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Mathematical model development of super-resolution
image Wiener restoration

Amr Yousef
Jiang Li
Mohammad A. Karim
Old Dominion University
4901 Hampton Boulevard
Norfolk, Virginia, 23508
E-mail: aabde008@odu.edu

Abstract. In super-resolution (SR), a set of degraded low-resolution (LR)
images are used to reconstruct a higher-resolution image that suffers from
acquisition degradations. One way to boost SR images visual quality is to
use restoration filters to remove reconstructed images artifacts. We pro-
pose an efficient method to optimally allocate the LR pixels on the high-
resolution grid and introduce a mathematical derivation of a stochastic
Wiener filter. It relies on the continuous-discrete-continuous model and
is constrained by the periodic and nonperiodic interrelationships between
the different frequency components of the proposed SR system. We ana-
lyze an end-to-end model and formulate the Wiener filter as a function of
the parameters associated with the proposed SR system such as image
gathering and display response indices, system average signal-to-noise
ratio, and inter-subpixel shifts between the LR images. Simulation and
experimental results demonstrate that the derived Wiener filter with the
optimal allocation of LR images results in sharper reconstruction. When
compared with other SR techniques, our approach outperforms them in
both quality and computational time. © 2012 Society of Photo-Optical Instrumenta-
tion Engineers (SPIE). [DOI: 10.1117/1.OE.51.3.037007]

Subject terms: super-resolution; aliasing; restoration; continuous-discrete-
continuous; signal-to-noise ratio; subpixel shifts.
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1 Introduction
Developments and challenges in super-resolution (SR) algo-
rithms have attracted many researchers in recent years due to
the high demand on its many applications. SR mainly aim to
reconstruct an image with a higher resolution from a set of
degraded sequence of images that have similar but no iden-
tical looks to the captured scene that falls within the acquisi-
tion device field of view (FOV).1 The applications of SR are
many, including medical imaging, military surveillance, and
remote sensing in which a long observing distance to an
object typically reduces the quality of the extracted features
in the acquired images.2,3 Most SR approaches consist of
three main steps: registration, reconstruction, and restoration.

Registration is a process of aligning several images to a
reference one. Registration with subpixel accuracy is essen-
tial in reconstructing high-resolution (HR) images with
enhanced visual quality and minimum unwanted artifacts.4

The subpixel registration techniques can be classified
into four types: (1) correlation interpolation, (2) intensity
interpolation, (3) differential interpolation, and (4) phase
correlation.

In correlation interpolation, a discrete correlation function
between two images is calculated and interpolated, and the
translation is obtained by searching for the maximum of
the correlation function. In intensity interpolation, parts of
the reference image are selected and interpolated according
to the subpixel accuracy required, and a search is conducted
over these parts with the unregistered image.5 The idea
behind differential interpolation is to relate the difference
between two consecutive frames to the spatial intensity

gradient of the first image.5 Phase-correlation techniques
are based on the idea that phase of the cross power-spectrum
between two images contains most information of the
relative displacement between them. Guizar-Sicairos et al.6

proposed one of the most efficient and reliable subpixel
registration algorithms based on the phase-correlation tech-
nique to estimate the shifts between two images within a sub-
pixel accuracy.7

Image reconstruction is a method of reconstructing HR
images by incorporating the available different registered
low-resolution (LR) pixels to estimate the missing pixels
on the HR grid. In most cases, the registered LR pixels
are irregularly distributed over the HR grid. Popular techni-
ques for image reconstruction2 are nearest-neighbor interpo-
lation, bilinear interpolation, cubic spline interpolation, and
piecewise cubic convolution.8

Image restoration is a method of correcting the recon-
structed HR image from degraded LR images with blurring,
aliasing, and noise.9 Popular restoration methods are inverse
filters, least square filters, and iterative approaches.2,10 There
are many SR algorithms, and they can be divided into two
categories: spatial domain approaches and spatial frequency
domain approaches.4

Frequency domain approaches include reconstruction
via aliasing removal, recursive least squares filters and
multichannel sampling theorem-based techniques.4 Spatial
domain approaches include nonuniform interpolation, alge-
braic filtered back projection, probabilistic methods like
maximum likelihood (ML) estimation, and maximum a pos-
teriori (MAP) based algorithms, projection onto convex set
(POCS), hybrid ML/MAP/POCS methods and Tikhonov–
Arsenin regularized methods.40091-3286/2012/$25.00 © 2012 SPIE
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Nonuniform approaches are the simplest ones. Alam
et al.11 proposed a method to reconstruct a HR infrared
image from a set of randomly shifted LR infrared frames
and used a weighted nearest-neighbor approach to estimate
missing pixels on the HR grid and finally restore the recon-
structed image using the traditional Wiener filter.12 Ur and
Gross13 used a framework based on the multichannel
sampling theorem followed by a deblurring step to recon-
struct the SR image. Komatsu et al.14 proposed a very
high-definition (VHD) imaging system using multiple dif-
ferent cameras with high signal-to-noise ratio. Shah and
Zakhor15 proposed a method to enhance images extracted
from a video sequence by compensating for inaccurate
motion estimation. Nguyen and Milanfar16 developed an
interpolation-restoration method based on wavelets theory
to reconstruct SR images.

Tsai and Huang17 proposed one of the earliest frequency
domain SR approaches. They utilized the shift property of
the Fourier transform and related the aliased LR images
to an ideal image. Kim et al.18,19 applied this approach to
blurred and noisy images and restored the reconstructed
high-resolution image using the Tikhonov regularization.20

Sauer and Allebach21 used the POCS method to reconstruct
a HR image from LR images based on the assumption that
these LR images are not affected by any blur. Stark and
Oskoui22 extended the POCS technique to noiseless blurry
images and combined interpolation and restoration in one
step. Tekalp et al.23 extended the idea of POCS to reconstruct
a HR image from a sequence of LR images that are affected
by motion blur (non-zero aperture time). Irani and Peleg24

developed a SR reconstruction approach based on iterative
back projection that is used in tomography to minimize
the difference between simulated LR images and actual
LR images until a predefined error criterion is reached.
Nguyen et al.25 used the conjugate gradient method to solve
the Tikhonov regularized SR problem by using efficient
block circulant preconditions. Farsui et al.26 used the L1
norm minimization to reduce errors in blur and inter-LR
subpixel shifts estimations. Elad and Feuer27,28 combine
ML, MAP, and POCS approaches into a hybrid method
to reconstruct SR image from a set of blurred, noisy, and
undersampled images.

In this paper, we revisit the Wiener filter and extend it for
the general SR problem. Although, the Wiener filter has been

discussed throughout literatures, our formulation for the SR
problem is quite different. The traditional developments of
this filter are for a single-image restoration and are based
on the assumption that the continuous-discrete-continuous
(CDC) model is constrained only by blurring and noise
and ignores the insufficient sampling in the image-gathering
process. Consequently, it will not actually minimize the
mean square error of the reconstructed image. Our work
is an extension to the Wiener filter developed by Carl et al.29

that we extend for addressing the SR problem. Also, it is
similar to the one given by Jiang et al.2 for microscanning
reconstruction in which the subpixel shifts between the indi-
vidual scans are known and follow a uniform pattern. In our
developments we extend this filter for the general SR pro-
blem where the subpixel shifts are unknown and random.
Also, our derivation indicates periodic and nonperiodic fre-
quency interrelationships between different CDC parameters
in addition to highlighting the decomposed output compo-
nents that result from aliasing, blur, and noise encountered
during the image-acquisition, intermediate processing, and
image display processes. We formulate the Wiener filter
as a function of the average signal-to-noise ratio of the
CDC system and assume that the LR frames are well regis-
tered using one of the most efficient subpixel registration
algorithms6 and the LR pixels are optimally allocated to
the HR grid.30

The rest of this work is organized as follows: In Sec. 2, we
describe the LR images formulation. In Sec. 3, we discuss
briefly the optimum allocation of LR pixels on the HR
grid. In Sec. 4, we derive the stochastic Wiener filter.
Section 5 presents our simulation results, and we conclude
the paper in Sec. 6.

2 Low Resolution Image Formulation
Figure 1 details our super-resolution CDC-based system
components. It represents most of the degradations including
blur, noise, and aliasing that are encountered during the
image gathering, image reconstruction, and image display
processes.

• The blur results from convolving the continuous input
scene with spatial shift invariant lowpass filter that
represents the spatial frequency response (SFR) of
the image-gathering optical lens. In addition, blur

Fig. 1 Complete continuous-discrete-continuous SR reconstruction model.
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also occurs when the optical system is out of focus or
there is a relative motion between camera and the ori-
ginal scene, and sometimes it is caused by atmospheric
turbulence in the case of remote-sensing images.10

• The additive noise results from image gathering photo-
detectors or quantization artifacts. Typically, the noise
is white, i.e., spatially uncorrelated. Sometimes,
images and noise are correlated especially when
noise is multiplicative instead of additive, or the
image gathering is nonlinear. For simplicity, noise is
modeled as additive white noise.

• The aliasing results from sampling beyond the Nyquist
sampling rate causing high frequencies in the scene to
fold back into the low-frequencies band. The aliasing
causes certain visual artifacts inside the captured
images such as jagged lines, spurious highlights,
and repeated patterns.10

For the k1k2th LR frame, the image-gathering device trans-
forms the continuous input scene Lðx; yÞ into discrete signal
sk1k2ðx; yÞ as defined by:

sk1k2ðx; yÞ ¼ f k1k2ðx; yÞjjj
¯

ðx; yÞ

¼ ½Lðx − xk1 ; y − yk2Þ � τk1k2ðx; yÞ
þ Nk1k2ðx; yÞ�jjj

¯

ðx; yÞ; (1)

where τk1k2ðx; yÞ is the spatial response of the image acquisi-
tion device, Nk1k2ðx; yÞ is the additive photo-detector noise,
the symbol � denotes spatial convolution, and xk1 and yk2 are
the subpixel shifts in the x− and y− directions, respectively.
The sampling function

jjj
¯

ðx; yÞ ¼
X
m

X
n

δðx − m; y − nÞ (2)

denotes sampling on a rectangular grid with unit sampling
intervals and δðx; yÞ is the Dirac delta function. The Fourier
transform of Eq. (1) gives the spatial frequency representa-
tion of the discrete signal s̃k1k2 as defined by:

s̃k1k2ðν;ωÞ ¼ f̂ k1k2ðν;ωÞ � ^jjj
¯

ðν;ωÞ

¼
X
m

X
n

½L̂ðν − m;ω − nÞτ̂k1k2ðν − m;ω − nÞ

× expf−i2π½xk1ðν − mÞ þ yk2ðω − nÞ�g
þ N̂k1k2ðν − m;ω − nÞ�; (3)

where L̂ðν;ωÞ and N̂k1k2ðν;ωÞ are Fourier transforms of the
input scene and the photo-detector noise, respectively,
τ̂k1k2ðν;ωÞ is the spatial frequency response (SFR) of the
image acquisition device, the function

^jjj
¯

ðν;ωÞ ¼
X
m

X
n

δðν − m;ω − nÞ

¼ δðν;ωÞ þ ^jjj
¯ s
ðν − m;ω − nÞ (4)

is the Fourier transform of the sampling function and
^jjj
¯ s
ðν;ωÞ accounts for the sampling sidebands. The asso-

ciated sampling band is defined as:

B̂ ¼
�
ðν;ωÞ; jνj ≤ 1

2
; jωj ≤ 1

2

�
. (5)

The symbol tilde “∼” is used instead of the symbol caret “^”
whenever the corresponding Fourier transformed function is
periodic in the spatial frequency domain. Eq. (3) can be
rewritten as

s̃k1k2ðν;ωÞ ¼ L̂ðν;ωÞτ̂k1k2ðν;ωÞ exp ½−i2πðxk1νþ yk2ωÞ�
þ N̂aðν;ωÞ þ Ñk1k2ðν;ωÞ; (6)

where

N̂aðν;ωÞ ¼
X
m≠0

X
n≠0

L̂ðν − m;ω − nÞτ̂k1k2ðν − m;ω − nÞ

× exp−i2π½xk1ðν − mÞ þ yk2ðω − nÞ� (7)

are the aliased components that insufficient sampling folds
back into the sampling passband and Ñk1k2ðν;ωÞ is Fourier
transform of the photo-detector noise. The Fourier compo-
nents of the wide-sense stationary random fields L̂ðν;ωÞ
and N̂k1k2ðν;ωÞ and the co-aliased components of the
sampled scene are uncorrelated. These uncorrelated inter-
relationships can be expressed as

EfL̂ðν − m;ω − nÞL̂�ðν − m 0;ω − n 0Þg
¼ Φ̂Lðν − m;ω − nÞδðm − m 0; n − n 0Þ; (8)

EfN̂k1k2ðν − m;ω − nÞN̂�
k1k2ðν − m 0;ω − n 0Þg

¼ Φ̂Nk1k2
ðν − m;ω − nÞδðm − m 0; n − 0Þ; (9)

EfN̂k1k2ðν − m;ω − nÞN̂�
l1l2ðν − m 0;ω − n 0Þg ¼ 0; (10)

EfL̂ðν − m;ω − nÞN̂�
k1k2ðν − m 0;ω − n 0Þg ¼ 0. (11)

The power spectral density (PSD) of the acquired digital
image sk1k2ðx; yÞ is defined by:

Φ̃sk1k2
ðν;ωÞ ¼ Efjs̃k1k2ðν;ωÞj2g. (12)

Using Eq. (8) through Eq. (11), the PSD of the degraded
image can be expressed as

Φ̃sk1k2
ðν;ωÞ ¼ ½Φ̂Lðν;ωÞjτ̂ðν;ωÞj2 þ Φ̂Nk1k2

ðν;ωÞ� � ^jjj
¯

ðν;ωÞ;

(13)

where Φ̂L is the PSD of the input scene and Φ̂Nk1k2
is the PSD

of the noise associated with the k1k2th LR frame.

3 Optimal HR Grid Allocation
In our recent work,30 the pixels of LR images are optimally
allocated to a uniform HR grid using an approach called
minimum square distance allocation (MSDA).
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3.1 Minimum Square Distance Allocation

If the HR grid consists of M1 ×M2 blocks, and every block
contains K1 × K2 scenels, then the predetermined uniform
HR grid subpixel shifts are 1

K1
and 1

K1
in the x and y directions,

respectively, which constitutes a uniform pattern or raster.
Unlike the uniform pattern, the subpixel shifts of the regis-
tered LR frames form a completely random structure.
Consider

g ¼
�
ð0; 0Þ;

�
0;

1

K2

�
; · · · ;

�
K1 − 1

K1

;
K2 − 1

K2

��
(14)

is the set of the predetermined subpixel shifts and

f ¼ fðx0; y0Þ; ðx0; y1Þ; · · · ; ðxK1−1; yK2−1Þg (15)

is the set of estimated subpixel shifts of the registered LR
frames. It is required then to find the optimum mapping
or transformation T∶f → g that converts the non-uniform
subpixel shifts pattern into a uniform one. The approach
here uses the Minkowski distance as a comparison metric
to optimally and accurately allocate the elements of the
set f to the elements of the set g with minimum distance
between the corresponding points in these sets. If

Pk1k2 ¼
�
k1
k1
; k2k2

�
∈ g and ki ¼ 0; 1; · · · ;Ki − 1 with i ¼ 1

or 2 and Ql1l2 ¼ ðxl1 ; yl2Þ ∈ f and li ¼ 0; 1; · · · ;Ki − 1

with i ¼ 1 or 2 then the Minkowski distance of order p
between Pk1k2 and Ql1l2 is given by:31

dðPk1k2 ;Ql1l2Þ ¼
�				 k1K1

− xl1

				
p
þ
				 k2K2

− yl2

				
p
�

1=p
. (16)

Typically, the order p is usually set to 1 or 2. If we measure the
Euclidean distance, we set p ¼ 2 and to measure the Manhat-
tan distance, we set p ¼ 1. For simplicity and computational
complexity purposes we use the Manhattan distance. Assume
the HR grid is now empty, and we want to fill in the required
locations, so we calculate the Manhattan distance between all
the points in the set f and only one point in the set g and the
point with the minimum distance should be set to this location
in the HR grid. In other words, for a given point Pk1k2 ∈ g, the
optimum and most close point to it in f is given by:

arg min fdðPk1k2 ;Ql1l2Þgli¼ki−1
li¼0 . (17)

The search for the nearest location should be done in a zigzag
scan to avoid misplacing the elements of the set f to the correct
locations of the HR grid. If the total number of LR frames is L,
then the total number of searches required to allocate all the
LR frames to the HR grid is Li.

3.2 Subpixel Shift Adjustments

Once the locations of the LR scenels to the HR grid have
been determined using the MSDA method, the phase shifts
of the interlaced LR frames should be spatially shifted using
discrete Fourier transform shift theorem so that the interlaced
LR scenels will have uniform phase-shift differences
between them. If k1k2th LR image is sk1k2ðx − xk1 ; y − yk2Þ
where xk1 and yk2 are the estimated subpixel shifts in the
x and y directions, then its representation in the spatial fre-
quency domain f̃ k1k2ðν;ωÞ is given by:30

f̃ k1k2ðν;ωÞ ¼ s̃k1k2ðν;ωÞe−i2πðxk1νþyk2ωÞ. (18)

Also, if the determined HR grid locations are ðdk1 ; dk2Þ then
the subpixel shift adjustment can be performed in the spatial
frequency domain by readjusting the phase of the LR image
f̃ k1k2ðν;ωÞ as given by:

g̃k1k2ðν;ωÞ ¼ f̃ k1k2ðν;ωÞei2π½ðxk1−dk1 Þνþðyk2−dk2 Þω�. (19)

3.3 HR Grid Interlacing

After the phase shifts of the individual LR images have been
corrected, the reconstruction of the output image is per-
formed by interlacing the pixels of the acquired images
into a HR grid with a sampling density equals K1K2

times the sampling density of the individual LR images.
Thus the composite HR image S is given by:

SðK1m1 þ k1;K2m2 þ k2Þ ¼ sk1k2ðm1;m2Þ; (20)

and its Fourier transform is give by:

S̃ðν;ωÞ ¼ 1

K1M1K2M2

XK1M1−1

m1¼0

XK2M2−1

m2¼0

Sðm1;m2Þ

× exp

�
−i2π

�
νm1

K1M1

þ ωm2

K2M2

��
. (21)

The above equation can be rewritten and simplified as

S̃ðν;ωÞ ¼ 1

K1K2

XK1−1

k1¼0

XK2−1

k2¼0

1

M1M2

×
XM2−1

m2¼0

XM2−1

m2¼0

SðK1m1 þ m1;K2m2 þ m2Þ

× exp

�
−i2πν

�
K1m1 þ k1
K1M1

��

× exp

�
−i2πω

�
K2m2 þ k2
K2M2

��
. (22)

Rearranging the summation terms

S̃ðν;ωÞ ¼ 1

K1K2

XK1−1

k1¼0

XK2−1

k2¼0

1

M1M2

XM2−1

m2¼0

XM2−1

m2¼0

sk1k2ðm1;m2Þ

× exp

�
−i2πν

�
K1m1 þ k1
K1M1

��

× exp

�
−i2πω

�
K2m2 þ k2
K2M2

��

¼ 1

K1K2

XK1−1

k1¼0

XK2−1

k2¼0

�
1

M1M2

XM1−1

m1¼0

XM2−1

m2

sk1k2ðm1;m2Þ

× exp

�
−i2π

�
νm1

M1

þ ωm2

M2

���

× exp

�
−i2π

�
νk1

K1M1

þ ωk2
K2M2

��
. (23)

Recall that the discrete Fourier transform of the degraded
image s̃k1k2 is given by
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s̃k1k2ðν;ωÞ ¼
1

M1M2

XM1−1

m1¼0

XM2−1

m2¼0

sk1k2ðm1;m2Þ

× exp

�
−i2π

�
νm1

M1

þ ωm2

M2

��
. (24)

So, by substituting Eq. (24) into Eq. (23), the Fourier trans-
form of the reconstructed image S̃ðν;ωÞ can be expressed as

S̃ðν;ωÞ ¼ 1

K1K2

XK1−1

k1¼0

XK2−1

k2¼0

s̃k1k2ðν;ωÞ

× exp

�
−i2π

�
νk1

M1K1

þ ωk1
M2K2

��
. (25)

If xk1 and yk2 are the subpixel shifts in the x and y directions
respectively and ðν 0;ω 0Þ is the normalized frequency pair
then the last equation can be written as

S̃ðν 0;ω 0Þ ¼ 1

K1K2

XK1−1

k1¼0

XK2−1

k2¼0

s̃k1k2ðν 0;ω 0Þ

× exp
h
−i2πðν 0xk1 þ ω 0yk2Þ

i
. (26)

Thus, the reconstructed image in the frequency domain is the
sum of the phase-shifted Fourier transform of the individual
scans.32

4 Derived Stochastic Wiener Restoration Filter
In this section, we derive the stochastic Wiener filter con-
strained by the periodic and nonperiodic interrelationships
between the different frequency components of the proposed

SR system. It can be used as reconstruction filter as well as a
restoration filter to recover images from the degradations that
are introduced during image acquisition and image display. If
the number of LR frames is K1Ks, which is sufficient to pro-
duce full SR along the horizontal and vertical dimensions of
the reconstructed images, then the derived filter works only
as a restoration filter. On the other hand, if the available num-
ber of LR images is less than K1K2, then the filter works as a
restoration and a reconstruction filter to estimate missing
pixels on the dense HR grid. In spatial domain, the observed
image Roðx; yÞ is reconstructed through the spatial convolu-
tion of the Weiner filter Ψðx; yÞ, the spatial response of the
image-display device τdðx; yÞ and the interlaced image
Sðx; yÞ as given by

Roðx; yÞ ¼ Sðx; yÞ � Ψðx; yÞ � τdðx; yÞ. (27)

The spatial frequency representation of this equation is given
by

R̂oðν;ωÞ ¼ S̃ðν;ωÞΨ̂ðν;ωÞτ̂dðν;ωÞ. (28)

By substituting Eqs. (6) and (26) into Eq. (28), the output
image R̂o can be decomposed into three components as
defined by

R̂oðν;ωÞ ¼ R̂f ðν;ωÞ þ R̂aðν;ωÞ þ R̂nðν;ωÞ; (29)

where R̂f is the filtered component that accounts for the low-
pass filtering of the image gathering, image display devices,
and the restoration filter and it is given by

R̂f ðν;ωÞ ¼
1

K1K2

X
k1k2

L̂ðν;ωÞτ̂k1k2ðν;ωÞ

× exp
h
−i4πðνxk1 þ ωyk2Þ

i
τ̂dðν;ωÞΨ̂ðν;ωÞ; (30)

where R̂nðν;ωÞ is the noise component that accounts for the
additive white noise and is given by

R̂nðν;ωÞ ¼
1

K1K2

X
k1k2

Ñk1k2ðν;ωÞ exp
h
−i4πðνxk1 þ ωyk2Þ

i

× τ̂dðν;ωÞΨ̂ðν;ωÞ; (31)

and R̂aðν;ωÞ is the aliasing component that accounts for the
frequency folding due to sampling beyond the Nyquist rate,
and it is given by

R̂aðν;ωÞ ¼
1

K1K2

X
k1k2

N̂aðν;ωÞ exp
h
−i4πðνxk1 þ ωyk2Þ

i

× τ̂dðν;ωÞΨ̂ðν;ωÞ; (32)

where N̂aðν;ωÞ is defined in Eq. (7). The Wiener filter mini-
mizes the mean-square restoration error (MSRE) e2 between
the input scene Lðx; yÞ and the output image Roðx; yÞ, as
defined by29

Fig. 2 Different full-SR reconstructed images (σ ¼ 0.7 and
SNR ¼ 32).
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e2 ¼ E

�ZZ
jLðx; yÞ − Roðx; yÞj2dxdy

�

¼ E

�ZZ
jL̂ðν;ωÞ − S̃ðν;ωÞΨ̂ðν;ωÞτ̂dðν;ωÞj2dνdω

�
.

(33)

Using Eq. (8) through Eq. (11), the optimal Weiner filter that
minimizes the MSRE is given by:

Ψ̂ðν;ωÞ ¼ Φ̂LS� ðν;ωÞτ̂�dðν;ωÞ
Φ̃Sðν;ωÞjτ̂dðν;ωÞj2

; (34)

where Φ̂LS� ðν;ωÞ is the cross power-spectrum between the
input scene, and the reconstructed image and Φ̃Sðν;ωÞ is
the power spectrum density of the reconstructed image. If
the photo-detector noise is modeled as wide-sense stationary
discrete random process, then Weiner filter can be expressed
as a function of the SNR σL=σN as given by

Ψ̂ðν;ωÞ ¼
K1K2Φ̂

0
Lðν;ωÞ

P
k1k2

τ̂�k1k2ðν;ωÞτ̂�dðν;ωÞ exp ½i4πðνxk1 þ ωyk2Þ�=jτ̂dðν;ωÞj2

Φ̂ 0
Lðν;ωÞ � ^jjj

¯

ðν;ωÞP
mn

			Pk1k2 jτ̂�k1k2ðν 0;ω 0Þj2 exp ½−i2πðν 0xk1 þ ω 0yk2Þ�
			2 þ P

k1k2

ðσL=σNk1k2
Þ−2

; (35)

where σL and σN are the variance of the input scene and the
noise respectively, Φ̂ 0

Lðν;ωÞ ¼ σ−2L Φ̂Lðν;ωÞ, ν 0 ¼ 2ν − m
and ω 0 ¼ 2ω − n. It can be seen that Wiener filter is a
function of the different components of the CDC system,
the subpixel shifts of the individual LR frames and the
system SNR.

5 Simulations and Results
We started with a HR image to simulate the continuous input
scene, and then we lower its quality to simulate the degrada-
tions that are encountered during the image acquisition pro-
cess such as blurring, aliasing, and noise. Also, during our

simulations we consider two different cases: (1) LR images
are sufficient to reconstruct a full-SR image in the vertical
and horizontal dimensions and (2) LR images are insufficient
to reconstruct partial-SR image. We compare the performance
of our method with some of the well known SR reconstruc-
tion approaches in terms of fidelity, visual quality assessment,
and the computational time. These techniques are nonuniform
interpolation, Papoulis-Gerchberg,33 iterated back projec-
tion,24 roubust SR,34 POCS,21 and structure-adaptive normal-
ized convolution.35 All of these algorithms were developed
at the Laboratory of Audiovisual Communications (LCAV),
Ecole Polytechnique Federale de Lausanne (EPFL),
Switzerland.36

Fig. 3 Fidelity comparison for different full-SR reconstructed images.
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5.1 Simulated Images

Consider a 256 × 256 simulated random polygon image. The
boundaries of the random polygon image are distributed
according to Poisson probability with a mean separation μ
and whose input scene magnitudes are distributed according
to independent zero-mean Gaussian statistics of variance σ2L.
The mean separation μ is measured relative to the sampling

interval of the image-gathering device and treated as the
mean spatial detail of the scene.8 In our simulations, the ran-
dom polygon has mean spatial detail of 3. The random poly-
gon image is blurred by a Gaussian lowpass filter defined by

τ̂ðν;ωÞ ¼ exp

�
−
ν2 þ ω2

σ2

�
; (36)

where σ is the optical-response index for which
τ̂ðν;ωÞ ≈ 0.37. This Gaussian filter approximates the SFR
of the image-gathering device. Schade37 and Schreiber38 con-
cluded that the image-gathering device with a SFR τ̂ðν;ωÞ
characterized by σ ¼ 0.8 provides generally the most
favorable trade-off between sharpness and aliasing artifacts
without the aid of digital processing. Awhite noise is super-
imposed to the image with a given SNR defined by:

SNR ¼ 10 log10

�
σ2L
σ2L

�
; (37)

where σ2L is the variance of the image scene, and σ2N is the
variance of the white noise. The derivation of the Weiner
restoration filter depends on the estimation of the input
scene PSD Φ̂L. Itakura et al.39 have shown that the PSD
of natural scenes can be approximated by:

Φ̂Lðν;ωÞ ¼
2πμ2σ2L

½1þ ð2πμρÞ2�3=2 ; (38)

where ρ2 ¼ ν2 þ ω2 and μ is the scene mean spatial detail.

5.1.1 Case 1: Full-SR

In this case the blurred and noisy image is sampled at half-
pixel location resulting in four images of dimensions

Fig. 5 Fidelity comparison for different partial-SR reconstructed images.

Fig. 4 Different partial-SR reconstructed images (σ ¼ 0.7 and
SNR ¼ 32).
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128 × 128. These images are used to reconstruct the SR
images using the derived Wiener filter in addition to the
other mentioned SR reconstruction algorithms. Figure 2
shows the reconstructed SR images using different SR
approaches for σ ¼ 0.7 and SNR ¼ 32. It can be seen that
all of them is better that the LR image given in Fig. 2(b).
Also, the Wiener reconstructed SR image is very close
the original HR image and is much better than the other
reconstructed images. In addition, to compare the visual
quality of the reconstructed images, we examine the fidelity
between the different reconstructed images and the original
simulated scene against either the optical response with a
fixed SNR ¼ 32 or SNR with a fixed σ ¼ 1. The results
can be seen in Figs. 3(a) and 3(b). The fidelity of the Wiener
reconstructed images is greater than the fidelities of the other
reconstructed images. Also, the fidelity is improved when the
optical response index is increased. This is because when the
optical index is decreasing, the reconstructed image will lose
some of its high-frequency content, which will be reflected
on its visual quality and its fidelity.

5.1.2 Case 2: Partial-SR

Here the blurred and noisy image is sampled at quarter-pixel
location resulting in 16 images of dimensions 64 × 64. We
select four of them to reconstruct the SR images using the
same procedure described in the first case. Figure 4 shows
the reconstructed SR images using different SR approaches
for σ ¼ 0.7 and SNR ¼ 32. It can be seen that all the recon-
structed SR images are blurrier than the full-SR reconstructed
images due to the interpolation and reconstruction processes.
Also, all the reconstructed images are better than the LR
image given in Fig. 4(b). The Wiener reconstructed SR
image is close the original HR image and is much better
than the other reconstructed images. Figures 5(a) and 5(b)
show a fidelity comparison between different SR recon-
structed images when changing either the SNR and keep σ
at 0.7 or changing σ and keep SNR at 32. Similarly, the fidelity
of the Wiener reconstructed image is greater than the fidelities
of the other reconstructed images, and it is improved when the
optical response index is increased.

5.2 Real Images

SR reconstructions in real applications have many challen-
ging problems. It is crucial to accurately estimate the sub-
pixel shifts of LR images as they have a great impact on
the reconstruction of SR images. Also, estimating the optical
blur caused by system optics and the noise caused by photo-
detectors greatly affect the restoration process, which in turn
affects the visual quality of the reconstructed and restored
images. Throughout our work we assume that the blur
and noise are already known, and we are concerned with

Fig. 6 Different captured checkerboard images.

Table 2 Adjusted subpixel shifts.

Image New subpixel shift

Reference image (0.5, 0.5)

Image 1 (0.5, 0)

Image 2 (0, 0.5)

Image 3 (0, 0)

Table 1 Estimated subpixel shifts.

Subpixel shifts

x -direction y -direction

Image 1 −0.01 −0.06

Image 2 −0.03 −0.03

Image 3 −0.04 −0.03

Fig. 7 Different full-SR reconstructed checkerboard images (σ ¼ 0.8
and SNR ¼ 128).

Yousef, Li, and Karim: Mathematical model development of super-resolution image : : :

Optical Engineering 037007-8 March 2012/Vol. 51(3)

Downloaded from SPIE Digital Library on 06 Apr 2012 to 128.82.38.202. Terms of Use:  http://spiedl.org/terms

(a) Reference image (b) Image I 

(c) Image 2 (d) Image 2 

(a) H image (b) LR image (c) Stochastic Wiener 

{d) Non Uniform interpolation (e) Robust SR (f) POCS 

(g) Adaptive normalized con• (h) Iterative back projection 
volution 



the accurate estimation of the subpixel shifts and their opti-
mal allocation to the HR grid as presented in our recent
work.30 This optimal allocation depends on readjusting
the subpixel shifts of LR images to match a uniformly spaced
pattern using a minimum square approach and Fourier trans-
form shift property. In our experiments, we capture a set of
checkerboard images. By controlling the camera tripod, we
collect a set of images of dimensions 1280 × 1280 that have
slightly different looks of the same scene. Figure 6 shows a
set of these captured images.

Through out the simulations, we neglect the effect of
the camera blur and noise and subsample the acquired

images to 256 × 256, which will be used for the quantitative
assessment of SR reconstruction and restoration. Then degra-
dations are superimposed to the images as we did in the
random polygon images. The images will be subsampled
at quarter and half pixel locations to examine both partial-
SR and full-SR cases, respectively. The degraded images
will be registered with respect to a reference image to a sub-
pixel precision. Table 1 lists the estimated subpixel shifts
between the different images and the reference one, and it
can be seen that they are random and do not follow a uniform
pattern. They will be adjusted and optimally mapped to a
uniform HR grid, which is listed in Table 2. The Wiener filter
is applied to the composed HR grid, and a comparison
between its output and the different SR approaches outputs
is displayed in Figs. 7 and 8 for the full and partial-SR cases,
respectively. Images with full SR have better visual quality
and sharpness than the ones with partial SR. Also, the images
with Wiener restoration are much better than the other tech-
niques in both the cases of full and partial SR. Comparisons
between the fidelity for the different SR reconstruction tech-
niques are listed in Table 3 for full-SR and partial-SR cases.
Images with Wiener restoration have higher fidelity than the
other techniques. In addition, full-SR images have higher
fidelities than partial-SR images.

5.3 Computational Costs

The computational costs of the different SR techniques are
listed in Table 4. The simulations are performed using
MATLAB 7.8 Release 2009a program on OPTIPLEX 780
(IntelðRÞ Core (TM)2 Quad 2.66 GHz CPU, 8.00 GB
RAM, MS Windows 7 Professional 2009). The performance
of the different SR techniques in case of partial SR is much
faster than that in case of full SR. Also, Wiener computa-
tional time is much smaller than the other SR techniques.
Most of Wiener computational time is consumed in a prepro-
cessing step (0.355 s in case of partial SR and 0.78 s in case
of full SR), which is considered as the main demerit of this
approach. In a future work, we shall focus on reducing this
computational time by working on smaller blocks of the

Fig. 8 Different partial-SR reconstructed checkerboard images
(σ ¼ 0.8 and SNR ¼ 128).

Table 3 Fidelity comparison for different reconstructed SR images.

SR
Techniques

Stochastic
Wiener

Non-uniform
interpolation

Robust
SR POCS

Adaptive
normalized
convolution

Iterative
back

projection

Full-SR 0.984 0.953 0.963 0.956 0.96 0.964

Partial-SR 0.927 0.852 0.896 0.875 0.623 0.898

Table 4 Computational time for full-SR reconstructed SR images.

SR Techniques
Stochastic
Wiener

Non-uniform
interpolation

Robust
SR POCS

Adaptive
normalized
convolution

Iterative back
projection

Full-SR 0.92 2.839 36.56 13.665 11.716 13.713

Partial-SR 0.434 0.96 35.319 12.616 7.176 5.756
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reconstructed image, and hence the required time for prepar-
ing the Wiener filter is reduced.

6 Conclusions and Future Work
In this paper, we present a derivation of the stochastic Wiener
filter for the general SR reconstruction problem. Traditional
developments of Wiener filter in the field of image proces-
sing are based on the assumption that the image gathering
device is constrained solely by blurring and noise, and
those developments fail to account for the insufficient sam-
pling that results in aliasing presented in the acquired
images. While others extended this filter for microscanning
reconstruction, where subpixel shifts between acquired
images are known and constitute a uniform grid, our deriva-
tion is based on a CDC system model that represents most of
the degradations encountered during the acquisition-display
processes. We generalize the derivation for the general SR
problem by readjusting subpixel shifts of individual frames
and optimally allocate their pixels to the HR grid. Wiener SR
reconstructed images have a pleasant, sharp visual quality
with a maximum obtainable fidelity. The reconstructed
images are preferable to the other SR reconstructed images
using different SR approaches. It is possible to improve the
visual quality of the reconstructed images depending on the
availability of sufficient LR frames. Simulation results show
that images with full-SR are both better and sharper than the
ones with partial-SR. Although the stochastic Wiener
approach outperforms the other approaches, its computa-
tional complexity is still high and needs to be reduced
without sacrificing the maximum obtainable fidelity and
the pleasant visual quality of the reconstructed images,
which is our future work.

A part of this work was presented in SPIE Optics and
Photonics40 conference.
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