)
,      − 𝑛 < ℎ < 𝑛,                                                                                                    (44) 

where 𝛾 is the sample autocovariance function of the lag h and is defined as 
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𝛾(ℎ):= 𝑛−1 ∑ (𝑥𝑡+|ℎ| − 𝑥)𝑛−|ℎ|
𝑡=1 (𝑥𝑡 − 𝑥),    − 𝑛 < ℎ < 𝑛.                                                        (45) 

To help estimate the moving average parameter (q), the sample partial autocorrelation function 

can be used once graphed, 

𝛼(0) = 1,                                                                                                                                    (46) 

𝛼(ℎ) = 𝜙ℎℎ , ℎ ≥ 1,                                                                                                                    (47) 

where 𝜙ℎℎ is the last component of 

𝜙ℎ = 𝛤ℎ
−1𝛾ℎ ,                                                                                                                                (48) 

where 

𝛤ℎ = [𝛾(𝑖 − 𝑗)]ℎ , 𝑖, 𝑗 = 1…𝑇 , ℎ ≥ 1   and                                                                                 (49) 

𝛾ℎ = 𝛾(ℎ).                                                                                                                                   (50) 

The likelihood function is (Almetwally et al., 2022): 

𝐿(𝜃|𝑌𝑡) =  ∏
1

(2𝜋𝑛/2)|Σ|1/2 𝑒𝑥𝑝 (
−1

2
𝑌′Σ−1𝑌)𝑛

𝑛=2 ,                                                                          (51) 

where Σ is the variance/covariance matrix of the observed time series data. 

R package “astsa” is used to loop through possible combinations of p and q ranging from 

zero to three. (Hyndman and Killick, 2022). The AIC, log likelihood, and MSE were used to 

decide the best model.  

 

3.2.4 Unobserved Components Model 

Components of the models can be assumed unobserved and must be estimated under a 

time series model. Unobserved components model (UCM) offers such flexibility. Unobserved 

components can be modeled using the equation: 

𝑌𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝜓𝑡 + 𝑟𝑡 + ∑𝜑𝑖 𝑌𝑡−𝑖 + 𝜀𝑡,                                                                                   (52) 

where 



32 
 

 
 

𝜇𝑡 represents the trend component, 

𝛾𝑡 represents the seasonal component, 

𝜓𝑡 represents the cycle trend, 

𝑟𝑡 is the autoregressive term, 

∑𝜑𝑖 𝑌𝑡−𝑖 is a regressive term involving the lagged dependent variables, 

𝜀𝑡 is the error term assumed to be independent with identical Gaussian distribution, 

and 𝜇𝑡, 𝛾𝑡, 𝜓𝑡, and 𝑟𝑡 are assumed to be independent of each other (Yang and Zhang 2019).  

The likelihood function is (Almetwally et al., 2022): 

𝐿(𝜃|𝑌) =  𝑝1(𝑦1)∏ 𝑝𝑡(𝑦𝑡|𝑦𝑡−1; 𝜃)𝑛
𝑡=2 ,                                                                                       (53) 

where 𝑌 =  (𝑦1, … , 𝑦n)′. 

Analysis is conducted using SAS “proc ucm.” Six models are tested using various 

combinations of level, slope, cycle, and season, and described in Table 1 as follows.  

 

Table 1: Combination of all possible methods used to test the unobserved components models 

(UCMs). 
 

Level Slope Cycle Season 

Model 1 Stochastic Stochastic Stochastic Stochastic 

Model 2 Stochastic Stochastic -- Stochastic 

Model 3 Stochastic Fixed Stochastic Stochastic 

Model 4 Stochastic -- Stochastic Stochastic 

Model 5 Stochastic Fixed -- Stochastic 

Model 6 Stochastic -- -- Stochastic 

 

 

3.2.5 Copula Model 

A copula is defined as 

𝑃(𝑌𝑡 ≤ 𝑦𝑡 , 𝑌𝑡−1 ≤ 𝑦𝑡−1) = 𝐶{𝑃(𝑌𝑡 ≤ 𝑦𝑡), 𝑃(𝑌𝑡−1 ≤ 𝑦𝑡−1)}, 𝑡 = 1,2, … , 𝑇,                               (54) 
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𝐶: [0,1]2 → [0,1],                                                                                                                        (55) 

which satisfies the requirement 

𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0, 𝐶(𝑢, 1) = 𝑢, 𝐶(1, 𝑣) = 𝑣, 𝑓𝑜𝑟0 ≤ 𝑢, 𝑣 ≤ 1 and                                   (56) 

𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1𝑣1) ≥ 0𝑓𝑜𝑟0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 ∧ 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1.(57) 

In addition, Sklar’s theorem states that for the equation  

𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶{𝐹(𝑥), 𝐺(𝑦)}                                                                                            (58) 

a unique function of 𝐶 can be found if 𝐹 and 𝐺 are continuous (Sun et al., 2020; Alanazi , 2021). 

This paper will use beta marginals described as 

𝐺(𝑦) =
𝑦𝛼−1(1−𝑦)𝛽−1

𝐵(𝛼,𝛽)
,                                                                                                                   (59) 

𝐵(𝛼, 𝛽) =
𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
,                                                                                                                      (60) 

𝜇 = 𝐸[𝑌𝑡],                                                                                                                                    (61) 

𝜎2 = 𝑉𝑎𝑟(𝑌𝑡),                                                                                                                             (62) 

Where 𝛼  and  𝛽  are the non-negative shape and scale parameters, and Γ  is the Gamma function. 

Beta marginals are used since the data is limited to values ranging between zero and one. The 

likelihood function is (Guolo and Varin, 2014): 

𝐿(𝜃|𝑌) = 𝑝(𝑦1, 𝜃)∏ 𝑝𝑡(𝑦𝑡|𝑦𝑡−1, … 𝑦1;  𝜃)𝑛
𝑡=2 .                                                                          (63) 

The equation used in the copula analysis was 

𝑀𝐼𝐴𝑡 = 𝑡𝑎𝑛 (
2𝜋𝑡

12
− 4)(𝑠𝑖𝑛 (

2𝜋𝑡

12
− 4) +

2

𝜋2 𝑐𝑜𝑠 (
2𝜋𝑡

12
− 4)) + 𝜀𝑡,                                              (64) 

where 𝑠𝑖𝑛, 𝑐𝑜𝑠 and 𝑡𝑎𝑛 are the trigonometric functions, and 𝜀𝑡  ~𝑖𝑖𝑑 𝑁(0, 𝜎2) are the error terms. 

The R package “gcmr” was used to fit the copula models (Masarotto and Varin, 2017). 

For the sake of interpretability of smoothness, ARIMA (1,1,0) was selected.  Due to the time 

dependency, trigonometric functions were used in the model equation (Chesneau 2021a,b, 2022). 
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The copula is more parsimonious than UCM or time series. It includes only the time series 

parameters in a more succinct form based on the marginal distributions of the 𝑌𝑡′s. The copula 

equation was estimated and reported along with the log likelihood and AIC. Kendall’s tau was 

calculated to estimate correlation between marginal accretion width over consecutive time 

periods.   

 

3.3 Results 

 

3.3.1 Data 

Ear bones from a total of 1185 fish were prepared and increments measured by Barbieri 

et al. (1994). The monthly average increment by age is graphed in Figure 10. A clear decrease in 

accretion width can be observed in May of each year, as well as a decreasing variance over time. 

 

3.3.2 ARIMA Model 

The model with the highest log likelihood (65.6458), and lowest AIC (-117.292), and  

MSE (0.00805) had an autoregressive order of 2 and a moving average order of 3 (Table 2). All 

the estimated parameters were significant except the third moving average term, and when this 

third term is removed, the constant term becomes insignificant (Table 3). The QQ plots of these 

two models show the majority of the data with a normal distribution (Figure 11).  
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3.3.3 Unobserved Component Model 

 

Table 2: Model diagnostics for the ARIMA (p,1, q) model. The bold values show the best model 

parameters, while the italic values show the second-best model parameters. 

A shows the AICs for selected ARIMA models. 

B shows the MSE for selected ARIMA models. 

C shows the log likelihood for selected ARIMA models. 

p\q 0 1 2 3 

0 -80.6663 -83.841 -81.8519 -88.0023 

1 -83.211 -81.8484 -90.054 -89.9316 

2 -82.1529 -96.3694 -83.3204 -117.292 

3 -80.8888 -99.4612 -107.115 -104.951 
     

p\q 0 1 2 3 

0 0.0178 0.0165 0.0165 0.0140 

1 0.0167 0.0165 0.0137 0.0134 

2 0.0164 0.0124 0.0144 0.0081 

3 0.0162 0.0114 0.0100 0.0100      

p\q 0 1 2 3 

0 42.33315 44.9205 44.9259 49.0012 

1 44.6055 44.9242 50.0270 50.9658 

2 45.0764 53.1847 47.6602 65.6458 

3 45.4444 55.7306 60.5575 60.4754 

 

 

The six models tested using various combinations are presented in Table 4. Model 4 

provided the highest log likelihood (67.874) and lowest AIC (-123.7), while Model 1 produced 

the lowest MSE (0.00626). The AIC and MSE were smaller than the ARIMA model, while the 

log-likelihood is larger than the best of the ARIMA models (Table 4). All models produced an 

A 

B 

C 
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identical graph with an extremely narrow confidence interval (Figure 12).  The tails do deviate 

from the 45o line.  

The residuals for Models 2,3, and 5 had a distinct sinusoidal pattern while the others had 

a slightly more random appearance (Figure 13). The QQ plots of the residuals show most of the 

data follows a normal distribution with the tails deviating from the 45o line (Figure 14). Models 

2, 5 and 6 had a sinusoidal pattern in the ACF graphs (Figure 15).  

 

Table 3: Parameter estimates for best ARIMA models. 

A shows parameter estimates for best time series model, ARIMA (2,1,3) (bold in Table 2). 

B shows Parameter estimates for second best time series model, ARIMA (2,1,2) (italic in Table 

2).  
Estimate Standard Error t value p-value 

AR 1 1.6169 0.0559 28.932 < 0.0001 

AR 2  -0.9253 0.0506 -18.2994 < 0.0001 

MA 1 -2.063 0.1885 -10.9446 < 0.0001 

MA 2 1.2442 0.3565 3.4899 0.0009 

MA 3 -0.1262 0.1803 -0.7 0.4864 

Constant -0.0051 0.0019 -2.6825 0.0093 

     

AR 1 0.9625 0.0715 13.4632 < 0.0001 

AR 2 -0.9573 0.0561 -17.073 < 0.0001 

MA 1 -0.8789 0.0877 -10.0175 < 0.0001 

MA 2 1 0.0861 11.6125 < 0.0001 

Constant -0.0083 0.0161 -0.5134 0.6094 

 

Table 4: Summary statistics for each of the six UCMs. Model 4 has the lowest AIC and the 

largest log likelihood. Model 1 has the lowest MSE. 

 

Model AIC MSE Loglikelihood 

1 -121.2 0.0063 67.594 

2 -91.53 0.0100 49.766 

3 -118 0.0065 65.014 

4 -123.7 0.0084 67.874 

5 -93.53 0.0100 49.766 

6 -99.68 0.0128 52.842 
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Fig. 11: QQ plots of the best two ARIMA models. A is (2,1,3) and B is (2,1,2). 

 

 

 

 

 

Fig. 12: MIA data fit from each of the six unobserved components models (UCMs). The same 

graph was produced for all six models. The confidence intervals are very narrow. Notice the dip 

in May of each year described with a red line for each May. 

Standardized Residuals

Time

0 10 20 30 40 50 60 70

-4
-3

-2
-1

0
1

Model: (2,1,3) (0,0,0) [12]

0 5 10 15 20 25 30 35

-0
.2

0
.0

0
.2

0
.4

0
.6

ACF of Residuals

LAG

A
C

F

-2 -1 0 1 2

-4
-2

0
2

4

Normal Q-Q Plot of Std Residuals

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
til

e
s

5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p values for Ljung-Box statistic

LAG (H)

p
 v

a
lu

e

Standardized Residuals

Time

0 10 20 30 40 50 60 70

-4
-3

-2
-1

0
1

2

Model: (2,1,2) (0,0,0) [12]

0 5 10 15 20 25 30 35

-0
.2

0
.0

0
.2

0
.4

0
.6

ACF of Residuals

LAG

A
C

F

-2 -1 0 1 2

-4
-2

0
2

4

Normal Q-Q Plot of Std Residuals

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
til

e
s

5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p values for Ljung-Box statistic

LAG (H)

p
 v

a
lu

e



38 
 

 
 

 

 

 

Fig. 13: Residual plot of the six UCMs. Dark blue indicates one standard error while light blue 

indicates two standard errors. Note: Models D and F are displayed on a different y-scale than the 

other models to highlight the modeling of the MIA at early ages; also, x-scale indicates months 

i.e., 13 = January, 19 = July, etc. 

 

A) shows Model 1.  

B) shows Model 2. 

C) shows Model 3.  

D) shows Model 4.  

E) shows Model 5.  

F) shows Model 6.  

 

A 
B 
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Fig. 14: QQ plots of the six UCMs. 

A) shows Model 1. B) shows Model 2. C) shows Model 3.  

D) shows Model 4. E) shows Model 5. F) shows Model 6.  
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Fig. 15: Autocorrelation function plot of the six UCMs. Dark blue indicates two standard errors 

from mean. 

A) shows Model 1.  

B) shows Model 2.  

C) shows Model 3.  

D) shows Model 4.  

E) shows Model 5.  

F) shows Model 6. 
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3.3.4 Copula Model 

Figure 16 describes the graph of the copula function. Tangent was added to the equation 

to properly model the drop of the sawtooth wave. The copula produced a loglikelihood, AIC, and 

Kendall’s tau of -52.31, -188.9633, and -0.5503, respectively. Kendall’s tau is negative since as 

time increases the marginal increment decreases. Such a result has not been captured under 

ARIMA or UCM. The AIC and log likelihood were smaller than the ARIMA or UCM. The 

variance of the copula model was larger than either the ARIMA or UCM (Figure 17). The 

conditional residual plot showed dips corresponding to May of each year, and QQ plots showed 

the majority of the data within a normal distribution (Figure 17). The marginal residual plot 

showed dips corresponding to May of each year, and QQ plot showed the majority of the data 

within a normal distribution (Figure 17). The pattern in the MIA residuals shows that ARIMA or 

UCM models are better fits. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Graph of Gaussian copula with beta marginal fit to model MIA data. Copula estimate 

indicated by the dashed line and shows the model fit; 95% confidence interval is indicated by 

solid lines. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

13 23 33 43 53 63 73 83

M
IA

Age in months



42 
 

 
 

 

Fig. 17: A shows the conditional residuals of copula model. 

      B shows the QQ plot of the conditional residuals of the copula model.  

      C shows the marginal residuals of copula model. 

      D shows the QQ plot of the marginal residuals of the copula model. 

 

 

3.4 Discussion 

The sawtooth wave pattern of MIA data proved challenging to model, but when analyzed 

with ARIMA, UCM, and copula, these methods provided precise timing of accretional patterns 

in fish ear bones. The models demonstrated that, for Atlantic croaker, dark bands had formed by 

May and occurred only once during the year. Thus, providing a model to validate the formation 

of dark bands were evident after a sharp drop in accretion while also providing statistical metrics 

of model fit – attributes missing from qualitative measures.  

The first step in our approach was to formulate more flexible assumptions about the 

dependence structure of the process. More precisely, the joint density of the accretion process 

could directly and conveniently describe the stochastic process. Using the dependence structure 

B 

C 

D 
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of ARIMA, the conditional probability of the saw-tooth pattern was well described. The UCM 

model matched the results from the ARIMA as the autocorrelation was captured under Gaussian 

white noise and is also extendable when one considers the copula types of distributions. In this 

paper, we applied the copula ideas of Salinas-Gutierrez et al. (2009) and Alqawba and Diawara 

(2020), with beta marginals. 

The ARIMA and UCM produced the best results. ARIMA is well established and widely 

used in analysis of complete datasets. The UCMs are valuable extensions of the time series with 

variance decreasing over time. The confidence intervals in both contain most of the recorded 

data and matched the seasonal pattern well. In both models, parsimony is obtained mainly 

because of complete data. The cycle was automatically obtained giving us close to perfect time-

varying predictions.  

 Although the copula did not perform as well, the results were still acceptable for its use 

in MIA. The variance estimate is higher in this case than the ARIMA and UCM. The challenge 

may be due to the choice of the marginal distribution not being as good a fit to these data. The 

way ARIMA and UCM components were captured, as regularity of cycle and seasonality, 

provides less of an emphasis on sampling. The strength of copulas is in capturing a flexible 

correlation structure when additional variables, such as temperature or length, are measurable. In 

conclusion, all three models are effective tools to validate yearly accretional patterns in fish ear 

bone despite their differences in constraints and assumptions. 

Overall, we validated the annual pattern of the MIA data with all three models (ARIMA, 

UCM, and copula). In this case we had a full data set and have shown we can use these three 

methods with quantitative results that validate the qualitative visual results seen in Barbieri et al. 

(1994) and Foster (2001). We anticipate that copulas will outperform ARIMA and UCMs when 
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challenged with incomplete data where imputation is necessary, when some variable 

transformations are not recommended, when missingness cannot be avoided, and the effects of 

covariates are not removable. In the future, we will test the performance of copulas when 

challenged with both the sawtooth wave pattern and incomplete datasets (Kirch et al., in draft). 

We hope to increase the use of copula in this field and generalize this method of estimation for 

higher dimension problems. In further research, the exploration of incomplete datasets and other 

copulas should bring in interesting results. 
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CHAPTER 4 

 

Marginal Increment Analysis On A Single Cohort With Imputed Data Using Time Series 

Models 

4.1 Introduction 

Marginal increments (MI) have been widely used in fisheries to validate putative annual 

bands in fish hard parts, typically otoliths (Barbieri et al., 1994 and Huang et al., 2022). Marginal 

increment analysis (MIA) measures the ratio of newly accreted material on fish hard parts and is 

often done qualitatively (Barbieri et al., 1994; Huang et al., 2022; Smith, 2014). Qualitative 

analysis uses plots of the monthly mean increment width beyond the last observed annulus (the 

accretion width) and the plot is then visually inspected for the drop in accretion widths (Barbieri 

et al., 1994; Huang et al., 2022; Smith, 2014). Attempts to provide quantitative analysis have 

been limited to analysis of variance (ANOVA), wherein data are tested to find differences in 

mean width of new accretional material between months. However, ANOVA cannot model a 

multi-year pattern (Phelps et al., 2019); it assumes independence from one monthly observation 

to the next. A more recent quantitative approach is built from circular analysis which converts 

the date of capture to the middle date of its month, and then converts this date to radians with 

marginal increment ratios as linear vectors (Okamura et al., 2013).  

Another quantitative approach to analyze MI was presented in Kirch et al. (2023), who 

applied novel time series models: the autoregressive integrated moving average (ARIMA), the 

unobserved components model (UCM), and the copula model, to an Atlantic croaker dataset that 

contained multiple cohorts with no missing data to demonstrate the efficacy of these approaches. 

Because MIA data typically violate the ARIMA assumption of constant variance over time, 

Kirch et al. (2023) also used a UCM, which is time series with added trend, cyclical, seasonal, 
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autoregressive, and lagged components. Finally, Kirch et al. (2023) applied copula models which 

handles the violation of the ARIMA assumptions of constant variance over time and may be a 

better fit for MIA. They found that ARIMA and UCM modeled MIA well when using data taken 

across cohorts (ignoring birth year), whereas copulas did not perform as well. Time series 

models allow for the evaluation of timing of annulus formation through time, unlike analysis of 

variance or circular analysis that compress all data into a single year. 

There are two methods of data collection that validate the time course of annuli 

formation. Most often data coverage is optimized by collecting fish of various ages, regardless of 

birth-year cohort (Barbieri et al., 1994). For example, age-one fish can be born in different years 

and so on. Such an approach provides a more complete dataset with a larger sample size and 

better monthly coverage than following a single cohort. A drawback of this method is that 

incremental patterns can be obscured by different cohort growth conditions due to interannual 

changes in the environment. A second method of data collection, which is rarely used, is to 

follow a single cohort over time. This method has the advantage of following a strong year class 

to see if seasonal deposition patterns shift with age. However, this method is more likely to have 

missing data due to changes in availability and sparser data as specimens age and abundance 

declines, hence its difficulty to model (Benavides et al., 2023).  

There are other challenges in modeling marginal increment data, regardless of which 

approach is used. MIA typically shows a sawtooth wave pattern with a steep drop when a 

putative annulus is formed (de Alaiza Martinez et al., 2015). This pattern can complicate model 

fitting because the assumptions of normality made in ARIMA and UCM models are not met. 

Furthermore, the sawtooth wave-like seasonality with its smooth increase and sudden drop is 

difficult to predict.  
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In addition to the challenge of the sawtooth wave pattern of marginal increment 

deposition, the field of fisheries can be challenged with missing data, particularly for validating 

age with MIA (Quinn and Deriso, 1999) . Data can be missing for a myriad of reasons, such as 

cost to obtain it, dearth of fish availability, or adverse environmental conditions that make 

collection difficult or impossible. These missing data are typically dealt with by using proxy 

measurements with extrapolation (Post et al., 2008; Read et al., 2006; Zainuddin and Saitoh, 

2004). However, other methods not often used in MIA are formal imputation techniques. The 

types of imputation in this study include multiple imputation by chained equations (MICE) using 

a multivariate normal model, both Bayesian and non-Bayesian, and predictive mean matching 

(PMM). Multiple imputation methods tend to produce less biased estimators than either 

maximum likelihood or weighting approaches (Kleinke 2017).  

Our paper explores the use of ARIMA, UCM, and copula, to quantitatively model 

marginal increment patterns where specimens are taken from a single cohort and data are sparse. 

We have previously shown that time series and UCM provide direct statistical methods to model 

MIA when specimens are taken over multiple cohorts (Kirch et al., 2023), but MIAs taken from 

single cohorts provide further challenges. There are two challenges addressed in this paper. The 

first is model building when missing data must be accounted for and the second is the estimation 

of missing data when following a single cohort. The goal is to evaluate the feasibility and 

efficacy of ARIMA, UCM, and copula modeling approaches when data are limited due to 

following a single cohort.  

4.2 Materials and Methods 

 

4.2.1 Data Collection 
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Fish were collected by the Virginia Marine Resource Commission in their yearly 

commercial survey from 2010 to 2014. The fish were collected from the Chesapeake Bay and 

Atlantic Ocean by trawler, seine haul, pound net, and gill net. This data set consists of the 2009 

cohort of Atlantic croaker (Micropogonias undulatus) born during 2008. Specimens were 

measured, weighed, and sagittal otoliths extracted. 

Extracted otoliths were sectioned with a low-speed isomet saw and then mounted onto 

glass slides. The sections were then magnified in a range from1x to 8x and photographed using 

an Olympus DP71 camera and the program Cells Sense. The images were then uploaded to the 

program Image-Pro Plus v. 6.2.0.424 (Media Cybernetics Inc.) and measured digitally in 

micrometers. The distances measured were the width of the last complete annulus and the 

distance of the newly accreted material, from the edge to the last completed annulus. 

The raw data was then min-max scaled by taking the raw measurement, subtracting the 

minimum width for the age/year combination and dividing by the range of measurements for the 

same age/year combination. 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 =  
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                                         (65) 

 

4.2.2 Imputation 

Three methods of imputation are used in this paper, multivariate normal imputation, both 

Bayesian and non-Bayesian, and PMM. Multivariate normal imputation models tend to require a 

large sample size to compensate for a general underestimation of variance (Kleinke, 2017). They 

also perform poorly when model assumptions, such as normality and homoscedasticity, are 

violated. In contrast, PMM tends to be more robust to model misspecifications (Kleinke, 2017). 

Kleinke (2017) conducted simulations with varying sample sizes, donor pool sizes, missing data 
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percentages, and distribution skewness and found that PMM consistently provided better results 

than multivariate normal models .  

Missing data was imputed using the R package MICE with three different imputation 

methods, multivariate normal models, both Bayesian, and non-Bayesian, and PMM (van Buuren 

et al., 2022).  

 

4.2.3 Goodness of fit tests 

We used the log likelihood to formulate Akaike’s information criterion as 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 2𝐾,                                                                                                             (66) 

where 𝐾 = 𝑝 is the number of parameters in the model and 𝐿 is the corresponding log likelihood 

associated with the model (Burnham et al., 2011; Piegorsch and Bailer, 2005).   

The mean squared error is formulated as 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1 ,                                                                                                            (67) 

where 𝑌𝑖 is the observed value and 𝑌̂𝑖 is the predicted value.  

The Kendall’s tau measures the difference in the measure of concordance and 

discordance between the marginal CDFs is: 

𝜏 = 1 − 4∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣)
1

0

1

0
,                                                                                               (68) 

as in Sun et al. (2020), where C represents the copula function that will be described in the 

‘Copula’ section, with u and v capturing the marginal distributions of 𝑌𝑡 and 𝑌𝑡−1, respectively.  

 

4.2.4 Time Series 

An ARIMA (p, d, q) process is defined as: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡,                                                                                                        (69) 
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where 𝜙 and 𝜃 are functions of the autoregressive (AR) and moving average (MA) parts, 

respectively, 𝜀𝑡~𝑁(0, 𝜎2), B is the backshift operator, and 𝑑 is the differencing parameter 

(Brockwell and Davis, 2002). 

The autocorrelation function gives a measure of dependence between values at different 

time points and is used to estimate the order of the AR parameter (p). The sample partial 

autocorrelation function is used to estimate the order of the MA parameter (q) (Brockwell and 

Davis, 2002). 

R package, Applied Statistical Time Series Analysis, or “astsa” was used to loop through 

possible combinations of p and q ranging from zero to three (Hyndman and Killick, 2022). The 

AIC, log likelihood, and MSE were used to determine the best model. 

 

4.2.5 Unobserved components model 

Unobserved components model is modeled using the equation: 

𝑌𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝜓𝑡 + 𝑟𝑡 + ∑𝛽𝑗 𝑋𝑗𝑡 + 𝜀𝑡,                                                                                     (70) 

where, 

𝜇𝑡 represents the trend component, 

𝛾𝑡 represents the seasonal component, 

𝜓𝑡 represents the cycle trend (one that is longer than seasonal), 

𝑟𝑡 is the autoregressive term, 

∑𝛽𝑗 𝑋𝑗𝑡 is a regressive term on the independent variables where 𝑗 is the number of covariates. 

The error term is 𝜀𝑡 and assumed to be independent and have identical Gaussian distributions, 

and 𝜇𝑡, 𝛾𝑡, 𝜓𝑡, and 𝑟𝑡 are assumed to be independent of each other (Yang and Zhang, 2019).  
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Analysis was conducted using SAS “proc ucm.” Six models were tested for each dataset, 

using various combinations of level (y-intercept), slope, cycle, and season and shown in table 5.. 

Fixed and stochastic refer to the variance in the model component. A fixed variable has a fixed 

variance of zero while a stochastic variable has an estimated variance in the model fit. 

 

 

Table 5: Combination of all possible methods used to test the unobserved components models. 

Level refers to the y-intercept, Slope refers to the change in mean over time, Cycle refers to time 

components on time scales larger than seasonal and Season refers to the seasonal component. 
 

Level Slope Cycle Season 

Model 1 Stochastic Stochastic Stochastic Stochastic 

Model 2 Stochastic Stochastic -- Stochastic 

Model 3 Stochastic Fixed Stochastic Stochastic 

Model 4 Stochastic -- Stochastic Stochastic 

Model 5 Stochastic Fixed -- Stochastic 

Model 6 Stochastic -- -- Stochastic 

 

 

4.2.6 Copula 

We defined a copula as 

𝑃(𝑌𝑡 ≤ 𝑦𝑡 , 𝑌𝑡−1 ≤ 𝑦𝑡−1) = 𝐶{𝑃(𝑌𝑡 ≤ 𝑦𝑡), 𝑃(𝑌𝑡−1 ≤ 𝑦𝑡−1)}, 𝑡 = 1,2,… , 𝑛,                             (71) 

with the following requirements: the marginal distribution follows a uniform [0,1] and the 

probability mass is non-negative (Sun et al., 2020). 

This paper used beta marginals described as 

𝐺(𝑦) =
𝑦𝛼−1(1−𝑦)𝛽−1

𝐵(𝛼,𝛽)
,                                                                                                                   (72) 

where y is the observed value of the marginal increment and 𝛼 and 𝛽are shape parameters. Beta 

marginals are used since they are limited in range from zero to one which matches the range for 

the min/max scaled marginal increment data. 
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The R package “gcmr” was used to fit the copula models (Masarotto and Varin, 2017). 

This package has been used to capture dependence between consecutive observations using 

Gaussian copulas. Different choices of p and q were considered, but for the sake of simplicity 

ARIMA (1,0,0) was selected. Due to the time dependency, trigonometric functions were also 

used in the model equation (Chesneau, 2021a,b, 2022). The copula parameters were estimated 

and reported along with the log likelihood and AIC. Kendall’s tau (𝜏) was calculated to estimate 

correlation between accretion width and time.   

4.3 Results 

 

4.3.1 Data 

 

Fig. 18: Box plot of min-max marginal-increment scaled data. Decimals represent fractions of 

year i.e. July of 2010 = 2010.6. 
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Otoliths from 377 fish from the 2008 cohort were collected and increments measured 

covering the time span from January of 2010 through December 2014. Data is available for 32 of 

the months during this time period. Missing data included 28 months’ worth of imputed average 

monthly widths (46.67%). The collected data had a mean min/max scaled value of 0.3908 and a 

variance of 0.03991. The PMM imputed data had a mean min/max scaled value of 0.4345 and a 

variance of 0.0103. The Bayesian multivariate normal imputed data had a mean of 0.4658 and a 

variance of 0.0125. The non-Bayesian multivariate normal imputed data had a mean value of  

0.4616 and a variance of 0.0118. Data from winter months, October to January, were most often 

missing.  
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4.3.2 Imputation 

 

 
 

Fig. 19: Time series graph of true and imputed values with 95% confidence intervals. Solid black 

circles indicate imputed values. A: Predictive mean model (pmm), B: Bayesian multivariate 

normal model, C: non-Bayesian multivariate normal model 

 

 

Both the unimputed raw and min-max feature scaled data showed a steep drop in slope 

around the months of April and May (Figure 18).  
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It is difficult to observe the seasonality in the time series graphs of the imputed data, 

which is evidence that no of the imputation method was visually better than another (Figure 19). 

4.3.3 Time Series 

The PMM imputed data had the lowest AIC value of 19.0968 with an ARIMA (3,1,2). 

The lowest MSE (0.05476) was an ARIMA (3,1,2), and the highest log likelihood (-2.5208) was 

an ARIMA (3,1,3) (Table 6). 

 

 

Table 6: Model diagnostics for AIC, MSE, and log likelihood for the time series with predictive 

mean matching imputed data. The bolded number is the best value of the models. 

A) shows AIC for selected time series models. B) shows MSE for selected time series models. 

C) shows Log likelihood for selected time series models. 

p\q 0 1 2 3 

0 44.3356 19.2097 20.3361 19.7689 

1 27.6618 20.0343 21.6667 21.5992 

2 28.9819 20.6808 21.9652 23.5982 

3 28.8551 21.1578 19.0968 21.0416      

p\q 0 1 2 3 

0 0.1160 0.0683 0.0675 0.0650 

1 0.0841 0.0673 0.0671 0.0647 

2 0.0831 0.0661 0.0653 0.0647 

3 0.0800 0.0640 0.0548 0.0549 
     

p\q 0 1 2 3 

0 -20.1678 -6.60483 -6.16804 -4.88446 

1 -10.8309 -6.01716 -5.83335 -4.79958 

2 -10.4909 -5.34041 -4.98259 -4.79911 

3 -9.42757 -4.5789 -2.54838 -2.52078 

 

A 

B 

C 
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The Bayesian multivariate normal imputed data had the lowest AIC value (0.1314), the 

lowest MSE (0.0391), and the highest log likelihood (7.9343) all with an ARIMA (3,1,3) (Table 

7). 

 

Table 7: Model diagnostics for the time series model with Bayesian multivariate normal imputed 

data. The bolded number is the best value of the models. 

A) shows AIC for selected time series models. 

B) shows MSE for selected time series models. 

C) shows Log likelihood for selected time series models. 

p\q 0 1 2 3 

0 20.6640 4.3431 2.9163 3.6957 

1 9.8182 2.0819 3.3866 5.0619 

2 8.6646 3.1803 4.4459 6.0477 

3 9.5683 11.3273 7.1510 0.1314 
     

p\q 0 1 2 3 

0 0.0777 0.0563 0.0504 0.0495 

1 0.0622 0.0498 0.0495 0.0492 

2 0.0589 0.0493 0.0477 0.0476 

3 0.0577 0.0575 0.0493 0.0391 
     

p\q 0 1 2 3 

0 -8.3320 0.8284 2.5418 3.1522 

1 -1.9091 2.9590 3.3067 3.4690 

2 -0.3323 3.4099 3.7770 3.9762 

3 0.2158 0.3364 3.4245 7.9343 

 

The non-Bayesian multivariate imputed data had the lowest AIC value (5.7544) with a 

ARIMA (1,1,1). Its lowest MSE (0.0486) and highest log likelihood (3.3092) were obtained with 

an ARIMA (3,1,3) (Table 8). 

 

C 

B 

A 
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Table 8: Model diagnostics for the time series model with non-Bayesian multivariate normal 

imputed data. The bolded number is the best value of the models. 

A shows AIC for selected time series models. 

B shows MSE for selected time series models. 

C shows Log likelihood for selected time series models. 

p\q 0 1 2 3 

0 18.6800 12.6983 6.8417 6.9564 

1 16.2172 5.7544 7.7167 8.3577 

2 16.7049 7.6928 8.9880 8.8365 

3 13.8461 9.0022 10.0857 9.3816      

p\q 0 1 2 3 

0 0.0751 0.0652 0.0540 0.0525 

1 0.0695 0.0533 0.0532 0.0519 

2 0.0677 0.0532 0.0526 0.0500 

3 0.0621 0.0523 0.0515 0.0486      

p\q 0 1 2 3 

0 -7.3400 -3.3491 0.5791 1.5218 

1 -5.1086 1.1228 1.1417 1.8212 

2 -4.3524 1.1536 1.5060 2.5817 

3 -1.9231 1.4989 1.9571 3.3092 

 

 

4.3.4 Unobserved component model 

Model one failed to converge for all three imputation methods. The model was possibly 

overparameterized with not enough data to capture the seasonality, trend, and cycle.  

At least ten percent of the data was found outside the 95% confidence interval. Models 

two (no long-term cycle) and four (no slope) had 11 points (18.3%) outside the confidence 

interval. Model three (fixed slope) had eight points (13.3%) outside the confidence interval. 

A 

B 

C 
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Model five (no long-term cycle and fixed slope) had nine points (15%). Model six (no long-term 

cycle and no slope) had 14 points (23.3%) outside the confidence interval (Figure 3). Model six 

had the lowest AIC value of 26.741, while model four had the lowest MSE (0.2927) and highest 

log likelihood (-9.667) (Table 9). Overall, models six and four seem to be the most suitable for 

this MIA data. Both models have no slope component meaning there is no linear trend to the 

data. 

 

Table 9: Summary statistics for each of the six UCM models using AIC, root mean squared error 

(RMSE) and log likelihood.  

A) shows predictive mean matching 

B) shows Bayesian multivariate normal model 

C) shows non-Bayesian multivariate normal model 
Model AIC RMSE Log 

likelihood 

1  Failed to converge 

2 38.917 0.3270 -15.46 

3 41.729 0.3239 -14.86 

4 31.335 0.2927 -9.667 

5 36.917 0.3270 -15.46 

6 26.741 0.2956 -10.37     

1 Failed to converge 

2 26.247 0.2832 -9.124 

3 24.836 0.2763 -6.418 

4 20.978 0.2642 -4.489 

5 24.247 0.2832 -9.124 

6 15.169 0.2648 -4.584     

1 Failed to converge 

2 30.626 0.2943 -11.31 

3 33.369 0.2883 -10.68 

4 18.375 0.2557 -3.188 

5 28.626 0.2943 -11.31 

6 18.348 0.2726 -6.174 

A 

B 

C 
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In all the model fits for the Bayesian multivariate normal imputed data, at least twenty 

percent of the data was found outside the 95% confidence interval, model two (no cycle) had 12 

points (20%) outside the confidence interval, models three (fixed slope) and five (no cycle with a  

 

Fig. 20: QQ Plots of the predictive mean 

matching copula model. A shows the marginal residuals, B shows the conditional residuals. 

 

 

Fig. 21: Residual plots for predictive mean 

matching copula model. A shows the marginal residuals, while B shows the conditional 

residuals. 

 

 

A 

A 

B 

B 
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fixed slope) had 13 points (21.67%) outside the confidence interval, and models four (no slope) 

and six (no cycle and no slope) had 21 points (35%) outside the confidence interval (Figure 4). 

Model six had the lowest AIC value (15.169), while model four had the lowest MSE (0.2642) and 

highest log likelihood (-4.489) (Table 9). Both models have no slope component meaning there 

is no linear trend to the data.  

In all the model fits for the non-Bayesian multivariate normal imputed data, at least ten 

percent of the data was found outside the 95% confidence interval, model two (no cycle) had 17 

points (28.3%) outside the confidence interval, model three (fixed slope) had six points (10%) 

outside the confidence interval, model four (no slope) had 11 points (18.3%) outside the 

confidence interval, model five (no cycle fixed slope) has 16 points (26.7%) outside the 

confidence interval, and model six (no cycle no slope) has 18 points (30%) outside the 

confidence interval. (Figure 5). Model six had the lowest AIC value (18.348), while model four 

had the lowest MSE (0.2557) and highest log likelihood (-3.188) (Table 9). Both models have no 

slope component meaning there is no linear trend to the data. 

 

4.3.5 Copula 

Using the PMM and differencing, the AIC, log likelihood, and Kendall’s tau were -

97.459, -52.73, and 0.1464, respectively (Table 10). The conditional residual plot and QQ plot 

showed no obvious patterns with a well-fitting normal distribution (Figures 20 and 21). The 

marginal residual plot and QQ plot showed no obvious pattern in the residual value over time 

with a well-fitting normal distribution (Figures 20 and 21). The best fit equation is given as  

𝑀𝐼𝐴(𝑡) = −𝑡𝑎𝑛 (
2𝜋𝑡

12
) (𝑠𝑖𝑛 (

2𝜋𝑡

12
) −

2

𝜋2 𝑐𝑜𝑠 (
2𝜋𝑡

12
)) + 𝑡,                                                              (74) 

where the sinusoidal functions are used with a frequency of 
2𝜋

12
 and described in Figure 22A.  
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Table 10: AIC, log likelihood and Kendall’s tau for the copula models with imputation methods 

of predictive mean model, Bayesian multivariate normal, and non-Bayesian multivariate normal.  
AIC Log 

likelihood 

Kendall's tau 

Predictive mean matching -97.459 -52.73 0.1464 

Bayesian multivariate normal -88.829 -48.414 -0.1324 

Non-Bayesian multivariate 

normal 

-90.108 -49.054 -0.0441 

 

 

The Bayesian multivariate normal imputation and differencing model had an AIC, log 

likelihood, and Kendall’s tau of -88.829, -46.414 and -0.1324, respectively (Table 10). The 

conditional residual plot and QQ plot showed no obvious patterns with a well-fitting normal  
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Fig. 22: Time series graphs of copula results. A shows predictive mean matching, B shows 

Bayesian multivariate normal model, and C shows non-Bayesian multivariate normal model. 

Solid circles represent data while the solid line is the best fit equation.  

 

 

distribution (Figures 23 and 24). The marginal residual plot and QQ plot showed no obvious 

pattern in the residual value over time with a well-fitting normal distribution (Figures 23 and 24). 

The best fit equation is given as 

𝑀𝐼𝐴(𝑡) = −𝑡𝑎𝑛 (
2𝜋𝑡

12
) (𝑠𝑖𝑛 (

2𝜋𝑡

12
) −

2

𝜋2 𝑐𝑜𝑠 (
2𝜋𝑡

12
)) + 𝑡,                                                              (75) 

where the sinusoidal functions are used with a frequency of 
2𝜋

12
 and described in Figure 22B.  
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The non-Bayesian multivariate normal imputed with differencing had an AIC, log 

likelihood, and Kendall’s tau of -90.108, -49.054, and 0.0441, respectively (Table 10). The 

conditional residual plot and QQ plot showed a slight sinusoidal pattern with a well-fitting 

normal distribution (Figures 25 and 26). The marginal residual plot and QQ plot showed a slight 

sinusoidal pattern over time with a well-fitting normal distribution (Figures 25 and 26). The best 

fit equation is given as 

𝑀𝐼𝐴(𝑡) = −𝑡𝑎𝑛 (
2𝜋𝑡

12
) (𝑠𝑖𝑛 (

2𝜋𝑡

12
) −

2

𝜋2 𝑐𝑜𝑠 (
2𝜋𝑡

12
)) + 𝑡,                                                              (76) 

where the sinusoidal functions are used with a frequency of 
2𝜋

12
 and described in Figure 22C.  

 

Fig. 23: QQ plot of Bayesian multivariate 

copula model. A shows the marginal residuals and B shows the conditional residuals. 

 

 

Fig. 24: Residual plot of Bayesian 

multivariate normal copula model. A shows the marginal residuals while B shows the conditional 

residuals. 

A B 
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.  

Fig. 25: QQ plot of the non-Bayesian multivariate normal copula model. A shows the marginal 

residuals and B shows the conditional residuals. 

 

 

Fig. 26: Residual plot for non-Bayesian multivariate normal copula model. A shows marginal 

residuals and B shows conditional residuals. 

 

 

4.4 Discussion  

The analysis of single cohort MIA for Atlantic croaker is very valuable but challenging. 

We have proposed modeling data on Atlantic croaker MI using three time series models 

(ARIMA, UCM, and copula) while capturing missing data that is unavoidable in this single 

cohort data collection. The models have shown that, when following a single cohort through 

time, annuli in Atlantic croaker are consistently formed in March until age six with no seasonal 

progression in formation as the fish age (Figure 18 and Figure 22). The formation agrees with 
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other findings of Barbieri et al. (1994) and Kirch et al. (2023) that are based on multiple cohorts. 

Marginal increment data from a single cohort can now be used to validate annuli formation 

seasonally with age using time series models. The seasonal pattern confirms the conclusion 

shared in Barbieri et al. (1994) that only one annulus is formed each year for Atlantic croaker 

regardless of age. This yearly growth verification now comes with statistical significance with 

the model-based analyses (ARIMA, UCM, and copula) in contrast to models based on analysis 

of variance (Phelps et al., 2019). The analysis of variance pools all the yearly age information 

and then compresses age data into a single sawtooth wave. Our results also show that time series 

have advantages over the circular methods which compresses data into a single wave and shows 

poor fitting when uncertainty in band formation timing is high (Okamura et al., 2013). The 

observations of the MI are correlated and are not independent over time. 

Unlike ANOVA and circular statistics, time series models have a variance/covariance 

matrix. This matrix allows analysis of the sawtooth itself through the variance of the specific 

month of the drop. A higher variance over a short time period is indicative of a steep drop, an 

indication of the beginning of annuli formation of a cohort occurring over a short period of time. 

On the other hand, a high variance over several months indicates annuli formation taking place 

over that longer time period.  

Indeed, the copula with PMM imputation captures the seasonal pattern while 

compensating for the lack of representation of potential extreme values in the dataset. It also 

handles the imputation technique as it has the lowest AIC value compared to other time series 

models. The ARIMA model with Bayesian multivariate normal imputation was the next best 

model according to AIC, MSE, and log likelihood. UCM produced the highest AIC and lowest 

log likelihood with a mixture of Bayesian and non-Bayesian multivariate normal imputation. 
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When missing data is present, copulas are very suitable choice models. They produce the same 

pattern as the ground truth found in Kirch et al. (2023) and Barbieri et al. (1994). 

Although temperature and environmental conditions are thought to affect otolith growth, 

little is known about how this would influence a cohort from year to year in timing of annulus 

formation. The copula and UCM models can easily add climatological variables to the model, 

allowing for such analysis. Specifically, variables such as temperature, salinity, or oxygen levels 

could add valuable understanding of changes in annuli formation. These analyses can add to a 

better understanding of otolith growth and validating annuli growth. Although I did not have 

those auxiliary data for Atlantic croaker, when available it may add insights when used with 

these methods.  
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CHAPTER 5 

 

Using Time Series Analysis To Validate Age For Blackbelly Rosefish Off The Coast Of 

Virginia 

5.1 Introduction 

Validating annuli formation on otoliths allows fish to be accurately aged for 

understanding their demography. As far as I know, nothing has been done to validate blackbelly 

rosefish (Helicolenus dactylopterus) ageing under statistically robust models. Lately, Kirch et al. 

(2023; in draft) tested three time series models: autoregressive integrated moving average 

(ARIMA), unobserved components models (UCMs) and copulas to validate marginal increment 

analysis (MIA) on Atlantic croaker (Micropogonias undulatus) with missing data. However, 

there is a higher presence of missing data due to the cost and time required to collect blackbelly 

rosefish; they live farther offshore and in deeper water. Moreover, the pattern in marginal 

increment (MI) accretion using otolith measurement is less certain and harder to model than with 

Atlantic croaker.  

Blackbelly rosefish are a deep-sea demersal species found in the Northeast Atlantic 

Ocean, Mediterranean Sea, the Gulf of Guinea, off the coast of South Africa, and the western 

Atlantic Ocean along the entire United States coast, Gulf of Mexico, and the Caribbean Sea 

(Chamberlin et al., 2023; Eschmeyer, 1969). They inhabit continental slopes at depths ranging 

from 200 to 1000 m (Chamberlin et al., 2023; Barsukov, 1980). Because of this depth and the 

near constant environmental conditions in which they live, blackbelly rosefish otoliths are harder 

to age and have greater variance in ageing and marginal increment measurements. Furthermore, 

ageing of blackbelly rosefish has been of interest to fishery scientists because of their life history 

and recent exploitation (Kelly et al., 1999; Chamberlin et al., 2023). Like other deep sea fishes, 
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blackbelly rosefish putatively have long life spans, slow growth rates, and late maturity 

throughout their geographic range and across subpopulations  (Kelly et al., 1999). 

Blackbelly rosefish are typically aged by reading annuli of whole or sectioned otoliths. 

Abecasis et al. (2006) found that sectioned otoliths are better for ageing older specimens due to 

the annuli being harder to read in older ages. Recently, Chamberlain et al. (2023) validated the 

yearly annuli pattern using carbon-14 analysis of eye lenses, but did not confirm the yearly 

pattern with a statistical model. Moreover, carbon 14 analysis confirms only total age, not the 

timing of seasonal deposition. In addition, White et al. (1998) studied the population off the coast 

of South Carolina. They had difficulty in modeling a growth curve and performed marginal 

increment on mostly juvenile specimens, finding annuli formation occurred from March to May. 

In contrast, studies in Europe show MI formation occurred between June and August in their 

analyses (Abecasis et al., 2006; Sami et al., 2016). There has been no resolution of this 

discrepancy.  

The purpose of this paper is to apply statistical models to MI of blackbelly rosefish 

through the lifespan of fish collected of the U.S. East Coast to resolve annuli formation there. We 

use three approaches: ARIMA, UCM, and copula. 

 

5.2 Materials and Methods 

 

5.2.1 Data Collection 

With support from the Center for Quantitative Fisheries Ecology (CQFE), boats were 

chartered to collect samples from the Norfolk Canyon in the Atlantic Ocean between 2008 and 

2015. Because of the difficulty in collecting blackbelly rosefish, the Virginia Marine Resource 
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Commission helped supplement the blackbelly rosefish samples by reaching out to local anglers 

for donations. All samples were then forwarded to the CQFE for processing.  

Fish characteristics were measured by recording the total length (in mm), fork length (in 

mm), sex, and reproductive stage according to Brown-Peterson et al., (2011) guidelines. Both 

sagittal otoliths were removed, cleaned, and stored dry in coin envelopes.  

For each sample, one sagittal otolith was chosen at random (left vs right) (as suggested in 

Isidro, 1987) and placed into a Thermolyne 1440 furnace at 400oC and baked for approximately 

one and a half minutes and then encased in an epoxy resin. A 0.3 mm section was then cut using 

a Buehler IsoMet low-speed saw, placed on a glass slide, and covered with Flotexx.  

Afterward, the sections were magnified in a range from 1 to 8 times and photographed 

using an Olympus DP71 camera and the program Cells Sense. The images were then uploaded to 

the program Image-Pro Plus v. 6.2.0.424 (Media Cybernetics Inc.) and measured digitally in 

micrometers. The distance of the partial annulus and last completed annulus were measured. The 

marginal increment was calculated by taking the last incomplete annulus and dividing by the 

width of the last complete annulus (Hyndes, 1992). 

The data of the marginal increment was then min/max transformed by taking the 

marginal increment reading, subtracting the minimum increment for the age, and dividing by the 

range of measurements for the same age. This transformation keeps the measurement between 

zero and one (0-100%), as it rescales numbers that otherwise could not be used, such as those 

greater than 100%.  

To build the ARIMA, UCM, and copula models, due to the sparsity of specimens, the 

data has been grouped into younger fish less than ten years of age, ten years, eleven years, etc. to 

twenty years and then an older than twenty years group (Magnusson and Hilborn, 2007). With 
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this classification, the estimation of missing values/imputation technique is made reliable. The 

missingness in the blackbelly rosefish is well accounted for and the pattern associated with the 

MI is then predictable. 

 

5.2.2 Imputation  

MI data was filled with missing values. The missingness in blackbelly rosefish is 

unavoidable because blackbelly rosefish are hard to collect in terms of cost and time required for 

collection. Even with the help of volunteer donations, there were not sufficient fish to guarantee 

readings at each age and month category of the ageing process, hence grouping of ages. Imputing 

the missing values aids in validating annulus formation and allows for age-based models to be 

used by researchers and management teams. 

Of the multiple methods of imputation, predictive mean matching (PMM) using multiple 

imputation by chained equations (MICE) has been found to be more robust to model 

misspecifications, heteroscedasticity and non-normality, since the predicted values are limited 

within the range of observed values which can preserve any non-linear relationships (Kleinke, 

2017; Kleinke, 2018). Kleinke (2017) conducted simulations with varying sample sizes, donor 

pool sizes, missing data percentages, and distribution skewness and found that PMM consistently 

provided better results than multivariate normal models in all the scenarios tested. Kirch et al. (in 

draft) found the best results with PMM imputation using MICE.  

Missing data were then imputed using the R package MICE with PMM (van Buuren et 

al., 2022).  
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5.2.3 Traditional graphical marginal increment analysis 

Traditional marginal increment analysis is conducted by graphing the mean monthly 

average of the min/max converted data and then visually inspecting any pattern. This was done 

for the entire dataset. Since blackbelly rosefish mature at fourteen years (Kelly et al., 1999), the 

data was split into two groups, less than fourteen years, and fourteen and greater, to see if there 

was a better pattern to the data based on reproductive status. Adding these statistical tools to the 

blackbelly rosefish growth becomes necessary. 

 

5.2.4 Time Series 

An ARIMA(𝑝, 𝑑, 𝑞) process is defined as: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡,                                                                                                        (77) 

where 𝜙 and 𝜃 are functions of the autoregressive (AR), and moving average (MA), parts, 

respectively, 𝜀𝑡~𝑁(0, 𝜎2), B is the backshift operator, and 𝑑 is the differencing parameter 

(Brockwell and Davis, 2002). Without the differencing, the ARIMA turns out to be a simple 

ARMA(p, q) model. 

We used the autocorrelation function to estimate the AR parameter (𝑝); and the sample 

partial autocorrelation function to estimate the MA parameter (𝑞). 

R package “astsa” will be used to loop through possible combinations of 𝑝 and 𝑞 ranging 

from zero to three (Hyndman and Killick, 2022). The AIC, log likelihood, and variance will be 

used to decide the best model. 

 

5.2.5 Unobserved Components Model 

Unobserved components models are described using the equation: 
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𝑌𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝜓𝑡 + 𝑟𝑡 + ∑𝜑𝑖 𝑌𝑡−𝑖 + ∑𝛽𝑗 𝑋𝑗𝑡 + 𝜀𝑡 ,                                                                  (78) 

where 

𝜇𝑡 represents the trend component, 

𝛾𝑡 represents the seasonal component, 

𝜓𝑡 represents the cycle trend, 

𝑟𝑡 is the autoregressive term, 

∑𝜑𝑖 𝑌𝑡−𝑖 is a regressive term involving the lagged dependent variables, 

∑𝛽𝑗 𝑋𝑗𝑡 is a regressive term on the independent variables,  

𝜀𝑡 is the error term assumed to be independent and have identical Gaussian distributions, 

and 𝜇𝑡, 𝛾𝑡, 𝜓𝑡, and 𝑟𝑡 are assumed to be independent of each other (Yang and Zhang 2019).  

With the addition of cycle and seasonal components, UCMs are another way to describe 

time series data. Analysis is conducted using SAS® version 9.4 “proc ucm.” A description of the 

six chosen models is given in Table 11. 

 

 

Table 11: Combination of all possible methods used to test the unobserved components models 

(UCMs). 
 

Level Slope Cycle Season 

Model 1 Stochastic Stochastic Stochastic Stochastic 

Model 2 Stochastic Stochastic -- Stochastic 

Model 3 Stochastic Fixed Stochastic Stochastic 

Model 4 Stochastic -- Stochastic Stochastic 

Model 5 Stochastic Fixed -- Stochastic 

Model 6 Stochastic -- -- Stochastic 
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5.2.6 Copula 

When ARIMA assumptions are violated, such as normally distributed errors, stationary 

data, and equal variance across time, copulas may be a better method for analysis. 

We defined a copula is as 

𝑃(𝑌𝑡 ≤ 𝑦𝑡 , 𝑌𝑡−1 ≤ 𝑦𝑡−1) = 𝐶{𝑃(𝑌𝑡 ≤ 𝑦𝑡), 𝑃(𝑌𝑡−1 ≤ 𝑦𝑡−1)}, 𝑡 = 3, … , 𝑛.                                  (79) 

Where C is some joint density obtained from the CDFs of the consecutive MIA time growth (Sun 

et al., 2020).  

This paper will use Gaussian copula and marginals, the later described as 

𝐺(𝑦) =  
1

𝜎√2𝜋
𝑒−

1

2
(
𝑦−𝜇

𝜎
)
2

, 𝑦 ∈ ℝ.                                                                                                   (80) 

The R package “gcmr” was used to fit the copula models (Masarotto and Varin, 2017). 

The copula will be fitted using the consecutive observations of the MIA. The first two 

measurements were removed so that a burn-in period with several non-imputed values could be 

used. The copula can include different types of autoregressive and moving average structures; 

ARMA (3,3) is selected as a suitable choice for the gcmr package copula function. Copula can 

also handle trigonometric functions with time dependence. Hence, trigonometric functions will 

also be used in the model equation (Chesneau 2021a,b, 2022; Kirch et al., 2023). The copula 

parameters are estimated and reported along with measures of goodness of fit, the log likelihood 

and Akaike information criterion (AIC). Kendall’s tau (𝜏) are calculated to estimate correlation 

between accretion width over time. 
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5.2.7 Goodness of fit tests 

We considered three models: the ARIMA, UCM, and copula. All three time series 

models were run and measures of goodness of fit were captured using the log likelihood to 

formulate Akaike’s information criterion as 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 2𝐾,                                                                                                             (81) 

where 𝐾 = 𝑝 is the number of parameters in the model (Burnham et al., 2011; Piegorsch and 

Bailer, 2005).   

The mean squared error is formulated as 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1 ,                                                                                                            (82) 

where 𝑌𝑖 is the observed observation and 𝑌̂𝑖 is the predicted observation.  

The Kendall’s tau that measures the difference in the measure strength and direction of 

association between the time points: 

𝜏 = 1 − 4∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣)
1

0

1

0
,                                                                                               (83) 

as in Sun et al. (2020), where C represents the copula function, with u and v capturing the 

marginal distribution of the consecutive time points.  

 

5.3 Results 

 

5.3.1 Data  

A total of 802 fish were collected from the Norfolk Canyon between 2008 and 2015. Out 

of the 802, 452 fish were collected by charter boat and 350 by angler donations. The largest 

sample sizes were collected in June and July with over 200 each month. None were captured in 

February and December, and all other months had samples below 100. 
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Fig. 27: Observed and imputed increment width plotted over age in months. Observed data are 

hollow circles. 

 

Due to time and cost constraints in processing, otoliths from 199 fish were randomly 

selected from the dataset for MIA. The mean of the marginal increment of the raw data was 

0.4527 with a standard deviation of 0.2747. The mean of the predictive mean matching marginal 

increment data was 0.4175 with a standard deviation of 0.2537. Figure 27 shows the graph of the 

time series of data. 
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5.3.2 Traditional graphical marginal increment analysis 

Traditional MIA relies on the qualitative review of the graph of MI by month. For the 

entire sample, there is no visibly discernable pattern to the data over all ages. There is a decrease 

in the marginal increments for the under fourteen-year-olds in May, compared to those fish over 

fourteen years old (Figure 28). This indicates that one annulus is produced per year in this age  

Fig. 28: Traditional marginal increment analysis. A shows the graph for blackbelly rosefish less 

than 14 years. B shows the graph for blackbelly rosefish 14 years and older.  

 

 

group. Under this traditional method, the variance is too large for us to make any meaningful 

description of the change in MI even when breaking up the data in terms of age group. To add 

statistical significance to the analysis, ARIMA, UCM, and copulas are used in the next sections.  

 

5.3.3 ARIMA 

The model (3,0,3) has the lowest AIC, 12.21; MSE, 0.0656; and highest log likelihood, 

1.9. (Table 12). All the parameters were considered significant by an alpha value of 0.05 in the 

(3,0,3) model.  

A B 
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Measures of goodness of fit showed the residuals have a zero mean and have no 

particular pattern outside of the twelve months spike associated with the yearly annuli formation 

(Figure 29). The Ljung-Box statistics were all above 0.05 meaning the observations were not 

correlated, indicating a good fit to the ARIMA (3,0,3). 

 

 

 

Table 12: Model diagnostics for the ARMA (p, q) model. The bold values show the best model 

parameters. 

A) shows the AICs for selected ARIMA models. 

B) shows the MSE for selected ARIMA models. 

C) shows the log likelihood for selected ARIMA models. 

p/q 0 1 2 3 

0 16.638 17.9523 14.7897 16.7883 

1 18.1919 16.8829 16.783 14.1231 

2 15.7735 17.1037 14.5534 15.6319 

3 17.5654 18.9834 15.5845 12.2096      

p/q 0 1 2 3 

0 0.0639 0.0636 0.0613 0.0613 

1 0.0609 0.0637 0.0623 0.0613 

2 0.0618 0.0615 0.0594 0.0583 

3 0.0617 0.0614 0.0582 0.0545      

p/q 0 1 2 3 

0 -6.319 -5.9761 -3.3949 -3.3941 

1 -6.096 -4.4414 -3.3915 -1.0615 

2 -3.8867 -3.5519 -1.2767 -0.8159 

3 -3.7827 -3.4917 -0.7922 1.8952 

     

 

 

 

 

 

 

 

A 

B 

C 
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Fig. 29: ACF of residuals (A) and QQ plot (B) of the time series model. 

 

 

 

5.3.4 UCM 

Model six has the lowest AIC of 53.81 while model 4 has the lowest MSE of 0.0808 and 

highest log likelihood of -23.66 (Table 13). QQ plots show the tails of the data violate the 

normality assumption (Figure 30). All estimates for seasonality are zero. 
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Table 13: Summary statistics for each of the six UCM models. The lowest AIC is model 6, the 

lowest MSE is model 4, and the largest log likelihood is model 4. 

Model AIC MSE Loglikelihood 

1 75.031 0.0870 -30.52 

2 69.031 0.0870 -30.52 

3 73.031 0.0870 -30.52 

4 59.322 0.0808 -23.66 

5 67.031 0.0870 -30.52 

6 53.81 0.0811 -23.9 

 

 

5.3.5 Copula 

The best fit equation is: 

𝑀𝐼𝐴𝑡 = 𝑙𝑛 (−𝑡𝑎𝑛 (
2𝜋𝑡

12
) (𝑠𝑖𝑛 (

2𝜋𝑡

12
) +

2

𝜋2 𝑐𝑜𝑠 (
2𝜋𝑡

12
)) + 𝑡).                                                         (84) 
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Fig. 30: MIA data fit from each of the six unobserved components models (UCMs). The light 

blue area is the 95% confidence interval. 

  

 

This can include different types of autoregressive, moving average structures. ARMA 

(3,3) was selected to build upon the time series analysis. The AIC is 18.8, while the log 

likelihood is 0.0400. Kendall’s tau was -0.0292. 

The copula fit to the data is not very good (Figure 31). But,  The QQ plot of the 

conditional residuals shows a close to normal distribution while the marginal residuals show a 

poor normality fit (Figure 32).  

B A C 

F E D 
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Fig. 31: Graph of copula fit to imputed data. 

 

 

 

 

 

 

Fig. 32: Conditional (A) and marginal (B) residual QQ plot of the copula model. 
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5.4 Discussion 

As a deep-sea fish, blackbelly rosefish have proven to be difficult in validating ages 

because of their longevity, difficulty in collecting specimens, and lack of strong environmental 

seasonal signature. Studies in Europe show annuli formation in June to August (Abecasis et al., 

2006; Isidro 1987; Sami et al., 2016), while the study in South Carolina (White et al., 1998) 

limited their results to mostly juvenile specimens with a annulus formation in May. Empirical 

methods for ageing blackbelly rosefish were based on visually observing a sectioned otolith 

graph of the traditional MIA, and no statistical model was proposed to describe the 

autoregressive MI of the age. In this paper, I was able to fit time series statistical models to MIs 

of blackbelly rosefish from the Norfolk Canyon area off the coast of Virginia. I confirm a May 

timing of forming their annulus over the entire lifetime. 

Of the statistical models, ARMA provided the best fit. By integrating the time 

dependence with MI, we did not need to separate the data into two groups, juveniles and adults. 

The estimates of the MI distributions under ARMA, UCM, and copula were viable options in 

modeling MIA. 

The ARMA fit the data and captured the yearly growth because of the dependence of the 

data in the MI. The visual inspection of the graphs has limitations that the ARMA does not. The 

value of time series is that there is less variance in the monthly observations  when the data is 

spread over several years instead of compressed into one year in traditional MIA. In other words, 

the between year variance is lower than the within year variance.  

The copula model produced the second best model. It accounted for the huge variance in 

the dataset and the violation of the constant normality assumption of the errors. The copula 

relaxes the assumption of normality in the errors while capturing the time dependence under 
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ARMA (3,3). The ARMA model works better since the sawtooth pattern is more noticeable 

(Kirch et al., 2023) in contrast to the copula model. We suspect that the copula may be over 

parameterizing the model, indicating a fit not as appropriate as ARMA. Still, these two models 

allow us to provide the age distribution function for the MI of blackbelly rosefish. UCM 

produced the worst results with the highest AIC value. This is likely due to the large amount of 

missing data in the set which UCM does not handle as well as the other two models even with 

imputation. 

These analyses give a framework for MI in the biological synthesis associated with the 

blackbelly rosefish with a preponderance of missing values and sawtooth pattern. To my 

knowledge, I am the first to implement and give a statistical technique to assess the MIA change 

over the lifetime for blackbelly rosefish.  

According to the data measurements, the growth of the MIA is governed by: i) the 

periodicity with significant growth that is noticeable every year; ii) at the month of May, there is 

a dominant, non-ignorable sawtooth pattern; iii) growth is dictated by age. Such findings lead to 

great tools for blackbelly rosefish conservation. Although these cannot reveal the difference in 

annulus timing between East Coast and European stocks, I have shown that timing of annulus 

formation is not a factor of age. 
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CHAPTER 6 

 

Conclusion 

 

There are many issues with ageing fish; techniques have been studied for over one 

hundred years. Finding solutions for accurate ageing and age estimation are critical to the 

conservation of fishes and fisheries. Previous studies have used qualitative analyses or 

quantitative analyses that violate underlying stated assumptions. This dissertation has used 

quantitative statistical methods that properly handle model assumptions, instead of the traditional 

qualitative method of ageing fish through MIA.  

Time series models can now be used to help validate annuli formation in multiple fish 

species with varying life histories. ARIMA, UCMs, and copulas provide a method to model MI 

statistically. In general, the best methods to use depends upon the shape and characteristics of the 

data. The data are identified with a sawtooth pattern. The ARIMA model worked better when the 

sawtooth pattern was evidenced in the data. When the sawtooth was not as distinct, the copula 

provided the best fit. In addition, all methods can handle the missingness associated with the data 

by estimation through PMM by way of MICE. 

ARIMA requires the assumption of equal variance across time and stationarity of the 

data. While UCMs can handle nonstationary data with a trend component it can also incorporate 

covariates that ARIMA cannot. Copula relaxes the assumptions of both models and is built from 

the data’s CDF while also allowing for covariate addition. 

In this work, time series models proved to be better methods to quantify MIA than either 

ANOVA or circular statistics, the other two methods used in the literature. ANOVA analyzes the 

data under the assumptions of Gaussian errors with constant variance and each month is 
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independent of other months. Then it compares the months to identify significant difference 

among the MI measurements, and cannot analyze data longer than one year. Circular statistics 

assumes normality of the data, and requires conversion of the date to radians, losing the ability 

for easy interpretation. Neither of these methods are able to fit the sawtooth pattern explicitly. 

The time series methods allow for proper analysis even when a pattern is not apparent 

visually in the graph. The MI graphs of the blackbelly rosefish did not have an apparent pattern, 

but the ARIMA was able to discern the yearly pattern because the between year variance was 

lower than the within year variance. The spread of the data in each month is lower when looking 

at the data spread over years rather than just one year. 

MIA can now be conducted on a single cohort through time series analysis. Imputation 

replaces the missing values, allowing for the time series analysis. Because of the missing data, a 

single cohort is rarely followed. Following a single cohort allows for data that is more 

standardized across samples. The specimens have lived similar life histories with the same 

environmental conditions. Hence, the effects of time can be examined. 

This work can be extended in multiple ways. The addition of covariates with the UCM 

and copula models can help with model fitting and provide for deeper analysis. It is believed that 

environmental conditions influence otolith growth. Having these extra data points can add 

further insight into otolith growth and hence fish growth. Different methods of imputation could 

also be tested. Many methods are not appropriate for missing not at random data. Further study 

could find an imputation method that works better for this type of missingness. 
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