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ABSTRACT

The harmful effects of ZIKA virus (ZIKV) infection are reflected by severe neurological manifestations such as microcephaly
in neonates and other complications associated with Guillain-Barré syndrome in adults. The transmission dynamics of
ZIKV in or between neurons, or within the developing brains of the foetuses are not fully understood. Using primary
cultures of murine cortical neurons, we show that ZIKV uses exosomes as mediators of viral transmission between
neurons. Cryo-electron microscopy showed heterogeneous population of neuronal exosomes with a size range of 30-
200 nm. Increased production of exosomes from neuronal cells was noted upon ZIKV infection. Neuronal exosomes
contained both ZIKV viral RNA and protein(s) that were highly infectious to naive cells. RNaseA and neutralizing
antibodies treatment studies suggest the presence of viral RNA/proteins inside exosomes. Exosomes derived from
time- and dose-dependent incubations showed increasing viral loads suggesting higher packaging and delivery of
ZIKV RNA and proteins. Furthermore, we noted that ZIKV induced both activity and gene expression of neutral
Sphingomyelinase (nSMase)-2/SMPD3, an important molecule that regulates production and release of exosomes.
Silencing of SMPD3 in neurons resulted in reduced viral burden and transmission through exosomes. Treatment with
SMPD3 specific inhibitor GW4869, significantly reduced ZIKV loads in both cortical neurons and in exosomes derived
from these neuronal cells. Taken together, our results suggest that ZIKV modulates SMPD3 activity in cortical neurons
for its infection and transmission through exosomes perhaps leading to severe neuronal death that may result in

neurological manifestations such as microcephaly in the developing embryonic brains.
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Introduction

Mosquito-borne Zika virus (ZIKV) is a positive sense
single-stranded RNA virus that belongs to the flavi-
virus genus of the family Flaviviridae [1]. ZIKV has
been in the spotlight due to its recent epidemic out-
break in Brazil and spread in several parts of the Wes-
tern Hemisphere including the United States of
America [1-3]. Since more than 60 years, ZIKV existed
in the Zika forest of Uganda and recently has become
an International prominence and Public Health Emer-
gency of International Concern (PHEIC) [1-3]. ZIKV
belongs to the Spondweni serocomplex and is closely
related to dengue (DENV) and West Nile virus
(WNV) [1]. Mostly, infections with ZIKV are asympto-
matic (~80%) with flu-like symptoms and simple
associated clinical manifestations. The sexual trans-
mission of ZIKV, with replicative viral particles being
detectable in semen for at least two months, proposes
it to be a significant global threat and a pathogen of
high priority concern to the public health [4,5].

Typically, Aedes aegypti mosquitoes transmit most of
the ZIKV infections to humans. However, ZIKV can
also be transmitted through sexual contacts and trans-
fusions of human blood at the clinical side. In humans,
vertical transmission of ZIKV from mother to neonates
is of the highest concern and has been of focus due to
the associated neurological manifestations [1-3,6-8].
ZIKV infection has been shown to affect both the Cen-
tral Nervous system (CNS) and the Peripheral Nervous
System (PNS) and is associated with severe neurologi-
cal complications such as Guillain-Barré syndrome
(GBS with muscle weakness and paralysis) and the
attentive manifestation of microcephaly [1-3,6-12].
Microcephaly, a less studied neurodevelopmental dis-
order is a marked reduction in brain size and intellec-
tual disability with defective cell proliferation and
severe death of cortical progenitor cells and their neur-
onal progeny [6,8,11].

Although emergence of ZIKV-associated congenital
microcephaly and neuropathogenesis is being studied
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extensively, this line of research is currently very lim-
ited. Since January 2016, significant and stunning pro-
gress has been made in developing stem cell-based
cellular and animal models [11,13]. In addition to the
identification of underlying molecular mechanisms
and development of therapeutics and vaccines, involve-
ment of human tissues and samples has led to the
understanding of ZIKV infections [2,3,7,11,13]. In a
developmental mouse model of ZIKV infection, it has
been shown that astrocytes were targeted throughout
the brain upon entry into the CNS after peripheral
inoculations [3]. ZIKV has been shown to efficiently
infect and replicate in mouse neural stem cells
(mNSCs), mouse astroglial cells and different regions
of brain including neocortex and hippocampal regions
(CAl1 and CA3), thereby raising several concerns
related to long-term memory problems [3,9-12,14].
ZIKV RNA has been detected in neural tissues,
human neural progenitors, matured neurons and has
been correlated with an increase in the apoptosis-
related genes in those neuronal cells [3,9,10,12,14].
The cerebral cortex, a four-layered structure that med-
iates the higher cognitive functions such as learning
and memory has been severely affected in microcepha-
lic patients [6]. Two independent studies have also
shown that ZIKV infection can drastically reduce the
growth of neural stem cells and brain organoids that
can be directly co-related to the ZIKV-associated con-
genital microcephaly [8,15,16]. A comparative analysis
approach in the developing neocortex has identified
ZIKV specific alterations and preferential infection of
neural stem cells [17]. However, this study does not
address the critical steps of how ZIKV reaches the
brain. Also, the transmission dynamics of ZIKV in
and between neurons or neural stem cells is largely
unknown.

Our recent study showed that Langat virus, a virus
closely related to tick-borne encephalitis virus
(TBEV) uses neuronal exosomes to transmit between
cells [18]. Exosomes are small (30-250 nm) bioactive
functional vesicles derived from the endo-lysosomal
system that exit into the surrounding microenviron-
ments [19-25]. Exosomes are derived from mostly all
of the mammalian cells and they have been shown to
contain cell and cell-state specific cargo of proteins,
mRNA, and miRNA [26-31]. Recent discoveries of
functional RNA and miRNA in the exosomes has
increased the attention of many researchers that has
led to the emergence of numerous studies in the
identification of novel molecules present in the exo-
somes [28-30,32]. In various pathological conditions
that include tumours, viral infections and tissue
damage, exosomes aid in transmission of cargo from
these sites to other(s) within the human body [32,33].
Exosomes have been shown to play both neuroprotec-
tive and toxic roles in the CNS [33]. Several reports
have suggested neuronal exosomes as novel therapeutic

targets for neurological disorders such as Alzheimer’s
disease [33-37]. We have hypothesized that ZIKV
uses exosomes to transmit to other neurons and spread
infection through neuronal connectivity in developing
embryonic foetal and neonatal brains. Our study shows
that mouse cortical neuronal cell-derived exosomes
carry ZIKV infectious RNA and proteins that mediate
viral transmission to other neurons, thereby aiding in
viral dissemination throughout the CNS. Also, our
work suggests that neutral Sphingomyelinase SMPD3
(also referred as nSMase2), an enzyme sphingomyelin
phosphodiesterase is involved in ZIKV infection, repli-
cation, and mediates infectious viral RNA and protein
transmission via neuronal exosomes. SMPD3 hydroly-
ses sphingomyelin to phosphocholine and ceramide
and is predominantly expressed in the neurons of the
CNS to control postnatal growth and development
[38-40]. In addition, SMPD?3 has been shown to reside
in Golgi apparatus and is ubiquitously expressed,
thereby suggesting its important role in ZIKV replica-
tion [40,41]. Overall, our study not only provides a
model in understanding the importance of exosomes
but can also lead in the progress of new strategies
that include the development of exosomal-based
drugs or therapeutics and/or vaccines to interrupt the
ZIKV infections in neonatal brains.

Results

ZIKV infects mouse cortical neurons in a time-
and dose-dependent manner

Smaller head circumference, intellectual ability and sei-
zures that characterizes microcephaly, has been
strongly associated with ZIKA virus (ZIKV) infections
[6,8,11,15-17,42]. Also, a correlation between ZIKV
and reduced neuronal differentiation or increased cell
death in neuronal cells has been shown [2,3,6,9-
12,14,43]. In order to determine the correct time of
neuronal differentiation and to address if cells in pri-
mary cultures are perhaps not in progenitor state
during ZIKV infection, we plated neuronal cultures
for either 72 or 120 h (post-plating) followed by infec-
tion with ZIKV (for another 72 h p.i., 5 MOI; Multipli-
cation of Infection). We infected freshly isolated
primary cultures of murine cortical neurons from
embryonic (E16) developing mouse brains. Primary
cultures were stained for both neuronal marker
MAP-2 (Microtubule Associated Protein-2) or with
GFAP (Glial Fibrillary Acidic protein) an intermediate
filament protein indicated as astrocyte marker
(Figure 1). At both post plating time points of 72 or
120 h, we found that progenitor cells were fully differ-
entiated as neurons as revealed by the staining for
MAP-2 (green) followed by detection with Alexa
Fluor 488 (Figure 1). We did not find any astrocytes
or other glial cells or neuronal precursor cells (NPCs)
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Figure 1. Murine cortical neurons in primary cultures are differentiated as neurons from progenitor cells. Phase contrast and fluor-
escent microscopic images showing primary cultures of cortical neurons from uninfected (Ul) or ZIKV (I) infected (MOI 5; 72 h p.i.)
groups at two different time points (72 and 120 h post plating). Cortical neurons were stained for neuronal marker (MAP-2) or
astrocyte marker (GFAP) to show the presence of neurons and absence of glial cells. DAPI staining for nuclei serve as internal con-
trol. Uninfected neurons serve as control. Representative images obtained from EVOS FL system are shown. Scale bar indicates

200 pm in all panels.

(for GFAP positive staining, and detection with Alexa
Fluor 594) in our primary cultures of murine cortical
neurons at 72 or 120 h of post plating, followed by
infection with ZIKV (for another 72 h) (Figure 1).
Also, the bright field (BF) images, predominantly
showed neurons in our primary cultures at both 72
and 120 h post plating of cells (Figure 1). Infection of
primary cultures of cortical neurons at/after 72 or
120 h post plating had no differences with ZIKV infec-
tion. Some of the DAPI-positive but weak MAP-2
stained cells were found to have strong staining for
ZIKV Envelope (E) protein (detected by 4G2 mono-
clonal antibody, followed by Alexa Fluor 594 secondary
antibody) (Supplementary Fig. 1). We assume that
neurons perhaps have retracted their neurites due to
severe ZIKV infection thereby leading to neuronal
death in those weak MAP-2 stained cells. We also
found that ZIKV readily infected (5 MOI) murine cor-
tical neurons with increased cell death at 96 h post
infection (p.i.) in comparison to the uninfected control
(Figure 2(A)). In addition, cortical neuronal cell death
with ZIKV infection was severe at 120 h p.i,, in com-
parison to infection at early time points, suggesting
longer incubation times lead to severe damage and
neuronal death, perhaps resulting in tissue loss (Figure
2(A)). Several neuronal connections were eliminated
and severe damage was observed due to massive neur-
onal cell death in murine cortical neurons at 120 h p.i.,

(Figure 2(A)). We did not find any morphological
changes or cell loss at earlier tested time points (24,
48 and 72 h p.i.) of ZIKV infection (Figure 2(A)).
The quantitative analysis for assessing cell viability of
primary cultures of cortical neurons by MTT assay
showed reduced number of viable cells at later time
points (72, 96 and 120 h) of ZIKV infection (Figure 2
(B)).

To test that neuronal cell loss, is due to longer incu-
bations with ZIKV infection, we performed an inde-
pendent experiment with different doses (MOI 1, 2.5
and 5) of ZIKV. At 72 h p.i., we did not find much con-
siderable morphological changes in cortical neurons
infected with ZIKV at tested doses (of MOI 1, 2.5
and 5) (Supplementary Fig. 2A). However, quantitative
analysis using MTT assay showed some reduction in
cell viability at 72 h post-ZIKV infection with 5 MOI
(Supplementary Fig. 2B). These data suggest that neur-
onal cell death at 96 h p.i., and onwards is mostly due
to the result of prolonged infection of neurons with
ZIKV and the neuronal stress related to infection.
QRT-PCR analysis performed on the neuronal samples
collected at different time points revealed that ZIKV
loads (both E-gene and NS5 mRNA transcripts) were
significantly (P < 0.05) high at 72 h p.i,, in comparison
to the other tested time points (of 24, 48 and 96 h p.i.,)
(Figure 3(A,B)). The lower loads of ZIKV at 96 h p.i. is
perhaps due to the severe neuronal cell death observed



310 W. Zhou et al.

B MTT assay, time point, cortical neurons

p<0.05
1.2+ p<0.05:
p<0.05.

1.0

0.8+

0.6+

0.4+

Live cells, relative OD

0.2+

0.0
Ul 24h  48h  72h  96h  120h

hours (p.i.)

Figure 2. Murine cortical neurons in primary cultures are susceptible to ZIKV infection at longer incubation time. (A) Phase contrast
images showing primary cultures of cortical neurons from uninfected (Ul) and ZIKV (I) infected (MOI 5) groups at different time
points (of 24, 48, 72, 96 and 120 h p.i.). Uninfected neurons serve as control. Representative images obtained from EVOS FL system
are shown. Scale bar indicates 100 pm in all panels. (B) MTT assay showing cell viability of mouse cortical neurons at different time
points (of 24, 48, 72, 96, and 120 h p.i.) upon ZIKV infection (5 MOI). Relative optical density shows live cells in culture. Uninfected

controls kept for 120 h were considered as control.

at this time point (Figure 3(A,B)). Immunoblotting
analysis (using highly cross-reactive 4G2 monoclonal
antibody that recognizes the viral Envelope (E)-
protein) showed similar results with enhanced ZIKV
E-protein at 72 h p.i.,, in comparison to the loads at
other tested time points (Figure 3(C)). It was also
observed that HSP70 (heat-shock protein 70, an
enriched marker in mammalian exosomes) loads
were enhanced upon ZIKV infection at 48, 72 and
96 h p.i., in comparison to their respective uninfected
controls (Figure 3(C)). HSP70 levels were minimally
detected at 24 h p.i. in the tested conditions (Figure 3
(C)). In addition, a dose-dependent increase in ZIKV
loads was evident both at the RNA (E-gene and NS5
mRNA transcripts) and protein levels when cortical
neurons were infected with 1, 2.5 or 5 MOI at 72 h
p.i. (Figure 3(D-F)). In both time and dose-response
data (Figure 3(A,B,D,E)), NS5 mRNA amplification
was found to be higher when compared with the E-
gene amplification, hence we used NS5 detection in
our further analysis. Total protein profile gel images
served as loading controls in the immunoblotting
analysis (Figure 3(C,F)). Densitometry analysis from

total cell lysates showed the quantitative differences
in E-protein (from both the time point and dose-
response) and HSP70 levels observed between the
ZIKV infected (MOI 5) and uninfected controls (Sup-
plementary Fig. 3A-C). Collectively, these data suggest
time- and dose-dependent infection kinetics of ZIKV
in mouse cortical neurons.

Cortical neuronal cell-derived exosomes contain
ZIKV RNA and protein

Regardless of the importance of ZIKV infection and its
cause of severe neurological complications such as GBS
and the more attentive manifestation of microcephaly
in neonates, we know little about the transmission
modes of ZIKV within the neonatal and adult brain
cells. Increased HSP70 levels in neuronal cells upon
infection (Figure 3(C)) suggest that ZIKV perhaps
uses neuronal exosomes for transmission and spread
of infection in the brain. It has been shown that cortical
neurons release exosomes in culture that contain
enriched exosomal markers [18,44]. Due to increased
viral loads at 72 h p.i., we considered this time point
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Figure 3. ZIKV infects primary cultures of cortical neurons in a time- and dose-dependent manner. QRT-PCR analysis showing ZIKV
loads (MOI 5) determined by either E-gene (A) or NS5 (B) mRNA transcripts in neuronal cells at different time points (of 24, 48, 72
and 96 h p.i.). Uninfected cells (Ul) at indicated time points served as controls. (C) Immunoblotting analysis showing ZIKV E-protein
levels at different time points (24, 48, 72 and 96 h p.i. and at 5MOI). HSP70 loads serve as internal control. ZIKV loads at different
MOI of infection (1, 2.5, 5 MOI) determined by either E-gene (D) or NS5 (E) mRNA transcripts is shown from 72 h p.i. (F) Immunoblot
showing viral E-protein loads in cortical neurons upon infection with various doses (1, 2.5, 5 MOI). Uninfected cells were used as
control in all panels. Total protein profiles shown by Coomassie-stained gels (in C and F) serve as loading controls. ZIKV loads for E-
gene or NS5 mRNA transcripts are shown in both (A, D) or (B, E). E-gene or NS5 transcript levels were normalized to mouse beta-
actin in (A, D) or (B, E). P value determined by Student’s two-tail t-test is shown.

for the isolation of exosomes from cortical neuronal
cultures. Using either density gradient centrifugation
technique; OptiPrep™ (DG-Exo isolation), or by
differential ultracentrifugation, we isolated exosomes
from murine cortical neurons [18,45,46]. Detailed pro-
tocols and descriptions are published in our recent
work on neuronal exosomes [18]. Cryo-Electron
Microscopy (EM) performed on neuronal cell-derived
exosomes showed their sizes in the ranges of 30-
200 nm in diameter (Figure 4(A)) that are similar to
exosomes isolated from other mammalian cells. Quan-
titative analysis of the heterogeneous populations of
neuronal exosomes was performed to determine any
differences between ZIKV-infected and uninfected
cell-derived exosomes (Figure 4(B,C)). We found that
highest percentage of exosomes were of sizes between
50-100 nm and 100-150 nm (in diameter) in both
uninfected and ZIKV-infected groups (Figure 4(B,
C)). However, ZIKV infected neuronal cell-derived
exosomes had increased percentages in 0-50 nm but
decreased percentages in 100-150 nm and 150-
200 nm sizes in comparison to the uninfected group
(Figure 4(B,C)). Also, higher percentages of larger exo-
somes or Extracellular Vesicles (EVs) of sizes 200-
500 nm were observed upon ZIKV infection in com-
parison to the uninfected group (Figure 4(B,C)). In
addition, we noted higher number of exosomes in
cryo-EM images collected from ZIKV-infected (n =
25) group in comparison to the uninfected (n=13)

group (Figure 4(D)). These data suggest increased pro-
duction and or release of neuronal exosomes upon
ZIKV infection.

To find whether ZIKV proteins are evident in neur-
onal exosomes, we collected six different fractions
from samples collected at 72 h p.i., following the Opti-
Prep™ (DG-Exo) isolation method as described in
[18,45]. Neuronal HSP70 was detected in 20 pl of
the infected exosomes from three to five fractions.
Barely detectable levels of HSP70 were noted in frac-
tions one, two and six but enhanced levels were
noted in fractions three to five (Figure 4(E)). HSP70
loads were also detected in exosomal fractions three-
five obtained from uninfected cortical neuronal cells,
but with higher levels in fractions five (Figure 4(E)).
Additionally, for detailed characterization of exo-
somes, we detected the presence of other exosomal
markers such as CD63 and CD9 in fractions from
both ZIKV-infected and uninfected groups (Figure 4
(E)). CD63 loads were enriched in fractions three-six
in ZIKV infected and fractions four-six in uninfected
controls. Barely detectable loads were observed in one
and two fractions in both infected and uninfected
groups (Figure 4(E)). CD9 was also enriched in frac-
tions four and five in both ZIKV-infected and unin-
fected controls, and detectable levels were found in
fractions two and three of the infected group (Figure 4
(E)). In other fractions one and six, we could not
detect CD9 loads (Figure 4(E)). We also found that
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Figure 4. Exosomes derived from murine cortical neuronal cells are in heterogenous populations and contain infectious ZIKV RNA
and E-protein. (A) Cryo-EM representative images showing exosomes isolated from uninfected (UI) or ZIKV-infected (I) (MOI 5; 72 h
p.i.), cortical neuronal cells. Scale bar indicates 100 nm. Size distribution of exosomes isolated from uninfected (B) or ZIKV-infected
(C) neuronal cells are shown. The Y-axis represents exosome number and X-axis indicate exosome size in diameter (e.g. 0-50 nm). N
indicates total number of exosomes counted from different cryo-EM images. Percentages were calculated based on the total num-
ber of exosomes in each size range. (D) Exosome numbers counted from uninfected and ZIKV-infected groups is shown. The Y-axis
represents exosome number and X-axis indicates samples analysed. N indicates total number of images used in this counting analy-
sis. P value determined by Student’s two-tail t-test is shown. (E) Immunoblotting images from OptiPrep density gradient exosomes
preparation (DG-Exo-isolation) showing enhanced ZIKV-E (MOI 5, 72 h p.i.) protein loads and presence of HSP70, CD63 and CD9
(exosomal markers) in different exosome fractions. Exosomes derived from uninfected cells served as control. Roman numerical
indicates the fraction numbers (I being the top and VI being the small fraction at the bottom of the iodixanol density gradient).
(F) Infection (72 h p.i.) of naive primary cultures of murine cortical neurons showing increased infectivity and transmission from
infectious exosomal fractions four, five and six in comparison to other lower fractions (1-3). (G) QRT-PCR showing ZIKV (I) RNA
loads (MOI 5) from cortical neuronal cell-derived exosomes at different time points (24, 48, 72 and 96 h p.i.). Uninfected (UI)
group from each respective time point serve as controls. (H) Immunoblotting showing the ZIKV-E protein loads (MOI 5) and
HSP70 levels in neuronal cell-derived exosomes isolated at different time point samples (24, 48, 72, and 96 h p.i.). HSP70 loads
show the presence and enrichment of exosomal marker and serve as internal control. (I) ZIKV loads from neuronal cell-derived exo-
somes collected from cortical neurons infected with different doses (MOI 1, 2.5 and 5) at 72 h p.i., is shown. (J) Inmunoblotting
showing ZIKV-E protein loads at different doses (MOl 1, 2.5 and 5, at 72 h p.i.) of infection (I) in neuronal cell-derived exosomes
collected from infected-cortical neurons. Uninfected (Ul) cell-derived exosomes collected from uninfected cortical neurons serve
as control in (I) and (J). Total protein profiles serve as control in (H) and (J). In both (G) and (I), ZIKV NS5 transcripts were normalized
to mouse beta-actin transcripts. P value determined by Student’s two-tail t-test is shown.

ZIKV E-protein levels were enhanced in infected exo-
somal fraction four, however, other fractions (two,
three and five) also showed weak signal for E-protein
(Figure 4(E)). As expected, ZIKV E-protein was not
detected in any uninfected fractions (Figure 4(E)).
Since most of the ZIKV-E protein was detected in
fraction four (the fraction with enhanced levels of all
tested exosomal markers), we assessed this fraction
for the presence of more viral RNA/proteins and
their correspondence to increased infectivity on the
naive recipient cells. We found that naive primary cul-
tures of murine cortical neurons infected via incu-
bations (for 72 h) with infectious exosomes from
different fractions (collected from ZIKV-infected

cortical neurons, at 72h p.., and 5 MOI) showed
highest infectivity with fraction four (Figure 4(F)).
Exosomes from lower fractions five, and six also
showed increased infectivity when compared with
the upper (1-3) fractions (Figure 4(F)). Next, we
tested the loads of ZIKV in exosomes collected from
cortical neurons infected at different time points (of
24, 48, 72 and 96 h p.i, 5 MOI). Similar to viral
loads observed in cortical neuronal cells, ZIKV RNA
loads were significantly (P <0.05) higher at 72 h p..,
in comparison to the other tested time points (of 24,
48 and 96 h p..) (Figure 4(G)). The lower loads of
ZIKV at 96 h p.., is perhaps due to the neuronal
cell death observed at this time point (Figure 2(A)).



We assume that less number of exosomes were
released due to massive death of neurons at 96 h
p-i., (Figure 4(G)). Immunoblotting with 4G2 anti-
body showed increased ZIKV E-protein loads at
72 h pi, in a time-dependent manner in comparison
to the viral loads at 24 and 48 h p.i.,, (Figure 4(H)).
The reduced loads of ZIKV RNA and E-protein at
96 h p.i., corresponds to the severe neuronal loss at
this time point (Figure 4(G,H)). Detection of HSP70
in neuronal cell-derived exosomes further supported
the presence of exosomal marker in both uninfected
and infected exosomal lysates (Figure 4(H)). Further-
more, increased ZIKV RNA and E-protein loads were
noted in neuronal exosomes with an increase in viral
doses from 1, 2.5 and 5 MOI at 72 h p.., (Figure 4(I,
])). Total protein profiles served as loading controls in
the immunoblotting analysis (Figure 4(H,J)). Densito-
metry analysis from total exosomal lysates showed the
quantitative differences in E protein (from both the
time point and dose-response analysis) and HSP70
levels (time points) observed between the ZIKV
infected (MOI 5) and uninfected controls (Sup-
plementary Fig. 3D-F). These data suggest that corti-
cal neuronal cell-derived exosomes contained ZIKV
RNA and E-protein with enhanced loads.

ZIKV RNA and proteins are infectious and are
securely contained inside the exosomes for
transmission

We performed RNaseA-treatment assays, to test the
possibility that ZIKV RNA is not perhaps outside the
exosomes (in PBS suspensions) and hence taken up
by the recipient cells. Neuronal exosomes derived
from ZIKV-infected cells (from 72h p.., 5 MOI)
were freshly isolated (resuspended in PBS) and treated
with RNase A (5 pg/ml, for 15 min, at 37°C). We did
not find any differences in ZIKV NS5 transcript loads
from infected-treated or untreated groups (Figure 5
(A)). The uninfected group treated with RNaseA
served as an internal control (Figure 5(A)). The labora-
tory generated viral stocks (5 MOI) with known titres
(collected from 14 days p.i., Vero cell culture super-
natants) were treated with RNaseA, in order to not
exclude the effect of RNaseA on viruses. No differences
were noted in viral loads determined from naive corti-
cal neuronal cells upon incubation with laboratory viral
stocks prepared from RNaseA-treated or untreated
groups (Figure 5(A)). Similar to our previous results
with DENV2 [47], we assume that the flavivirus RNA
genome is inside exosomes/virions and is not available
for RNaseA-mediated degradation. Next, we tested
whether exosome-mediated viral transmission is
dependent on ZIKV E-protein in naive cortical neur-
onal cells. We treated infectious exosomes (containing
viral RNA and proteins inside exosomes) or laboratory
prepared viral stocks (high infectious dose of MOI 8 or
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low dose of MOI 0.8) with antibodies (3 pg of each)
ZV-2, ZV-16 or with highly potent neutralizing anti-
bodies ZV-54, ZV-67 [48] for 4 h at 37°C followed by
infection (for 72 h) of naive mouse cortical neuronal
cells. No differences in ZIKV loads were noted in neur-
onal cells incubated with infectious exosomes that were
treated with either ZV-2 or ZV-16 or with ZV-54 or
ZV-67 neutralizing antibodies in comparison to their
respective untreated controls (Figure 5(B)). Antibody
treatments of exosomes from uninfected cells were
used as internal controls for the infectious exosome
group (Figure 5(B)). We found a significant reduction
in ZIKV loads in neuronal cells incubated with ZV-2,
ZV-16 or ZV-54, ZV-67 antibodies treated with high
(8 MOI) or low (0.8 MOI) doses of laboratory viral
stocks when compared with their respective untreated
controls (Figure 5(B)). Also, ZV-54 and ZV-67 anti-
bodies treatments with high (8 MOI) or low (0.8
MOI) doses of laboratory viral stocks showed signifi-
cantly (P<0.05) higher neutralization effects when
compared with ZV-2 or ZV-16 antibodies, in both
the high and low viral doses groups (Figure 5(B)).
Additionally, we performed immunofluorescence
assays (IFA) on neuronal cells (using 4G2 monoclonal
antibody for detection). Similar results were obtained
from infectivity assays showing no differences in
ZIKV E-protein staining of neuronal cells that were
incubated with infectious exosomes that were either
kept untreated or treated with ZV-2, ZV-16 or highly
potent ZV-54 or ZV-67 neutralizing antibodies (Sup-
plementary Fig. 4). In case of neuronal cells incubated
with high (8 MOI) or low (0.8 MOI) viral doses of
ZIKV (pre-treated with either ZV-2, ZV-16 or ZV-
54, ZV-67 antibodies), neutralization effects corre-
sponding to lower detection of viral E-protein/staining
and less fluorescently labelled cells was evident in com-
parison to their respective untreated controls (Sup-
plementary Figs. 5 and 6). It was also noted that in
comparison to ZV-2 and ZV-16, the highly potent
ZV-54 or ZV-67 antibodies had stronger neutralization
effects with dramatically reduced E-protein stained
positive cells. Next, we treated cortical neurons with
5 pg of 4G2 antibody (that poorly neutralizes ZIKV),
followed by infection via exosomes isolated from
ZIKV-infected (72 h p.i., 5 MOI) neuronal cells, to ana-
lyse if treatment with 4G2 antibody affects or blocks
viral transmission (Figure 5(C)). No differences in
viral loads were found in antibody-treated or untreated
groups of neuronal cells upon incubation of infectious
exosomes isolated from ZIKV-infected neurons (Figure
5(C)). Addition of ZIKV laboratory stocks with known
titres (MOI 5) showed reduced viral loads in cortical neur-
onal cells treated with 4G2 antibody in comparison to the
untreated controls (Figure 5(C)). These results suggest
that E-protein is securely contained inside the exosomes.
However, E-protein on the surface of the virions is acces-
sible to ZV-2, ZV-16, ZV-54 or ZV-67 or 4G2 antibodies
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Figure 5. Exosomes from primary cultures of cortical neurons are infectious and transmit ZIKV to naive neuronal cells. (A) Infections
via freshly prepared exosomes from ZIKV-infected (MOI 5, 72 h p.i.) cortical neuronal cells or laboratory ZIKV viral stocks treated with
RNaseA on naive cortical neuronal cells (72 h p.i.) are shown. Untreated ZIKV-infected or RNaseA-treated uninfected exosome or
untreated-virus stock groups serve as controls. (B) ZIKV loads (72 h p.i.) in neuronal cells incubated with ZIKV-infectious exosomes
or laboratory viral stocks (8 MOI as high dose or 0.8 MOI as low dose) treated with ZV-2, ZV-16 or ZV-54, ZV-67 antibodies is shown.
Cells incubated with uninfected cell-derived exosomes serves as control for infectious exosome group. The untreated (no antibody
treatment) groups included in all panels, respectively serves as controls. C) QRT-PCR analysis showing viral loads in cortical neurons
treated with 4G2 antibody followed by infection with exosomes (collected from independent batch of ZIKV-infected (MOI 5; 72 h
p.i.) cortical neurons) or laboratory viral stocks. Untreated groups (-) serve as controls. ns indicates no significance in exosome or
virus-treated groups. (D) Representative fluorescent images showing detection of E-protein in neuronal cells infected via exosomes
(upper panel) derived from independent batch of ZIKV-infected (MOI 5; 72 h p.i.) cortical neurons or infected using ZIKV laboratory
viral stocks (for 72 h p.i., lower panel). Neuronal cells treated with exosome-depleted supernatant (sup, in a similar ratio) served as
control for exosome group. Uninfected cells serve as control for ZIKV laboratory stock infected group. Scale bar indicates 200 um in
all panels. (E) Quantitative assessment of number of ZIKV-infected (positive for fluorescence, detected by 4G2 antibody) (MOI 5; 72 h
p.i.) neuronal cells treated with exosomes (in dilution 6) or supernatant fractions is shown. (F) Quantitative assessment of number of
fluorescent neuronal cells, (detected by 4G2 antibody) infected (MOI 5; 72 h p.i.) with laboratory ZIKV viral stocks is shown. G) ZIKV
loads in cortical neuronal cells (at different time points of 24, 48, 72 and 96 h p.i., and 5 MOI) infected via infectious exosomes is
shown in naive cortical neuronal cells for transmission and replication of viral RNA. In panels A, B, and F, ZIKV loads are indicated
based on NS5 transcripts normalized to mouse beta-actin transcript levels. P value determined by Student’s two-tail t-test is shown.

and treatment with these antibodies showed differen-
tial neutralizing effects upon use of laboratory viral
stocks. These data further suggest that E-protein is per-
haps not on the surface of exosomes and may not be
required for mediating viral RNA and protein trans-
mission via exosomes. To determine, if exosomes-
mediated viral transmission is clathrin-dependent, we
treated cortical neuronal cells with clathrin specific
inhibitor (Pitstop-2; 30 uM for 15 min), and infected

these Pitstop-2 treated cells with infectious exosomes
derived from ZIKV-infected (5 MOI; 72 h p.i.) cortical
neuronal cells. We did not find any differences in ZIKV
loads (at 72 h p.i. of naive cortical neuronal cells) in
Pitstop-2 treated group in comparison to the DMSO
(vehicle)-treated controls (Supplementary Fig. 7).
These results suggest that exosome-mediated ZIKV
transmission to naive neuronal cells is clathrin
independent.



To test whether exosomal RNA was infectious to naive
cortical neuronal cells, we determined the viral titres in
exosomes by performing a virus dilution assay. Represen-
tative images from neuronal cells infected via incubations
with exosomes or exosome-depleted supernatants (col-
lected during the exosome isolation methods) are
shown from the virus dilution assay (Figure 5(D)).
Increased fluorescent signal (as determined by immunos-
taining with 4G2 antibody) was evident in neurons
infected with infectious exosomes in comparison to infec-
tion via supernatant fraction (Figure 5(D)). As an internal
control, we also performed the viral dilution assay on cor-
tical neuronal cells by infecting with ZIKV laboratory
virus stocks (5 MOI, 72h pi). Exosome-mediated
ZIKV-infected cells detected enhanced E-protein staining
with 4G2 antibody in comparison to the supernatant-
fraction-treated cells (Figure 5(D)). Phase contrast images
(from both groups either treated with exosomes or lab-
oratory viral stocks) showed similar morphology of
infected-neuronal cells (Figure 5(D)). Quantification of
fluorescent signals (determined by counting the percen-
tages of fluorescently labelled infected cells staining the
E-protein) in neuronal cells infected with exosome frac-
tion in comparison to the supernatant fraction (for 72 h
pi.) further supported the microscopic observation
(Figure 5(E)). Dilution six was considered for both micro-
scopic and quantitative analysis of infected cells from
each replicate. The quantification of fluorescent signals
(determined by counting the percentages of fluorescently
labelled infected cells showing the E-protein staining by
4G2 monoclonal antibody) in neuronal cells infected
with laboratory virus stocks of ZIKV (5 MOL 72 h p.i.)
showed infectivity of the viral stocks (Figure 5(F)).
Next, we tested whether exosomes isolated from ZIKV-
infected neuronal cells (from 72 h p.i, 5 MOI) are infec-
tious and replicative in uninfected/naive cells. QRT-PCR
analysis showed that murine cortical neuronal cells trea-
ted with ZIKV-infected neuronal-cell-derived exosomes
(isolated from an independent batch of infected cells)
readily transmitted infectious exosomal RNA to unin-
fected recipient neuronal cells (Figure 5(G)). Also, we
noted that infectious exosomal RNA replicated in the
naive/uninfected neuronal cells in a time-dependent
manner at the tested time points of 24, 48, 72 and 96 h
p. (Figure 5(G)). These data suggest that neuronal exo-
somal RNA is infectious, viable, and replicative in naive
recipient cortical neuronal cells of the CNS.

Neutral Sphingomyelinase SMPD3 (nSMase2)
facilitates ZIKV infection and transmission via
exosomes

It has been shown that the membrane-associated enzyme
SMPD3 (nSMase2; 71 kDa) is one of the most studied
neutral Sphingomyelinase that is activated by anionic
phospholipids such as phosphatidylserine (PS) and phos-
phatidic acid (PA) [38-41]. Activation of SMPD3 in cells
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plays an important role in the cellular responses [38-41].
We tested the activation of nSMase upon ZIKV infection
in both neuronal cells and exosomes re-suspended in
PBS. At both tested time points (24 and 72 h p.i.), neutral
Sphingomyelinase activity (measured as milliunits) was
significantly (P < 0.05) enhanced in ZIKV-infected corti-
cal neurons and in exosomes derived from these neur-
onal cells (Figure 6(A,B)). In order to address if the
increase in Sphingomyelinase activity is dependent on
the cell number and production/release of exosomes,
we plated murine cortical neurons at different cell den-
sities and collected cells and exosomes at 72h p.i,
from ZIKV infected (5 MOI) or uninfected controls.
Not many differences were found in Sphingomyelinase
activity from cells plated at different densities, perhaps
the growing cells had maintained the same fold of
SMPD3 activity (Figure 6(C)). We found an increase in
Sphingomyelinase activity in exosomes derived from
varying number of cells plated in increasing densities
and this also reflected an increase in exosome release
from ZIKV infected cells (Figure 6(D)). This data also
correlate with the increasing amounts of total proteins
extracted from either cells or exosomes collected from
ZIKV-infected (5 MOI) or uninfected controls (Sup-
plementary Fig. 8A-F). No significant (P <0.05) differ-
ences were noted in total protein amounts collected
from ZIKV-infected or uninfected cells and neither from
total proteins estimated from ZIKV-infected or uninfected
exosomal lysates (Supplementary Fig. 8(B,C, EF)). We
also found that ZIKV infection, significantly (P <0.05)
upregulated smpd3 transcripts levels in neuronal cells
at both 72 and 96 h p.i. (Figure 6(E)). No differences
in smpd3 transcript levels were noted in exosomal frac-
tions collected from ZIKV-infected group, when com-
pared with the uninfected controls (Figure 6(F)). Since
exosomal smpd3 transcripts were normalized to actin
(Figure 6(F)), we double confirmed that this is not due
to lower actin transcripts in exosomes. QRT-PCR analy-
sis for GAPDH loads and normalization to the smpd3
transcripts with either of the housekeeping genes showed
no significant (P < 0.05) differences (Supplementary Fig.
8G). Similar to the smpd3 transcripts levels, the SMPD3
protein loads were upregulated at both 72 and 96 h p.i,
in ZIKV-infected neuronal cell lysates in comparison
to the uninfected controls (Figure 6(G)). Total protein
profile gel image served as loading control (Figure 6
(G)). Densitometry analysis from total cell lysates
showed the quantitative differences in SMPD3 protein
levels (from different time points) observed between
the ZIKV infected (MOI 5) and uninfected controls
(Supplementary Fig. 8H). Silencing of smpd3 by siRNA
treatment showed significantly (P < 0.05) lower loads of
smpd3 transcript levels at 72 h ZIKV p.i, in comparison
to the untreated or scrambled siRNA-treated control
groups (Figure 6(H)). Significantly (P <0.05) reduced
ZIKV loads were noted in smpd3-siRNA- treated cells
in comparison to untreated or scrambled-siRNA-treated
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Figure 6. ZIKV induces expression of SMPD3, a neutral sphingomyelinase critical for exosome production and release. Neutral
sphingomyelinase activity assays performed on cell lysates (A) or exosomal lysates (B) are shown. Neuronal cell and exosomal lysates
derived from ZIKV-infected (MOI 5) was used from 24 and 72 h p.i. Lysates from uninfected neurons or exosomes served as controls.
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mined from different number/densities of plated cells is shown. White bar indicates uninfected and black bar denotes infected
groups. Asterisk indicates significance. (E) QRT-PCR analysis showing expression of smpd3 mRNA transcripts in uninfected (Ul) or
ZIKV-infected (1) (MOI 5) cortical neuronal cells or in cortical neuronal cell-derived exosomes (F) isolated at different time points
(24, 48 72 and 96 h p.i.). (G) Immunoblotting analysis showing SMPD3 protein levels in uninfected (Ul) or ZIKV-infected (1) cortical
neuronal cells at 24, 48 72 and 96 h p.i.. Total protein profile image from coomassie-stained gel served as control. QRT-PCR analysis
showing expression of smpd3 (H) or ZIKV NS5 mRNA transcript loads (I), to reveal silencing efficiency (H) or viral burden (I) in
untreated (UT) or smpd3 specific siRNA or scrambled siRNA-treated ZIKV-infected (MOI 5; 72 h p.i.) murine cortical neuronal
cells. Untreated cells were used as controls. The smpd3 or ZIKV NS5 gene transcript levels were normalized to mouse beta-actin
levels. P value determined by Student’s two-tail t-test is shown.

control groups (Figure 6(I)). These data suggest that ~ GW4869 inhibitor. Also, it was noted that the
SMPD3 facilitates ZIKV infection in murine cortical  reduction in ZIKV loads in murine cortical neurons
neurons. was dose- and time-dependent, where at 72h p.i.
GW4869 treatments at 20 pM concentrations showed
a dramatic reduction in viral loads when compared
with the mock (vehiclee DMSO) treated groups
(Figure 7A-C). Immunoblotting with 4G2 antibody
It has been reported that inhibition of nSMases with ~ showed reduced ZIKV E-protein loads upon
inhibitor GW4869 or by silencing through siRNA ~ GW4869 treatment at 20-uM concentrations in com-
alters the metabolite composition of cells and extra-  parison to the other tested doses of 5 and 10 uM and
cellular vesicles (EVs) thereby, blocking the release of  respective time points (24, 48 and 72h p.i,) and
exosomes [18,39,49]. We tested the effects of = DMSO controls (Figure 7(D)). At 72 h p.i., treatment
GW4869 inhibitor on exosome budding and release ~ with GW4869 at 20 uM concentration, showed greater
upon ZIKV infection in murine cortical neurons.  reduction in ZIKV E-protein loads in comparison to
GW4869 inhibitor treatment (20 uM) showed signifi-  the early tested time points of 24 and 48 h p.i.,, (Figure 7
cantly (P<0.05) reduced loads of ZIKV in cortical (D)). Total protein profile gel images from respective
neuronal cells infected (5 MOI, and at different time  time points (24, 48 and 72 h p.i.) of ZIKV-infected
points of 24, 48 and 72 h p.i.) (Figure 7A-C). No differ- ~ neuronal cells served as loading control (Figure 7
ences in ZIKV loads were noted when neuronal cells (D)). In addition to the murine cortical neuronal
were treated with lower doses (5 and 10 pM) of  cells, we analysed the potential effects of GW4869

Exosome-release inhibitor GW4869 reduced
ZIKV loads and transmission through SMPD3



Emerging Microbes & Infections . 317

ZIKV infected Cortical neurons, inhibitor treatments

A o0 B 2000 C 250, P<0.05
P<0.05. "
=J =2} P<0.05 = Y I — P<0.05-------
c - g 4
£ 80 £ 1500 £ 2000
§ 600+ § g 1500+
2 2 1000 2
§ 4004 § § 10004
S S 500 S
X 2004 4 <
N & < 500

Inhibitor(uM)
4h p.i.

D ) N 20uM UT(DMSO) 5uM

T inhibitor(uM)
72h p.i.

10uM

Inhibitor(uM)
48h p.i.

10uM  20yM  UT(DMSO) 5uM 20pM

»

ujgjoud-3

L

¥

ZaBl Ak

a|iyoad uiajoud jejol

24h

Figure 7. Treatment with exosome inhibitor affects ZIKV burden in murine cortical neuronal cells. QRT-PCR analysis showing
expression of NS5 mRNA transcripts to reveal viral burden in cortical neuronal cells infected with ZIKV (MOI 5) at different time
points of 24 (A), 48 (B) and 72 (C) h p.i. ZIKV NS5 gene transcript levels were normalized to mouse beta-actin levels. P value deter-
mined by Student’s two-tail t-test is shown. (D) Immunoblotting analysis showing levels of viral E-protein in ZIKV-infected (MOI 5)
cortical neuronal cell lysates from different time points (24, 48 and 72 h p.i.) of infection. GW4869 inhibitor was treated for four
hours at tested doses of 5, 10 or 20 pM and at indicated time points of 24, 48 and 72 h p.i.. Lysates prepared from DMSO-treated
cells serves as mock control. Total protein profile images from coomassie-stained gels served as control in (D).

inhibitor on exosome release from ZIKV-infected cor-
tical neurons. QRT-PCR analysis showed that exo-
somes derived from cortical neuronal cells treated
with GW4869 inhibitor (at all tested doses of 5, 10
and 20 uM; and time points of 24, 48 and 72 h p.i.)
had significantly (P <0.05) reduced loads of ZIKV
RNA in comparison to the DMSO control (Figure 8
(A-Q)). This reduction in ZIKV loads was more evi-
dent in exosomes, when compared with the reduction
observed in cortical neuronal cells that released these
exosomes (Figure 7(A-C) and Figure 8(A-C)). Similar
to reduced ZIKV RNA, we found that ZIKV E-protein
loads were also considerably reduced in cortical neur-
onal cell-derived exosomes at all the tested doses (5,
10, and 20 pM) and time points (24, 48 and 72 h p.i.)
in comparison to their respective DMSO controls
(Figure 8(D)). Total protein profile gel images from
different time points (24, 48 and 72h p.i) of ZIKV-
infected neuronal cell-derived exosomes served as load-
ing control (Figure 8(D)). Densitometry analysis from
total cell (for data shown in Figure 7(D)) and exosomal
(for data shown in Figure 8(D)) lysates revealed the
quantitative differences in E protein loads (from the
GW4869 time points and dose-response immunoblot
analysis) observed between the ZIKV infected (MOI 5)
and uninfected controls (Supplementary Fig. 9A-C;

for immunoblots shown in Fig. 7D and Supplementary
Fig. 9D-F; for immunoblots shown in Fig. 8D). Further-
more, we found that upon treatment with GW4869
inhibitor, smpd3 transcript levels in both cortical neur-
ons (Supplementary Fig. 10A-C) and neuronal exo-
somes (Supplementary Fig. 10D-F) were significantly
(P<0.05) reduced (at 20 uM dose in cortical neurons
and all tested doses of 5, 10 and 20 uM in neuronal
exosomes at time points of 24, 48 and 72 h p.i.) in com-
parison to their respective DMSO-treated controls (Sup-
plementary Fig. 11). Similar to ZIKV loads, smpd3
transcript levels were also lower in exosomes when com-
pared with the infected-cortical neuronal cells (Sup-
plementary Fig. 10). These data suggest that exosome
release inhibitor GW4869, blocks SMPD3-mediated
ZIKV transmission and infection in cortical neurons.

Discussion

Neurotransmission also called synaptic transmission is
a process by which neurons communicate with one-
another and send electrical impulses and signalling
molecules/chemicals  including
[50]. Axonal terminals of the sending (presynaptic)
neuron releases the neurotransmitters including other
cargo that binds to and activates the receptors or

neurotransmitters
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Figure 8. Treatment with GW4869 affects ZIKV burden in murine cortical neuronal cell-derived exosomes. QRT-PCR analysis show-
ing expression of NS5 transcripts to reveal viral burden in ZIKV-infected (MOI 5) cortical neuronal cell-derived exosomes collected at
different time points of 24 (A), 48 (B) and 72 (C) h p.i.. ZIKV NS5 gene transcript levels were normalized to mouse beta-actin levels. P
value determined by Student’s two-tail t-test is shown. (D) Immunoblotting analysis showing levels of viral E-protein in ZIKV-
infected (MOI 5) cortical neuronal cell-derived exosomal lysates at different time points (24, 48, and 72 h p.i.) of infection.
GW4869 inhibitor was tested at 5, 10, or 20 uM concentrations and at indicated time points. Lysates prepared from DMSO-treated
cells serves as mock control. Total protein profile images from coomassie-stained gels served as control in (D).

channels on the dendrites of a receiving (postsynaptic)
neuron. With this tightly regulated process of neuro-
transmission from sending neurons to the receiving
neuron, the discharge of exosomes from sending neur-
onal cells and entry of exosomes into neighbouring
receiving neuronal cells takes place on a continuous
basis. Within a neural presynaptic terminal, two
kinds of small membrane nanovesicles such as synaptic
vesicles (SVs; that are ~35-55 nm in diameter) and
exosomes (inside Multivesicular Bodies (MVBs); that
are 50-200 nm in diameter) are discharged [33,44].
Exosomes have been shown to represent a variety of
intercellular exchange of effector molecules in order
to allow presynaptic neurons to modify gene and
protein expression in postsynaptic neurons [33,44].
Neuronal exosomes have shown to transfer both mem-
brane and cytoplasmic proteins, functional lipids
(involved in signal transduction) or RNA [33,44]. In
receiving neuronal cells, exosomal mRNA will be trans-
lated and the small RNA, including the miRNA that
mediates gene silencing is activated to bind specific
genes for suppression [33,44]. Recent discoveries of
functional RNA, miRNA and proteins in the exosomes
has increased the attention that has led to the emer-
gence of numerous studies in identifying novel mol-
ecules present in neuronal exosomes [18,19,29-32].
Due to the occurrence of RNA in the exosomes, we

hypothesized whether exosomes are also carriers of
viral RNA from the latest emerging ZIKV. Exosomes
have been shown as vehicles of transmission for a var-
iety of microorganisms, and our recent findings of Lan-
gat virus (LGTV; a member close to the tick-borne
encephalitis virus; TBEV) and WNV transmission
through neuronal exosomes has provided new insights
into vector-borne flaviviral diseases drug discovery
[18,32,51-57]. Our recent study has also shown that
dengue virus (Serotype 2; DENV2) entire viral RNA
genome is present and transmitted via mosquito cell-
derived exosomes [47]. In this study, we have shown
that ZIKV RNA and proteins are securely transported
to the neuronal cells through infectious exosomes. So
far, no studies have elucidated whether ZIKV-caused
neurological manifestations such as microcephaly
involves host neuronal exosomes.

Our discovery that neuronal cell-derived exosomes
are the carriers of mosquito-borne flavivirus infectious
RNA and proteins suggest a novel mode of ZIKV trans-
mission. In our studies with ZIKV infections, the pres-
ence of MAP-2 (neuronal marker) and absence of
GFAP (astrocyte glial marker) clearly indicated the
complete neuronal differentiation of progenitor cells
to cortical neurons in our studies with ZIKV infections.
The data with weak or absence of MAP-2 staining, and
positive DAPI staining showing enhanced ZIKV E-



protein levels, suggested that perhaps there is neurite
retraction due to induction of cell death in ZIKV-
infected neurons. Increased neuronal death at 120 h
p.i., in comparison to the 72 h p.i., of murine cortical
neurons infected with ZIKV (MOI 5) suggests that
longer incubation hours and increasing infectious
dose could be responsible for the massive death of cor-
tical neurons and their connections in developing
brains. Also increased viral loads at 72 h p.i., (at both
mRNA and protein levels) in neuronal cells and neur-
onal cell-derived exosomes, suggest a timing of peak
induction in viral replication in neurons and their
transmission through exosomes. The observation of
high ZIKV loads in neurons suggests that viral RNA
and proteins could be simply transferred in exosomes
via axonal transportation. Early diagnosis and detec-
tion of ZIKV infections in mothers could possibly
allow strategies to block the transport and/or dissemi-
nation of viral RNA and proteins that cause damage to
the neonatal cells. We assume that cortical neurons are
severely damaged leading to death and loss in network-
ing that perhaps results in small brain size in microce-
phalic brains. It has been shown that endoplasmic
reticulum stress in embryonic brains (in vivo) results
in unfolded protein response during ZIKV infection
and associated microcephalic condition [58]. Induc-
tions in HSP70 loads during ZIKV-infection or in
uninfected cells over the period of post incubations of
cortical neuronal cells suggest an important role for
this chaperone to protect cortical neurons from stress
and toxic effects administered during longer post incu-
bations and viral infections. Detection of enhanced
HSP70 loads in neuronal exosomes may also suggest
a similar neuroprotective function. Our multiple
attempts with cryo-EM analysis revealed no detection
of virions/viral particles in any collected images. We
did not observe any virion(s) or viral particles neither
inside nor outside exosomes. We have used 72 h p.i,
as the selected time point for exosome isolation and
cryo-imaging analysis. Usually for virus structure
determination, concentrated supernatants collected
from longer times of infection (7-14 days p.i.) with
high viral titres ranging from 10° to 10'> PFU/ml and
high centrifugal forces around 200,000 g are reported
[18,45,47]. These conditions were not used in our neur-
onal exosome preparations. In our analysis, exosomes
were found to exist in heterogenous populations vary-
ing from sizes of 30-200 nm. However, larger exo-
somes or EVs were also observed in a size range of
200-350 nm. ZIKV-infected neuronal cell-derived exo-
somes showed higher percentage of smaller exosomes
(0-200 nm in diameter) or larger EVs (200-500 nm
in diameter) suggesting dense packaging or greater
cargo transport through these exosomes, respectively.
Presence of HSP70, along with CD63 and CD9 in frac-
tions 3-5 suggested these fractions to be exosomes
(perhaps containing exosomes 30-200 nm in size)
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due to the presence of enriched exosomal markers.
Enhanced detection of ZIKV-E-protein in fraction
four suggested that viral proteins are enriched in exo-
somes of sizes 100-200 nm that may correspond to
fractions three and four. The presence of high amount
of viral RNA and proteins in neuronal exosomes when
compared with neuronal cells, suggest dense packaging
of viral components in exosomes for transmission to
neighbouring neurons. Infection of naive recipient cor-
tical neuronal cells with infectious exosomal fraction
four containing enhanced viral E-protein showed the
presence of more viral RNA and its correspondence
to increased infectivity. Higher amounts of viral E-
protein in exosomal fraction four directly correlated
with increased transmission. Also, our data suggest
that ample amount of viral RNA and proteins inside
cells may randomly get transported into exosomes for
transmission to neighbouring neurons resulting in dis-
semination within the brains. The observation of no
differences in viral loads or infectivity via exosomes
treated with RNaseA or antibodies (ZV-2, ZV-16 or
ZN-54 or ZV-67), further suggests the presence of
viral RNA and proteins inside exosomes. An antibody
binding to the surface of the virus particles leads to
neutralization of viral infectivity. The 4G2 monoclonal
antibody has been shown as highly cross-reactive to
several of the flaviviruses. However, a recent report
has described 4G2 antibody as a poor neutralizing anti-
body for ZIKV [59]. Our study showed that the neu-
tralization effects with 4G2 were lower when
compared with the other tested antibodies such as
ZV-2 or ZV-16. Furthermore, use of ZV-54 or ZV-
67, the highly potential neutralizing antibodies,
suggested ZV-2 or ZV-16 antibodies are less potential
in comparison to the ZV-54 and ZV-67 antibodies.
These findings are in agreement with the previous
study that tested neutralization effects on different
ZIKV strains [48]. However, similar results with no
differences in viral loads or infection were observed
with infectious exosomes upon use of any of these
antibodies (ZV-2, ZV-16, ZV-54 or ZV-67 or 4G2),
suggesting that viral E-protein is located inside the
lumen of these vesicles and not exposed on the surface
for binding to these neutralizing antibodies. Infections
of naive recipient cortical neuronal cells via infectious
neuronal exosomes further suggest exosomes as novel
modes for ZIKV transmission. We assume that exo-
some-mediated spread is very fast and efficient instead
of matured virions-receptor mediated transmission. In
exosomes, abundant amount of viral RNA and pro-
teins can be transmitted and they can highly be infec-
tious in recipient cells. Also, it is safe for the viral
RNA and proteins to be protected and transported
as cargo to recipient cells via secured exosomes that
can avoid any immune checkpoints during transfer
via longer routes such as periphery to the brain in ver-
tebrate host.
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Neutral Sphingomyelinase 2 (SMPD3/nSMase), or
sphingomyelin phosphodiesterase is an enzyme that
is responsible for cleaving sphingomyelin (SM) to
phosphocholine and ceramide, a second messenger
involved in multiple cellular responses including stress
[38,39]. Our cryo-EM analysis indicated increased pro-
duction and release of neuronal exosomes, upon ZIKV
infection. We assume that increased activation and
levels of SMPD3, in neuronal cells perhaps is associated
with the increased release of exosomes upon ZIKV
infection. Detection of SMPD3 mRNA levels showed
no significant differences in neuronal exosomes, how-
ever, its higher enzymatic activity in both neuronal
cells and exosomes suggest that SMPD?3 is critical for
the release of neuronal exosomes during ZIKV infec-
tion. We propose that similar to increased SMPD3
protein levels detected in neurons, exosomes perhaps
have higher protein loads. Silencing of smpd3 in corti-
cal neurons showed a significant reduction in viral
loads thereby, indicating a requirement for this neutral
sphingomyelinase in mediating ZIKV infection. These
data suggested that ZIKV-infection could enhance the
production and/or release of exosomes from cortical
neurons by increasing the protein and activity of
SMPD3. The cell density independent increase in
SMPD3 activity in exosomes in comparison to cells
(from which exosomes were derived) suggests a strong
role of this enzyme in production and release of exo-
somes. In cells, SMPD3 activity was mostly maintained
as the growing cells retained same fold of activity that
was independent of the cell numbers plated. In human
macrophage THP-1 cells, SMPD3 has been shown to
contribute to secretion of exosomes by triggering the
budding of exosomes into MVBs [60,61]. Inhibition
of SMPD3 either through shRNA or siRNA or
GW4869 inhibitor treatment has been shown to inhibit
the release of exosomes [49,54,61]. GW4869 is a
pharmacological agent that affects neutral sphingo-
myelinase activity and blocks exosome production
and release [49]. Very recently it has been shown that
GW4869 can inhibit ZIKV infection by perhaps affect-
ing the neutral Spingomyelinase-2 in human foetal
astrocytes, however, no insights into the sphingomye-
lin metabolism was addressed [62]. GW4869 inhibitor
is been also shown to inhibit the ceramide-mediated
budding of MVBs and release of mature exosomes
from MVBs [41,49,60,61,63]. The reduction in viral
loads upon treatment with GW4869 (in a dose- and
time-dependent manner) suggests that GW4869 may
be considered as a candidate for the development of
novel therapeutic to control ZIKV infection and trans-
mission in and between cortical neuronal cells. In both
cortical neurons and neuronal cell-derived exosomes,
decreased ZIKV loads correlated with reduced
SMPD3 activity and levels upon GW4869 treatment
in a dose- and time-dependent manner. This data
suggest that SMPD3 facilitates ZIKV infection and

transmission through neuronal exosomes in order to
disseminate the infectious viral RNA and proteins. It
will be highly interesting to understand the mechanism
of how SMPD?3 facilitates ZIKV replication in neuronal
cells. Our immediate future avenues will focus on this
novel aspect to address the importance of SMPD3
and other neutral Sphingomyelinases in ZIKV infec-
tion and neuropathogenesis. The presence of higher
ZIKV loads in exosomes when compared with neur-
onal cells suggests that ZIKV infectious RNA and pro-
teins are perhaps abundantly been packaged and
maintained to transmit through neuronal communi-
cation. We assume that higher amount of GW4869
inhibitor is essential in reducing the ZIKV loads in
neuronal cells. We also noted that longer incubations
and increased amounts of the inhibitor showed dra-
matic effects in reducing ZIKV loads in neuronal exo-
somes. The presence of higher loads of ZIKV infectious
RNA and proteins in exosomes may lead to increased
transmission causing neuropathogenesis and ulti-
mately death/loss of cortical neurons. Our immediate
future research efforts will address the underlying mol-
ecular mechanisms of SMPD3 and other neutral Sphin-
gomyelinases in mediating the transmission of ZIKV
and its detrimental effects in causing microcephaly in
neonatal brains.

Given the importance of SMPD3 in mediating
transmission of ZIKV through neuronal exosomes
and GW4869 in inhibiting the viral loads in both neur-
onal cells and exosomes, we propose both as possible
therapeutic candidates for controlling ZIKV infection
and transmission in developing brains. Our long-
term future avenues will also delineate the schemes
that depend on neutral Sphingomyelinases including
SMPD3, that lead to enhanced cortical neuronal
death, and the underlying molecular mechanisms for
ZIKV-caused microcephaly in developing/neonatal
brains. The decreased size in microcephalic brains of
ZIKV infected neonates is caused by a gradual decrease
in neuron production or due to the rapid loss of den-
dritic connections [2,8,15,16]. Higher secretion and
transport of infectious exosomes through axonal
transport may transmit ZIKV infectious RNA and pro-
teins to the dendritic branches of the receiving neur-
ons, thereby decreasing the dendritic branching or
arborization. Alternatively, if ZIKV uses exosomes
for transmission in the CNS, it could spread the infec-
tious viral RNA and proteins to neural stem cells and
thereby manipulate the progenitor cells. Both these
scenarios would ultimately lead to decreased
neuronal numbers and act as a factor responsible for
ZIKV-caused neuronal cell death and microcephaly.
Delineating the importance of exosomes and exo-
somes-associated host molecules that mediate and
facilitate ZIKV transmission would unravel the mol-
ecular mechanism(s) of infection by this neurotropic
virus.



Materials and methods

Isolation and culture of murine cortical neurons
and infection with ZIKV

C57BL/6 wild-type female mice with gestation period
(day13) were purchased from Charles River Labora-
tories and allowed to reacclimatize in our animal facil-
ity. Following ethical rules and regulations in
accordance with the institutional Animal Care and
Use committee, we performed all mice experiments.
All animal work in this study was carried out in strict
accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals of the
National Institute of Health. Institutional Animal
Care and Use Committee (Animal Welfare Assurance
Number: A3172-01) approved protocol was used in
this study (permit number: 16-017). Primary cultures
of murine cortical neurons as disassociated cells were
isolated from embryonic day- (E16) brains [18,64,65].
Murine cortical neuronal cells (2 x 10°) were seeded
in a 12-well plate and cultures were established in com-
plete neurobasal medium with 10% FBS. One day post-
plating (DIV; Day in vitro 1), half of the medium was
replaced with FBS-free media, to control the growth
of glial cells. After 48 h of plating, we observed initiation
of neuritogenesis, and cortical neurons were infected
with ZIKV (MOI 5 or with different MOI 1, 2.5 or 5;
in dose-response experiments) at 72 h post plating.
Neurons were collected at either different time points
(24, 48, 72, 96 or 120 h p.i., in infection kinetics and
inhibitor treatment assays) or at 72 h p.i,, in case of
dose-response and other in vitro assays (as indicated
in respective Figures and Figure legends). Following
collection of neuronal cells and isolation of exosomes,
we processed samples for RNA extractions and Real-
Time Quantitative PCR (QRT-PCR). All culture med-
ium and required supplements for neuronal culture
isolation and maintenance were purchased from Invi-
trogen/ThermoScientific Inc. ZIKV PRVABC59 strain
was obtained from BEI resources (catalog number:
NR-50240) and propagated as per the instructions
from the distributor. Due to increased viral loads in cor-
tical neurons at 72 h p.i., we considered this time point
for further analysis. Details for infection studies corre-
sponding to the data shown in different figures is men-
tioned in the respective figure legends. Briefly, for re-
infection experiments with infectious exosome frac-
tions, 2 x 10° neurons were co-incubated with 20 pl of
neuronal cell-derived exosomal fractions. We used
400 ul (same ratio) of exosome-depleted supernatant
fraction (collected from the step before PBS wash
during exosome isolation, see our recent published
study [18]) from neuronal cells processed for isolation
of exosomes. Neuronal cells were harvested at different
time points (24, 48, 72 and 96 h p.i.) and processed for
RNA extractions followed by QRT-PCR.
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Immunofluorescence, Phase contrast and
fluorescent microscopy

2-5 x 10° neuronal cells were plated in complete neu-
robasal medium and allowed to adhere for overnight.
Two days post-plating (DIV 2) neuritogenesis was
observed, cortical neurons were infected with ZIKV
(MOI 5; in time point samples or with different
MOT’s 1, 2.5, 5 in dose-response experiment) at either
72 or 120 h post plating. Immunofluorescence (IFA)
was performed as described [47]. Briefly, cortical neur-
onal cells were fixed with 4% PFA, permeabilized,
blocked (3% BSA) and stained with MAP-2 antibody
(Santa Cruz Biotechnology, Inc.) followed by detection
with Alexa-Fluor 488 secondary antibody. Sequentially
neurons were further stained for either GFAP antibody
(Santa Cruz Biotechnology, Inc.) or 4G2 monoclonal
antibody (that detects ZIKV E-protein) followed by
detection with Alexa-Fluor 594 secondary antibody,
respectively. Neuronal cell nuclei were detected with
DAPI staining. Fluorescent images were obtained
from 72 or 120 h p.i. cortical neuronal cells. Phase con-
trast images were collected from both uninfected and
ZIKV-infected cells at different days or time points
(24, 48, 72 and 96 h p.i.) or at 72 h p.. in neurons
infected with different MOI (infection with dose-
response or virus dilution assays). For neutralization
assays with ZV-2, ZV-16 or ZV-54, ZV-67 antibodies
[48], neurons were fixed and processed as described
above, and immunostained with 4G2 monoclonal anti-
body, followed by detection with Alexa Fluor 594 sec-
ondary antibody. Untreated cells represent no
antibody treatments but were incubated either with
infectious exosomes or with viral stocks (of known
titres as described above). All cells were treated with
DAPI to show cell nuclei in addition to bright field
images that served as controls. Images were obtained
using the EVOS Fluorescence System (Invitrogen/
ThermoScientific Inc.) and 10X or 20X (in Figures 1,
5) or at 10X magnification (in Supplementary Fig. 1).
Representative images are shown for each time point
or group. Scale bar is shown on each representative
image in the respective groups.

MTT assays

MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide] assay was used to measure viabi-
lity, which served as an index of living neuronal cells.
Briefly, 5 mg/ml of stock solution was prepared by
completely dissolving MTT (Sigma) in DMSO
(100%) and followed by filter sterilizing (0.22 pm
filter; Nalgene). Primary cultures of cortical neuronal
cells were plated at the density of 1x10* cells per
well in a 96-well plate. The confluence of the cells
was less than 100% in all wells. For infection, we
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infected neuronal cells with ZIKV (MOI=5) and at
different time points (24, 48, 72, 96 and 120 h) post
infection, then we removed all medium from each
well, and added 90 pl of fresh medium to each well.
100 pl of PBS was added to empty wells for background
estimation. 10 pl of prepared MTT solution was added
to all the wells including PBS containing wells that
served as blank controls. Plates were covered in alu-
minium foils and incubated at 37 °C for 2-4 hrs
(until purple precipitate was visible). 100 ul of DMSO
solvent was added and plates were incubated at 37°C
for another 15 min. Absorbance was read at 560 nm
and for reference plates were read at 650 nm. The unin-
fected control maintained for 120 h post plating was
considered to calculate the percentages of cell viability.
Values from 650 nm reference read were subtracted
from the values obtained at 560 nm to determine the
neuronal cell viability numbers. Higher absorbance
values indicated an increase in cell viability.

RNA extraction, cDNA synthesis, and QRT-PCR
analysis

Following manufacturer’s instructions, total RNA was
extracted using Aurum Total RNA Mini kit (BioRad).
RNA was extracted from cortical neurons or neuronal
cell-derived exosomes infected (5 MOI) at indicated
time points (24, 48, 72, 96 h p.i.) or with various
doses (MOI 1, 2.5, 5) of ZIKV-infected group or unin-
fected controls. RNA was converted to cDNA using the
BioRad iScript ¢cDNA synthesis kit. The generated
cDNA was used as template for the amplification and
determination of viral burden. For detection of ZIKV
replication, published forward and reverse primers
for NS5 or E-gene region were used [66,67]. For
SMPD3 gene expression analysis we used the following
forward and reverse primers from published study
[68]. To normalize the amount of templates, mouse
actin amplicons were quantified with published pri-
mers [18]. Primers for beta-actin were used in parallel
for QRT-PCR normalization. GAPDH primer
sequences were designed based on the published
study [69]. Equal amounts of mouse cDNA samples
were used in parallel for beta actin, gapdh and ZIKV
E-gene or NS5 gene. The ratio of ZIKV E-gene or NS5
amount/beta actin amount was used as an index to
determine the rate of infection in each analysed sample.
QRT-PCR was performed using iQ-SYBR Green
Supermix and CFX96 instrument (BioRad, USA). Stan-
dard curves were prepared using 10-fold serial
dilutions starting from standard 1-6 of known quan-
tities of actin or gapdh or ZIKV E-gene or NS5 gene
fragments and QRT-PCR reactions were performed
as described [18]. For RNaseA treatment, we isolated
fresh exosomes from either uninfected or ZIKV-
infected neuronal cells (2x107), distributed the
infected exosomes as treated (5 pg/ml RNase, 37°C

for 15 min) or untreated groups. Uninfected exosomes
(as similar volumes used in infected groups) treated
with RNaseA were used as control. For ZIKV labora-
tory viral stocks (5 MOI), we treated the viral super-
natants directly with RNaseA and incubated these
samples on naive primary cultures of murine cortical
neurons. Non/poorly neutralizing antibodies ZV-2,
ZV-16, or 4G2 (Clone D1-4G2-4-15) were obtained
from BEI resources. The highly potent neutralizing
antibodies ZV-54 and ZV-67 [48] were a kind gift
from Dr. Michael S. Diamond’s laboratory, at the
Washington University School of Medicine, Saint
Louis, MO. For ZV-2, ZV-16 or ZV-54, ZV-67 or
4G2 antibodies treatments or neutralization studies,
we treated either 3 ug (of ZV-2, ZV-16 or ZV-54,
ZV-67) or 5 ug (of 4G2 antibody) of antibodies for
4h at 37°C with either freshly isolated exosomes
(20 ul of PBS suspension of exosomes from ZIKV-
infected cells, 72 h p.i., 5 MOI) or with ZIKV labora-
tory viral stocks (8 MOI as high dose or 0.8 MOI as
low dose for ZV-2, ZV-16 or ZV-54, ZV-67 antibodies
or 5 MOI for 4G2 antibody treatments). In order to
adjust the dose and reflect the infection of recipient
cells with infectious exosomes, we have used either
high or low doses of viral stocks with known titres
for comparison. Exosomes were collected from inde-
pendent batch of ZIKV-infected or uninfected cells
and were used in this analysis. Neuronal cells were
infected through infectious exosomes or viral stocks
(pretreated with respective antibodies) for 72 h p.i,
and collected for RNA extractions and processed for
QRT-PCR. Untreated samples or neurons incubated
with exosomes from uninfected cells served as exper-
imental internal controls.

Immunoblotting and densitometry analysis

Briefly, 2 x 107 cortical neuronal cells were seeded on to
six well-dishes for overnight incubation. Next day, we
changed half of the complete media to no-FBS contain-
ing medium. Cells were infected with ZIKV (MOI 5) at
72 h post plating, and collected at different time points
of 24, 48, 72, and 96 h p.i. or with different doses, of 1,
2.5 and 5 MOL. Cell culture supernatants were collected
from the same cells at different time points (24, 48, 72,
and 96 h p.i.) of infection or at 72 h p.i. (from different
MOI samples) and processed for exosome isolation.
Exosome fractions were collected after PBS wash
(two times), and adherent cells were collected from
the same plates (washed twice with 1x PBS), and
resuspended in modified RIPA buffer. Total protein
amounts were estimated using BCA kit (Pierce/Ther-
moScientific, Inc.). Whole cell and exosomal lysates
(10-30 ug) were separated on 12% SDS-PAGE gels.
After gel electrophoresis, blots were blocked with 5%
milk buffer and probed with either 4G2 (obtained
from Millipore, Sigma or BEI resources) or HSP70



(Cell Signaling Technologies, Inc) or CD63 or CD9
monoclonal antibodies or SMPD3 polyclonal antibody
(Santa Cruz Biotechnologies, Inc), followed by mouse
or rabbit HRP-conjugated secondary antibodies
(Santa Cruz Biotechnologies, Inc), respectively. Images
showing total protein profiles obtained from Coomas-
sie-stained gels served as loading controls. Antibody
binding was detected with WesternBright ECL kit
(Advansta, BioExpress). Blots were imaged using Che-
midoc MP imaging system and processed using Image
Lab software obtained from the manufacturer
(BioRad). Densitometry analysis from total cell and
exosomal lysates (from both the time point and
dose-response immunoblot analysis) between the
ZIKV infected (MOI 5) and uninfected controls was
performed considering their respective total profile
gel images and the respective band.

Isolation of exosomes from cell culture
supernatants

Exosomes were isolated by differential ultracentrifuga-
tion method [46]. Isolation procedure and modifi-
cations are shown in our recent study [18]. Briefly,
1-2 x 107 cortical neuronal cells were seeded for exo-
some isolation in complete neurobasal medium (over-
night). Neurons were infected with ZIKV (MOI 5) for
72 h p.i.. Briefly, cell culture supernatants were spun at
100,000 x g for 120 min. Supernatants collected after
this spin served as exosome-depleted supernatant
(EDS) fractions (used as control in our study). The pel-
let containing exosomes and any contaminants were
washed with ice-cold PBS (another spin at 100,000 x
g, for another 120 min). Resulting exosome pellet is
referred as exosome fractions in our study. Freshly pre-
pared exosome pellets were resuspended in PBS and
either frozen at —80°C or used for subsequent evalu-
ations and assays or were resuspended in RNA lysis
(Biorad) or modified RIPA buffers (G-Biosciences,
BioExpress) for total RNA or protein extractions.

Cryo-Electron microscopy

We performed the cryo-EM as published in our recent
study [18,47]. Briefly, purified concentrated suspen-
sions of ZIKV-infected or uninfected exosomes resus-
pended in PBS were vitrified on carbon holey film
grids and as previously described [70,71]. Frozen
grids were stored under liquid Nitrogen and trans-
ferred to a cryo-specimen holder under liquid Nitrogen
before loading into a JEOL 2200FS, or a JEOL 2100
electron microscopes (JEOL Ltd., 3-1-2 Musashino,
Akishima, Tokyo 196-8558, Japan). Preliminary
screening and imaging of exosomes was done using a
4k x 4k Gatan US4000 CCD camera and final imaging
was done at indicated 40,000x magnification with a
5k x 4k Direct Electron Detector Camera using a low-
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dose imaging procedure. Images were acquired with a
ca. 20 electrons/A* dose; the pixel size corresponded
to 1.5 A on the specimen scale. We used a 2.0-
2.3 um defocus range for imaging. For exosome size
quantitations, we manually analysed the sizes using
scale bar from cryo-EM images and counted exosomes
of different sizes per image in each group. Three inde-
pendent estimations and countings were performed
without any bias. Percentages (for size determination)
were calculated based on the total number of exosomes
in each size range.

OptiPrep™ density gradient exosome (DG-Exo)
isolation

2 x 107 cortical neuronal cells were infected with ZIKV
(5 MOI and for 72 h p.i.). Uninfected neurons were
used as controls. The detailed protocol for isolation
of exosomes on density gradient is shown in our recent
published study [18,47]. Briefly, supernatants (10 ml)
from uninfected/infected cortical neurons were col-
lected and centrifuged at 4°C (480 x g followed by
2000 x g for 10 min each to remove cell debris and
dead cells). Cell culture supernatants were concen-
trated to ~2 ml using the Corning Spin-X UF concen-
trators or centrifugal filter device with a 5 k nominal
molecular weight limit (NMWL) (VWR). Concen-
trated cultures were processed for OptiPrep™ (DG-
Exos) isolation as described [18,45]. Six individual frac-
tions were collected from uninfected or infected groups
(from top to bottom) manually after 18 h spin at
100,000 x g (with increasing density of iodixanol, and
smaller size vesicles on bottom fractions) and diluted
with 5 ml of sterile PBS. Fractions were centrifuged at
100,000 x g for 3 h at 4°C, followed by another PBS
wash and spin at similar centrifugal forces. DG-Exo
fractions were resuspended in 80 pl of PBS and stored
at —80°C until further analysis. Exosomal fractions
were either processed for Western blotting analysis to
detect viral E-protein or the exosomal marker HSP70
or used in infection of naive primary cultures of murine
cortical neurons to determine the infectivity and trans-
mission through infectious exosomal fractions.

Viral dilution assay

We performed the virus dilution assay as described in
[72]. Briefly, neuronal cells were seeded (at a density
of 1 x10” cells/well in 225 pl of Neurobasal complete
medium) on 96 well plates. Neurons were treated
with either exosome fraction (20 ul) or with exo-
some-depleted supernatant fractions (EDS; 400 ul) or
with laboratory ZIKV viral stocks (5 MOI) at 72 h
post plating and incubated for additional 5 days. In
each group, we had six different dilutions (1-6) and
at least eight independent replicates in addition to
the uninfected negative controls. Neurons were fixed
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with acetone-PBS mixture (3:1, for 20 min at —20°C)
and plates were air dried, washed with 1 x PBS and
blocked with 5% FBS-PBS-0.05% Sodium Azide for
15 min at RT. ZIKV E-protein was detected by incu-
bation with 4G2 monoclonal antibody (overnight at
4°C), followed by three washes with PBS. Samples
were incubated with Alexa-594 labelled mouse second-
ary antibody for 1 h at RT, followed by washes (3x)
with PBS. Plates were analysed using EVOS fluor-
escence system (Invitrogen/Thermoscientific, Inc.)
and cells were scored for fluorescence or the presence
or absence of infection in comparison to the infected
positive controls (infected with laboratory prepared
virus stocks) or uninfected negative controls. Represen-
tative images from dilutions 10° are shown. Percentage
of infected neurons is shown from the same dilution for
exosome and supernatant fractions.

Neutral Sphingomyelinase activity assay

For determining the activity of neutral Sphingomyeli-
nases, we used the Colorimetric Sphingomyelinase
Assay kit from SIGMA-Aldrich and followed the
instructions from the manufacturer. Briefly, we plated
1 x 107 cortical neuronal cells and three-day post-plat-
ing infected with ZIKV (MOI 5) for either 24 or 72 h
pi.. In an independent assay to test if increase in
SMPD3 activity is dependent/independent on cell
number and exosome production and/release, we pla-
ted mouse cortical neuronal cells at densities of 107,
10%, 10° 10° and 10 cells per well in replicates and
measured the total protein amounts and SMPD3
activity. We measured SMPD3 activity by either con-
sidering the same amounts of total protein (estimated
by BCA assays), where SMPD3 activity was calculated
over the total protein amounts as shown in Figure 6
(C,D). We also considered equal volume of samples
for determining the SMPD3 activity (as shown in Sup-
plementary Figs. 9A and 9D). The total concentration
of proteins estimated from uninfected or ZIKV-
infected neurons or exosomes derived from these
neurons is shown in Supplementary Figs. 9B and
9C; for cells or 9E and 9F; for exosomes. At different
time points post infection, cell culture supernatants
were collected and processed for exosome isolation.
Both cell and exosomal lysates were resuspended in
1 x PBS and were frozen at —80°C. We used 50 ul
for each time point sample (uninfected or ZIKV-
infected) as 6 replicates. Absorbance from assay
samples was measured at 655 nm. Calculations were
performed using the Zero blank sphingomyelinase
standard that is considered as background blank. All
readings were substracted from the background
values. Standard curves were plotted using the stan-
dard values and the amount of active sphingomyeli-
nase present in the samples was determined based
on the standard curve.

siRNA transfections and inhibitor studies

For siRNA transfections and silencing of smpd3, we
plated 1 x 10° of cortical neurons in complete neuroba-
sal medium, allowed to adhere overnight, and changed
to half of medium without FBS on next day. For silen-
cing of smpd3, specific siRNA (from Santa Cruz Bio-
technologies, Inc.) were purchased and transfections
were performed as per the manufacturer instructions
and protocols. Cells were infected with ZIKV (MOI
5, at 72 h post plating) and collected at 72 h p.i. fol-
lowed by RNA extractions and cDNA synthesis. Silen-
cing efficiency of smpd3 was analysed by QRT-PCR.
For inhibition of exosome release from neuronal
cells, we used the selective inhibitor (GW4869) for
Neutral Sphingomyelinase 2 (nSMase2 or SMPD3)
(Santa Cruz Biotechnologies, Inc.) dissolved in
DMSO. Cytotoxicity of the inhibitor was first analysed,
neurons did not show any toxicity at tested doses (of 1-
20 uM). For inhibitor studies, neurons (2 x 10° for
RNA and 1 x 10 for protein extractions) were plated
in complete neurobasal medium. Cortical neurons
were treated with GW4869 inhibitor (5, 10 or 20 uM)
for 4 h at 72 h post plating, followed by ZIKV infection
(5 MOI) at indicated time points (24, 48 and 72 h p.i,
for both RNA and protein extractions). Cells treated
with similar volume (we considered volume used for
20-pM GW4869) of DMSO were considered as control
groups. Viral loads were determined at all tested time
points followed by QRT-PCR analysis. Both whole
cells and exosomal lysates (30 pg) were processed for
immunoblotting with 4G2 monoclonal antibody, fol-
lowed by secondary antibody to detect ZIKV E-protein.

Statistics

Using GraphPad Prismé software and Microsoft Excel,
we analysed the statistical significance of difference
observed in data sets. Non-paired, two-tail Student ¢-
test was used (for data to compare two means) for
the entire analysis. Error bars represent mean (+SD)
values, P values of <0.05 were considered significant
in all analysis. Statistical test and P values are indicated
for significance in all figures.
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