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On the visual quality enhancement of super-resolution images

Amr Hussein Yousef, Jiang Li and Mohammad Karim
Department of Electrical and Computer Engineering

Old Dominion University, Norfolk, VA 23529

ABSTRACT

Super-resolution (SR) is the process of obtaining a higher resolution image from a set of lower resolution (LR)
blurred and noisy images. One may, then, envision a scenario where a set of LR images is acquired with a
sensor on a moving platform. In such a case, an SR image can be reconstructed in an area of sufficient overlap
between the LR images which generally have a relative shift with respect to each other by subpixel amounts.
The visual quality of the SR image is affected by many factors such as the optics blur, the inherent signal-
to-noise ratio of the system, quantization artifacts, the number of scenels (scene elements) i.e., the number of
overlapped images used for SR reconstruction within the SR grid and their relative arrangement. In most cases
of microscanning, the subpixel shifts between the LR images are pre-determined: hence the number of the scenels
within the SR grid and their relative positions with respect to each other are known and, as a result, can be used
in obtaining the reconstructed SR image with high quality. However, the LR images may have relative shifts
that are unknown. This random pattern of subpixel shifts can lead to unpleasant visual quality, especially at
the edges of the reconstructed SR image. Also, depending on the available number of the LR images and their
relative positions, it may be possible to produce SR only along a single dimension diagonal, horizontal or vertical
and use interpolation in the orthogonal dimension because there isn’t sufficient information to produce a full 2D
image. We investigate the impact of the number of overlapped regions and their relative arrangement on the
quality of the SR images, and propose a technique that optimally allocates the available LR scenels to the SR
grid in order to minimize the expected unpleasant visual artifacts.

1. INTRODUCTION

Super-resolution is the process of reconstructing a higher resolution image from a set of degraded LR frames
that have a slightly different views of the same scene. SR can be classified into many categories :1 Frequency
domain or spatial domain; Iterative or non iterative; Projection based or interpolation based; and Stochastic or
non-stochastic. Also, most of SR techniques consists of three major steps: Registration, Reconstruction, and
Restoration.2 Registration is the process of aligning two or more frames with respect to a common reference
grid. Reconstruction is used to reproduce HR image from the pixels of LR frames that might be irregularly
spaced and restoration involves extracting the reconstructed image form the degradation that are encountered
during the image acquisitions process. In our research we have an optical sensor mounted on a moving platform
that captures a sequence of frames with some common area between them. These frames might be affected and
distorted by the UAV rotational parameters i.e., yaw, pitch and roll which will result in images with shear, tilt
or perspective deformations.3 So, the UAV captured frames should be corrected first by using suitable spatial
transformation like the affine or the projective transformation and then be registered within subpixel accuracy.
Like many SR cases, the estimated subpixel shifts are random and don’t follow a regular pattern causing the
spacing between the LR scenels to be nonuniform. One approach called nonuniform interpolation converts the
nonuniform spaced samples into uniform ones by interpolating the available pixels and uses them to estimate the
samples or the pixels located at the coordinates of the uniform HR grid but this approach is computationally
intensive1 and also the reconstructed image using this technique loses some of the frequency components which in
turn affects its visual quality.4 In this paper, we propose a technique that is simple and effective that can be used
to optimally allocate the LR scenels to the uniform HR grid with proper adjustment of their phase shifts and by
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using optimum restoration filters, SR image with good visual quality can be obtained. If the LR scenels are not
located correctly to the most correct points of the uniform HR grid coordinates, then the visual quality of the
reconstructed images will be affected greatly which can be seen in Figure 1 that shows the interlaced LR images
without reconstruction and restoration. It can be seen with LR scenels optimum allocation, the right image is
much better than the left one. Also, depending on the available number of LR frames we can obtain full SR or
partial SR reconstruction when we have insufficient number of LR frames and in the latter case, interpolation
should be used with a slight loss in sharpness and the visual quality of the reconstructed image.

(a) Optimal Allocation (b) Non-optimal allocation

Figure 1: The effect of optimal and non-optimal allocation on the visual quality.

The rest of the paper is organized as follows. In Section 2, A quick review of the most efficient technique
to register two frames with in subpixel accuracy is presented. Two techniques that can be used to optimally
allocate the scenels of LR frames to the HR grid are proposed in Section 3. In section 4, techniques for visual
quality enhancements of the reconstructed images are proposed and in Section 5 we present our simulations and
results.

2. SUBPIXEL SHIFT REGISTRATION

Subpixel registration is important to many image processing applications such as change detection, nondestructive
evaluations and remote sensing.5In the latter, a one pixel in the Landsat images corresponds to 80 m distance
on the earth, so registration with 0.1 pixel will lead to a resolution of 8 m. The subpixel techniques can
be classified into four categories: Correlation interpolation; Intensity interpolation; Differential interpolation;
and Phase correlation. In correlation interpolation, the discrete correlation function between two images is
calculated and interpolated to fit a surface and the shifts are obtained by searching for the maximum. In
intensity interpolation, some parts of the reference image are interpolated according to the subpixel accuracy
required and a search is conducted over these parts with a target image. The idea behind differential interpolation
is to relate the difference between two consecutive frames to the spatial intensity gradient of the first image.5The
phase correlation techniques depend on the idea that the phase of the cross power spectrum between two images
contains most of the information about the relative displacement between them. In our research, we use one of
the most efficient and reliable algorithms based on the phase correlation technique to estimate the shifts between
two images within subpixel shift accuracy.6,7

For the case of just a translation between two images, the usual technique to address this problem is to com-
pute the cross-correlation between the unregistered and the base images by means of discrete Fourier transform
(DFT), and locate its peak.7 If the image to be registered is g(x, y) and the base image is f(x, y), then the
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cross-correlation rfg of f(x, y) and g(x, y) is defined by:

rfg(x0, y0) =
∑

x,y

f(x, y)g∗(x− x0, y − y0)

=
∑

μ,ν

f̂(μ, ν)ĝ∗(μ, ν) exp
[
i2π

(
μx0

M1
+

νy0
M2

)]
. (1)

M1 and M2 are the image dimensions; ∗ denotes complex conjugation; and f̂(μ, ν) and ĝ(μ, ν) are the DFTs
of f(x, y) and g(x, y) respectively. An efficient algorithm is to start with an initial estimate of the location
of the cross-correlation peak. The algorithm used in this paper refines the initial estimate using a nonlinear
optimization conjugate gradient routine to maximize |rfg(x0, y0)|2. Its partial derivative with respect to x0 is
given by:7

∂|rfg(x0, y0)|2
∂x0

= 2I
(
rfg(x0, y0)

∑

μ.ν

2πμ

M1
f̂∗(μ, ν)ĝ(μ.ν) exp

[
i2π

(
μx0

M1
+

νy0
M2

)])
(2)

with a similar expression for the partial derivative with respect to y0. The algorithm iteratively searches for
the image displacement (x0, y0) that maximizes rfg(x0, y0) and can achieve registration precision to within an
arbitrary fraction of a pixel.

3. OPTIMUM SCENELS HIGH RESOLUTION GRID ALLOCATION

We propose two approaches that are simple yet effective to optimally allocate the pixels of registered LR frames;
i.e. scenels to the HR grid in order to reduce the visual artifacts in the reconstructed image. The two approaches
are: (1) Minimum square distance allocation (MSDA) and (2) Mid-point subpixel shifts allocation (MSSA). For
simplicity, the subpixel shifts in both approaches will be adjusted such that they will be located in the first
quadrant of R2 space. If dmin

x and dmin
y are the smallest subpixel shifts in the x and y directions among all the

LR frames, then the adjusted phase shift x′
k1

and y′k2
for the k1k

th
2 frame are given by:

x′
k1

= xk1
+ dmin

x

y′k2
= yk2

+ dmin
y

(3)

3.1 Minimum square distance allocation

If the HR grid consists of M1 ×M2 blocks and every block contains K1 ×K2 scenels, then the pre-determined
uniform HR grid subpixel shifts are 1

K1
and 1

K1
in the x and y directions respectively which constitutes a uniform

pattern or raster. Unlike the uniform pattern, the subpixel shifts of the registered LR frames form a completely
random structure. Consider

g = {(0, 0), (0, 1
K2

), · · · , (K1−1
K1

, K2−1
K2

)} (4)

is the set of the pre-determined subpixel shifts and

f = {(x0, y0) , (x0, y1) , · · · , (xK1−1, yK2−1)} (5)

is the set of estimated subpixel shifts of the registered LR frames. It is required then to find the optimum
mapping or transformation T : f → g that converts the nonuniform subpixel shifts pattern into a uniform one.
The approach here uses the Minkowski distance as a comparison metric to optimally and accurately allocate the
elements of the set f to the elements of the set g with minimum distance between the corresponding points in
these sets. If Pk1k2

= ( k1

K1
, k2

K2
) ∈ g and ki = 0, 1, · · · ,Ki − 1 with i = 1 or 2 and Ql1l2 = (xl1 , yl2) ∈ f and li =

0, 1, · · · ,Ki − 1 with i = 1 or 2 then the Minkowski distance of order p between Pk1k2
and Ql1l2 is given by:8

d(Pk1k2
, Ql1l2) =

(∣∣∣ k1

K1
− xl1

∣∣∣
p

+
∣∣∣ k2

K2
− yl2

∣∣∣
p)1/p

(6)

Typically, the order p is usually set to 1 or 2. If we measure the Euclidean distance, we set p = 2 and to
measure the Manhattan distance, we set p = 1. For simplicity and computational complexity purposes we use
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the Manhattan distance. Assume the HR grid is now empty and we want to fill in the required locations, so we
calculate the Manhattan distance between all the points in the set f and only one point in the set g and the
point with the minimum distance should be set to this location in the HR grid. In other words, for a given point
Pk1k2

∈ g, the optimum and most close point to it in f is given by:

argmin {d(Pk1k2
, Ql1l2)}li=ki−1

li=0 (7)

The search for the nearest location should be done in a zigzag scan to avoid misplacing the elements of the set f
to the correct locations of the HR grid. If the total number of LR frames is L, then the total number of searches
required to allocate all the LR frames to the HR grid is L!.

3.2 Mid-point subpixel shifts allocation

In the MSDA approach, the allocation of LR frames scenels is constrained by the uniform spacing and structure
of the HR grid. So, even if with proper adjustment of LR frames phase shift, the reconstructed image will have
some undesirable edge artifacts.9 In the MSSA approach, the scenels will have a relaxed allocation on the HR
grid which will be constituted depending on the relative shifts and relative-structure between the different LR
scenels providing a smooth reconstructed image. To construct the HR grid in this approach, we first project the
scenels locations on the x axis and then divide the inter-distance between the projected scenels to obtain the
horizontal lines of the HR grid at the mid-points of the x projected scenels inter-distance. Similarly, the scenels
locations will be projected on the y axis and the vertical lines of the HR grid will be located at the midpoints
of the y projected scenels inter-distance. The HR grid will be formed by the intersection between the horizontal
and vertical lines and every LR frame scenel will located with respect to its relative location to the other LR
frames scenels.

3.3 Subpixel shift adjustments

Once the locations of the LR scenels to the HR grid have been determined using either the MSDA or the MSSA
methods, the phase shifts of the interlaced LR frames should be spatially shifted using discrete Fourier transform
shift theorem so that the interlaced LR scenels will have uniform phase shift differences between them. If k1k

th
2

LR image is sk1k2
(x− xk1

, y − yk2
) where xk1

and yk2
are the estimated subpixel shifts in the x and y directions

then its representation in the spatial frequency domain f̃k1k2
(ν, ω) is given by:9

f̃k1k2
(ν, ω) = s̃k1k2

(ν, ω)e−i2π(xk1
ν+yk2

ω) (8)

Also, if the determined HR grid locations are (dk1
, dk2

) then the subpixel shift adjustment can be performed in
the spatial frequency domain by re-adjusting the phase of the LR image f̃k1k2

(ν, ω) as given by:

g̃k1k2
(ν, ω) = f̃k1k2

(ν, ω)ei2π((xk1
−dk1

) ν+(yk2
−dk2

)ω) (9)

4. VISUAL QUALITY ENHANCEMENT OF RECONSTRUCTED IMAGE

After the registered LR frames are adjusted and embedded into the HR grid, the reconstructed image should be
restored from the degradations that are encountered during the image acquisition process such as blurring due
to system optics, aliasing due to sampling the continuous scene on a finite grid beyond the Nyquist rate and the
additive photo-detector noise due to thermal or quantization noise.

In addition to these degradations, there are discontinuities at the transitions between the interlaced LR
frames which will be very observable at the edges and the fine details and less observable at uniform areas of
the reconstructed image. Hence, restoration with enhancement should be used to reduce the effect of theses
degradations and artifacts within the reconstructed image. We use and compare the effects of applying different
enhancement filtering techniques based on stochastic Wiener restoration. These approaches are Stochastic Wiener
restoration (SWR) filter, Wiener Characteristic restoration (WCR) filter, and Wiener Gaussian enhancement
(WIGE) filter. These filter are used for single image restoration and reconstruction10 but in our work we
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extend them to work for SR problem. We use the fidelity F as a measure of similarity between the two images
g1(x, y) and g2(x, y) as defined by11

F(g1, g2) = 1−
(‖g1 − g2‖

‖g1‖
)2

(10)

where ‖·‖ is the l2 norm. Also, depending on the available number of LR frames i.e., scenels, it is possible to
obtain full SR in both dimensions of the image or partial SR in a certain dimension and interpolate the missing
dimensions scenels. The enhancement filters work as restoration as well as reconstruction filters to generate for
missing scenels.

4.1 Stochastic Wiener restoration filter

In spatial domain, the observed image Ro(x, y) is reconstructed through the spatial convolution between the
Wiener filter Ψ(x, y), the spatial response of the image display device τd(x, y) and the interlaced image S(x, y)
as defined by:

Ro(x, y) = S(x, y) ∗Ψ(x, y) ∗ τd(x, y) (11)

The spatial frequency representation of this equation is given by:

R̂o(ν, ω) = S̃(ν, ω)Ψ̂(ν, ω)τ̂d(ν, ω) (12)

where R̂o(ν, ω), S̃(ν, ω), Ψ̂(ν, ω), andτ̂d(ν, ω) are the Fourier transform of the output image, interlaced image,
Wiener filter, and spatial response of the image display device respectively. We use the symbol tilde “˜” whenever
the spectrum of the image is periodic and we use the symbol caret “ˆ” whenever the spectrum of the image is

non-periodic. In frequency domain the interlaced image is given by9

S̃(ν, ω) =
1

K1K2

K1−1∑

k1=0

K2−1∑

k2=0

s̃k1k2
(ν, ω) exp (−i2π(ν xk1

+ ω yk2
)) (13)

where s̃k1k2
is Fourier transform of the k1k

th
2 LR image and xk1

and yk2
are the subpixel shifts in x and y

directions. The Wiener filter minimizes the mean-square restoration error (MSRE) e2 between the input scene
L(x, y) and the output image Ro(x, y) , as defined by:12

e2 = E

{∫∫
|L(x, y)−Ro(x, y)|2 dxdy

}

= E

{∫∫ ∣∣∣L̂(ν, ω)− S̃(ν, ω)Ψ̂(ν, ω)τ̂d(ν, ω)
∣∣∣
2

dxdy

} (14)

Following Amr et al.,9 the Wiener filter that minimizes the MSRE is given by:

Ψ̂(ν, ω) =
K1K2Φ̂L(ν, ω)τ̂

∗(ν, ω)τ̂∗d (ν, ω)/ |τ̂d(ν, ω)|2
[
Φ̂L(ν, ω) |τ̂(ν, ω)|2

]
∗ �̂(ν, ω)

∑

mn

∣∣∣∣∣
∑

k1k2

e−i2π((2ν−m)xk1
+(2ω−n) yk2

)

∣∣∣∣∣

2

+
∑

k1k2

Φ̂Nk1k2
(ν, ω) ∗ �̂(ν, ω)

(15)

where ΦL is the power spectral density (PSD) of the input scene, Φ̂Nk1k2
is the PSD of the noise, and �̂(ν, ω) is

Fourier transform of the sampling function. In frequency domain, the generated Wiener filter will be pointwise
multiplied by Fourier transform of the interlaced image S to reconstruct and restore the output image.

4.2 Wiener Characteristic restoration filter

It is sometimes desirable to enhance a specific spatial feature of the input scene which can be formulated by
letting Lc(x, y) = L(x, y) ∗ τc(x, y) be the desired representation of the input scene L(x, y), where τc(x, y) is a
linear characteristic function. The corresponding MSRE e2c is defined by10

e2c = E

{∫∫ ∣∣∣L̂c(ν, ω)− R̂o(ν, ω)
∣∣∣
2

dνdω

}
(16)
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Thus, the Wiener characteristic filter becomes

Ψ̂c(ν, ω) =
K1K2Φ̂L(ν, ω)τ̂

∗(ν, ω)τ̂c(ν, ω)τ̂∗d (ν, ω)/ |τ̂d(ν, ω)|2
[
Φ̂L(ν, ω) |τ̂(ν, ω)|2

]
∗ �̂(ν, ω)

∑

mn

∣∣∣∣∣
∑

k1k2

e−i2π((2ν−m) xk1
+(2ω−n) yk2

)

∣∣∣∣∣

2

+
∑

k1k2

Φ̂Nk1k2
(ν, ω) ∗ �̂(ν, ω)

(17)
For example, the characteristic filter τ̂c(ν, ω) can be the spatial frequency response τ̂e(ν, ω) of the Laplacian of
Gaussian (∇2G) operator commonly used to enhance the input scene transitions for subsequent edge detections.10

The spatial response and spatial frequency response of this operator, respectively, are

τe(x, y) =
1

πσ4
e

(
1− r2

2σ2
e

)
exp

[
− r2

2σ2
e

]
(18)

and
τ̂e(ν, ω) = (2π ρ)

2
exp

[
−2 (πσeρ)

2
]

(19)

where r2 = x2 + y2, σe is the standard deviation of the Gaussian function, and ρ = ν2 +ω2. The selection of the
Gaussian standard deviation σe normally entails a compromise between high resolution (with a small operator)
and suppression of artifacts (with large operator). We choose σe = 0.75 because the spatial response τe(x, y)
relative to the unity sampling interval is then the same as that of Marr’s model of the smallest operator in early
human vision relative to the mean center-to-center distance between photodetectors in the foveal region of the
eye’s retina.10

4.3 Wiener Gaussian enhancement filter

The images that the Wiener filter restores with minimum MSRE normally posses high resolution. However, these
images also exhibit visually annoying defects and artifacts due to aliasing, photodetector noise that amplified
by the high frequency enhancement inherent in the Wiener restoration, and the ringing near sharp edges (Gibbs
phenomenon) caused by the steep roll-off in the throughput response of image gathering restoration. So, it is
desirable to combine this filter with an interactive control function for enhancing the visual quality. This control
is provided by the Wiener- Gaussian enhancement filter10

Ψ̂v(ν, ω) = Ψ̂(ν, ω)τ̂v(ν, ω) (20)

where

τ̂v(ν, ω) = exp
[−2(πσiρ)

2
]
+ ζ

(
2πσeρ

σo

)2

exp
[−2(πσeρ)

2
]

(21)

where σo = 0.7. The standard deviation σi controls the roll-off of the Wiener filter, while the standard deviation
σe and the enhancement factor ζ controls the edge enhancement. The ratio σ2

e/σ
2
o is included so that the

enhancement with ζ = 1 is directly proportional to the change of the intensity at an edge transitions.13 The
resultant WIGE restoration substantially reduces the ringing of the Wiener restoration at the cost of a barely
perceptible loss in sharpness.

5. SIMULATIONS AND RESULTS

In our simulations, we used a set of checkerboard images that are used to simulate the UAV captured images.
These images contain the same scene but with different views. By controlling the camera orientation, the different
images will contain the distortions that are expected when the UAV experiences yaw, pitch and roll. Figure 2
shows the sets of images that have been used in the simulations. In our simulations, we started with simulated
high resolution scene that is blurred by a Gaussian low-pass filter defined as:

τ̂(ν, ω) = exp

[
−ν2 + ω2

σ2

]
(22)
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Figure 2: Simulated High Resolution Scenes with different camera orientation to simulate yaw, pitch and roll:
(top-left) reference image; (top-right) pitch; (bottom-left) yaw; (bottom right) roll.

where σ is the optical-response index that specifies the design of the image acquisition device. This Gaussian
filter approximates the spatial frequency response of the image-gathering device. The simulated HR images are
down sampled by a factor of 2 and a white noise and blurring are superimposed to them such that the blurred
signal-to-noise ration (BSNR) is 30 dB:

BSNR = 10 log10

(
σ2
L

σ2
N

)
(23)

where σ2
L is the variance of the blurred image scene and σ2

N is the variance of the white noise. The derivation of

the Weiner restoration and enhancement filters depend on the estimation of the input scene PSD Φ̂L. Itakura
et al.14 have shown that the PSD of natural scenes can be approximated by:

Φ̂L(ν, ω) =
2πμ2σ2

L[
1 + (2πμρ)

2
]3/2 , (24)

where ρ2 = ν2 + ω2 and μ is the scene mean spatial detail. The registration is performed using both spatial
transformations and the algorithm proposed by Guizar et. al.7 to register the images within subpixel accuracy.
Table 1 shows the estimated subpixel shifts between the reference image and the other LR frames. For the

LR 1 LR 2 LR 3
Subpixel shifts (0.06,−0.49) (0.28, 0.18) (−0.04,−0.12)

Table 1: The estimated subpixel shifts using Guizar et. al.7

purpose of simulations, we need to examine the available number of LR frames on the reconstructed image. So,
if we have 4 LR frames, we can obtain full SR in both dimensions by using 4 scenels per pixel and by using the
MSDA method we can optimally allocate the scenels to the HR grid. Table 2 shows the locations of LR scenels
after using the MSDA method. Also, if we have only two of these scenels and suppose they are LR 1 and LR 2
then we can use either the MSDA or the MSSA methods to allocate them to the HR grid and obtain a partial
SR in a certain dimension and interpolate the missing pixels on the other dimension. Table 3 shows the results

Proc. of SPIE Vol. 8135  81350Z-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Ref image LR 1 LR 2 LR 3
HR grid locations (0, 0.5) (0.5, 0) (0.5, 0.5) (0, 0)

Table 2: The optimal HR grid locations for the LR scenels (full-SR)

LR 1 LR 3
MSDA (0, 0.5) (0.5, 0.5)
MSSA (0, 0) (0.5, 0.5)

Table 3: The optimal HR grid locations for the LR scenels (partial-SR)

of using the MSDA and the MSSA methods. The MSSA makes the allocation of the scenels more relaxed to
the HR gird than the MSDA as the latter restricts the scenels to a pre-defined points on the HR grid. After
the LR frames are allocated to the HR grid using the MSDA or the MSSA, they are sub-pixel shifted using
Equation 9 to readjust their phase shifts. Then we use three different Wiener restoration filters introduced in
Sections 4.1, 4.2 and 4.3 to enhance and restore the reconstructed images from the degradations encountered
during the image-gathering process. We examine the cases of sufficient and insufficient scenels along with using
the MSDA and MSSA methods to produce full-SR or partial-SR where the fidelity is used as a comparison
metric between the original HR image and the reconstructed ones. The WIGE filter parameters used in this
simulation are: ζ = 0.2, σo = 0.7, σi = 0.3 andσe = 0.8. Figure 3 shows the different reconstructed images using
different enhancement filters and the effect of allocating the LR scenels using either the MSDA and MSSA. Also,
Figure 4 shows a fidelity comparison between the different reconstructed images and the original simulated HR
scene. It can be seen that the Full-SR MSDA reconstructed images are better that than the ones that have
partial-SR. Also, the images with MSSA allocation is much better than the the ones with partial-SR MSDA
allocation. In terms of their fidelity, images with MSDA full-SR reconstruction have higher fidelity than the
ones with partial-SR reconstruction using either MSDA or MSSA methods. When comparing the performance of
different restoration filters along with using the different allocations methods, it can be seen that both the SWR
and WCR filters perform nearly the same and they are much better than the WIGE filter reconstructed images.
The WIGE filter outputs are more blurrier than the outputs produced by either the SWR or WCR filters. When
comparing the fidelity of the reconstructed images through the different restoration filters, it can be concluded
that the SWR reconstructed images are little higher than the WCR reconstructed images while the fidelity of
SWR and WCR reconstructed images are much higher than the ones with WIGE reconstruction.

6. CONCLUSIONS

In this paper we present two methods (MSDA and MSSA) to optimally allocate the LR scenels to the HR grid in
order to minimize the visual artifacts in the reconstructed images. The MSDA full-SR reconstructed images are
much better than the MSDA or MSSA partial-SR reconstructed images. Because the MSSA provides a relaxed
allocation to the HR grid, the MSSA partial-SR images are much better than the MSDA partial-SR images.
To restore and enhance the reconstructed images, we used SWR, WCR, and the WIGE restoration filters. The
reconstructed SR images using the different restoration and enhancement Wiener filters have a very good visual
quality and minimum square error between the input scene and the reconstructed output. Also, The SWR and
WCR have a better performance than the WIGE filter and it is recommended to use the latter when the visual
artifacts have a great effect on the quality of the reconstructed image otherwise the other two can be used.
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(a) Reference HR image (b) Degraded LR image (c) Full-SR MSDA SWR

(d) Partial-SR MSDA SWR (e) Partial-SR MSSA SWR (f) Full-SR MSDA WCR

(g) Partial-SR MSDA WCR (h) Partial-SR MSSA WCR (i) Full-SR MSDA WIGE

(j) Partial-SR MSDA WIGE (k) Partial-SR MSSA WIGE

Figure 3: Different restoration outputs at image-gathering device index σ = 0.8
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(a) SWR filter reconstructed images fidelity. (b) WCR filter reconstructed images fidelity.

(c) WIGE filter reconstructed images fidelity. (d) MSDA different full-SR restoration filtered images fi-
delity comparison.

(e) MSDA different partial-SR restoration filtered images
fidelity comparison.

(f) MSSA different partial-SR restoration filtered images
fidelity comparison.

Figure 4: Fidelity comparison for different restoration outputs with different image-gathering optical index σ.
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