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ABSTRACT

FORMANT ESTIMATION FROM DCTC's USING
A FEEDFORWARD NEURAL NETWORK

Shubhangi U. Kelkar
Old Dominion University, 1992
Directors: Dr. David Livingston

Dr. Stephen Zahorian

Formants are the natural frequencies of the human vocal tract. Existing

methods for estimating formants from speech signals are computationally

complex and subject to errors for certain type of speech sounds. This thesis

describes a method for estimating vowel formant frequencies from Discrete

Cosine Transform Coefficients (DCTC's), a form of cepstral coefficients, using a

feedforward neural network with back-propagation training. Experimental results

are based on a large multispeaker data base. The results are obtained for both a

linear transformation and a feedforward neural network with a nonlinear hidden

layer. In general, the neural network transformation is superior to the linear

transformation for formant estimation. Thus our experiments indicate the

nonlinear nature of the relationship between DCTC's and formants. However,

since the results are always much better for training data as compared to test

data, a large data base is necessary for adequate neural network training. Vowel

classification experiments show that estimated formants can discriminate vowels

nearly as well as 14 DCTC's.
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CHAPTER I

INTRODUCTION

1.1 FORMANTS

Man's primary means of communication is speech. His ability to convey

information with his voice is unique among all the animals. The operation of the

vocal system as a whole can be divided into two functions, excitation and

modulation. Excitation occurs primarily at the glottis and modulation is caused

by various organs of the vocal tract. As the acousucal wave is transmitted

through the vocal tract, its frequency content is modified by the cavity resonances

in the tract. These natural resonances are called formants and are a function of

the shapes of the various regions of the vocal tract. In continuous speech, the

formant resonances vary in time as the vocal tract changes shape. Formants are

identified by number in order of increasing frequency: F1, F2, F3, etc. Each

vowel has a different pattern of resonances than the others. Further, not all

speakers have the same formant frequencies for the same vowels. The formant

frequencies are higher for smaller vocal tracts. The ratio of different cavity sizes

to one another also determines the formants. In particular, the voices of women

have higher frequency formants than for males, and those of small children still

higher frequencies.



1.2 IMPORTANCE OF FORMANT FREQUENCIES

Formants are of interest for a number of reasons. They are the most

important source of articulatory information. They have been used as primary

features in speech recognition, speech synthesis and also as the major information

to be transmitted in encoded speech. The first three formants contain sufficient

information to classify the vowels. If a coordinate system is set up using F1 and

F2 as a basis, vowels cluster in specific regions [181. Formants are efficient and

important acoustic cues because they constrain global shape to a large degree.

Thus, a dependable and automatic algorithm for computing these frequencies

would be useful for many aspects of speech research.

The vocal tract dimensions, which determine the formant frequencies, are

rather difficult to obtain. Since the information about formants is contained in the

spectrum envelope, all formant estimators either implicitly or explicitly make use

of the spectrum envelope. The problem proves to be challenging for a number

of reasons:

1. There is a high degree of overlap between frequency regions in which

formants may be located. Thus formant estimation is not as simple as locating

the peaks of the spectrum in non-overlapping frequency bands.

2. Normally, the maxima in the spectral envelope are due only to formants.

However, when a single formant splits, spurious peaks occur which are difficult

to distinguish from the formant peaks.



3. Sometimes, the frequencies of adjacent formants are too close to resolve. Here,

the practical difficulties are in recognizing a blend.

4. The speech signal is affected both by the properties of the source and by the

vocal tract. If the source spectrum has a zero dose to one of the formant

frequencies, it is extremely difficult to determine the frequency of that particular

formant. A side branch element such as the nasal cavity creates a similar

problem.

1,3 FORMANT ESTIMATION VIA NEURAL NETWORKS

Formant estimation from the speech signal has been of interest for many

years. Several methods have been developed over the years and are successful

in varying degrees [13][16)[23]. The present study describes a method for

estimating vowel formant frequencies from Discrete Cosine Transform

Coefficients, a form of cepstral coefficients, using a feedforward neural network

with back-propagation training. Two approaches have been studied and com-

pared: a one layer linear transformation and a feedforward network with

nonlinear hidden layers. The objective of this study was to determine if formants

can be reliably estimated from DCTC's with a neural network, and to compare

the performance of the neural network for this task to a linear transformation.



1.4 THESIS STRUCTURE

Chapter two reviews some of the major previous efforts in the area of

formant estimation. The different existing approaches for formant estimation are

described which include analysis-by-synthesis, peak-picking and root-solving. An

alternative approach, formant estimation from linear transformation of the LPC

cepstrum, is also presented. The basic back-propagation algorithm is described

and DCTC's are explained.

The basis for the current research is discussed in chapter three. The

learning and generalizing abilities of neural networks are considered when

trained with back-propagation. The description of the database, experiments and

results achieved for various test runs is contained in chapter four. A summary

of the current work in the context of previous literature and an examination of

possible future research is presented in chapter five.



C~ER II

BACKGROUND

2.1 PREVIOUS RESEARCH ON FORMANT ESTIMATION

A number of previous efforts have been directed towards formant

estimation and are briefly reviewed here. There are several approaches including:

analysis-by-synthesis, peak-picking from smoothed spectra, and computation of

pole frequencies through root-solving in an all pole model of speech spectra.

1. ANALYSIS-BY-SYNTHESIS: In this method [1], a spectrum generated

from estimated formants is compared with the actual spectrum and the formants

in the estimated spectrum are varied until the difference becomes minimaL Since

the analysis-by-synthesis method takes into account the entire spectral shape

rather than simply relying upon the spectral peaks, one spurious peak would not

change the results drastically. Its disadvantages include the need for complex

processing and its dependency upon the accuracy of the speech model.

Bell et al. [I] are some of the early researchers who estimated formants

using analysis-by-synthesis. The vocal tract transfer function over the ranges of

first three formants was duplicated using a model consisting of a set of three

tunable filters. The frequencies and bandwidths of these filters were varied until

they matched the observed spectral envelope. They matched the model to filter



bank outputs. Olive[16] also used the analysis-by-synthesis approach to estimate

formants. He devised a Newton-Raphson technique to find a least-squares fit and

matched all three filters simultaneously instead of sequentially.

2. PEAK-PICKING: This approach makes use of the fact that the maxima in the

spectral envelope are primarily due to formants. Hence the appropriate peaks

from a smoothed spectrum are selected to be the formants. The skill of the

algorithm lies in recognizing spurious peaks and/or formant blends.

McCandless [13] used the peak-picking technique to estimate formants

from linear prediction spectra. The algorithm first fills formant slots with the

available peaks in a frame, based on frequency position relative to an educated

guess. However, in the case of formant merging, there is a deficiency of peaks

and slots remain unfilled. Special routines are then called to recompute the

enhanced spectrum to deal with these cases.

3. ROOT-SOLVING: For this approach, a transfer function model of the is first

used to model the vocal tract. Typically this model is a linear prediction (LP) all-

pole model. Polynomial root solving techniques are used to find the roots of the

LP denominator polynomial, that is, the poles of the transfer function. These

poles include the formant frequencies plus additional extraneous poles.

Additional processing is required to identify the formants and eliminate the

extraneous poles, Formant estimation using these approaches have been

developed by various researchers.



Talkin [23] introduced a dynamic programming approach for formant

tracking. First root-solving of the LP polynomial is used to identify up to 5

formant candidates per frame. Dynamic programming then finds the lowest cost

path through a lattice of formant candidates over a segment of speech. The cost

of each path is the sum of the "local" costs and "transition" costs. The deviation

of formant candidates from expected formant values and the candidate

bandwidths determine the local cost. The transition costs are proportional to the

deviation of formant values from frame to frame, since formants generally vary

gradually over time. The formants are also constrained such that F3 & FZ & FL

The path obtained by dynamic programming is then the best set of formants,

according to the criteria as described. This technique has recently been refined

by Zahorian and Jagharghi [26].

All of the above-mentioned approaches have their individual drawbacks.

They all require complex processing. They work well for most speech segments

but suffer from occasional large errors. Even the dynamic programming

approach, which appears to be the most robust formant tracking algorithm

currently available, is not completely error free and requires very time-consuming

calculations.

Another approach for estimating formants was suggested by Pols et al. [20]

and was implemented by Broad and Clermont [2]. They proposed that a linear

relationship exists between the cepstral coefficients and formants. Regression

analysis was used to compute this linear relationship. The method is not highly



accurate, but is robust in the sense that large errors are rare. It gives better

results if tuned to individual speakers, but its performance degrades considerably

for more than one speaker.

This thesis describes a method for estimating vowel formants from Discrete

Cosine Transform Coefficients (DCTC's), a form of cepstral coefficients. We

propose that the relation between the DCTC's and formants is nonlinear and use

a feedforward network trained with the back-propagation algorithm to compute

the nonlinear relationship. It will be shown that the neural net provides a more

accurate transformation of DCTC's to formants than does a linear transformation,

for both training and test data.

2.2 BACK-PROPAGATION ALGORITHM

The back-propagation algorithm [22] [17] [25] is one of the most popular

and widely used techniques for training neural networks. The algorithm is based

on gradient descent where the weights in a feedforward network are changed to

learn a training set of input-output pairs. Figure 2.1 shows a feedforward

network with one hidden layer.

The governing equations for a back-propagation algorithm are briefly

reviewed here. A feedforward network consists of an input layer, a number of

hidden layers (usually one or two) and an output layer. The neurons in the input

layer simply store the input values. For the neurons in the hidden and output
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layers, two calculations are carried out. First, the net input for each neuron is

calculated as

net. = QWra, (2.1)

where the w„'s are the weights connecting to the previous layer.

Second, the activation of the neuron, a~ is calculated as a nonlinear function f of

net, as

a,. = f (net) (2 2)

The network learns by making changes in its weights in a direction to

minimize the sum of squared errors between its output signals and a training

data set. The minimization is done using gradient descent.

Wr(t+1) = Wr(t) + rl 5. a, (2.3)

where

5. = f'net.) . (T — O.)

for output units, and

5. = f'net) gg W.„

for hidden units. The term rl is the learning rate and is used to control how fast

and to what degree of accuracy the squared error is minimized.

The application of back propagation thus includes two phases. During the

first phase the input is applied and a forward pass is made through the network

to compute the output value for each unit. This output is then compared with
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the target, and an error term for each output unit is obtained. In the second

phase, a backward pass calculating delta terms for each unit in the network is

made. Once these two passes are complete, the weights are changed according

to equation 2.3. The weights can be changed on a pattern-by-pattern basis, or the

weight changes may be accumulated over the ensemble patterns.

2.3 DCTC's

DCTC's are the coefficients in a Discrete Cosine Transform of a selected

frequency range of the magnitude spectra. They encode the smoothed overall

shape of the spectrum and are defined as follows: Let H(f) be the magnitude

spectrum of a speech frame, H'(f) be a nonlinearly amplitude-scaled version of

H(f), H'(f') be a nonlinearly frequency warped version of H'(fl and [H'(f')] be a

portion of H'(f') over a selected frequency range. Then the DCTC's are the a„'s

in the equation

[H'(j')] =P a cos[(n-I)af']

Thus DCTC's are a form of cepstral coefficients (Rabiner and Schafer [21])

with different frequency and amplitude scaling and range selection. Note that

DCTC1, the coefficient of a constant term, is a measure of the average level of the

spectrum; DCTC2, the coefficient of a half-cycle of a cosine, is a measure of the

spectral tilt; and so on. A smoothed spectrum can be obtained from the DCTC's,

where the degree of smoothing depends on the number of DCTC's used.
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The theoretical development for estimating formants from DCTC's is

discussed in chapter three.
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CHAPTER III

THEORETICAL DEVELOPMENT

3.1 GLOBAL SPECTRAL SHAPE

Extensive research has been performed by Zahorian and Jagharghi [26] and

Nossair and Zahorian [15] to compare the overall global spectral shape with

formants in classifying vowels and stop consonants. In their experiments, the

overall spectral shape was represented by DCTC's. The DCTC's proved to be

superior to formants for classifying both vowels and stops. Since the DCTC's

encode the overall global spectral shape and the formants can be viewed as

acoustic cues, a subsequent hypothesis is that formants can be computed from

DCTC's. That is, since a smoothed spectrum can be computed as a linear

transformation of the DCTC's, and since formants can be computed using peak

peaking of the spectrum, it should be possible to compute the formants directly

from the DCTC's with a single complex transformation.

3.2 CEPSTRAL COEFFICIENTS, DCTC'S AND FORMANTS:

Broad and Clermont [2] observed the correlations between the formant

frequencies and linear combinations of cepstral coefficients as given by Plomp et

aL [19] and Pols et al. [20]. They hypothesized that the formants can be obtained



from linear transformations of cepstral coefficients and successfully demonstrated

this with data from one speaker. However in tests with multiple speakers (four),

the accuracy of the transformation was significantly degraded and they concluded

that the linear relation does not hold for the multiple speaker case,

DCTC's are the traditional cepstral coefficients with an added flexibility in

selecting frequency range, frequency scaling and amplitude scaling. We believe

that the DCTC's and formants are functionally related, although not through a

linear transformation. We hypothesized a nonlinear relationship and decided to

use neural networks to investigate this unknown relationship.

3.3 NEURAL NETWORKS FOR LEARNING AND GENERALIZING

Neural networks (NN's) have caught the attention of a number of people

in a wide variety of areas. Tasks that are intractable using a conventional digital

computer, but are typically performed by the human brain are ones which are the

goals for neural net applications. These networks can learn and remember. NN's

are generalized models for representing various input-output relationships. One

of the attractive feature of NN's is their ability to correctly handle noisy or

erroneous input signals. Speech recognition has been one of the fields of

application of neural networks [12].

The back-propagation algorithm is a popular algorithm used for finding

optimum weights in a multilayer network in many pattern recognition

applications and many people have investigated its capabilities. It is an example
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of a mapping network that learns to approximate a nonlinear function, y = f(x),

from sample x, y pairs, A feedforward network with a nonlinear hidden layer

can be trained using back-propagation algorithm to approximate many nonlinear

functions. To approximate a particular set of functions F,[x„} to a given accuracy,

at most two hidden layers are needed [6]. Hornik et al. [8] established that

multilayer feedforward networks with as few as one hidden layer (with a

sufficient number of hidden units with logistic signal functions) are capable of

approximating any measurable function from one dimensional space to another.

Cybenko [51 proved that only one hidden layer is enough to approximate any

continuous function. This justifies the use of neural networks to approximate a

nonlinear mapping. Since the back-propagation algorithm has proven its power

in an enormous number of applications, it was selected to train the feedforward

network in our experiments.

3.4 MAPPING DCTC's to FORMANTS

The objectives of the present study were to investigate whether any relation

exists between DCTC's and formants; and to test whether this relation is a linear

or nonlinear one. To determine the nature of this hypothesized complex mapping

between DCTC's and formants, a feedforward network with back-propagation

algorithm was used. That is, the network would learn to map the DCTC's to

formants if they are functionally related. In our experiments, both the linear and
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nonlinear transformations were performed to estimate formants from DCTC's

and the results were compared.

3.5 LEARNING LINEAR AND NONLINEAR RELATIONS

In our experiments, for learning the nonlinear relations between inputs and

outputs, a feedforward network with a nonlinear hidden layer was to be trained

with the back-propagation algorithm. A network without any hidden layers was

used to learn a linear relation. Such a network has an input layer and a linear

output layer and learns by adapting the weights in between the two layers. This

type of network represents the linear transformation case where the inputs and

outputs are assumed to have a linear relationship. The adaptation of weights can

be viewed as solving for the linear regression coefficients, as used by Broad and

Clermont. A feedforward network with a nonlinear hidden layer, by means of

weights in the hidden layers, tries to determine the functional relation between

a set of input and target values, as supplied to the network as training data.

Given sufficient training data, this relation should also generalize to other data

outside the training set.

The hypothesis was tested experimentally, i.e; the network was trained and

tested on a large database and the results for the linear and nonlinear

transformation were compared. Chapter four describes the various experiments

performed and discusses the results.
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CHAPTER IV

EXPERIMENTS AND RESULTS

4.1 DATABASE

The database for these experiments was that used in previous work [15]

[26l. It consisted of 99 CVC (consonant-vowel-consonant) syllables spoken by

each of 30 speakers. Appendix A lists these CVCs, Ten of the speakers were

adult males (M), 10 were adult females (F), and 10 were children (C) between the

ages of 7 and 11 (5 male, 5 female). These speakers were all native speakers of

English and approximately half of the speakers were natives of Virginia. The

other half were selected from other regions, mostly from the northeast United

States. The CVC syllable list contained ten vowels /aa, iy, uw, ae, er, ih, eh, ao,

ah, uh/. The initial consonant was one of /b, d, g, p, t, k, h, I, w/. The final

consonant was one of /b, d, g, p, t, k, v, s/.

For generating the target formant values, a 10th-order linear predictor (LP)

model of the signal was computed. The roots of the LP polynomial were

calculated to obtain five formant candidates per frame. The steady state portion

of each vowel was equally divided into nine such frames. Finally, the dynamic

programming formant tracking routine described in chapter two was used to

select the first three formants for each frame. This algorithm was not fully
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automatic in the sense that the speaker category (M, F, or C) and expected

formant values for each vowel were specified to the program. The operation of

this tracking program was verified through visual inspection of several hundred

formant tracks. The formant values obtained by this procedure were found to be

very accurate.

The DCTC's were computed as the d's in equation 2.5 for j varying from

1 to 15. The number of DCTC's determine the degree of smoothing of the

original spectrum. A 14th order model was chosen for the initial experiments.

The effect of the number of DCTC's on formant estimation was tested in an

additional experiment. The first coefficient is a measure of average level of

spectrum and hence was not used in these formant tracking experiments. More

detailed information about the database can be found in references 15 and 26.

4.2 PROGRAM

The experiments were performed with a feedforward network trained with

back-propagation. An important feature of the network program was the

flexibility in choosing various parameters; i.e., the number of hidden layers, the

number of nodes, the learning rate and momentum, data files, optional test files,

the number of DCTC's, scaling options, etc. The network was set up to have

linear input and output layers and nonlinear hidden layers. The sigmoid (0 to 1)

nonlinearity function was chosen (equation 2.2) for the hidden layers. The input

and output values were analog values and were scaled to have zero mean and a
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standard deviation of one. The program was set up to train the network with

specified training data files and to periodically examine the performance on

training data as well as on optional test data. Note that for the case of separate

training and test data, the test data was obtained from different speakers. Thus

test results are a measure of speaker-independent performance. In these

experiments, the performance was measured in terms of the average absolute

error and correlation coefficient between the actual and estimated formants.

The correlation coefficient r is a measure of the linear association between

two variables x (actual formants) and y (estimated formants). It is defined as

(4.1)

where

is the variance of x,

is the variance of y, and



is the covariance between x and y. Note that the correlation coefficient r lies

between -1 to +1; when r is dose to +1, the values of the actual and estimated

features are approximately equal.

The same program could be used to function as a neural network classifier.

For the classifier mode, one hidden layer and one output node were used for each

vowel category. AII nodes were logistic sigmoids. As described in more detail

later, a classification experiment was conducted both for original features and

estimated formants.

4.3 EXPERIMENTS AND RESULTS

Several experiments were conducted on the database for four cases: males

(M), females (F), children (C), and all speakers (A). The network was provided

with 14 DCTC's (coefficients 2 to 15) as inputs and calculated corresponding

formants as target values. DCTC's and formant targets for the middle (fifth)

frame in the steady state portion of the vowel constituted the data set for that

voweL For all the experiments, one training iteration consisted of the

presentation of one sample from each category (vowel). The correlation

coefficients and absolute error differences between actual and estimated formants

were collected periodically after a specified number of iterations.
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4.3.1 Tests Various tests were performed which can be summarized as

follows:

A. TRAINING ONLY These experiments were conducted to investigate

the potential of this approach using all data for training. Several runs were made

with different numbers of hidden layers and hidden nodes for all four cases ( i.e.

M, F, C, A). Figures 4.1 through 4.4 display the effect of the number of hidden

nodes on the error and correlation coefficient for all the cases: M, F, C and A

respectively.

The results shown are after 100,000 training iterations. As the number of

hidden nodes increases, the performance improves. However, after about 30

hidden nodes, the error decreases very little as the number of hidden nodes

increases. For the two hidden layer case, the total number of weights in the

network was chosen to be approximately the same as for the corresponding one

hidden layer case. For example, the two hidden layer network with 9 and 8

hidden nodes is equivalent to the 1 hidden layer network with 15 hidden nodes,

the two hidden layers with 14 and 14 nodes respectively correspond to 1 hidden

layer with 30 nodes; and the two hidden layer network with 18 and 18 hidden

nodes correspond to 1 hidden layer network with 45 hidden nodes.

The increase in the number of hidden layers does not seem to have a substantial

effect on error.
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Correlation coefficients of 0.95 to 0.99 were achieved with a one hidden

layer network (with 30 hidden nodes) as compared to 0.68 to 0.90 from the linear

network. For the all speaker cases, the average absolute errors for F1, F2, F3 were

49 Hz, 106 Hz, and 134 Hz respectively versus 104 Hz, 236 Hz, and 277 Hz for

the linear network. These results clearly show that the nonlinear network results

in a much better estimate of the formants as compared to the linear network.

Figure 4.5 shows the effect of the number of iterations on average absolute error

for both the linear and nonlinear networks. The results are collected after each

set of 5000 iterations for the male data case on training data. For the nonlinear

network, the training results improve as the number of iterations are increased.

The linear network, on the other hand, shows no obvious improvement in

learning with a greater number of iterations.

From the above test runs, a one hidden layer network with 30 hidden

nodes was selected as the optimal nonlinear case and compared with the linear

case in the tests that follow.
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B. TRAINING AND TESTING For each of the four cases,

approximately half the database was used to train the network and the other half

was used to test the network performance on unseen data. The training and test

data were then interchanged and the average of the two sets of test results was

computed for increased statistical reliability. A linear (zero hidden layer) network

and a network with one hidden layer with 30 hidden nodes were implemented

for each test. The test results are important since they represent the ability of the

network to generalize. Figures 4.6 to 4.9 show bar graphs for comparing the

results, again as average formant errors and correlation coefficients for both

training and test data, for cases M, F, C and A respectively.

As mentioned above, the network was trained on half the database and

tested independently on both the training and testing data. Using the linear

transformation, correlation coefficients, after 3000 training iterations, range from

0.50 to 0.93 on training data and from 0.47 to 0.85 on test data. The

corresponding correlation coefficients for the nonlinear transformation are 0.91 to

0.99 on training data and 0.79 to 0.94 on test data. Thus the higher correlation

coefficients for the nonlinear mapping, especially on the test data, indicate that

on the average the nonlinear mapping is a better formant estimator. The

correlation results after 20000 iterations (not shown) are also higher for the

nonlinear network versus the linear network. The correlation coefficients for the
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linear case after 20000 iterations (not shown) are 0.675 to 0.94 on training data and

0.662 to 0.886 on test data. The corresponding values for the nonlinear case are

0.971 to 0.995 on training data and 0.675 to 0.94 on test data. The careful reader

will note that all values have increased for training data. However on the test

data, values increase for the linear transformation but decrease slightly for the

nonlinear transformation. This implies that the nonlinear network is

"overtrained." Additional testing, with more iterations, yielded no improvement

in performance for the linear transformation. This can be seen from figure 4.11

which shows the absolute error differences for the linear transformation up to

20000 iterations. The corresponding absolute error differences for the one hidden

layer case are also given in figure 4.11. Hence the nonlinear network is more

successful in learning as well as in generalizing as compared with the linear

transformation. However, the possibility for overtraining appears to be specific

to the nonlinear network.
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C. TIME-DELAY BACK-PROPAGATION A time-delay back-propagation

network takes into accour.t the previous and present input values to compute

present outputs. A feedforward network with one time delay was trained for

different numbers of hidden nodes. In particular the network was set up to

estimate formants, given the DCTC's of both the current and previous frame. The

experiments were performed for training only as well as with training and tesffng.

The data set used for these experiments was slightly different than that used for

other runs'. Nine DCTC's were used as input parameters and the data set

contained three vowels spoken by the same 30 speakers mentioned previously.

The average formant errors and correlation coefficients for the Male case

are given in figure 4.12. The results are collected at 20000 iterations since as the

size of the network increases, it takes a longer time to learn. The time delay

improves the performance by a small amount. However, since the effect was very

small, the time-delay approach was not pursued with more detailed testing.

4.3.2 TESTS FOR COMPARING RESULTS:

Using the weights generated by the network during training experiments,

input DCTC's were transformed to obtain the estimated output formants. For a

more detailed comparison (as compared to the correlation coefficients and

average absolute errors already mentioned) with the target formants, two

approaches were implemented.

For the other data, DCTC'a had been computed for one frame only.
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A. HISTOGRAMS

The results given previously only indicate average performance. This is

not a very complete comparison. That is, for example, although the nonlinear

network has better average performance than the linear transformation, there

might be a relatively large number of very large errors. Such an effect would be

detrimental in some applications. To investigate performance in more detail,

error histograms were created. The histograms for the male and all data cases are

shown in figures 4.13 to 4.16. The percentage error is the difference between

target and estimated formant frequencies relative to the target formant. The

histograms show the percentage of tokens for which the percentage error is the

indicated amount.

The error histograms are plotted for both the nonlinear and linear case.

The figures show that the error distribution of the nonlinear case is excellent as

compared to the linear case. For example, for the male training data (Formant 1)

about 82% (367 tokens out of 444) Eall within 5% error for the nonlinear case

shown in figure 4.6; whereas 40% (179 tokens out of 440) show up in that region

for the linear case. There are also relatively much fewer "large" errors for the

nonlinear transform versus the linear transform. Similar differences hold for

other histograms. The histograms plotted for male test data also show that the

majority (80%) of the estimation errors are less than 10% for the nonlinear case.

Histograms obtained from training data naturally indicate better performance as

compared to the test histograms. Performance based on training data can be
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considered as an upper limit on potential performance. Since, even for the

training data, there are still a few cases where the error is above 30%, we cannot

conclude that no large errors would occur with this procedure.

B. CLASSIFICATION

The results already discussed dearly show that the nonlinear

transformation results in better formant estimation than for the linear

transformation, but that there still are significant errors. Nevertheless, the

mapping of 14 DCTC's to a 3-dimensional space could result in a 3-dimensional

feature space which is as suitable for vowel recognition as are formants. To

examine this possibility, vowel classification experiments were run on formants,

DCTC's, and estimated formants.

From the estimated formant frequencies, vowel classification was

performed using a neural network classifier and the results obtained were

compared with the classifier output when run with the target formants and the

input DCTC's. The recognition rates for the linear and nonlinear cases are given

in tables 4-1 and 4-2. The overall high performance for the nonlinear case

supports its superiority. On the training data, the nonlinear case recognition rates

are approximately the same as the recognition rates with actual (target) formants.

However, for the test data case, the nonlinear case recognition rates are lower

than that of actual (target) formants. For all data types, the linear case recognition

rates are lower than or at the most equal to the nonlinear case.



Table 4-1. Comparison of vowel classification results after 3000 iterations.
Results are expressed as percentage recognition rates for each case.



Table 4-2. Comparison of vowel classification results after 20000 iterations.
Results are expressed as percentage recognition rates for each case.
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The vowel classification results based on the DCTC's, as given in tables 4-1

and 4-2, illustrate the potential of DCTC's for vowel discrimination. Note that the

rates for training data are very high, as compared to formants, but the test rates

are generally lower. This effect indicates insufficient training data for the high

dimensionality features. In general test results for the best estimated formants on

the DCTC's are comparable to test results, indicating that the estimated formants

do contain most of the information in the DCTC's for vowel discrimination.

4.4.3 THE EFFECT OF THE NUMBER OF DCTC's ON FORMANT

ESTIMATION

The number of DCTC's used determines the degree of smoothing of the

original spectrum. Hence a large number of DCTC's imply a more detailed

spectral description. To investigate the effect of the number of DCTC's on

formant estimation, an experiment was conducted. Figure 4.17 is a graph of the

average correlation coefficient lover all three formants) vs. the number of DCTC's

for test data. This experiment was performed for male speakers only. The results

shown contain the maximum average correlation coefficients and the average

correlation coefficients obtained after 3000 and 20000 iterations respectively. The

results are best when 10 to 14 DCTC's are used. The correlation coefficients

degrade otherwise due to the fact that the size of the network increases.
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4.4 GENERAL DISCUSSION

From all the experiments, it is clear that the network is fairly successful in

learning to estimate formants from DCTC's. For most tokens, the errors are quite

small. Maximum errors are typically on the order of 30%, depending on the

details of the data used, the formant (Fl, F2, F3), etc.

In comparison with the Broad and Clermont [2] data base, our database

was much larger and diverse. It came from 30 speakers as opposed to four

speakers for the Broad data. Even the M, F, C cases each used data from ten

speakers. Ten vowels were used with each vowel paired with at least one

instance of /b, d, g, p, t, k/ in the initial and final positions, whereas Broad's data

contained nine vowels in CV (consonent vowel) context with differing consonants

only in the starting position.

In their experiments on four speakers, they trained the network on the data

from three speakers and tested it on data from the fourth using 75% of the total

data on training. As mentioned above, we have used 50% of the data for training

and 50% of the data as the test data. For example, in the male (M) case, data

from 5 speakers is used for training the network and the data from the other 5 is

used as the test data.

Broad's most general (4 speakers: 3 training, 1 test) case can be compared

with our male data(10 speakers: 5 training, 5 test) as shown in figure 4.18. For

the linear transformation, both the training and test errors are higher than that of
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Broad's general case data base. The nonlinear case errors are substantially smaller

than those resulting from the linear transformation as well as Broad's case for

both training and test data. Figure 4.18 also shows the errors for our linear

transformation and nonlinear case, averaged over M, F and C speakers cases.

Again, the linear transformation errors are higher than Broad's errors and also

than linear transformation errors for male data, due to the fact that more diverse

data were used. The nonlinear case errors (avg, M, F and C) are substantially

lower than for the linear transformation. Even for this case, despite the larger

differences in data base, the nonlinear errors are lower than those from Broad's

data for F2 and F3.

Thus the results show that the nonlinear network performed considerably

better than the linear transformation (which can be considered to be equivalent

to Broad's results, but with a larger data set). However, the experimental results

differ from Broad's results in two aspects. Broad's results are shown in terms of

rms errors while our results are shown in terms of average absolute errors,

although this is probably a minor factor for comparing the performance. Also,

Broad et al. have used the LPC cepstrum to compute the cepstral coefficients,

while we have used the smoothed spectrum for obtaining DCTC's.
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CHAPTER V

CONCLUSIONS

Two major issues regarding formant estimation were investigated. First,

whether the formants can be computed from the overall global spectral shape.

DCTC's were used as the global spectral shape parameters. Secondly, whether

the relation between the DCTC's and formants is linear or a nonlinear one. A

feedforward network with the back-propagation algorithm was successful in

learning to estimate formants from the DCTC's, The performance of a nonlinear

hidden layer network was found to be superior to that obtained with a linear

transformation network, supporting the hypothesis that the relation between

DCTC's and formants is nonlinear. The potency of neural networks for

establishing unknown relations is worthwhile in handling these types of

problems.

A number of suggestions may be given for possible future research in this

respect. The exact relation between DCTC's and formants is yet unknown and

may be investigated. In these experiments, DCTC's were computed previously.

Future research may involve real time DCTC's for estimating formants. The use

of LPC cepstrum may prove better since it emphasizes the spectral peaks.
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In these experiments, the networks should not be overtrained. This is

important since although network performance continues to improve on training

data, the test data results degrade after a number of iterations. In our

experiments, the number of iterations, at which the network training should be

stopped, was obtained manually by observing the network performance at

various points. A heuristic may be used to determine the point at which the test

data results are at maximum.

Clearly, the neural network did represent the fundamental relationship

between DCTC's and formants. Since the network performed much better on

training data than on test data, it also seems likely that the neural net formant

estimation procedure would perform much better with a larger data base for

training.



APPENDIX A

List of 99 CVC syllables recorded for vowel database. The DARPABET

phonetic spelling for each syllable is also given.

pot/paat/

got/gaat/

pock/paak/

teak/tiyk/

peeb/piyb/

boot/buwt/

coop/kuwp/

bah/baa/

top/taap/

hod/hhaad/

deep/diyp/

keyed/kiyd/

poop/puwp/

gook/guwk/

tog/taag/

cob/kaab/

peep/ piyp/

keep/kiyp/

league /liyg/

toot/ tuwt/

tube/tuwb/

tack/ tack/

tab/taeb/

dirt/dert/

gerp/gerp/

tick/tihk/

bid/bihd/

bet/beht/

dad/daed/

tag/taeg/

curb/kerb/

durg/derg/

kit/ldht/

pig/pihg/

ted/ tehd/

cap/kaep/

had/haed/

perk/perk/

heard/hherd/

give/gihv/

hid/hihd/

debt/deht/

moog/muwg/ who'/hhuwd/ pat/pact/

dot/daat/

pod/paat/

beet/biyt/

geese/giys/

heed/hhiyd/

dupe/duwp/

sued/suwd/

bat/baet/

gap/gaep/

bird/berd/

turk/ terk/

dip/dihp/

bib/bihb/

pep/pehp/

keg/kehg/



peck/pehk/

daub/daob/

baud/baod/

web/wehb/

caught/kaot/

paup/paop/

get/geht/

bought/baot/

talk/ taok/

gawp/gaop/

putt/paht/

cub/kahb/

took/ tuhk/

hawd/hhaod/ but/baht/

cup/kahp/

hud/hhahd/

could/kuhd/

dope/dowp/

toad/towd/

hoed/hhowd/

dug/dahg/

bud/bahd/

put/puht/

pope/powp/

coab/kowb/

code/kowd/

goag/gowg/

hood/hhuhd/ boat/bowt/

head/hhehd/

gawk/gaok/

cawg/kaog/

tuck/taht/

gut/gaht/

book/buhk/

good/guhd/

goad/gowd/

coke/kowk/
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