
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Physics Faculty Publications Physics 

10-2019 

Nuclear Theory and Event Generators for Charge-Changing Nuclear Theory and Event Generators for Charge-Changing 

Neutrino Reactions Neutrino Reactions 

J. W. Van Orden 

T. W. Donnelly 

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs 

 Part of the Nuclear Commons 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/physics_fac_pubs
https://digitalcommons.odu.edu/physics
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


PHYSICAL REVIEW C 100, 044620 (2019)

Nuclear theory and event generators for charge-changing neutrino reactions

J. W. Van Orden
Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
and Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

T. W. Donnelly
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 5 August 2019; published 31 October 2019)

Semi-inclusive CCν cross sections based on factorized cross sections are studied for a selection of spectral
function models with the objective of facilitating the choice of models for use as input into event generators.
The basic formalism for such cross sections is presented along with an introduction to constructing spectral
functions for simple models based on the independent-particle shell model, the relativistic Fermi gas model
(RFG), and a local density approximation (LDA) based on the RFG. Spectral functions for these models are
shown for 16O along with a more sophisticated model which includes nucleon-nucleon interactions [Alvarez-
Ruso et al., Prog. Part. Nucl. Phys. 100, 1 (2018)]. Inclusive and semi-inclusive cross sections are calculated
for these models. Although the inclusive cross sections are all of similar size and shape, the semi-inclusive
cross sections are substantially different depending upon whether the spectral functions contain some features
associated with the nuclear shell model or are based on the RFG and LDA models. Calculations of average values
and standard deviations of the initial neutrino energy using the semi-inclusive cross section for the various models
are presented and indicate that there may be simple kinematical descriptions of the average neutrino energy which
is common to all of these models.

DOI: 10.1103/PhysRevC.100.044620

I. INTRODUCTION

Accelerator-based neutrino scattering experiments provide
an important tool for determining parameters of the standard
model and for exploring possible physics beyond the standard
model [1]. Because of the small size of weak interaction
cross sections, obtaining reasonable counting rates for these
experiments requires large amounts of target material. As a
result, most experiments rely on readily available materials,
namely those containing water or hydrocarbons and hence hy-
drogen, carbon, or oxygen nuclei. Additionally, some heavier
nuclei, such as argon and iron, are sometimes employed. As
a result analysis of such experiments at high energies requires
some knowledge of nuclear structure and nuclear reactions to
extract the required information on neutrino reactions with
individual nucleons and to determine the incident neutrino
energy of measured events because the neutrino production
mechanism typically results in beams with a very broad flux
distribution, having widths typically measured in GeV.

Given the relatively low counting rates, it is typical for
experiments to bin events to produce either inclusive cross
sections, namely those initiated by an incident neutrino with
only the final-state charged lepton detected, or cross sec-
tions containing all such events except those with detected
pions, denoted CCν and CCν0π reactions, respectively. Nu-
clear theorists who are working to assist in the interpreta-
tion of neutrino reactions in the GeV regime have therefore
tended to concentrate on the calculation of this class of cross

sections. The models employed may contain contributions
from quasielastic (QE) scattering where the neutrino reaction
is assumed to result in the ejection of a single nucleon,
contributions to the scattering from two-body currents and
short-range correlations which can produce two nucleons
in the final state, or in events where mesons are produced
directly through background processes, nucleon resonances,
and by deep inelastic scattering [1]. Work was also done
on studying the effect of production of collective nuclear
resonance states as calculated via the random phase approx-
imation (RPA). Furthermore, as an indication of possible
improvements in treating the nuclear many-body problem, ab
initio calculations—albeit using nonrelativistic dynamics—of
QE CCν scattering from carbon have been performed by
means of large-scale quantum Monte Carlo methods. Such
inclusive reactions involve total hadronic cross sections and
typically are relatively insensitive to the details of the final
nuclear states reached; accordingly somewhat simple models
may yield cross sections that are not very different from
those found in the most sophisticated models. Typically, as
long as the essential aspects of relativistic kinematics and
incorporation at a reasonable level of unitarity (and hence the
sum rules this entails) are taken into account, the inclusive
predictions using dramatically different models are somewhat
similar and which agree to about 10%–20% [1].

A phenomenological scaling approach to predicting the
inclusive CCν cross sections was also pursued. This relies on
the fact that semileptonic electroweak processes are closely
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FIG. 1. A schematic representation of a typical event generator.
The scattering event contained within the dashed box represents the
initial semi-inclusive cross section. The ellipse represents the method
used by the event generator to propagate the hadrons produced by the
initial nuclear event through the residual nucleus.

related and hence that a set of scaling functions can be
determined from analyses of inclusive electron scattering
measurements, which can then be used to incorporate the
basic needed nuclear response in studies of CCν reactions
at comparable energies. The most elaborated version of such
scaling approaches is the so-called SuSAv2+MEC model [2]
which was shown to represent the electroweak inclusive cross
sections over a wide range of energies, excluding very near
threshold where the approach is not designed to be applicable.

In contrast to the theoretical issues summarized above for
inclusive (total hadronic) cross sections, modern experimental
studies of CCν reactions rely on the use of data simulations
to determine the behavior of the detectors involved and to
provide predictions for the measured data. The initial part
of the simulation process involves an event generator [1,3]
to provide predictions of events covering the available phase
space that can be used as input to programs that model the
characteristics of the specific detectors. A schematic repre-
sentation of a typical event generator is shown in Fig. 1.
The event generator proceeds in the following manner. One
starts by computing the cross section for CCν scattering from
a nucleon in the target nucleus using some model for the
primary electroweak process. To date this typically means
employing some simple model that was used to describe the
inclusive reaction. The nucleon and other possible hadrons
produced by this event are then propagated through the rest
of the nucleus by means of a cascade model or other statis-
tical approximation to produce the final distribution of these
hadrons. This somewhat crude approach is necessitated by the
fact that reliable, consistent calculations of all of the possible
final-state channels are beyond the current capabilities of
nuclear theory. Even if such calculations were possible, the
computer time necessary to perform them would preclude
the production of the large number of events needed for an
effective simulation of data.

Given the crudeness of this approach being employed in
typical event generators one should not expect more than
somewhat integrated quantities such as the inclusive cross
section to be reliably simulated. In recent studies, however, it
has become common to employ events in which not only the
final-state charged lepton is detected, but also some hadron as
well. This is motivated by the above rationale together with
the desire to constrain the kinematics and thereby to constrain
the incident neutrino energy better than can be accomplished
by detecting only the final-state charged lepton. However,
even in a next-most-complicated situation where a proton is
detected in coincidence with a final-state electron or muon,
the primary reaction indicated in Fig. 1 is not an inclusive one,
but is now a semi-inclusive reaction [4]. This is the analog of
going from inclusive (e, e′) reactions to semi-inclusive (e, e′ p)
reactions. For example, studies involving muon detection
together with liquid argon time projection chambers (TPC) to
detect ejected protons yield this specific event class.

Unfortunately, such a desire on the experimental side also
necessitates that on the theoretical side one now must confront
the much more complicated semi-inclusive reaction. Model-
ing of semi-inclusive electron scattering was undertaken for
several decades and from that experience one knows how
much more difficult the problem becomes when any aspect
of the final nuclear states reached in the reaction is required.
On the one hand, were the energies typically involved in
large-scale neutrino oscillation studies much lower, then the
relatively small number of exclusive final states reached might
prove to be tractable in future modeling. Indeed, the low-
energy beam stop neutrino facilities do have this advantage.
On the other hand, were the relevant energies much higher,
then the typical high-energy physics approach of factorizing
the problem into “soft” physics convoluted with “hard” per-
turbative physics might be motivated. Unfortunately, this is
not the case: The typical energy regime used for practical
neutrino oscillation studies is a few GeV where the problem
is not simple for either reason.

Accordingly, the primary process in Fig. 1 should typically
be a CCν reaction on a neutron in the target nucleus yielding
a muon and proton in the final state, (perhaps) followed by
propagation of the proton through the nucleus until it emerges
and is detected (for instance, in an argon TPC). This primary
process is not an inclusive one, but is semi-inclusive, and
involves not the total hadronic cross section, but the specific
asymptotic state that defines the event. Said another way,
one should not expect the primary reaction to produce an
intermediate state that then arranges itself into the event class
of interest solely via propagation in the nucleus: Indeed, the
semi-inclusive reaction typically requires the quantum me-
chanical overlap of the many-body ground state of the nucleus
and a nontrivial final nuclear state of the required current
operators. This cross section depends on the measurement of
five independent quantities in the final state: the magnitude of
the momenta of nucleon pN and the muon k′, the angle of the
muon three-momentum relative to the direction of the neutrino
beam, the polar angle of the nucleon three-momentum relative
to the beam direction θL

N , and the azimuthal angle of the
nucleon three-momentum relative to the plane containing the
beam direction and the muon three-momentum.
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Thus it is clear that the structure of the event generator
requires the calculation of semi-inclusive cross sections rather
than the inclusive cross sections that have been the focus of
most theoretical activity. In general, these cross sections may
contain not only a single nucleon but also additional hadrons
that can be produced directly by the neutrino scattering,
something that is presently beyond the scope of high-energy
nuclear theory. Accordingly, the separation of the production
of multiple hadrons in the primary interaction and those asso-
ciated with the final-state interactions provided by the event
generator is a topic that requires some discussion between
nuclear theorists and the developers of the event generators.

The objective of this paper is to study semi-inclusive CCν

cross sections produced by several of the nuclear models
that have been used to produce single nucleons as input for
quasielastic scattering in various event generators. We will
show that these models yield very similar descriptions of
inclusive QE scattering and yet result in significantly different
results for semi-inclusive scattering, and therefore that much
more care must be taken in determining which models can be
used reliably in this role. Specifically, in Sec. II we summarize
the basic formalism required in treatments of semi-inclusive
neutrino reactions; more details on these developments can
be found in [4] and [2], as well as in two Appendixes in
this paper. This is followed in Sec. III by the introduction of
four specific popular models to represent the needed spectral
function that is defined in Sec. II, namely, in Sec. III A of
the independent-particle shell model, in Sec. III B of the
relativistic Fermi gas model, in Sec. III C of the extension of
the relativistic Fermi gas to the local density approximation,
and in Sec. III D of results obtained using a state-of-the-art
spectral function. In Sec. IV we then employ these modeled
spectral functions to obtain momentum density distributions
(Sec. IV B), inclusive CCν cross sections (Sec. IV C), and
semi-inclusive results (Sec. IV D). In Sec. IV E we examine
the possible extraction of the incident neutrino energy from
semi-inclusive cross sections. Finally, in Sec. V we state our
conclusions and summarize what was learned from this study.

II. CCν CROSS SECTIONS USING SPECTRAL FUNCTIONS

From the previous discussion, it is clear that the event gen-
erators require at least semi-inclusive scattering cross sections
in a factorizable form that separates the primary reaction cross
section in which the weak interaction on a single nucleon in
the nucleus produces a nucleon with the required energy and
momentum from the quantity that arises from modeling the
nuclear many-body problem and that captures the probability
that the event occurs, namely, the so-called spectral function
defined below. In the crudest version of such an approach one
might first ignore the final-state interactions of the produced
nucleon and thus invoke the so-called plane-wave impulse
approximation (PWIA). We restrict our attention to this par-
ticular version in the present work. Of course, one can go
beyond this and perhaps incorporate final-state interactions vis
the so-called distorted-wave impulse approximation (DWIA)
or perhaps employ the statistical ideas being used in current
event generators. However, our goal is not to develop the
“best” semi-inclusive model at present, but rather to explore

the consequences of using various models for the nuclear
physics involved to see how similar or different the results
can be for inclusive versus semi-inclusive reactions even at
the level of the PWIA. Accordingly, the natural representation
of such a cross section relies on the calculation of the nuclear
spectral function that describes the probability finding a nu-
cleon in a nucleus with given momentum (called the missing
momentum pm) and with a given excitation energy of the
residual nuclear system (called the missing energy Em). The
spectral function S(pm, Em) is defined such that

S(pm, Em)�+(p) =
∑

s

〈ψA(PA) |Pμ, s; ψA−1(PA−1)〉

× 〈Pμ, s; ψA−1(PA−1) |ψA(PA)〉, (1)

where ψA(PA) and ψA−1(PA−1) represent the wave function
of the target nucleus A-body nucleus and of the residual
(A-1)-body nucleus, respectively. The four-momentum Pμ is
that of the nucleon that will absorb the W boson and the sum is
over its spin. The positive-energy projection operator �+(p)
is necessary to construct the relativistic single-nucleon CCν

cross section. The spectral function is normalized such that

n(pm) =
∫ ∞

0
dEm S(pm, Em), (2)

where n(pm) is the nuclear momentum density distribution for
which we use the normalization,

N = 1

(2π )3

∫ ∞

0
d pm p2

mn(pm). (3)

Here, N is the number of nucleons that are active in the
scattering. For the case of CCν reactions (CCν̄) this is the
number of neutrons (protons) in the nucleus; unless specified
otherwise we shall assume the former in the rest of the
discussions.

The amplitude for the semi-inclusive cross section in this
separable approximation is represented by the Feynman di-
agram in Fig. 2. Because the CCν scattering will involve
large momenta, it is necessary that the kinematics be treated
relativistically. The initial neutrino four-momentum is given

q

P

P

p

p

N

A-1

A
k

k'

FIG. 2. Feynman diagram representing the factorizable CCν

cross sections.
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by

Kμ = (ε, k), (4)

where

ε =
√

k2 + m2, (5)

and the final-state muon four-momentum by

K ′μ = (ε′, k′), (6)

where

ε′ =
√

k′2 + m′2, (7)

with the neutrino and muon masses being m and m′. The four-
momentum of the target nucleus in its rest frame is

Pμ
A = (MA, 0), (8)

with ground-state rest mass MA, the laboratory frame (L) four-
momentum of the proton in the final state is

Pμ
N = (√

p2
N + m2

N , pL
N

)
, (9)

and the four-momentum of the residual nucleus is

Pμ
A−1 = (√

p2
m + W 2

A−1, pm

)
. (10)

Here WA−1 is the invariant mass of the residual nucleus which
is not in general in its ground state. The four-momentum of
the struck nucleon is

Pμ = Pμ
A − Pμ

A−1. (11)

The cross sections are represented by kinematical variables
defined relative to the laboratory frame coordinate system
shown in Fig. 3. The three-momenta defined in this frame are

k = kez,

k′ = k′(sin θlex + cos θlez ),

pL
N = pN

(
cos φL

N sin θL
N ex + sin φL

N sin θL
N ey + cos θL

N ez
)
.

(12)

FIG. 3. Kinematic variables in the laboratory frame where the
beam direction is chosen as the z axis.

Using these definitions the semi-inclusive cross section in
the factorization approximation is given by

dσ

dk′d
k′d pN d
L
N

= G2
F cos2 θcmN k′2 p2

N

8(2π )6ε′EN

∫ ∞

0
dE

∫ ∞

0
dk

P(k)

k

×
∫

d3 pmv0F̃2
χS(pm, Em(E ))δ

(
k − k′ − pL

N − pm

)
× δ

(
MA + ε − ε′ − EN −

√
p2

m + M2
A−1 − E)

, (13)

where the integrations over E and k are summations over
the possible states of the residual nucleus and the possible
values of the initial neutrino momentum that can contribute
to the measured muon and nucleon momenta. The mass of the
ground state of the residual nucleus is given by MA−1. The
variable E is difference in recoil energies for residual nucleus
with invariant mass WA−1 and that for a residual nucleus with
minimum invariant mass MA−1 and is defined as

E =
√

p2
m + W 2

A−1 −
√

p2
m + M2

A−1. (14)

F̃2
χ is a reduced single nucleon cross section and v0 is a

kinematic factor. For completeness these are defined in the
Appendix. The function P(k) is a flux factor that repre-
sents the weighting of the contributions of possible neu-
trino momenta associated with the momentum profile of the
neutrino beam arbitrarily normalized to 1. The separation
energy Es = MA−1 + mN − MA is the minimum energy nec-
essary to remove a nucleon from the nucleus. This implies
that MA = MA−1 + mN − Es and accordingly the energy-
conserving delta function can then be written as

D=δ
(
ε−ε′−EN+mN−

√
p2

m+M2
A−1+MA−1−E − Es

)
, (15)

namely, that the missing energy is the difference between the
energy of the initial A-body nucleus plus the energy transfer
from the lepton scattering and the energy of the detected
proton. It can then be identified as

Em = E + Es +
√

p2
m + M2

A−1 − MA−1. (16)

Note that
√

p2
m + M2

A−1 − MA−1 is the recoil kinetic energy of
the ground state of the A − 1 system. Because pm is limited
by the rapid fall of the spectral function in this variable,
for all but the lightest nuclei pm � MA−1 and therefore, for
detectable CCν cross sections,

√
p2

m + M2
A−1 − MA−1

∼= 0. A
further simplification can be obtained by assuming that the
incident neutrino is massless so that ε = k. With these approx-
imations, the delta function in Eq. (13) becomes

D ∼= δ(k − ε′ − Es − EN + mN − E ), (17)

and Em
∼= E + Es. The semi-inclusive cross section can then

be written as

dσ

dk′d
k′d pN d
L
N

= G2
F cos2 θcmN k′2 p2

N

8(2π )6ε′EN

×
∫ ∞

0
dE P(k0)

k0
v0F̃2

χS(pm, Es + E ). (18)
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The neutrino momentum is given by

k0 = ε′ + Es + EN − mN + E, (19)

and the missing momentum is given by

pm = [
k2

0 + k′2 + p2
N − 2k0k′ cos θl − 2k0 pN cos θL

N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

)] 1
2 . (20)

The corresponding inclusive cross section can be obtained
by integrating Eq. (13) over pL

N to give

dσ

dk′d
k′
= G2

F cos2 θcmN k′2

8(2π )5ε′

∫ ∞

0
dk

P(k)

qk

∫ ∞

0
dE

×
∫ ∞

0
d pm pmv0F̃2

χS(pm, Es + E )

× θ (p+
m − pm)θ (pm − p−

m ), (21)

where

p+
m =

√
(ω − Es − E )(ω − Es − E + 2mN ) + q, (22)

and

p−
m = |

√
(ω − Es − E )(ω − Es − E + 2mN ) − q|. (23)

The energy transfer is ω = k − ε′.

III. SIMPLE MODELS OF THE SPECTRAL FUNCTION

We can now use Eqs. (18) and (21) to calculate cross sec-
tions resulting from the use of simple models by identifying
the spectral functions for these models.

A. Spectral function for the independent-particle shell model

Perhaps the simplest model is the independent-particle
shell model (IPSM), which consists of nucleons occupying
discrete energy levels in a spherically symmetrical potential.
The scattering process for this model is represented schemati-
cally by Fig. 4. On the left is a representation of the interaction
of a boson with a nucleon in a shell with energy −Enl j , labeled
with the usual quantum numbers nl j. The energy and momen-
tum transferred to this nucleon results in producing an on-shell
nucleon with relativistic kinetic energy

√
p2

N + m2
N − mN and

leaving a hole in the residual nucleus. Energy conservation is
then given by the delta function,

δ
(
k − ε′ − Enl j −

√
p2

N + m2
N + mN

)
. (24)

Comparing this with Eq. (17) allows the identification of
E = Enl j − Es. Using the normalization conditions for the
spectral function, the spectral function can the be identified
as

SSM (pm, Es + E ) =
∑
n,l, j

(2 j + 1)nnl j (pm)δ(E + Es − Enl j ),

(25)
where nnl j (pm) is the momentum distribution of a single
nucleon in the nl j shell and the factor 2 j + 1 gives the number
of neutrons in that shell. This spectral function then consists
of a set of delta functions weighted by the total neutron
momentum distribution for each shell.

Substituting Eq. (25) into Eq. (18) gives the semi-inclusive
cross section,

dσ

dk′d
k′d pN d
L
N

= G2
F cos2 θcmN k′2 p2

N

8(2π )6ε′EN

×
∑
n,l, j

(2 j + 1)
P(k0nl j )

k0nl j
v0F̃2

χnnl j (pm),

(26)

where the neutrino momentum for each subshell is

k0nl j = ε′ + EN − mN + Enl j, (27)

and the corresponding missing momentum is

pm = [
k2

0nl j + k′2 + p2
N − 2k0nl jk

′ cos θl − 2k0nl j pN cos θL
N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

)] 1
2 . (28)

The inclusive cross section is

dσ

dk′d
k′
= G2

F cos2 θcmN k′2

8(2π )5ε′
∑
n,l, j

(2 j + 1)

×
∫ ∞

0
dk

P(k)

qk

∫ ∞

0
d pm pmv0F̃2

χ

FIG. 4. Schematic representation of an electroweak reaction within the independent-particle shell model.
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FIG. 5. Schematic representation of an electroweak reaction within the relativistic Fermi gas model.

× nnl j (pm)δ(E + Es − Enl j )θ

× (p+
m − pm)θ (pm − p−

m ), (29)

where

p+
m = √

(ω − Enl j )(ω − Enl j + 2mN ) + q, (30)

and

p−
m = |√(ω − Enl j )(ω − Enl j + 2mN ) − q|. (31)

B. The relativistic Fermi gas spectral function

The relativistic Fermi gas model (RFG) was the model ini-
tially used in most event generators. It consists in describing
the nucleus as an infinite gas of relativistic nucleons with all
levels occupied up to a Fermi momentum kF and all levels
above that empty. A schematic representation of the scattering
process for this model is shown in Fig. 5. For consistency with
other nuclear models we have chosen to shift the spectrum of
the Fermi gas to negative energies such that we can place to
the top of the Fermi sea at the separation energy −Es. The
left part of this figure shows a boson striking a nucleon in
the Fermi sea with energy

√
p2

m + m2
N −

√
k2

F + m2
N − Es. On

the right the final state with a nucleon with positive kinetic
energy produced leaves a hole in the Fermi sea at the initial
nucleon energy. Energy conservation is then given by the delta
function,

δ
(
k − ε′+

√
p2

m+m2
N −

√
k2

F +m2
N − Es −

√
p2

N+m2
N + mN

)
.

(32)

Comparing this with Eq. (17) allows the identification of E =√
k2

F + m2
N −

√
p2

m + m2
N . Using the normalization conditions

for the spectral function, the spectral function can then be

identified as

SRFG(p, E + Es, kF ) = 3(2π )3N
k3

F

δ
(E −

√
k2

F + m2
N

+
√

p2
m + m2

N

)
θ (kF − pm), (33)

where N is the number of neutrons. The spectral function is
then a constant multiplied by a delta function located along the
curve defined by E =

√
k2

F + m2
N −

√
p2

m + m2
N for pm < kF .

This is in agreement with the derivation of the RFG spectral
function in [5].

Substituting Eq. (33) into Eq. (13) and then integrating over
E with ε = k gives the semi-inclusive cross section,

dσ

dk′d
k′d pN d
L
N

= 3NG2
F cos2 θcm2

N k′2 p2
N

8(2π )3ε′EN k3
F

∫ ∞

0
dk

P(k)

k

×
∫

d3 pm√
p2

m + m2
N

v0F̃2
χδ

(
k − k′ − pL

N + pm

)
× δ

(
k − ε′ − Es − EN − TF +

√
p2

m + m2
N

)
× θ (kF − pm), (34)

where

TF =
√

k2
F + m2

N − mN . (35)

Note that because the nucleons in the Fermi sea have rela-
tivistic on-shell energies, it is necessary to introduce a factor

of
√

p2
m + m2

N

−1
into the integral over pm and that the hole in

the residual nucleus has momentum −pm.

Defining

pB = k′ + pN , (36)

EB = ε′ + Es + TF + EN , (37)

cos θB = k · pB

kpB
. (38)
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FIG. 22. 〈k〉 for the RFG spectral function. The surfaces for 〈k〉 are as described in Fig. 21. �k is identically zero for this case.

nuclear structure information, such as the Rome and IPSM.
Further consideration of this use of the semi-inclusive cross
sections will be covered in a subsequent paper.

V. SUMMARY AND CONCLUSIONS

In summary we have shown the effect of using four differ-
ent descriptions of the spectral functions arising from simple
independent-particle shell-model calculation, the relativistic
Fermi gas, a local density approximation based on the RFG,
and the realistic Rome spectral function constructed using
a combination of experimental information and many-body
theory. While semi-inclusive cross sections the Rome and
IPSM calculations are consistent in shape and distribution,
they differ in size as would be expected from the application
of spectral factors to the shell-model calculation; the two
calculations based on the RFG differ considerably in shape.
In the case of the simple RFG calculation the shape of the
semi-inclusive cross section is a simple shell that is signifi-
cantly different from the other three models. The differences
in shape between the Rome and IPSM-RMF semi-inclusive
cross sections and the two RFG-based models is the result of
including the basic shell-model features that survive in more
sophisticated nuclear many-body calculations.

On the other hand all of these models produce similar
results for the inclusive cross section. The lesson from this
is that inclusive cross sections provide little indication on the
dynamical properties of semi-inclusive cross sections.

The results of Sec. IV E suggest that semi-inclusive cross
section measurements may provide a reliable method for
determining the average value of the incident neutrino energy
based on measurable kinematic variables event by event. Fur-
ther work on this approach will be addressed in a subsequent
paper.

The factorable spectral function approach provides a pos-
sible method of improving the nuclear physics input into
event generators. It has the advantage that the calculations

to produce more accurate spectral functions require only
nonrelativistic many-body theory with the relativity isolated
to relativistic kinematics for the single-nucleon cross section.
It is also possible to use this approach for semi-inclusive
cross sections involving the direct production of mesons or
single-nucleon DIS cross sections. Techniques for extending
this approach to production of two nucleons in the continuum
from two-body currents and short-range correlations are also
being developed [11].

The problems with this approach are associated with the
factorization of the cross section. It is necessary to reach
a reasonable understanding of where the nuclear physics
input should stop and the transport mechanism of the event
generators begin. Ultimately, the success of this venture
depends on the reliability of the event generator transport
mechanisms in reproducing final-state interactions which are
in sufficient agreement with data. This issue is to some
extent being examined by studies of the accuracy of the
event generators in reproducing data obtained from electron
scattering in Hall B at Jefferson Lab, where a monoenergetic
beam producing larger cross sections with well-constrained
kinematics can be used to determine the reliability of the event
generators [12].
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APPENDIX: THE REDUCED SINGLE-NUCLEON CROSS SECTION

The reduced single-nucleon CCν cross section as used in the cross-section equations is defined as [4,13]

F̃2
χ = V̂CC

(
w̃

VV (I )
CC + w̃

AA(I )
CC

) + 2V̂CL
(
w̃

VV (I )
CL + w̃

AA(I )
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) + V̂LL
(
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VV (I )
LL + w̃

AA(I )
LL
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(
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[
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VA(I )
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]
, (A1)

where the kinematic coefficients are given by
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1 + �1

v0

)
,

V̂CL = − 1

|q|
(

ω + �4κ

v0

)
,

V̂LL =
(

ω2

q2
− �1

v0
+ �2

4

q2v0
+ 2�4κω

q2v0

)
,

V̂T =
[
|Q2|

(
1

2q2
+ 1

v0

)
+ �1

(
1

2q2
− 1

v0

)
− �2

1 − �3 + �1|Q2|
2q2v0

]
,

V̂T T = −
[
�1 + |Q2|

2q2

(
1 − �1

v0

)
+ �3

2q2v0

]
,

V̂TC = − 1√
2v0

√
1 + v0

q2

√
�3 + (�1 + |Q2|)(v0 − �1),

V̂T L = 1√
2q2v0

√
�3 + (�1 + |Q2|)(v0 − �1)(�4 + ωκ ),

V̂T ′ = 1

v0

(
|Q2|

√
1 + v0

q2
− �4ω

|q|
)

,

V̂TC′ = − 1√
2v0

√
�3 + (�1 + |Q2|)(v0 − �1),

V̂T L′ = ω√
2|q|v0

√
�3 + (�1 + |Q2|)(v0 − �1),

with

�1 = m2 + m′2, �2 = 2εε′ − 2|k||k′|, �3 = 4k2k′2 − 4ε2ε′2,

�4 = m′2 − m2, κ = ε + ε′, (A2)

and

v0 = (ε + ε′)2 − q2 = �2 + �1 + 4|k||k′| cos2 θl

2
.

The angle φN is the azimuthal angle of pN about the three-momentum transfer q. This can be obtained from the laboratory
frame kinematical variables by defining the angle between the neutrino beam direction and q as

θq = cos−1

(
k − k′ cos θl

q

)
. (A3)

The polar angle of pN is given by

θN = cos−1
(

cos θL
N cos θq − cos φL

N sin θL
N cos θq

)
. (A4)

The cosine and sine of φN are then

cos φN = cos φL
N sin θL

N cos θq + cos θ2
N sin θq

sin θN
, (A5)
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and

sin φN = sin φL
N sin θL

N

sin θN
. (A6)
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where

p‖ = p · q
q

, (A24)

p⊥ = |p × q|
q

, (A25)
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√
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and
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p2
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The isovector electromagnetic form factors F1 and F2 are from [14,15] and the weak form factors GA and GP are simple dipole
forms as used in [16].
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