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ABSTRACT  

We present a sparse coding based spectral-spatial classification model for hyperspectral image (HSI) datasets. The 

proposed method consists of an efficient sparse coding method in which the l1/lq regularized multi-class logistic 

regression technique was utilized to achieve a compact representation of hyperspectral image pixels for land cover 

classification. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center and compared 

our algorithm to a recently proposed method, Gaussian process maximum likelihood (GP-ML) classifier. Experimental 

results show that the proposed method can achieve significantly better performances than the GP-ML classifier when 

training data is limited with a compact pixel representation, leading to more efficient HSI classification systems.  

Keywords: Remote sensing, sparse coding, feature selection. 

1. INTRODUCTION  

Remote sensing images are widely used for terrain property determination. There are three popular remote sensing image 

types including panchromatic image, multi-spectral image and hyperspectral image (HSI). A panchromatic image 

consists of only one band and is usually displayed as a grey scale image and the radiometric information is the main 

information utilized for data analysis. Multi-spectral images record over several separate wavelength ranges at various 

spectral resolutions. It is cost efficient and is currently the most common type being used. Hyperspectral images contains 

ground reflectance measurements across hundreds of very narrow spectral bands throughout the visible, near-infrared 

and mid-infrared portions of the electromagnetic spectrum. HSI yields fine discrimination between different targets 

based on their spectral response in each of the narrow bands, making it a useful modality for fine differentiation between 

ground objects. It also has the potential for more accurate and detailed information extraction than any other types of 

remote sensing data for determining material classification, geological feature identification and environmental 

monitoring [1]. In HSI dataset, each pixel consists of a high-dimensional vector with each component in the vector as the 

ground reflectance in a specific band. Many techniques have been proposed for HSI classification including support 

vector machines (SVMs), neural networks and graph-based methods [19, 20]. In addition, there is useful spatial 

information reflected by the neighborhood structure in HSI data that could be potentially help HSI classification. The 

spatial information has been utilized for the classification such as the stacking vector approach [6], segmentation based 

techniques [7], majority filtering [8] and the Markov random field method (MRF) [9-10].  

Sparse coding is a relatively new method recently developed for image classification. In sparse coding, a set of over-

complete basis functions called "dictionary" is learned from training data sets. Each data point is then projected onto the 

dictionary to obtain a new representation. After that, learning and classification will be performed on the new 

representations. Recent advances in sparse coding achieved state-of-the-art performances in many applications including 

pixel-based HSI classification [4-5] and image classification [11-13]. In our recent study [14], we implemented a sparse 

coding method for HSI image classification and we achieved better results than the supervised local linear embedding-

weighted kNN (SLLE-WkNN) algorithm [3]. In this paper, we further improve our method by reducing the 

dimensionality of the new representation in the sparse coding framework and by utilizing spatial information in HSI data 

to boost the classification accuracy. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space 

Center (KSC) and compared our algorithm to the Gaussian process maximum likelihood (GP-ML) classifier [2]. 

Experimental results show that the proposed method can achieve better classification accuracies with a compact pixel 

representation, leading to more efficient HSI classification systems.  

*Corresponding author: gzhou@glut.edu.cn; phone: 1-86 -773 5896073. This project was funded by Guangxi Key 

Laboratory of Spatial Information and Geomatics under the grant number of 1207115-15. 
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2.    PROPOSED METHOD 

Figure 1 shows the flowchart of the proposed method for HSI image classification. The proposed method consists of four 

steps: (i) patch extraction, (ii) dictionary learning and reduction (iii) feature encoding and pooling and (iv) feature 

selection and classification. Each step is detailed in the following subsections.  

 

Figure 1. Flowchart of the proposed algorithm. 

2.1 Patch extraction from HSI data  

Existing sparse coding methods usually extract signal pixel segments along the spectral direction only as we did in our 

previous work [14]. The disadvantage of this simple method is that the spatial information in the HSI data set is not used 

that may help the classification task. Due to the point spread function (PSF) of the imaging device, material information 

in one pixel is spread over its neighbors, processing those pixels separately will degrade the discriminate capability of 

HSI data. In this paper, we first computed an average value of the eight neighbors of each pixel in each spectral band, 

resulting in another B values for each pixel, where B is the number of bands in HSI. These B values were then 

augmented to the original B values of the pixel, making the pixel represented by a 2xB-dimenisonal vector.  

After that, the patch extraction is the same as we did in our previous work except that the operation is operated on the 

2xB-dimenisonal pixel vector. In particular, we randomly selected patches with a dimension of b (each patch contains b 

bands) along the spectral direction as shown in Figure 2. Note that the extraction process is random and those extracted 

patches are possibly overlapped or some bands might not be picked. The parameter “b” is often called "receptive field 

length". If m is the total number of sampled patches for dictionary learning, we denote it as X={x
(1)

, x
(2)

, …, x
(m)

}, where 

x
(i)

 
bR . Before the dictionary learning step described in the next section, each patch x

(i)
 was normalized to be zero 

mean and unit variance. X was then whitened by the zero-phase components analysis (ZCA) [22]. It was shown in [23] 

that this process is critical for the quality of the learned feature representations and was utilized in this study. 

2.2 Dictionary learning based on the constructed patches and dimension reduction 

There are usually two different popular dictionary learning methods. One is called sparse coding in which the dictionary 

is learned based on the L1 norm optimization framework [15]. The second method is simple and straight-forward in 

which the dictionary is randomly picked from the extracted patches. The former is computationally very expensive and it 

usually does not provide extra benefits over the random selection method. We compared those two methods in our 

previous study and showed that a randomly selected dictionary is good enough for HSI classification [14]. In many 

applications such as image classification, a couple of thousands basis functions can lead to a good performance [12]. 

However, the final feature representation for an image is usually in a very high dimensionality of tens of thousands, 

requiring intensive computational resources. A recently study by Gkioulekas et al. showed that basis functions learned 

by the sparse coding framework are usually highly correlated and can be compressed by PCA or Kernel PCA without 

performance degradation [13]. In this paper, we utilized the Kernel PCA to reduce the size of the randomly picked 

dictionary, yielding a dictionary D for the HSI data.  
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Figure 2. Extraction of patch blocks [14].  

 

2.3 Encoding and pooling 

With the dictionary, D, we obtained a new representation for an HSI pixel as follows,  

1. Patch extraction. We used a window of size b bands to divide the pixel to patches. The window was moved 

along the spectral direction with a step size of '1', resulting in 2B-b+1 patches for the pixel.  

2. Preprocessing. These patches were preprocessed to make them zero mean, unit variance and whitened as 

described in the previous section.  

3. Encoding. For each patch, we obtained a new representation by applying the soft thresholding technique as 

equation (1). Note that the dimension of the representation for the patch is 2n.  

),0max()( )()()( tzzsigna iii 
                                                              (1) 

where t is an adjustable threshold and and z(i)= DT·x(i).
 

4. Pooling. We split all representations from the 2B-b+1 patches of the pixel into k equal-sized groups and sum 

them in each group to obtain k representations. The final representation for the HSI pixel is achieved by 

concatenating the k representations. The dimension of the final representation is 2kn, where n is the number of 

basis function in the dictionary.  

2.4 Feature selection and classification 

After the encoding and pooling steps described above, the dimensionality of the new feature representation is 2kn. In our 

application, the dimensionality of the representation is still at the order of hundreds that may be undesirable for real-time 

systems. We utilized the l1/lq regularized multi-class logistic regression [16-17] as shown in equation (2) to select 

effective features for HSI classification, 

    
qll

k

l

m

i

lil

T

lilil
x

wcawyb
/

1 1
1

)))(exp(1log(min 
 

                                      (2) 

where 
T

il
a is the i-th feature for the l-th class, ilb is the weight for 

T

il
a , 

il
y is the response of 

il
a , 

l
c is the intercept 

(scalar) for the l-th class and  is a regularization parameter. In this multiclass problem, 
il

a , l , 
nmRA x , 
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knRx x , 
kRc x1 , 

kmRy x . The l1/lq regularized regression optimization is a recently developed method that 

favors the group sparsity in the model [16-17]. Once we obtain the final representation vector for each pixel, we apply a 

linear support vector machine (SVM) classifier [21] to classify the HSI data to different land cover categories. The 

regularization parameters of the logistic regression and SVM classifier are determined by cross-validation. 

3. DATA PREPARATION AND PERFORMANCE EVALUATION 

3.1 Data description  

In this paper, we used the hyperspectral data set collected by NASA Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) over Kennedy Space Center in March 1996 [18] to evaluate our proposed method. This data set contains 224 

bands with an 18-m spatial resolution and a 10-nm spectral resolution over the range of 400-2500 nm. After removing 

noisy and corrupted bands, there are 176 bands that can be used for classification. Among the available 314,368 

(512x614) pixels, 5211 pixels were labeled to 13 classes by the KSC staff as summarized in Table 1. In this data, the 

spectral signatures of some of the classes are very similar making those classes difficult to discriminate [2]. Figure 4 

shows one band from this data.  

 

Figure 4. A sample band of Kennedy Space Center HSI data. 

Table 1. Class names and number of labeled KSC data. 

Class 

Number 

Class Number/Percentage of 

Labeled Data 
1 Scrub 761 (14.6%) 

2 Willow swamp 243 (4.66%) 

256 (4.92%) 
3 Cabbage palm hummock 256 (4.92%) 

4 Cabbage/oak hummock 252 (4.84%) 
5 Slash pine 161 (3.07%) 

6 Oak/broadleaf hummock 229 (4.38%) 

7 Hardwood swamp 105 (2.0%) 

8 Graminoid marsh 431 (8.27%) 

9 Spartina marsh 520 (9.9%) 

10 Cattail marsh 404 (7.76%) 

11 Salt marsh 419 (8.04%) 

12 Mud flats 503 (9.66%) 

13 Water 927 (17.8%) 

 TOTAL 5211 

 

3.2 Experiment setup and performance evaluation 

In the experiment, we utilized the same training-testing configuration as that in [2] for a fair comparison. First, we 

divided the entire dataset to four equally sized subsets. The experiments were performed based on four-fold cross-

validation. Three parts were used for training and the remaining part was used for training. This process was repeated 
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four times such that each subset was used for testing once. For each fold, we also tested the system performance by using 

different number of training data samples. The training data was subsampled at the rate of 20%, 50%, 75% and 100%. A 

sampling rate of 20% means that 20% of the training data (or 15% of the entire dataset, 20% x 75% = 15%) was used for 

training. There were four parameters in the proposed method:  (i) number of basis functions, n, (ii) group number in 

pooling, k, (iii) length of each patch called receptive field length, b, and  (iv) threshold for encoding, t, in the coding step. 

In this study, we performed experiments many times and optimized those parameters. With those optimized parameters, 

we conducted our final experiment and compared our results with those obtained by a recent algorithm, Gaussian 

process maximum likelihood, for classifying this hyperspectral data [2]. 

4.  RESULTS 

4.1 Classification results 

Table 2 shows the classification results using different number of training data points (without the feature selection step), 

where the threshold ‘t’ is set as 0.1. It is observed that the classification accuracy increases with the number of data 

points being used in training.  

Table 2. Classification results using different no. of training samples without feature selection 

The size of the 

dictionary (n) 

Group 

number in 

pooling (k) 

The size of the 

final 

representation of 

the pixels (2kn) 

20% sampling rate 50% sampling rate 75% sampling rate 100% sampling rate 

Sparse 

coding 

Random 

selection 

Sparse 

coding 

Random 

selection 

Sparse 

coding 

Random 

selection 

Sparse 

coding 

Random 

selection 

2 50 200 94.12 95.04 96.75 97.21 96.93 97.68 96.95 97.35 

5 35 350 95.28 95.56 97.82 97.89 98.15 98.43 98.22 97.79 

10 30   600 95.80 95.70 98.02 98.08 98.54 98.57 98.45 98.47 

15 25 750 95.92 95.83 98.19 98.15 98.73 98.70 98.56 98.53 

20 20 800 95.85 95.83 98.24 98.04 98.65 98.73 98.70 98.57 

50 15 1500 95.32 95.25 98.31 98.10 98.54 97.68 98.45 98.23 

100 12 2400 94.81 94.92 98.01 97.83 98.33 98.43 98.44 98.45 

In addition, we compared our results with those obtained by a recently proposed method for HSI classification, Gaussian 

process maximum likelihood (GP-ML) for spatially adaptive classification of hyperspectral data [2], in terms of overall 

accuracy as shown in Table 3. In GP-ML model, first, each band of a given class is modeled by a Gaussian random 

process which indexed by spatial coordinates. Then, each land cover class at a given location is characterized by a 

multivariate Gaussian distribution with specific parameters adapted for that location. In the comparison, the parameters 

of the proposed algorithm were set n= 20 (reduced from 500 basis functions), k=20, b=120 and t=0.1. Before the feature 

selection step, there were 800 features and the feature selection algorithm kept 300 of them. It is clear that the proposed 

algorithm with both learning methods, random dictionary and sparse coding, has significantly better performance than 

the GP-ML method on limited number of training samples and competitive performance on sufficient number of training 

samples.  

Table 3. Comparison of proposed algorithm and GP-ML. 

Classifier 
Classification Accuracy (%) 

20% 50% 75% 100% 

Linear SVM using sparse coding for 

dictionary learning 
95.85 98.24 98.65 98.70 

Linear SVM with random dictionary 95.83 98.04 98.73 98.57 

GP-ML 91.78 97.89 98.89 98.87 

5. CONCLUSION 

We proposed a sparse coding framework for HSI classification by considering spatial-spectral structures of HSI pixels in 

this paper. The proposed algorithm benefited from the sparse coding framework, the spatial-spectral structures of HIS 

and feature selection to build a robust, compact classifier. We applied the feature selection algorithm twice in the 

proposed method. We first used it to reduce the number of basis function in the learned dictionary and then the feature 
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selection technique was reutilized to reduce the dimensionality of the final feature representation. Furthermore, we 

showed that randomly selected dictionaries can achieve good results making an efficient HSI data classification system 

possible.     
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