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We compute the inclusive unpolarized dihadron production cross section in the far
from back-to-back region of eþe− annihilation in leading order pQCD using existing fragmentation
function fits and standard collinear factorization, focusing on the large transverse momentum
region where transverse momentum is comparable to the hard scale (the center-of-mass energy).
We compare with standard transverse-momentum-dependent (TMD) fragmentation function-based
predictions intended for the small transverse momentum region with the aim of testing the
expectation that the two types of calculation roughly coincide at intermediate transverse momentum.
We find significant tension, within the intermediate transverse momentum region, between
calculations done with existing nonperturbative TMD fragmentation functions and collinear
factorization calculations if the center-of-mass energy is not extremely large. We argue that eþe−

measurements are ideal for resolving this tension and exploring the large-to-small transverse
momentum transition, given the typically larger hard scales (≳10 GeV) of the process as compared
with similar scenarios that arise in semi-inclusive deep inelastic scattering and fixed-target Drell-Yan
measurements.

DOI: 10.1103/PhysRevD.100.094014

I. INTRODUCTION

The annihilation of lepton pairs into hadrons is one of a
class of processes notable for being especially clean
electromagnetic probes of elementary quark and gluon
correlation functions like parton density and fragmentation
functions (pdfs and ffs) [1]. Other such processes include
inclusive and semi-inclusive deep inelastic scattering (DIS
and SIDIS), and the Drell-Yan (DY) process. In combina-
tion they provide some of the strongest tests of QCD
factorization. However, the exact type of correlation func-
tions involved (e.g., transverse momentum dependent,
collinear, etc.) depends on the details of the process under
consideration and the particular kinematical regime being

accessed. It is important to confirm the applicability of each
expected factorization for each region, not only at the
largest accessible energies, but also in more moderate
energy regimes, since the latter are especially useful for
probing the nonperturbative details of partonic correlation
functions like pdfs and ffs, and for probing the intrinsic
partonic structure of hadrons generally [2,3].
In the case of the inclusive lepton-antilepton annihilation

into a dihadron pair, the type of partonic correlation
functions accessed depends on the pair’s specific kinemati-
cal configuration. In the back-to-back configuration, there
is sensitivity to the intrinsic nonperturbative transverse
momentum of each observed hadron relative to its parent
parton. This is the regime of transverse momentum depen-
dent (TMD) factorization, in which TMD ffs are the
relevant correlation functions [1,4–7]. The TMD region
has attracted especially strong interest in phenomenological
work in recent decades for its potential to probe the intrinsic
nonperturbative motion of partons [8–21] and, more
recently, its potential to impact also high-energy measure-
ments [14,22–26]. See also Refs. [27–29] for additional
discussions of motivations to study eþe− annihilation into
back-to-back hadrons generally, and especially including
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studies of spin and polarization effects. If instead the hadrons
are nearly collinear, they can be thought of as resulting from
a single hadronizing parent parton. In that case, the correct
formalism uses dihadron ffs [30–33], which are useful for
extracting the transversity pdf without the need for TMD
factorization [34–36]. Finally, if the hadrons are neither
aligned nor back to back, but instead have a large invariant
mass, then the relevant factorization is standard collinear
factorization with collinear ffs [37–42], which has played a
significant role in recent years to explore flavor separation in
collinear pdfs using SIDIS data [37–39].
Having a fully complete picture of partonic correlation

functions and the roles they play in transversely differential
cross sections generally requires an understanding of the
boundaries between the kinematical regions where different
types of factorization apply and the extent to which those
regions overlap [43–46]. In this paper, we focus on the last
of the lepton-antilepton annihilation regions mentioned in
the previous paragraph, wherein pure collinear factoriza-
tion is expected to be adequate for describing the large
deviations from the back-to-back orientation of the hadron
pair. We view this as a natural starting point for mapping
out the regions of the process generally, since it involves
only well-established collinear factorization theorems and
starts with tree-level perturbation theory calculations. It is
also motivated by tension between measurements and
collinear factorization that has already been seen in
transversely differential SIDIS [47–53] and DY [54].
That all these cases involve Q≲ 14 GeV hints that the
origin of the tension lies with the smaller hard scales. The
lack of smooth transition in the intermediate transverse
momentum region suggests a more complicated than
expected role for nonperturbative transverse momentum
in the description of the large transverse momentum tail
whenQ is not extremely large. We elaborate on these issues
further in the main text and comment on potential reso-
lutions in the conclusion.
Of course, much work has been done calculating dis-

tributions for this and similar processes, especially in the
construction and development of Monte Carlo event gen-
erators [55–62]. Our specific interest, however, is in the
extent to which the most direct applications of QCD
factorization theorems, with ffs extracted from other
processes, give reasonable behavior in the far from
back-to-back region. Despite the simplicity of the leading
order (LO) cross section, it has not, to our knowledge, been
explicitly presented elsewhere or used in a detailed exami-
nation of the transverse momentum dependence of inclu-
sive hadron pairs at wide angle in ordinary collinear pQCD
calculations and using standard fragmentation functions.
One challenge to performing such a study is a dearth of
unpolarized dihadron data with transverse momentum
dependence for the exact process under consideration here.
In the absence of data, an alternative way to assess the
reasonableness of large transverse momentum calculations,

and to estimate the point of transition to small transverse
momentum, is to examine how accurately they match to
small or medium transverse momentum calculations per-
formed using TMD-based methods, for which many phe-
nomenological results already exist (see e.g., Refs. [63–70]
and references therein).
We follow this latter approach in the present paper.

Namely, using the lowest order (LO) calculation of the far
from back-to-back cross section along with standard ff fits
[42], and comparing with Gaussian-based (or similar) fits
from, for example, Ref. [19], we are able to confirm that the
two methods of calculation approach one another at
intermediate transverse momentum in the very large Q
limit, albeit rather slowly. At both smaller and larger Q, the
comparison between TMD and collinear-based calculations
suggests a transition point of between about qT=qMax

T ≈ :3
and .2, where qMax

T is the kinematical maximum of trans-
verse momentum. However, at moderate Q of around
12 GeV, the shape of the TMD-based calculation deviates
significantly from the collinear at intermediate transverse
momentum, and numerically the disagreement at inter-
mediate transverse momentum rises to a factor of several in
most places, with the fixed order collinear calculation
undershooting the TMD-based calculation. This is note-
worthy given the similar mismatch with actual data that has
been seen in Drell-Yan and SIDIS, already remarked upon
above. Whether the solution to the difficulties at moderate
transverse momentum lies with the collinear treatment or
with the phenomenology of TMD functions remains to be
seen. But all of these observations, we argue, provide
enhanced motivation for experimental studies of dihadron
pair production that probe the intermediate transition region
of the transverse momentum dependence.
We have validated our very large Q and moderate

transverse momentum calculation by comparing with trans-
verse momentum distributions generated with the default
settings of PYTHIA 8 [55,56]. We find reasonable agreement
with the PYTHIA generated distributions when the center-of-
mass energy Q is large (∼50 GeV). This is perhaps not
surprising given that fits of collinear fragmentation func-
tions are also generally constrained by large Q measure-
ments. Nevertheless, the specificity of the process makes it
a nontrivial consistency validation. At lower Q (≲10 GeV)
there is much larger disagreement with the event generator
data, and we comment briefly on the interpretation of this in
the text.
The organization of sections is as follows. In Sec. II we

set up the basic kinematical description of electron-positron
annihilation to two hadrons. In Sec. III A we explain the
steps of the LO collinear calculation at large transverse
momentum, in Sec. III B we discuss its asymptotically
small transverse momentum behavior, and in Sec. III C we
review the basics of the (non-) perturbative TMD calcu-
lation for small transverse momentum. We elaborate on our
expectations for the validity of the collinear factorization
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calculation in Sec. IV, and in Sec. V we compare and
contrast the results at moderate transverse momentum. We
comment on these observations and discuss their implica-
tions in Sec. VI.

II. KINEMATICAL SETUP

The specific process that is the central topic of this paper
is semi-inclusive lepton-antilepton (usually electron- posi-
tron) annihilation with two observed final-state hadrons,

e−ðlÞ þ eþðl0Þ → HAðpAÞ þHBðpBÞ þ X; ð1Þ
with a sum over all other final state particles X. The pA and
pB label the momenta of the observed final state hadrons,
and throughout this paper we neglect their masses, since we
assume hadron masses are negligible relative to hard scales
under consideration here. Our aim is to calculate the cross
section for this process differential in the relative transverse
momentum of the final state hadron pair, and for this there
are a number of useful reference frames. We mainly follow
the conventions in Refs. [6][13.1-13.2]. As indicated in
Eq. (1), l and l0 label the incoming lepton and antilepton
momenta. These annihilate to create a highly virtual time-
like photon with momentum labeled q. It is

Q2 ≡ q2

that sets the hard scale of the process. See also Refs. [27,71]
for details on the kinematical setup of eþe−-annihilation.
Two particularly useful reference frames are discussed in
the next two paragraphs.

A. Photon frame

A photon frame is a center-of-mass frame wherein the
momenta, in Minkowski coordinates and neglecting
masses, are

qμγ ¼ ðQ; 0Þ; ð2aÞ
pμ
A;γ ¼ jpA;γjð1; nA;γÞ; ð2bÞ

pμ
B;γ ¼ jpB;γjð1; nB;γÞ: ð2cÞ

Here nA;γ and nB;γ are unit vectors in the directions of the
hadron momenta. We also define the following unit four-
vectors [6],

Zμ
γ ¼ ð0; nA;γ − nB;γÞ

jnA;γ − nB;γj
; Xμ

γ ¼ ð0; nA;γ þ nB;γÞ
jnA;γ þ nB;γj

: ð3Þ

The z axis can be fixed to align along the spatial
components of Zμ

γ and the x axis along the spatial
components of Xμ

γ . The z axis then bisects the angle (called
δθ in the figure) between pA;γ and−pB;γ . See Fig. 1(a) for an
illustration. This is analogous to the Collins-Soper frame
[72] frequently used in Drell-Yan scattering, where the
lepton pair is in the final state. Another sometimes useful
photon rest frame is one in which the spatial z axis lies
along the direction of one of the hadrons. This is the
analogue of the Gottfried-Jackson frame [73].

B. Hadron frame

In the hadron frame, pA and pB are back to back along
the z axis—see Fig. 1(b). The measure of the deviation
from the back-to-back configuration is then the size of the
virtual photon’s transverse momentum, qhT. In light-cone
coordinates and neglecting masses the momenta in the
hadron frame are

qh ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ q2hT
2

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2hT

2

r
; qhT

�
; ð4aÞ

pA;h ¼ ðpþ
A;h; 0; 0Þ; ð4bÞ

pB;h ¼ ð0; p−
B;h; 0Þ: ð4cÞ

We have chosen to boost along the z axis in the hadron
frame until qþh ¼ q−h . Useful Lorentz-invariant variables are

(a) (b)

FIG. 1. (a) The photon frame. The x and z axes have been aligned with the spatial components of Xμ and Zμ from Eq. (3). The blue
plane is the eþe− plane. (b) The hadron frame, with the hadrons exactly back to back. See text for further explanation.
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zA ¼ pA · pB

q · pB
¼ pþ

A;h

qþh
; zB ¼ pA · pB

q · pA
¼ p−

B;h

q−h
: ð5Þ

Note that we take the Lorentz-invariant ratios to define
zA and zB. Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone
ratios shown. For a treatment that includes kinematical
mass effects, see Ref. [74]. The transverse momentum of
the photon in the hadron frame is

q2hT ¼ 2pA · qpB · q
pA · pB

−Q2 ¼ Q2 tan2ðδθ=2Þ: ð6Þ

As δθ approaches 180° in Fig. 1, far from the back-to-back
configuration, qhT as defined in Eq. (6) diverges, while for
δθ ≈ 0 it approaches 0. From here forward, we drop the h
subscript for simplicity and qT is understood to refer to the
hadron frame photon transverse momentum.
The transverse momentum has an absolute kinematical

upper bound,

qMax
T

2 ≤
Q2ð1 − zAÞð1 − zBÞ
1 − ð1 − zAÞð1 − zBÞ

: ð7Þ

Note that q2T can be larger or smaller than Q2 depending
on zA and zB. The invariant mass squared of the dihadron
pair is

ðpA þ pBÞ2 ¼ zAzBðQ2 þ q2TÞ; ð8Þ

which is of size Q2 as long as zA and zB are fixed and not
too small.

C. The transverse momentum differential cross section

Written in terms of a leptonic and a hadronic tensor, the
cross section under consideration is

EAEB
dσAB

d3pAd3pB
¼ α2em

8π3Q6
LμνWμν; ð9Þ

where the leptonic tensor is

Lμν ≡ lμl0ν þ l0μlν − gμνl0 · l; ð10Þ

and the hadronic tensor is

Wμν≡4π3
X
X

h0jjμð0ÞjpA;pB;Xi

× hpA;pB;Xjjνð0Þj0iδð4Þðq−pA−pB−pXÞ; ð11Þ

where j is the electromagnetic current, pX is the momen-
tum of the unobserved part of the final state, and theP

X includes all sums and integrals over unobserved final

states X. The structure functions are related to the hadronic
tensor through the decomposition

Wμνðq; pA; pBÞ ¼
�
−gμν þ qμqν

Q2
− ZμZν

�
WT þ ZμZνWL;

ð12Þ

where WT and WL are the unpolarized structure functions.
The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our
purposes, we may neglect polarization and azimuthally
dependent structure functions [6]. A convenient way to
extract each structure function in Eq. (12) is to contract
the hadronic tensor with associated extraction tensors, Pμν

L
and Pμν

T ,

WT ¼ Pμν
T Wμν; WL ¼ Pμν

L Wμν; ð13Þ

where

Pμν
T ¼ 1

3
ð−gμν − ZμZν þ XμXνÞ; Pμν

L ¼ ZμZν; ð14Þ

with the Zμ and Xμ defined as in Eq. (3).
After changing variables to zA, zB, qT (see Appendix A

for details),

dσAB
dzAdzBdqTdcosθdϕ

¼ α2emzAzBðQ2þq2TÞ2qT
32π2Q6

½ð1þ cos2θÞWT þ sin2θWL�;

ð15Þ

where θ and ϕ are the polar and azimuthal angles of lepton l
with respect to the Z and X directions in the photon frame.
For the polarization independent case considered in this
paper, we integrate this over θ and ϕ to get

dσAB
dzAdzBdqT

¼ α2emzAzBðQ2 þ q2TÞ2qT
12πQ6

½2WT þWL�: ð16Þ

In the small transverse momentum limit, the process in
Eq. (1) is the one most simply and directly related to TMD
ffs through derivations such as Ref. [4] or more recently in
Ref. [6, chapter 13]. Note that, apart from the dihadron pair,
the final state is totally inclusive (with no specification of
physical jets or properties like thrust). This and the
measurement of transverse momentum relative to a Z axis
as defined above is important for the derivation of factori-
zation, at least in its most basic form, with standard TMD
and collinear ffs as the relevant correlation functions.
Measurements within a jet and relative to a thrust axis
[75] of course contain important information in relation to
TMD ffs, but the connection is less direct. Measurements of
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unpolarized dihadron production are anticipated (e.g., from
the Belle II experiment1) but not yet available [28]. They
are crucial in order to provide information on the TMD ffs,
on the collinear ffs, and on the kinematic region at the
boundary between the domain of validity for TMD and
collinear factorization.

III. FACTORIZATION AT LARGE, MODERATE
AND SMALL TRANSVERSE MOMENTUM

To calculate in perturbative QCD, the differential cross
section in Eq. (16) needs to be factorized into a hard part and
ffs, and different types of factorization are appropriate
depending on the particular kinematical regime. Assuming
zA;B are large enough to ensure that hadrons originate from
separately fragmenting quarks, the three kinematical regions
of interest for semi-inclusive scattering are determined by the
transverse momentum qT. There are three major regions: (i.)
qT ∼Q so that qT and Q are equally viable hard scales, (ii.)
m ≪ qT ≪ Q so that small qT approximations are useful but
qT is large enough that intrinsic nonperturbative effects are
negligible and logarithmic enhancements are only a small
correction, (iii.) qT ≲m and all aspects of a TMD-based
treatment are needed, including nonperturbative intrinsic
transverse momentum (see also Sec. IV). We briefly sum-
marize the calculation of each of these below.

A. The fixed O(αs) cross section at large
transverse momentum

The scenario under consideration is one in which the two
observed hadrons are produced at wide angle [so that
ðpA þ pBÞ2 ∼Q2], but are far from back to back (so that
qT ∼Q). This requires at least one extra gluon emission in

the hard part. See Fig. 2(a) for the general structure of
Feynman graphs contributing at large qT and for our
momentum labeling conventions.
The basic statement of collinear factorization for the

differential cross section is

EAEB
dσAB

d3pAd3pB

¼
X
i;j

Z
1

zA

dζA

Z
1

zB

dζB

�
EAEB

dσ̂ijðẑA; ẑBÞ
d3pAd3pB

�

× dHA=iðζAÞdHB=jðζBÞ; ð17Þ
where the hat on the cross section in the integrand indicates
that it is for the partonic subprocess l1 þ l2 → kA þ kB þX.
kA and kB label the momenta of the partons that hadronize.
The integrals are over the momentum fraction variables ζA
and ζB that relate the hadron and parton momenta in Fig. 2,

kA ≡ pA=ζA; kB ≡ pB=ζB: ð18Þ
The i, j sum is over the different possible flavors of parton
that can hadronize, i; j ∈ fu; d; g; ū…g. The number of
active flavors depends on the scale. The dHA=iðζAÞ and
dHB=jðζBÞ are the fragmentation functions for flavor iðjÞ
partons to hadronize into hadrons of flavor A (B). We use
the standard abbreviations

ẑA ¼ zA=ζA; ẑB ¼ zB=ζB; ð19Þ

which follow from Eq. (18) and the partonic analogue of
the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC [76–78]. After
factorization, the hard part involves the square modulus of
the H subgraph with massless, on-shell external partons.
The graphs that contribute to this at lowest order are shown
in Fig. 2(b).
It is useful to define a partonic version of the hadronic

tensor,

(b)(a)

FIG. 2. (a) The general diagrammatic structure contributing to Eq. (1) at large qT and at LO in αs. The outgoing partonic lines are
dotted to indicate that generally they can be of any type. In the region of interest for this paper, their momenta deviate by wide angles
from the back-to-back orientation for the dihadron pair. H represents the hard part of the interaction and the CA;B;C are the collinear
subgraphs [6]. (b) The OðαsÞ partonic contribution to the square-modulus amplitude in the factorization of (a).

1See for example R. Seidl’s talk (http://www.int.washington
.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf) at the
INT 18-3 workshop (http://www.int.washington.edu/talks/
WorkShops/int_18_3/).

COLLINEAR FACTORIZATION IN WIDE-ANGLE HADRON PAIR … PHYS. REV. D 100, 094014 (2019)

094014-5

http://www.int.washington.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf
http://www.int.washington.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf
http://www.int.washington.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf
http://www.int.washington.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf
http://www.int.washington.edu/talks/WorkShops/int_18_3/People/Seidl_R/Seidl.pdf
http://www.int.washington.edu/talks/WorkShops/int_18_3/
http://www.int.washington.edu/talks/WorkShops/int_18_3/


Ŵμν
ij ≡4π3

X
X

h0jjμijð0ÞjkA;kB;Xi

× hkA;kB;Xjjνijð0Þj0iδð4Þðq−kA−kB−pXÞ; ð20Þ

in which case

Wμν ¼
X
i;j

Z
1

zA

dζA
ζ2A

Z
1

zB

dζB
ζ2B

Ŵμν
ij ðẑA; ẑBÞdHA=iðζAÞdHB=jðζBÞ:

ð21Þ
Working with the hadronic tensor and with the extraction
tensors like Eq. (13) conveniently automates the steps to
obtain any arbitrary structure function. The differential
cross section is

dσAB
dzAdzBdqT

¼
X
i;j

Z
1

zA

dζA
ζA

Z
1

zB

dζB
ζB

�
dσ̂ijðẑA; ẑBÞ
dẑAdẑBdqT

�

× dHA=iðζAÞdHB=jðζBÞ; ð22Þ

and the partonic cross section can be expressed analogously
to Eq. (16),

dσ̂ij
dẑAdẑBdqT

¼α2emẑAẑBðQ2þq2TÞ2qT
12πQ6

½2ŴT;ijþŴL;ij�; ð23Þ

where ŴT;ij and ŴL;ij are partonic structure functions
calculated from the graphs in Fig. 2(b).
Given the expressions for the squared amplitudes in

Fig. 2(b), the evaluation of the differential cross section
becomes straightforward. Each possible combination of
final state parton pairs in Fig. 2(b) can hadronize into HA
and HB with fragmentation functions that depend on both
the fragmenting parton and final state hadron. Six such

channels contribute at leading order in αs, and we organize
these diagrammatically in Fig. 3, with kA, kB, and kC
assigned to the quark, antiquark or gluon according to
whether it hadronizes to HA, HB, or is unobserved. A solid
dot marks the parton that hadronizes into HA (always kA
parton momentum) and the open dot marks the parton that
hadronizes into HB (always kB momentum). There is an
integral over all momentum of the remaining line (kC).
Quark lines include all active quark flavors, and are shown
separately from the antiquark lines since they correspond to
separate ffs. Notice that, unlike in the case of the qT-
integrated cross section for single hadron production, there
is already sensitivity to the gluon fragmentation function at
the lowest nonvanishing order. The analytic expressions
needed for the calculation are summarized in Appendix B.

B. The asymptotic q2T
Q2 → 0 limit

The small q2T=Q
2 limit of Eq. (22) involves considerable

simplifications analogous to those obtained in TMD
factorization, but applied to fixed order massless partonic
graphs. It is potentially a useful simplification, therefore,
in situations where q2T is small enough that a q2T=Q

2

expansion applies, but still large enough that fixed order
perturbative calculations are reasonable approximations.
As we see in later sections, it is also useful for estimating
the borders of the regions where small q2T=Q

2 approxima-
tions are appropriate.
The asymptotic term is obtainable by directly expanding

the fixed order calculation in powers of small qT=Q, with a
careful treatment of the soft gluon region in the integrals
over ζA and ζB. The steps are similar to those in SIDIS,
and we refer to Ref. [79] for a useful discussion of them.
When performed for the eþe− annihilation case under
consideration here, the result is

(c)(b)(a)

(f)(e)(d)

FIG. 3. Partonic channels that contribute at order αs. A detailed explanation is in Sec. III A.
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dσASYAB

dzAdzBdqT
¼ 4α2emαs

Q2qT

X
q

e2q

�
2CF

�
ln

�
Q2

q2T

�
−
3

2

�
ðdHA=qðzAÞdHB=q̄ðzBÞþdHA=q̄ðzAÞdHB=qðzBÞÞ

þdHA=qðzAÞ½ðPq̄q̄ ⊗ dHB=q̄ÞðzBÞþðPgq̄⊗ dHB=gÞðzBÞ�þdHA=q̄ðzAÞ½ðPqq⊗ dHB=qÞðzBÞþðPgq⊗ dHB=gÞðzBÞ�

þdHB=qðzBÞ½ðPq̄q̄⊗ dHA=q̄ÞðzAÞþðPgq̄⊗ dHA=gÞðzAÞ�þdHB=q̄ðzBÞ½ðPqq⊗ dHA=qÞðzAÞþðPgq⊗ dHA=gÞðzAÞ�
�
;

ð24Þ

where Pij are the leading order unpolarized splitting
functions

PqqðzÞ ¼ Pq̄ q̄ðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
;

PgqðzÞ ¼ Pgq̄ðzÞ ¼ CF

�
1þ ð1 − zÞ2

z

�
; ð25Þ

and ⊗ represents the convolution integral

ðf ⊗ gÞðzÞ ¼
Z

1

z

dζ
ζ
fðz=ζÞgðζÞ: ð26Þ

The “ðÞþ” in Eq. (25) denotes the usual plus distribution.
The “ASY” superscript on Eq. (24) symbolizes the asymp-
totically small q2T=Q

2 limit for the cross section. The sum
over q is a sum over all active quark flavors.

C. TMD ffs and the small qT region

In the small transverse momentum limit of the cross
section, the WL structure function becomes power sup-
pressed. The cross section in Eq. (16) is simply

dσAB
dzAdzBdqT

¼ α2emzAzBqT
6πQ2

WT; ð27Þ

and the structure function WT (or hadronic tensor)
factorizes in a well-known way into TMD fragmentation
functions

WT ¼
8π3zAzB

Q2

X
q

ŴT;q

×
Z

d2bT
ð2πÞ2 e

−ibT·qT ½D̃HA=qD̃HB=q̄þ D̃A=q̄D̃B=q�; ð28Þ

where

ŴT;q ¼ 6Q2e2q: ð29Þ

The D̃H=q are the TMD fragmentation functions in trans-
verse coordinate bT space. After evolution, the TMD ff for a
hadron H from quark q is

D̃H=qðz; bT ; μ; ζDÞ

¼
X
j

Z
1

z

dẑ
ẑ3

C̃j=qðz=ẑ; b�; ζD; μÞdH=jðẑ; μbÞ

× exp

�
ln

ffiffiffiffiffiffi
ζD

p
μb

K̃ðb�; μbÞ

þ
Z

μ

μb

dμ0

μ

�
γðμ0; 1Þ − ln

ffiffiffiffiffiffi
ζD

p
μ0

γKðμ0Þ
�
þ gH=jðz; bTÞ

þ 1

2
gKðbTÞ ln

ζD
ζD;0

�
: ð30Þ

The j index runs over all quark flavors and includes gluons,
and the functions dH=jðz; μbÞ are ordinary collinear ffs
which are convoluted with coefficient functions Cj=q

derived from the small bT limit of the TMDs. All
perturbative contributions, Cj=q, K̃, γ, and γK , are known
by now to several orders in αs [68,80].
However, nonperturbative functions also enter to para-

metrize the truly nonperturbative and intrinsic parts of the
TMD functions. These are gH=j, which is hadron and flavor
dependent, and gK, which is independent of the nature of
hadrons and parton flavors and controls the nonperturbative
contribution to the evolution. When combined in a cross
section ζDA

× ζDB
¼ Q4. Some common parametrizations

used for phenomenological fits are

gH=jðz; bTÞ ¼ −
1

4z2
hK2

H=j;Tib2T; ð31Þ

gKðbTÞ ¼ −
1

2
g2b2T: ð32Þ

Perturbative parts of calculations are usually regulated in
the large bT region by using, for example, the b� pre-
scription with

b�ðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðbT=bmaxÞ2
p ; μbðb�Þ ∝

1

b�
: ð33Þ

While there are many ways to regulate large bT , and many
alternative proposals for parametrizing the nonperturbative
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TMD inputs hK2
H=j;Ti and g2, the above is sufficient for the

purpose of capturing general trends in the comparison of
large and small transverse momentum calculations
in Sec. V.

IV. TRANSVERSE MOMENTUM HARDNESS

The question of what constitutes large or small trans-
verse momentum warrants special attention, so we now
consider how the kinematical configuration of the third
parton in graphs of the form of Fig. 2(a), not associated
with a fragmentation function, affects the sequence of
approximations needed to obtain various types of factori-
zation.2 Generally, the propagator denominators in the hard
blob H can be classified into two types depending on
whether kC attaches inside a far off-shell virtual loop or to
an external leg. If it attaches inside a virtual loop, the power
counting is

1

2kC · kA;B þOðQ2Þ ; ð34Þ

and for an external leg attachment [the off-shell propagators
in Fig. 2(b), for example]

1

2kC · kA;B þOðm2Þ : ð35Þ

The coefficients of the OðQ2Þ and Oðm2Þ are numerical
factors roughly of size 1. Here the m2 is a small mass scale
comparable to Λ2

QCD or a small hadron mass squared.
Possible Oðm2Þ terms in the Eq. (34) denominator can
always be neglected relative toOðQ2Þ and so have not been
written explicitly.
The question that needs to be answered to justify

collinear vs TMD factorization is whether the 2kC · kA;B
terms are also small enough to be dropped, or if they are
large enough that they can be treated as hard scales
comparable to Q2, or if the true situation is somewhere
in between. The fixed order calculations like those of the
previous section are justified if

				 2kC · kA;B
Q2

				 ð36Þ

is not much smaller than 1. A quick estimate of the
relationship between this ratio and q2T=Q

2 is obtained as
follows:

				 2kC · kA;B
Q2

				 ≈
				 ðq − kB;AÞ2

Q2

				 ≈
				
ðq − pB;A

zB;A
Þ2

Q2

				 ¼ q2T
Q2

; ð37Þ

where the first ≈ means momentum conservation is used
with k2A;B;C ≈ 0, and the second ≈ means the standard small
q2T approximation for the photon vertex, ζA ≈ zA, is being
used. For the denominator in Eq. (35), the relevant ratio is
m2=ð2kC · kA;BÞ, and arguments similar to the above give

				 m2

2kC · kA;B

				 ≈m2

q2T
: ð38Þ

If Eq. (37) is Oð1Þ while Eq. (38) is much less than 1, then
the approximations on which collinear factorization at large
q2T is based are justified.
The situation is reversed if Eq. (38) is Oð1Þ or larger but

Eq. (37) is small. In that case, the neglect of the Oðm2Þ
effects (including intrinsic transverse momentum) in the
denominators of Eq. (35) is unjustified. However, the
smallness of Eq. (37) means neglecting the 2kC · kA;B
terms in the hard vertex is now valid, and this leads to
its own set of extra simplifications. Ultimately, such
approximations are analogous to those used in the deriva-
tion of TMD factorization.
An additional way to estimate the hardness of q2T is

to compare with the kinematical maximum in Eq. (7).
For zA;B ≳ :4, it can produce a significantly smaller ratio
than Eq. (37). For example, for zA;B ¼ :5, qMax

T =Q2 ¼ 1=3.
Certainly, small q2T=Q

2 approximations fail near such
thresholds.
The range of possible transverse momentum regions can

be summarized with three categories.
(i) Intrinsic transverse momentum: Eq. (38) is of size 1

or larger, but Eq. (37) is a small suppression factor.
TMD factorization, or a similar approach that
accounts for small transverse momentum effects,
is needed. Such a kinematical regime is ideal to
studying intrinsic transverse momentum properties
of fragmentation functions.

(ii) Hard transverse momentum: Eq. (38) is much less
than 1, and Eq. (37) is comparable to 1. Therefore,
fixed order calculations like those of the previous
section are justified.

(iii) Intermediate transverse momentum: Eq. (38) is
much less than 1, but Eq. (37) is also much less
than 1. In this case, the previous two types of
approximations are simultaneously justifiable.
Transverse momentum dependence is mostly per-
turbative, but large logarithms of q2T=Q

2 imply that
transverse momentum resummation and/or TMD
evolution are nevertheless important.

The large transverse momentum fixed order calculations
are the most basic of these, since they involve only collinear
factorization starting with tree-level graphs, so it is worth-
while to confirm that there is a region where they are
phenomenologically accurate, as is the aim of the present
paper. Direct comparisons between fixed order calculations

2For this section we allow for the possibility of arbitrarily
many hard loops inside H.
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and measurements can help to confirm or challenge the
above expectations. For example, consider a case where
Q ∼ 10 GeV while the largest measurable transverse
momenta are about ∼7 GeV. Then logarithms of q2T=Q

2,
i.e., j ln :72j ∼ :7, are not large while Eq. (37) is a non-
negligible ∼0.5. These are ideal kinematics, therefore, for
testing the regime where fixed order calculations are
expected to apply.

V. LARGE AND SMALL TRANSVERSE
MOMENTUM COMPARISON

We begin our comparison by computing the fixed order
collinear factorization-based cross section for the q2T ∼Q2

region using the DSS14 ff parametrizations [42], and we
compare with the calculation of the asymptotic term in
Eq. (24). The results are shown for both moderate Q ∼
12 GeV and for large Q ∼ 50 GeV in Fig. 4 (left panel),
with zA;B ¼ 0.3 in both cases. The horizontal axis is the
ratio qT=qMax

T , using Eq. (7) to make the proximity to the
kinematical large-q2T threshold clearly visible.
The exact kinematical relation (for 1 → 3 scattering)

between ζB and ζA is

ζB ¼ zB
ðQ2 þ q2TÞðzA − ζAÞ
q2TzA þQ2ðzA − ζAÞ

; ð39Þ

while the cross section in the asymptotically small q2T=Q
2

limit has either ζA ¼ zA with ζB ≥ zB or ζB ¼ zB with
ζA ≥ zA. The asymptotic phase space in the ζB − ζA plane
approaches a rectangular wedge shape in the small-q2T limit,
shown as the solid black lines in Fig. 4 (right panel) for
fixed values of zA ¼ zB. For comparison, the differently
colored dashed, dot-dashed, and dotted lines show the
ζB − ζA curves from Eq. (39) for various nonzero q2T.

The deviation between the colored and black curves gives
one indication of the degree of error introduced by taking
the small-q2T limit. Figure 4 (right panel) shows how these
grow at large zA;B. A nontrivial kinematical correlation
forms between momentum fractions ζA and ζB in the large
zA, zB and large-q2T regions. Notice also that the contours
are scale independent, since qMax

T is proportional to Q2, so
kinematical errors from small-qT approximations are like-
wise scale independent.
The point along the horizontal axis where the asymptotic

term turns negative is another approximate indication of the
region above which small-q2T=Q

2 approximations begin to
fail and the fixed order collinear factorization treatment
should become more reliable, provided zA;B are at fixed
moderate values and qT is not too close to the overall
kinematical thresholds. That point is shown in Fig. 4 (left)
for two representative values of small (Q ¼ 12 GeV) and
large Q ¼ 50 GeV. The transition is at rather small trans-
verse momentum, roughly qT=qMax

T ∼ 0.2, though the exact
position depends on a number of details, including the
shapes of the collinear fragmentation functions. If the
asymptotic term is used as the indicator, then the transition
is also roughly independent of Q.
We are ultimately interested in asking how the fixed

order collinear calculation compares with existing TMD ff
parametrizations near the small-to-large transverse momen-
tum transition point. A reasonable range of nonperturbative
parameters like hK2

H=j;Ti and g2 in Eqs. (31) and (32) can be
estimated from a survey of existing phenomenological fits.
We make the approximation that all light flavors have
equal hK2

H=j;Ti ¼ hK2
Ti for pion production. Then values

for hK2
H=j;Ti lie in the range from about .11 to .23 GeV−2

[19], which straddles the value 0.16 GeV−2 in Ref. [81].

FIG. 4. (Left) LO collinear factorization predictions for the inclusive eþe− to dihadron cross section (Sec. III and Appendix B), for
Q ¼ 12, 50 GeV. The red band shows the range covered by switching the renormalization group scale between μ ¼ Q (lower edge) and
qT (upper edge). The blue band is the calculation performed using TMD ffs, and the band shows the range covered by the values of the
nonperturbative parameters discussed in Sec. V. (Right) Correlation between partonic momentum fractions ζA;B for various values of
qT=qMax

T .
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For g2, we use a minimum value of 0 to estimate the effect
of having no nonperturbative evolution at all, and we use a
maximum value of .184 GeV−2, from Ref. [82], which is
at the larger range of values that have been extracted. This
range also straddles the g2 ¼ :13 GeV−2 found in Ref. [19].
In all cases, we use the lowest order perturbative anomalous
dimensions since these were used in most of the Gaussian-
based fits above. Collectively, the numbers above produce
the blue bands in Fig. 5 (left). The references quoted
above generally include uncertainties for their parametri-
zations of hK2

j;Ti and g2, but these are much smaller than
the uncertainty represented by the blue band in Fig. 5 (left).
We use a representative estimate of bmax ¼ 1.0 GeV−1;
Refs. [19] and [82] use slightly larger values (1.123 and
1.5 GeV−1, respectively), but larger bmax ≳ 1.0 GeV−1 also
has a small effect and only increases the general disagree-
ment with the collinear fixed order calculation.
Observe in Fig. 4 (left) that, despite our somewhat

overly liberal band sizes for the TMD ff calculation, large
tension in the intermediate transverse momentum region
between the TMD ff-based cross section and the fixed
order collinear calculation nevertheless remains. For the

zA;B ≈ :3 shown, qMax
T ≈Q. The Q ¼ 50 GeV curves show

that as Q is raised, this tension diminishes, though at a
perhaps surprisingly slow rate. For Q ¼ 12 GeV, the
asymptotic and fixed order terms approach one another,
but only at very small qT. The curves contained within
the blue band deviate qualitatively from the asymptotic
and fixed order terms across all transverse momentum, and
the blue band badly overshoots both in the intermediate
region of qT ≈ 2–3 GeVs. The result is reminiscent of the
situation with other processes—see, for example, Fig. 6 of
[49] for SIDIS.
Interestingly, data for the observable of Eq. (1) for

πþ=π− production simulated with PYTHIA 8 [55,56] using
default settings show quite reasonable agreement with the
collinear factorization calculation in the expected range of
intermediate transverse momentum and zA;B and very large
Q, validating the analytic fixed order collinear calculation
in regions where it is most expected that the collinear cal-
culations and the simulation should overlap. We illustrate
this in Fig. 5, where for zA;B between 0.2 and 0.6 the fixed
order analytic calculation agrees within roughly a factor
of 2 with the PYTHIA-generated spectrum for Q≳20GeV

FIG. 5. The lowest order collinear factorization calculation from Sec. III compared with πþ=π− pair production simulated by
PYTHIA-8 with default settings for different ranges of zA;B and for increasing values of Q, starting with Q ¼ 12 GeV. Both the fixed
order calculation and the simulation are averaged in the zA;B bins. The uncertainty on the bands is purely statistical.
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and for qT=qMax
T ∼ 0.5. At smaller Q≲20GeV, the agree-

ment between the fixed order calculation and the sim-
ulation is much worse, though because Q is relatively
small and the event generator includes only the leading
order hard scattering (with parton showering), it is
unclear how the disagreement in that region should be
interpreted. Nevertheless, it is interesting to observe that
the trend wherein the collinear factorization calculation
undershoots data, seen in SIDIS [52] and Drell-Yan [54]
calculations, seems to persist even here. In the future,
it would be interesting to perform a more detailed
Monte Carlo study that incorporates treatments of higher
order hard scattering.

VI. CONCLUSIONS

As one of the simplest processes with nontrivial transverse
momentum dependence, dihadron production in eþe− anni-
hilation is ideal for testing theoretical treatments of trans-
verse momentum distributions generally. A goal of this
paper has been to spotlight its possible use as a probe of the
transition between kinematical regions corresponding to
different types of QCD factorization. There have been a
number of studies highlighting tension between large trans-
verse momentum collinear factorization-based calculation
and cross section measurements for Drell-Yan and SIDIS;
Refs. [47,48,52–54]. Whether the resolution lies with a need
for higher orders, a need to refit correlation functions, large
power-law corrections in the region of moderate Q [83], or
still other factors that are not yet understood remains unclear.
An important early step toward clarifying the issues is an

examination of trends in standard methods of calculation in
the large transverse momentum region. Motivated by this,
we have examined the simplest LO calculation relevant for
large deviation from the back-to-back region in detail.
Agreement with Monte Carlo-generated distributions at
large Q supports the general validity of such calculations.
However, when comparing the result in the intermediate
transverse momentum region with expectations obtained
from TMD fragmentation functions, we find trends rem-
iniscent of those discussed above for SIDIS and Drell-Yan
scattering at lower Q. Namely, the collinear factorization
calculation appears to be overly suppressed. We view this
as significant motivation to study the intermediate trans-
verse momentum region both theoretically and experimen-
tally. In this respect, forthcoming data sets for dihadron
production with transverse momentum dependence from
low to moderateQ, such as the energy available at the BES-
III and Belle-II experiments, will be extremely valuable to
address these tensions and to investigate the generation of
transverse momentum during the hadronization process.
Moreover, an advantage in the eþe− annihilation is the
larger value of Q relative to processes like semi-inclusive
deep inelastic scattering.
While we have focused on the large transverse momen-

tum limit, the observations above are relevant to other

kinematical regions such as small transverse momentum, as
well as to polarization dependent observables, and their
physical interpretation, since the detailed shape of the
transverse momentum distributions for any region depends
on the transitions to other regions.
It is important to note that orderα2s corrections can be quite

large [47,48,52,53], and we plan to address these in future
studies, though generally higher order effects have not been
sufficient in other processes to eliminate tension. Keeping
this in mind, it is worthwhile nevertheless to speculate on
other possible resolutions. One is that the hard scaleQmight
be too low for a simplistic division of transverse momentum
into regions such as discussed in Sec. IV. It is true that asQ
gets smaller, the separation between large and small trans-
verse momentum becomes squeezed, and it is possible that
the standard methods for treating the transition between
separately well-defined regions is inapplicable. As a hard
scale, however,Q ∼ 12 GeV is well above energies that are
normally understood to be near to the lower limits of
applicability of standard perturbation theory methods (typ-
ical scales for SIDIS measurements are aroundQ ∼ 2 GeV,
for example). Another possibility is that fragmentation
functions in the large ζ range probed at large qT are not
sufficiently constrained. An important next step is to
determine whether the description of large transverse
momentum processes generally can be improved via a
simultaneous analysis of multiple processes at moderate
Q with simple and well-established collinear factorization
treatments. We plan to investigate this in future work.
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APPENDIX A: VARIABLE CHANGES

The left-hand side of Eq. (9) can be rewritten as

jpAj
jpBj

dσAB
djpBjdΩBd3pA

: ðA1Þ

Change of variables is easiest in a center-of-mass frame
where pB is on the z axis. In this frame, the hadron
momenta in terms of Q, qT, zA, and zB (in Cartesian
coordinates) are
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pA ¼
�
zA
2Q

ðQ2 þ q2TÞ;−zAqT;−
zA
2Q

ðQ2 − q2TÞ
�
; ðA2Þ

pB ¼
�
zB
2Q

ðQ2 þ q2TÞ; 0T;
zB
2Q

ðQ2 þ q2TÞ
�
: ðA3Þ

and the lepton momentum l is

l ¼
�
Q
2
;
Q
2
sin θ cosϕ;

Q
2
sin θ sinϕ;

Q
2
cos θ

�
: ðA4Þ

Therefore,

jpAj ¼
zA
2Q

ðQ2 þ q2TÞ;

jpBj ¼
zB
2Q

ðQ2 þ q2TÞ;

d3pAdjpBj ¼
qTðQ2 þ q2TÞ2z2A

4Q2
dzAdzBdqTdϕA;

dΩB ¼ d cos θdϕ: ðA5Þ

After integrating over ϕA, Eq. (9) then becomes

dσAB
dzAdzBdqTd cos θdϕ

¼ α2emzAzBðQ2 þ q2TÞ2qT
16π2Q8

LμνWμν:

ðA6Þ

APPENDIX B: FIXED ORDER EXPRESSIONS

The partonic structure functions ŴT;ij and ŴL;ij can
be obtained by contracting the extraction tensors
[Eq. (14)] with the partonic tensor Ŵμν. The relation
between the partonic tensor and the squared amplitude of
the hard part is

Ŵμν
ij ¼ 4π3

Z
d3kC

2k0Cð2πÞ3
δð4Þðq − kA − kB − kCÞjM̂j2;μνij

¼ 1

2
δþðk2CÞjM̂j2;μνij : ðB1Þ

The resulting partonic cross sections are

dσ̂qq̄
dẑAdẑBdqT

¼ dσ̂q̄q
dẑAdẑBdqT

¼ 8α2emαse2qẑAẑBδðk2CÞqTðQ2 þ q2TÞ3ð6Q2 þ 5q2TÞðẑ2A þ ẑ2BÞ
9Q6ðQ2ðẑA − 1Þ þ q2TẑAÞðQ2ðẑB − 1Þ þ q2TẑBÞ

ðB2aÞ

dσ̂qg
dẑAdẑBdqT

¼ dσ̂q̄g
dẑAdẑBdqT

¼ −8α2emαse2qẑAẑBδðk2CÞqTðQ2 þ q2TÞ2½2Q4ð14þ 3ẑ2B − 14ẑB þ 2ẑAð3ẑA þ 4ẑB − 7ÞÞ

þ 5q4Tðẑ2B þ 2ẑBẑA þ 2ẑ2AÞ þQ2q2Tð11ẑ2B − 28ẑB þ 2ẑAð11ẑA þ 13ẑB − 14ÞÞ�
=ð9Q6ðQ2ðẑA − 1Þ þ q2TẑAÞðQ2ðẑB þ ẑA − 1Þ þ q2TðẑB þ ẑAÞÞÞ ðB2bÞ

dσ̂gq
dẑAdẑBdqT

¼ dσ̂gq̄
dẑAdẑBdqT

¼ −8α2emαse2qẑAẑBδðk2CÞqTðQ2 þ q2TÞ2½2Q4ð14þ 3ẑ2A − 14ẑA þ 2ẑBð3ẑB þ 4ẑA − 7ÞÞ

þ 5q4Tðẑ2A þ 2ẑAẑB þ 2ẑ2BÞ þQ2q2Tð11ẑ2A − 28ẑA þ 2ẑBð11ẑB þ 13ẑA − 14ÞÞ�
=ð9Q6ðQ2ðẑB − 1Þ þ q2TẑBÞðQ2ðẑA þ ẑB − 1Þ þ q2TðẑA þ ẑBÞÞÞ: ðB2cÞ
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