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Abstract

Lyme disease is the most commonly reported vector-borne disease in the United States, and the number of 
cases reported each year continues to rise. The complex nature of the relationships between the pathogen 
(Borrelia burgdorferi sensu stricto), the tick vector (Ixodes scapularis Say), multiple vertebrate hosts, and nu-
merous environmental factors creates challenges for understanding and predicting tick population and path-
ogen transmission dynamics. LYMESIM is a mechanistic model developed in the late 1990s to simulate the 
life-history of I. scapularis and transmission dynamics of B. burgdorferi s.s. Here we present LYMESIM 2.0, a 
modernized version of LYMESIM, that includes several modifications to enhance the biological realism of the 
model and to generate outcomes that are more readily measured under field conditions. The model is tested 
for three geographically distinct locations in New York, Minnesota, and Virginia. Model-simulated timing and 
densities of questing nymphs, infected nymphs, and abundances of nymphs feeding on hosts are consistent 
with field observations and reports for these locations. Sensitivity analysis highlighted the importance of tem-
perature in host finding for the density of nymphs, the importance of transmission from small mammals to 
ticks on the density of infected nymphs, and temperature-related tick survival for both density of nymphs and 
infected nymphs. A key challenge for accurate modeling of these metrics is the need for regionally represen-
tative inputs for host populations and their fluctuations. LYMESIM 2.0 is a useful public health tool that down-
stream can be used to evaluate tick control interventions and can be adapted for other ticks and pathogens.

Key words: mathematical model, LYMESIM, Lyme disease, tick-borne diseases, Ixodes scapularis

Notes from XML Metadata: ESA Member
Lyme disease is the most commonly reported vector-borne disease in 
the United States with ≥30,000 infections reported each year (Schwartz 
et al. 2017). The majority of cases are reported from 14 high incidence 
states in the Northeast, mid-Atlantic, and upper Midwest where Ixodes 
scapularis Say is the primary vector of Borrelia burgdorferi sensu 
stricto (s.s.), the primary etiological agent of Lyme disease in the United 
States. Since 1991 when Lyme disease became a notifiable condition, 
the number of cases reported annually has nearly tripled (Mead 2015), 
the number of counties in the eastern United States where I. scapularis 
is considered established has more than doubled (Eisen et al. 2016), 

and the number of counties identified as reporting high incidence of 
Lyme disease cases has increased by more than 320% (Kugeler et al. 
2015). This disturbing trend underscores a need for tick bite preven-
tion and tick control strategies that are proven to prevent Lyme disease 
cases. Several strategies have been shown in small-scale field trials to 
yield promising results for reducing the abundance of questing ticks 
or ticks on hosts or disrupting B. burgdorferi s.s. transmission (Eisen 
and Dolan 2016). However, very few approaches have been tested, ei-
ther singly or as integrated tick management strategies, in large-scale 
trials with epidemiological outcomes; this is in large part because such 
studies are very costly and time-consuming (Eisen and Eisen 2018).
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Simulation models can be used to inexpensively screen in silico 
various intervention methods, alone or in combination, and can 
therefore be useful for prioritizing prevention strategies to test in 
large-scale, costly field trials. To enable such exploration, we have 
updated LYMESIM, a mechanistic model developed in the late 
1990s that simulates the life-history of I.  scapularis and transmis-
sion dynamics of B. burgdorferi s.s. (Mount et al. 1997b). The orig-
inal LYMESIM model was used to evaluate selected management 
strategies, including those that aim to reduce questing ticks, ticks 
on hosts, or abundance of key hosts for adult ticks (Mount et al. 
1997a, Hayes et al.1999). Over the past two decades, support of the 
LYMESIM code waned such that the original code is no longer avail-
able to would-be users, and the model executable (designed for mid-
1990s Windows operating systems) does not function in modern 
computing environments. To reinvigorate the use of this simula-
tion model as a decision support tool, and to set the groundwork 
for using LYMESIM to prioritize the most promising prevention 
strategies for costly large-scale trials, we have recoded the original 
LYMESIM in a modern coding language. In addition, we have made 
several modifications to increase the biological realism of the models 
and to generate outcomes that are more easily measured under field 
conditions (i.e., density of questing nymphs and density of questing 
infected nymphs).

Other mathematical and simulation models have been created 
to explore tick and tick-borne pathogen systems using a variety of 
techniques for analyzing the Lyme disease spirochete transmission 
system. As a simplified calculation for assessing acarological risk for 
exposure to Lyme disease spirochetes, a number of ecological ap-
proaches provided methods for estimating the density of infected 
nymphs given some basic information (LoGiudice et  al. 2003). 
A small number of models were explored to look at the extension 
of Leslie matrix models to tick life history, and these models were 
used to calculate the predicted relative abundances of the life stages 
(Sandberg et al. 1992). More complex population models have also 
been tested to look at the potential role of long-distance dispersal of 
ticks by birds in the spread of Lyme disease (Heffernan et al. 2014). 
With the advancement of computation, a number of agent-based 
models were developed to explore highly localized population dy-
namics of ticks (Li et al. 2012, Halsey and Miller 2018). Ogden et al. 
(2005, 2006) created a similar complex simulation model focused 
on the range expansion of I.  scapularis populations into Canada. 
Each model type and implementation has strengths and weaknesses.

The goal of the recreation of LYMESIM is to provide an explicit 
model for testing interventions at a community scale. This type of 
testing is not possible with large-scale population level models be-
cause most interventions affect only ticks on certain hosts or in a 
specific activity state, and the population models do not usually di-
vide the population up by these factors. Additionally, previous agent-
based models have been limited to small spatial scales because of 
the computational time required to simulate each individual tick. 
LYMESIM is a complex set of dynamic difference equations that 
explicitly model the weather and habitat conditions of a specific lo-
cation. The model tracks the tick populations in a manner that will 
allow for assessment of explicit interventions, but the model is sim-
pler than a full agent-based model, and thus will run very quickly. 
For example, the model tracks the specific density of ticks on a given 
host type, and so, a host-targeted intervention could be tested with 
the model explicitly removing only the ticks on the host at the time 
of the intervention. Finally, updating a previously published com-
plex simulation such as LYMESIM allows us to leverage all the re-
search that was used to develop the original model, update it with 
more recent findings, and then use it to test interventions as well as 

identify critical parameters that will inform future field and labora-
tory research.

Here we present the updated version of the LYMESIM model with 
a full description of the new simulation model. We also present the 
results of testing the model on three geographically distinct locations.

Methods

Overview of Changes to the Original LYMESIM Model
Overall, the structure and parameter values of the original 
LYMESIM model (Mount et al. 1997b) were maintained in this re-
coding. However, we made several modifications that fall into three 
broad categories: 1) modernization and simplification, 2) integration 
of updated data related to the tick-pathogen system, and 3) changes 
to increase ease of field evaluation of model outcomes.

Specifically, the updated model was implemented in R statistical 
software (R Development Core Team 2008), and weather inputs 
were updated to span the years 2007–2016. LYMESIM was the last 
in a series of tick life history models and was built heavily upon 
the previously published models for the lone star tick, Amblyomma 
americanum (L.) (Acari: Ixodidae) (Haile and Mount 1987, Mount 
et  al. 1993), the American dog tick, Dermacentor variabilis (Say) 
(Acari: Ixodidae) (Cooksey et  al. 1990), and the cattle ticks, 
Rhipicephalus (Boophilus) microplus (Canestrini) (Acari: Ixodidae) 
and Rhipicephalus annulatus (Say) (Acari: Ixodidae) (Mount et al. 
1991). Consequently, much of the simulation description in the orig-
inal LYMESIM publication (Mount et al. 1997a) simply referenced 
these previous papers. There were a few places where the exact 
implementation was unclear in either LYMESIM or the previous 
models. For example, there is no mention of any nonlinearities or 
density-dependent feedback, but the original model does not exhibit 
the expected exponential growth or exponential decay that would be 
expected from the described linear matrix model.

Additionally, there were no statements in the original descrip-
tions of LYMESIM about limits to the number of ticks that can feed 
simultaneously on a host, without which the model would allow 
thousands of ticks to feed on a single mouse, for example. Also, there 
was no input data file or parameter screen to modify day length, 
which should vary depending on time of year and geographic lo-
cation and would likely affect timing of diapause (Belozerov et al. 
2002, Randolph 2004, Ogden et al. 2005). For these missing pieces, 
we relied on standard modeling techniques such as adding a limit 
to the number of ticks that can feed on an animal at one time. We 
also expanded the input data file to include day length as well as the 
weather variables for each specific location.

We also updated some aspects of this model based on current 
knowledge of the tick and the pathogen. For example, we set the 
transovarial transmission rate for B. burgdorferi s.s. to zero based 
on the recent realization that early reports of B.  burgdorferi s.s. 
infection in unfed field-collected larvae most likely failed to distin-
guish this spirochete from the relapsing fever spirochete Borrelia 
miyamotoi, which is passed transovarially in I.  scapularis (Scoles 
et  al. 2001, Rollend et  al. 2013, Lynn et  al. 2019). Several other 
parameter values were updated using subject matter expert opinion 
based on studies that have been published since the release of the 
original LYMESIM (see Supp Tables 1–7 [online only]). Additionally, 
we used five of the six original host types, but we replaced the large 
mammals host type—which referred to domestic livestock—with a 
more biologically meaningful host type comprising insectivores and 
other B. burgdorferi s.s.-reservoirs separate from the host type repre-
sented by the white-footed mouse (Peromyscus leucopus Rafinesque 
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[Rodentia: Cricetidae]). A final model modification was the changed 
implementation of the survival for ticks of different life stages in 
the host-seeking category. We updated the survival function using 
simplified mathematics and modified assumptions about the phys-
iological cost of questing to yield more realistic phenology curves 
across different regions of the United States. In addition to the simple 
percent survival based on weather conditions, each age class has a 
maximum number of weeks in that life stage, and that maximum is 
reduced for each week spent questing as a representation of the loss 
of fat reserves resulting from the energy required for that activity 
(Randolph 2004).

Finally, the original model did not include commonly measured 
field outcomes, such as the density of questing nymphs (DON) and 
the density of B. burgdorferi s.s.-infected questing nymphs (DIN); 
therefore, proxies of these measures were included in the updated 
model to enable evaluation of the model outputs using field data. 
Because DON and DIN are typically measured in forested areas, we 
restricted this model to 95% forest and 5% ecotone habitat, although 
other vegetation types (i.e., meadows) were included in the code for 
the model and could be used in future realizations of the model.

Model Structure: Life Cycle
The tick portion of the updated model uses a series of cohort-based, 
discrete-time, age-structured equations with a 1-wk time step as 
shown in Fig. 1. All eggs laid in the same week are assigned to a 
single cohort, and that cohort moves through sequential age classes 
subjected to mortality from environmental and biological factors. 
That egg cohort tracks its own cumulative cohort degree week (ex-
plained below) until the total is more than the threshold required to 
progress to the next life stage, and then the entire cohort emerges as 
a larval cohort. All three blood-feeding life stages are broken into 
four activity stages: hardening, host-seeking, on-host, and engorged 
off-host. All cohorts of all life stages and activity age-classes are sub-
jected to mortality from environmental and biological factors specif-
ically calculated for that age-class. The first age-class after emergence 
for all life stages is assumed to be a hardening week after which the 
entire cohort is moved into the host-seeking activity age-classes. Each 
host-seeking cohort starts with the maximum of 80 wk for survival, 
and this maximum is reduced by 3 wk for each week the cohort is ac-
tively questing. Each week, as determined by host availability, a por-
tion of the host-seeking cohort moves out of that activity age-class 
and into the on-host age class while the remainder less than age-class 
mortality move to the next host-seeking age-class unless the cohort 
has reached the maximum survival week, in which case that cohort is 
removed. The ticks that found a host are moved into the single week 
on-host age-class with a host-based mortality while on-host (calcula-
tion given below). All ticks surviving the on-host age-class are moved 
into an engorged cohort that moves through the age-classes much 
like the egg cohorts. Larval- and nymphal-engorged tick cohorts 
track their own cumulative cohort degree weeks. When the threshold 
is met, the tick cohort molts to the next life stage and moves into the 
hardening age-class. Engorged adult cohorts also track the cumula-
tive cohort degree week, but after meeting the threshold, the females, 
which are assumed to be half of the adult cohort total, lay eggs to 
start the cycle again with a new cohort of eggs.

Hosts relevant to the I. scapularis life cycle or enzootic mainte-
nance of B. burgdorferi s.s. are modeled using six host types. Four of 
these host types are identical to those from the original model: the 
single species classes of white-footed mice (WFM) and white-tailed 
deer (WTD), and the multi-species classes of medium-sized mam-
mals (MSM) and reptiles (REP). A fifth, changed host type from the 

original model is labeled (SHREW) and comprised of insectivores 
and other highly reservoir competent small mammals, separate from 
white-footed mice, as these have been shown to potentially play a 
large role for enzootic maintenance of B. burgdorferi s.s. (Brisson 
et  al. 2008). The sixth and final host type—all other small mam-
mals and birds (SMB)—is similar to the original model with the ex-
ception that some species were moved from this host type to the 
new host type called SHREW. The large mammals host type from 
the original model was omitted since it represented cattle and other 
large livestock, which play little role for either population dynamics 
of I. scapularis or enzootic maintenance of B. burgdorferi s.s. Each 
host type has an upper limit, i.e., carrying capacity, for the number 
of larvae, nymphs, and adults that can be feeding at one time on an 
animal of that type. Host-finding rates and habitat preferences vary 
by host type, and each host type is held at a constant density with 
equal birth and death rates equal to the inverse of the average life 
expectancy.

Fig. 1. Life cycle model for Ixodes scapularis. Each circle is a 1-wk age-class 
and is subjected to an appropriate mortality rate depending on the stage, 
activity, weather conditions, and host availability. Cohort cumulative degree 
week (CCDW) is a variable assigned to each cohort that tracks the cumula-
tive number of degrees that the weekly average temperature is above 6, the 
development threshold temperature. An egg cohort will transition to larvae 
when its CCDW is greater than 110. Similarly, an engorged larval cohort will 
emerge as nymphs when its CCDW is greater than 58, and an engorged 
nymphal cohort will emerge as adults when its CCDW is greater than 81. 
Finally, the engorged adult female cohort will lay eggs when the CCDW is 
greater than 28. Each host-seeking stage cohort is limited to a maximum of 
80 wk less three times the number of weeks that cohort has been questing 
but unable to find a host.
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Model Structure: Weather Inputs
The original weather data input files for LYMESIM contained four 
input variables including weekly averages for temperature (de-
grees Celsius), saturation deficit (millibars), and relative humidity 
(percentage) plus the total weekly rainfall (cm), but the humidity 
data were never used in the model. Following the original model, 
we converted R(t), the total rainfall amount in week t, into a pre-
cipitation index, PI(t). The precipitation index was defined as fol-
lows: PI(t) = R(t)/10+ PI(t − 1) ∗ 0.65. In addition, the model 
as described in (Mount et  al. 1997a,b) used day length, but this 
value was not in any input file or input screen for LYMESIM, so 
it is unclear if the original model allowed this to vary between 
geographic locations. Day length is included in this simulation as 
an input parameter that depends on the exact hours of daylight 
for each specific location. The new LYMESIM input files require 
the same four weather variables using the same units as well as a 
new column to calculate the precipitation index plus another new 
column for weekly averaged day length in hours specific to the lo-
cation of interest.

Model Structure: Temperature-Dependent 
Development and Fecundity Rates
As in the original model, hatching and molting rates are 
temperature-dependent. Because cohorts of eggs, larvae, nymphs, 
or adults could emerge in any given week and cross over from 
1 yr to the next, each cohort has its own cohort-cumulative de-
gree week (CCDW) total rather than the more commonly used 
calendar-year–based cumulative degree week total. The develop-
ment thresholds and CCDW totals were taken directly from the 
original LYMESIM. All CCDW calculations use the same devel-
opment threshold of 6°C, i.e., for a given cohort, CCDW are only 
accumulated when the temperature exceeds this threshold. The 
work of Ogden et al. (2004) showed that eggs can develop at tem-
peratures as low as 4°C but at such a slow rate that it is unlikely 
to contribute to long-term dynamcis. The number of degree weeks 
for a week above the threshold is equal to the average weekly 
temperature minus 6°C and that difference is added to the total 
for each individual CCDW total. One assumption in the current 
version of the model is that there are no differences in the time re-
quired to accumulate the degree weeks, i.e., there is no difference 
if the CCDW is accumulated slowly over many weeks or quickly 
in a single week.

As in the original model, for a given cohort of eggs, once the 
CCDW totals more than 110, the eggs are moved into the larval 
life-stage (see Supp Fig. 1 [online only]). For an engorged larval co-
hort, a CCDW total of more than 58 would move that cohort to the 
first stage of nymphs. Similarly, for an engorged cohort of nymphs, 
a total of more than 81 would move the cohort to the first stage of 
adults. Finally, for engorged females, which is assumed to be half of 
all adults, a total CCDW greater than 28 would produce a cohort 
of eggs. Although there is limited evidence to support temperature-
dependent fecundity, we kept the function in this version to remain 
true to the original model and for a more flexible model in the future. 
The model output is nearly identical when this function is replaced 
with a constant. The number of eggs laid per female is modeled to 
be temperature-dependent (Fish 1993), and for a temperature of T 
is given by

F = −24.58678T2 + 835.9505T − 4105.579, 6 < T < 28,
F = 0, otherwise.

This equation only gives positive numbers for weekly average tem-
peratures between 6 and 28°C and has a maximum of approxi-
mately 3000 eggs at 17°C.

Model Structure: Survival Rates Off-Host
Each life stage and activity category has a maximum survival rate 
given in Supp Table 3 (online only) as a function of habitat type. 
Although the meadow habitat is not used for the current scenario 
evaluations, it was kept in the model for future scenarios to com-
pare with field data that included meadow habitat. Each survival 
rate is then calculated weekly based on a complex combination 
of this maximum and quadratic and hyperbolic functions of pre-
cipitation index, temperature, and saturation deficits. Part of the 
original initialization of LYMESIM is to declare the division of the 
area being modeled by habitat type to give the proportion that is 
meadow, ecotone, and forest (M, E, and F, respectively; Supp Table 
1 [online only]). Ticks are assumed to only move meaningful dis-
tances horizontally while on host, and so these habitat proportions 
are combined with the habitat preferences for each host type (HM, 
HE, HF) to calculate the relative proportions of ticks expected to 
be found in each habitat type. These proportions are a weighted 
average of the habitat proportions and the relative preferences for 
each habitat type for each host type as well as the percent of blood 
meals that came from that host type. This calculation is done for 
each life stage, and then the relative expected percentage of ticks 
in each habitat type is given for the engorged off-host age classes 
of that life stage through the next bloodmeal. Of note, this implies 
that the expected location of eggs and unfed larval age classes will 
follow the adjusted habitat proportions for engorged adults since 
that is where the eggs are laid.

This survival factor is calculated as follows. First, an estimate of 
the total number of blood meals available for a given life stage will 
be a sum of the carrying capacity for each host type (KH) times the 
density of that host type (HT). The percent of blood meals from that 
host type, BH, is then given by

BH =
KHHT∑
X KXXT

.

Then the adjusted habitat proportions would be

FA =
∑

HostTypes

BHFHF

FHF + EHE +MHM
,

EA =
∑

HostTypes

BHEHE

FHF + EHE +MHM
,

MA =
∑

HostTypes

BHMHM

FHF + EHE +MHM
.

Based on the adjusted habitat proportions (FA,EA,MA) for a given 
geographic location, the maximum survival for each age class, X, 
can be calculated as a weighted average of the values in Supp Table 
3 (online only):

SX = SE( forest) ∗ FA + SE(ecotone) ∗ EA + SE(meadow) ∗MA.

Using the parameters given in Supp Table 4 (online only), the total 
weekly survival rates are calculated by

Total =
SX(asdSD2 + bsdSD+ csd)(apiPI2 + bpiPI + cpi)(at + ctT + etT2)

1+ btT + dtT2 ,

where SX is the maximum survival rate for age class X in an area with 
a given habitat vector, SD is the weekly saturation deficit, PI is the 
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weekly precipitation index, T is the weekly temperature, and all param-
eters are taken from the appropriate row in Supp Table 4 (online only).

Model Structure: Activity-Dependent Maximum 
Survival
The original LYMESIM model had two survival rates for each life 
stage according to the age of the cohort with survival after 40 wk. 
To add the flexibility to LYMESIM for the variations in longevity 
found in the upper Midwestern United States (Hamer et al. 2012), 
we have modeled survival slightly differently. With the original envi-
ronmentally driven mortality, which results in an exponential decay 
in the size of the population, we found that there were still ticks that 
could survive essentially forever. To replace that with a more realistic 
scenario, all three life stages are assumed to be able to survive up to 
a maximum of 80 wk, but for each cohort of ticks, this maximum 
is reduced by 3 wk for each week spend actively questing, e.g., HFX 
> 0. This survival assumes that a tick has a fixed amount of energy 
reserves that would allow for survival up to 80 wk with no activity 
and assumes that actively questing costs three times the energy that 
is spent inactive. The exact amount of energy used and the maximum 
survival times need to be evaluated with field and laboratory data.

Model Structure: Host-Finding Rates
Contrary to the name from the original model, not all ticks in the 
host-finding stages are actively host-seeking, but rather a specific 
host-finding rate is calculated for each week to determine the exact 
number that are actively host-seeking while the rest remain quies-
cent. Host-finding rates depend on both day length and temperature 
as well as the presumed amount of the area that a specific host type 
would cover within a week. Each host type had a base host-finding 
rate (BHRF) derived from an allometric relationship with host den-
sity (HD). For all host types and life stages, b = 0.515, and the values 
for a are given in Supp Table 5 (online only). The environmental 
parameters of weekly average day length (DL) and weekly average 
temperature (T) are used to calculate the adjusted host finding rates 
for larval and nymphal life stages while only weekly average temper-
ature was used for the adjustments to adult rates,

HFL,N = a(HD)
b
(−0.0105T2 + 0.4316T − 3.424)×

(0.03116− 0.007615DL+ 0.00004469DL2)

1− 0.1374DL+ 0.004788DL2 , 10.8 < T < 30.2,

HFA = a(HD)
b
(−0.0095T2 + 0.19T + 0.05), 0 < T < 20.2.

The original equation in the description of LYMESIM (Mount et al. 
1997b) has an error in the denominator of the day length calculation 
with positive linear term instead of the corrected negative shown 
above. Additionally, it is unclear the exact relationship between 
day length and activity of I. scapularis (Goddard 1992). These host 
finding rates were set to zero outside of the ranges listed above as 
otherwise the rates are calculated to be negative values. Within the 
hosts for a given life stage, there are no explicit host preference as 
there are no known experiments that have explicitly compared these 
host types, and so ticks are scaled across all available hosts if there 
are more hosts than needed.

Model Structure: Density-Dependent Survival 
on Hosts
The original LYMESIM model as described (Mount et al. 1997a,b) 
indicates only a decreased survival on-host from an exposure index. 
This index presupposes that the animals will develop resistance to 
ticks over time through exposure, but this resistance is short-lived 

and will wane within approximately 8 wk without tick exposure. 
Although it is unclear that hosts can develop this type of immuno-
logical resistance to I. scapularis (Levin and Fish 1998), there is evi-
dence of mortality on host from host grooming behavior (Shaw et al. 
2003). Although mortality from immunological response and from 
grooming behavior is very different biologically, the same mathe-
matical formula can be used for both with increased mortality based 
on increased density on-host within a short period of time, and this 
mortality would be applied to all ticks including adult males.

The first step to calculation of the exposure index is to scale 
the immature life stages to the adult stage. The original LYMESIM 
model used the equivalent factors from A.  americanum as they 
found no other reports of engorged I.  scapularis immatures. In a 
study to assess the effects of a fungus on I. scapularis, the average 
engorged weights for the life stages of the control groups now give us 
this relationship for I. scapularis (Hornbostel et al. 2004). Average 
total weights of engorged ticks were 204 mg for females, 2.8 mg for 
nymphs, and 0.43 mg for larvae. This gives an equivalent factor rel-
ative to females of 0.014 for nymphs and 0.0021 for larvae. These 
factors are then applied to the tick burden on each host type to cal-
culate the total engorgement index (EI). The tick burden for each 
host type is then combined with the tick burden from the previous 
weeks, with a weekly loss rate of 0.44. As this reduces the contribu-
tion of tick burdens by more than 99% after 8 wk, the simulation 
only calculates the contribution for the previous 8 wk,

EI(X, t) =
9∑
i=1

0.44i−1[0.0021LX(t − i) + 0.014NX(t − i) + AX(t − i)],

where X is the host type, t is the simulation week, AX(t) is the adult 
tick burden on host type X in week t, NX(t) is the nymphal tick 
burden on host type X in week t, and LX(t) is the larval tick burden 
on host type X in week t. Then for each host type, there is a given 
relationship between EI and the on-host survival. The original re-
lationships were used and are shown in Supp Fig. 2 (online only).

Model Structure: Infection Dynamics
The simulation uses a standard susceptible-infected transmission 
model for the dynamics of B.  burgdorferi s.s. Most key assump-
tions used in the original LYMESIM model remain in the current 
simulation along with a few changes. Shrews and other reservoir 
competent small mammals (SHREW) along with white-footed mice 
(WFM) host types are considered highly competent reservoirs for 
B. burgdorferi s.s., and ticks feeding on infected individuals are con-
sidered highly likely to acquire the pathogen, whereas other small 
mammals and birds (SMB) or medium-sized mammals (MSM) are 
assumed to be less effective reservoirs, resulting in pathogen acqui-
sition by a lower proportion of feeding ticks (Supp Table 7 [online 
only]; Donahue et  al. 1987, Ginsberg et  al. 2005, Brunner et  al. 
2008). Reptiles (REP) and white-tailed deer (WTD) host types are 
assumed to be unable to serve as reservoirs, thus producing no in-
fected fed ticks, but can serve as a source for blood meals (Telford 
III et al. 1988, Rulison et al. 2014). Assumptions in the current sim-
ulation include: 1)  only the host types WFM, SHREW, SMB, and 
MSM can be infected, 2)  all infected hosts are equally infectious 
to feeding ticks, and all infected ticks are equally likely to transmit 
the pathogen, 3) once a host is infected, it remains infected for life, 
4)  infected ticks and hosts have the same survival or reproduction 
rates as uninfected ticks and hosts, and 5) there is only one strain of 
B. burgdorferi s.s. in the system. Additionally, one key change from 
the original model is that transovarial transmission within the tick 
population is set to zero.
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All transmission involves a tick vector: susceptible hosts can be 
infected through serving as a host for an infected tick, and suscep-
tible ticks can be infected through feeding on an infectious host. 
Hosts have a constant population, but there is turnover through 
constant and equal birth and death rates. This turnover creates a 
constant pool of susceptible hosts as all hosts are born susceptible. 
Turnover rates are based on the average lifespan of the hosts for 
each host type, and the values used are given in Supp Table 6 (on-
line only).

In the updated LYMESIM, it is assumed that the proportion of 
previously uninfected ticks that acquire infection during the week 
while feeding on an infected host, regardless of tick life stage, is 70% 
for WFM, 50% for SHREW, 5–10% for SMB and MSM, and 0% 
for REP and WTD (see Supp Table 7 [online only]). Susceptible hosts 
can similarly acquire the pathogen when an infected tick feeds on 
them. It is assumed, based on published information, that the prob-
ability of a susceptible host becoming infected with B. burgdorferi 
s.s. from the bite of a single infected I. scapularis nymph is extremely 
high to nearly 100% (Goddard et al. 2015, Eisen 2018). This param-
eter was called the tick infectivity factor (TIF) in the original model, 
and we set this parameter value to 90% for transmission from in-
fectious nymphs and adults to hosts. Because a single host can be 
infested by multiple ticks, this simulation used the same approach as 
the original LYMESIM to scale the percent of hosts that get infected 
in a given week by the ratio of infectious ticks per host in that week. 
To calculate this percentage, a Monte Carlo simulation is used to 
combine the abundance of infectious ticks on a host, host density, 
and the infectiousness of the pathogen (Cooksey et al. 1990). For 
each host type, the TIF is then combined with the total abundance of 
infectious ticks (ITD) and the host density (HD) to get the average 
number of infected ticks per host (ITH) by

ITH = (ITD/HD) ∗ TIF.

In addition, a separate Monte Carlo simulation was used to create 
the most likely percentage of hosts infected for a given ITH. To 
create this relationship, the simulation assigned ticks to a set of 100 
hosts for a variety of levels of ITH from 0.01 to 7.5 in increments of 
0.01. For each increment, the simulation used a random sample pro-
cedure to assign each tick to a host with replacement (see Supp Fig. 
3 [online only]). This sampling creates a look up table that can be 
used for each host type each time step based on the calculated ITH.

Output Variables
To summarize the results of each model, we used a variety of out-
puts. The original LYMESIM model used two basic output measures: 
abundance of ticks on mice and abundance of ticks on all host types. 
Although these data are useful for comparison with ticks from hosts, 
they are not equivalent to what is expected for data for questing 
ticks based on drag sampling. For the comparisons with the original 
LYMESIM model, we used the abundance of ticks on host for each 
life stage as was done in the original software. To compare the new 
location scenarios with field data, we needed to calculate the model 
predictions of density of questing nymphal ticks to compare with the 
standard density of nymphs (DON) and density of B. burgdorferi 
s.s.-infected nymphs (DIN) measures generated by drag sampling. 
Because of how the model is set up, not all ticks in the host-seeking 
age-classes are truly actively questing in the traditional field use of 
the term. For each time step, there is a calculation based on weather 
conditions to estimate the percent of the host-seeking age-class that 
would be questing, called host-finding in the model. The remaining 
percent of the host-seeking age-class ticks are assumed to be quies-
cent. Because of the limitations of the carrying capacity on the hosts 

present, not all ticks who quest are successful, and there is often a 
‘surplus’ of ticks that would feed on hosts, if carrying capacity were 
increased, but are returned in the model to the host-seeking age-
class to try again in the following week. This ‘surplus’ of ticks ready 
to find a host are assumed to be the questing ones that would be 
collected if one were out dragging for ticks. Thus, in the model, we 
track the density of surplus nymphs in a given week, which is equiv-
alent to DON, and the density of infected surplus nymphs, which is 
equivalent to DIN. We also report the ticks on hosts for comparison 
with the original LYMESIM and call them nymphs on hosts (NOH) 
and infected nymphs on hosts (INOH).

Model Scenarios
The new LYMESIM model was run using the input weather data 
and most of the original parameter values from the original soft-
ware. Notably the weather data for the original software were from 
NOAA’s Comparative Climate Data Center, whereas for the updated 
model, we obtained weekly weather data for 2007–2016, as well 
as an average for that time frame, derived from the forcing data set 
(version 2) of the North American Land Data Assimilation System 
(NLDAS; Cosgrove et al. 2003). NLDAS was chosen because it pro-
vides a continuous spatiotemporal record of meteorological condi-
tions over the United States and southern Canada for recent decades, 
and because it yielded realistic results in a study of the seasonality 
of Lyme disease (Moore et al. 2014). To explore the new LYMESIM 
2.0 model, we chose three locations based on availability of pub-
lished and unpublished DON and DIN data for comparison to 
model output. These locations were Norfolk, VA; Cary Institute near 
Millbrook, NY (here called Cary, NY); and Hinckley/Itasca, MN. 
The simulation runs for the three new locations used the NLDAS 
long-term average weather information to explore the phenology re-
sults of this new model and compare that with known variations in 
tick emergence patterns for these regions.

The data for Cary, NY, were taken from the supplemental ma-
terials from Ostfeld et al. (2018). Specifically, the reported densities 
of questing nymphs and densities of mice were averaged across the 
six field sites for each year from 2007 to 2016. A combination of 
multiple sources were used for the data for Minnesota, weather data 
were used from Itasca, and drag sampling was conducted by Bjork 
and her team in Hinckley from 2015 to 2017. The second tick data 
source was from the passive submission of Minnesota human-biting 
I. scapularis ticks from 2007 to 2016 to the collections of Nadolny 
through the Tick-Borne Disease Laboratory of the U.S. Army Public 
Health Center. The data for the final site in Virginia were collected 
by Gaff and her team through an ongoing active surveillance project 
in the Hampton Roads region of Virginia. Owing to the variation in 
the collection methods for each of these data sets, a relative ranking 
of reported tick collections was used rather than the absolute data. 
For each time series, the data are scaled by the highest value, re-
sulting in a percent of highest reported tick collections for each data 
set. These values were then scaled to values between zero and ten for 
ease of graphing.

Sensitivity Analysis
Parameter estimations were taken from the original LYMESIM 
model, and then these values were updated based on published 
information, expert opinions, and model calibration. A  full sensi-
tivity analysis was completed to assess the relative significance of 
all model parameters. This analysis was completed using a Latin 
hypercube analysis, which allows all parameters to vary simultane-
ously (Marino et al. 2008, Alden et al. 2013). Each parameter was 
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varied across a uniform range of approximately 10% above to 10% 
below the default value. The model for each location was run for 
1000 scenarios using the average weather data for each location. 
The model results were summarized into two metrics: average ratio 
of DIN to DON and maximum DON. The average ratio of DIN to 
DON was calculated as the average over the entire year of the ratio 
of infected surplus nymphs to total surplus nymphs after the model 
run reached equilibrium. For simplicity, this is called simply average 
DIN, but it is the average prevalence. The maximum DON was cal-
culated as the maximum surplus nymphs during the same year. The 
partial rank correlation coefficient was then calculated for each pa-
rameter, and those with a P-value of less than 0.05 were considered 
as significant.

Results

Model Phenology for Constant Hosts and Weather
To assess the performance of the model, the first sets of runs used 
the ‘long-term average’ weather files, which were calculated by 
averaging the values from 2007 to 2016 for each site. Additionally, 
all runs for all sites used a constant host density for all years. To 
evaluate biological realism, we compared model predictions with 
field-collected data for timing and abundance of peak for each life 
stage. The model results for these constant-host, long-term average 
weather data show the expected relative abundance and timing of 
each life stage (Figs. 2a–4a). Our model predicts that New York has 
the highest peak for total I. scapularis nymphs on all hosts in late 
spring followed by the peak for total larvae on all hosts later in 
summer months with some overlap in timing with the additional 
peaks for these two life stages (Fig. 2a). Also, for New York as ex-
pected, the model predicts that the adults will be found on hosts 
throughout the fall and again briefly in the spring. Model results for 
Minnesota, by comparison, show a nearly complete overlap in the 
timing of the peaks of nymphs and larvae on hosts with a shorter 
time in fall and spring for the adult activity (Fig. 3a). The Virginia 
model results show a much longer pulse of larvae in late summer 
with adults active all winter (Fig. 4a).

Model Predicted DON and DIN For Constant Hosts 
and Yearly Variation in Weather
The second set of model results shows the model findings when 
the actual weekly weather data from 2007 to 2016 are used. For 
this analysis, the data are restricted to just I.  scapularis nymphs 
on white-footed mice (NOH and INOH) and the numbers of total 
and infected questing (‘surplus’) ticks (DON and DIN) per hectare. 
Model results indicate that the peak of timing for nymphs feeding on 
white-footed mice precedes that of the larvae in both New York and 
Virginia (Fig. 5a and 5e), but larval and nymphal infestation peaks 
are synchronous in Minnesota (Fig. 5c). Among localities, there is 
considerable variation in DON (black lines) and DIN (red lines) such 
that predicted peak years are not consistent among sites. Among the 
three localities, Minnesota has the greatest fluctuations in DON and 
DIN (Fig. 5d).

To assess the model outputs, we compared the maximum an-
nual DON for each location with rank field data. The model re-
sults agree in general trends with the scale-ranked field data for 
Minnesota (Fig. 6b) and Virginia (Fig. 6c). The results for New York 
(Fig. 6a) did not show a similar matched trend. For all locations, we 
also calculated the average percentage of nymphs that were infected 
(NIP; calculated as DIN/DON*100) for each year, and these values 
were consistently between 25 and 30% for all years in these three 

locations. So although the absolute density of infected nymphs varies 
widely from year to year, the prevalence of infection does not vary 
substantially for any location.

Model Predicted DON, DIN, and NOH For Varying 
Host Density and Yearly Variation in Weather
As a further exploration of cause for the variability in year-to-year 
questing nymphal densities particularly in the New York simulation, 
we used the variations in white-footed mice density reported (Ostfeld 
et al. 2018) rather than the standard constant population along with 
the actual weekly weather data. Figure 7 shows the model results for 
NOH, DON, and DIN using the average rodent densities reported 
by Ostfeld et al. (2018) with all other host types held constant at 
the default values. The variation in mouse densities changed little 
in the predicted abundance of larvae or nymphs on white-footed 
mice (Fig. 7a) compared with the previous constant mouse density 

Fig. 2. Long-term average phenology for Cary, New York from (a) model 
prediction and (b) field data. The graph shows the total number of larval, 
nymphal, and adult (multiplied by 10) ticks on all host types predicted for 
each week. This model scenario is based on the average of weather condi-
tions from 2007 to 2016. The field data show the timing of the peak for larval 
(right) and nymphal (left) ticks for 1994–2012 as reported by Levi et al. (2015). 
The field data are offset by life stage simply for readability. The timing of the 
nymphs and larvae for New York for the long-term data fall within the ranges 
expected, and the overlap of the life stages is similar to that found in many 
years in the data from Levi et al. (2015).
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(Fig.  6a). The model produces different predictions for DON and 
DIN (Fig.  7b) than was found in the previous constant host sce-
nario (Fig. 5a), and these results are a better match to the field data 
(Fig. 7c). More work remains to be done to investigate if including 
additional host density information could improve the match of the 
model results to the field data.

Sensitivity Analysis Results
The key parameters for both maximum DON and average DIN were 
related to survival as a function of temperature (see Supp Tables 8 
and 9 [online only] for full sensitivity results). In addition, both met-
rics were correlated with the parameters that drive the host finding 
rates related to day length for immature ticks. Average DIN was also 
correlated positively with densities of WFM and negatively with 

densities of MSM and WTD. Average DIN was also positively correl-
ated with the infection rate from both WFM and SHREWS to ticks.

Discussion

Mathematical models provide valuable tools to explore the complex 
dynamics of biological systems. The original LYMESIM model was 
developed in the 1990s at the very beginning of the Lyme disease 
epidemic in the United States. To incorporate more recent know-
ledge of I. scapularis host-seeking phenology, host-tick associations, 
and pathogen persistence, we built upon the original LYMESIM 
model to develop LYMESIM 2.0. The revised model simulates the 
I. scapularis life cycle and enzootic transmission of B. burgdorferi 
s.s. and yields estimates of densities of questing nymphs and infected 
nymphs (DON and DIN) as well as abundances of nymphs infesting 
hosts (NOH) that are consistent with field-derived data.

Fig. 3. Long-term average phenology for Minnesota, from (a) model predic-
tions and (b) field data. The graph shows the total number of larval, nymphal, 
and adult (multiplied by 10) ticks on all host types predicted for each week. 
The model scenario is based on the average of weather conditions from 2007 
to 2016 in Itasca, Minnesota. The field data were collected in 2015–2017 in 
Hinckley, Minnesota. Both the model results and field data show the nearly 
simultaneous peaks for nymphs and larvae, but the model results show a 
slightly earlier timing for the emergence of the immature life stages. The 
model results also do not have adults active during the summer months as 
was found in the field during those years. These differences are likely a reflec-
tion of the wide variability in the data for this region as can be seen in model 
results below using annual data rather than this long-term average.

Fig. 4. Long-term average phenology for Norfolk, Virginia, from (a) model 
predictions and (b) field data. The graph shows the total number of larval, 
nymphal, and adult (multiplied by 10) ticks on all host types predicted for 
each week. The model scenario is based on the average of weather condi-
tions from 2007 to 2016. The field data were collected from ten sites in the 
Norfolk area from 2009 to 2018 using standard flagging techniques (Gaff, un-
published data). Both the field data and model results show a much smaller 
overlap in the activity of the immature stages, and the model results also 
agree with the field data in the activity of the adults during the entire winter.
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DON and DIN are often significantly and positively correlated 
with human Lyme disease incidence at the town, city, or county 
scales, particularly in areas with high incidence of disease (Mather 
et  al. 1996, Kitron and Kazmierczak 1997, Stafford et  al. 1998, 
Diuk-Wasser et al. 2010, Pepin et al. 2012). The original LYMESIM 
model lacked outputs that estimated these two variables. Because 
these measures are commonly reported in field studies as estimates 

of acarological risk for exposure to I.  scapularis nymphs and 
B.  burgdorferi s.s., they were added to the updated model to en-
able comparisons with epidemiologically meaningful field derived 
metrics. Estimates of DON and DIN derived from LYMESIM 2.0 
provided estimates of DON and DIN that were consistent with field 
observations in Minnesota, New York, and Virginia. Nymphal infec-
tion prevalence was found to be in the 25–30% range for all years 

Fig. 5. These model results show the year-to-year variation in tick densities based on the actual weather for 2007–2016 for each location. Plots on the left show 
the model results for the predicted tick burden on white-footed mice (higher numbers are larvae per mouse, smaller numbers are nymphs per mouse) in New 
York (A, B), Minnesota (C, D), and Virginia (E, F). The burden spikes to the maximum number of ticks per host every summer in all locations and years except 
Minnesota in 2008. The plots on the right show the DON and DIN, which are the ticks that were questing but unable to find a host that week and could pose a risk 
to humans Minnesota has the greatest variability in predicted DON, and Virginia has lower expected DON with a maximum in 2007 of only about half the DON 
found at the maximum in Minnesota in 2011 or New York in 2016.
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and locations, which is consistent with commonly reported values 
(Connally et  al. 2006, Pepin et  al. 2012, Stromdahl et  al. 2014, 
Feldman et al. 2015, Johnson et al. 2018).

Fig. 6. Validation comparing DON and field data. The maximum DON for each 
year is shown for both model predictions (open circles) and field data (tri-
angles), and the model values generally match the trends in the rank-scaled 
passively collected samples submitted to the Army Public Health Center from 
Camp Ripley field data for Minnesota and the rank-scaled active surveillance 
data for Virginia (Gaff, unpublished data). Additionally, the average prevalence 
(DIN/DON) is shown with closed circles (on the secondary, right-hand axis) 
and remains fairly consistent between 25 and 30% for all years in all locations.

Fig. 7. Addition of variation in white-footed mice density for NY. The plot in 
(a) shows the model results for the predicted tick burden on white-footed 
mice (larger numbers are larvae per mouse, and smaller numbers are 
nymphs per mouse). The plot in (b) shows the model predicted DON and DIN 
for NY, and the plot in (c) shows model predicted maximum DON for each 
year with open circles, the field data with triangles, and the average prev-
alence (DIN/DON) with closed circles (on the secondary, right-hand axis). 
Using only variations in weather data as shown in Fig. 6, model results for 
New York did not match with the trends seen in field collections. However, 
when the model used field data for white-footed mice populations, the re-
sults are shown in (a) and (b). The comparison to field data, while still not 
exact, is markedly improved. This highlights the need to understand all of 
the potential ecological drivers for tick densities.
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One of the key challenges in modeling the life history of 
I. scapularis is simulating the variation in questing tick phenology 
observed across geographic regions (Yuval and Spielman 1990, 
Hamer et  al. 2012). Since the original LYMESIM was published, 
Lyme disease incidence has increased substantially in the upper 
Midwest (Bacon et al. 2008, Mead 2015). Consequently, studies fo-
cusing on I.  scapularis and B. burgdorferi s.s. in this region have 
increased and differences in host-seeking phenology of the tick in the 
upper Midwest compared with the Northeast have been elucidated 
(Hamer et al. 2012, Stromdahl et al. 2014). Most notably, in con-
trast to the Northeast where nymphal questing precedes larval ac-
tivity, questing by immature life stages is synchronized in the upper 
Midwest. These differences have been postulated to contribute to 
geographic differences in the frequencies of B. burgdorferi s.s. geno-
types, which might affect morbidity and incidence of Lyme disease 
(Gatewood et al. 2009, Pepin et al. 2012).

In the original LYMESIM, phenology was similar across regions. 
To more accurately simulate differences in host-seeking phenology 
across regions, in LYMESIM 2.0, we expanded the way survival is 
calculated to include both an environmentally driven mortality and 
an energy-reserves loss driven mortality. With only the original en-
vironmentally driven mortality, the model results for all areas had 
the phenology of New York. By teasing apart these two different 
causes of mortality, the model produces the expected varying pheno-
logical results by region. Ticks have limited fat reserves and cannot 
survive indefinitely in the environment (Randolph 2004, Sonenshine 
and Roe 2013). The original LYMESIM model reported having a 
reduced survival rate after 40 wk for any life stage, but this linear 
reduction did not have finite limits for survival. The new model uses 
a finite energy reserve that is depleted by questing activities. This 
allows for the somewhat counter-intuitive result that ticks will live 
longer in colder and drier climates simply because they can go into 
quiescence and diapause to conserve energy until weather condi-
tions improve. There is little specific research on the complexities of 
weather-dependent inactivity of ticks, but there is general agreement 
that this is a response to adverse conditions such as cold weather or 
low humidity that allows I. scapularis to survive in a wide variety of 
areas (Eisen et al. 2016). Additional research is needed to pinpoint 
the cost to a tick in energy reserves for time spent questing, but the 
inclusion of this cost allows for the same biological assumptions in 
all regions.

When the original LYMESIM model was published, there was 
also limited knowledge of the diversity of hosts that are highly com-
petent reservoirs of B.  burgdorferi s.s. This led to including only 
one class of highly competent reservoir hosts, the white-footed 
mouse. With more recent research demonstrating the importance of 
the shrews (Blarina spp.) and other small mammals (Brisson et al. 
2008), we added an additional class of highly competent reservoir 
hosts. Shrews and other small mammals are not as well studied as 
the white-footed mouse, but Brisson et al. (2008) found that locally 
up to half of all ticks infected with B. burgdorferi s.s. had fed on 
shrews. Within the updated model, while this modification increases 
the number of ticks feeding on highly competent hosts, the adjust-
ments to include a maximum number of ticks per host kept the 
overall abundance of the ticks from growing exponentially. This new 
class of hosts will allow for testing of interventions that only target 
white-footed mice and not shrews or other reservoir hosts, such as 
mouse-targeted vaccines (Tsao et al. 2004).

Another important lesson learned in the testing of LYMESIM 
2.0 is that while the biology of the tick is modeled the same across 
geographic regions, there appear to be differences in the inputs 
needed to accurately model annual DON and DIN so that they 

match field-derived data. In regions with widely fluctuating host 
populations such as those seen with the white-footed mice in New 
England resulting from synchronized oak masting events, inclusion 
of fluctuating host density is needed in these areas in order to ac-
curately capture observed trends. Ostfeld et al. (2018) showed the 
relationship between the oak masting and tick abundance through 
the complex ecological web of the tick-host system. Additional sur-
veillance for host density data is needed to parameterize nonconstant 
host populations in other geographic areas to gain a better under-
standing of the complex interplay between tick abundance, weather 
patterns, and host abundance over time. Finally, while it is clear that 
these masting effects that result in host variation are needed to un-
derstand the year-to-year variation, it is less clear how this varia-
bility affects interventions. Future model scenarios will explore the 
implications of this variability. Other factors may also be playing 
a role with the fluctuations of host densities as well as the season-
ality of births for hosts, which is not included in the current model. 
These and many additional ecological factors can be explored with 
this model.

The results of the sensitivity analysis highlight the parameters 
that would be predicted to have the most influence on the average 
DIN or maximum DON. This information can be used to help apply 
existing tick control methods as well as to develop and target new 
control methods. For example, the nearly equal influence of WFM-
to-tick and SHREW-to-tick transmission rates predicts that while a 
rodent vaccine or treatment might work, a better option might try 
to target both WFM and shrews. This model will be used in future 
analysis to test existing interventions as well as to identify potential 
yet-to-be developed interventions.

LYMESIM 2.0 is a useful tool in the public health efforts to 
better understand and hope fully help control the continuing chal-
lenge of Lyme disease. Overall, the lessons learned in the process of 
developing the model and the final model itself both help advance 
the understanding of the complexities of acarological risk for expo-
sure to vector ticks and Lyme disease spirochetes. The underlying 
model structure also can be extended to other tick-borne pathogens 
and to other tick-pathogen systems.

Supplementary Data

Supplementary data are available at Journal of Medical Entomology online.
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