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3D Face Reconstruction from Limited Images 
based on Differential Evolution 

 
Qun Wanga, Jiang Lia, Vijayan K. Asarib, Mohammad A. Karima 

aDept. of Electrical and Computer Engineering, Old Dominion University, VA, 23508; 
           bDept. of Electrical and Computer Engineering, University of Dayton, OH, 45469   

ABSTRACT   

3D face modeling has been one of the greatest challenges for researchers in computer graphics for many years. Various 
methods have been used to model the shape and texture of faces under varying illumination and pose conditions from a 
single given image. In this paper, we propose a novel method for the 3D face synthesis and reconstruction by using a 
simple and efficient global optimizer. A 3D-2D matching algorithm which employs the integration of the 3D morphable 
model (3DMM) and the differential evolution (DE) algorithm is addressed. In 3DMM, the estimation process of fitting 
shape and texture information into 2D images is considered as the problem of searching for the global minimum in a 
high dimensional feature space, in which optimization is apt to have local convergence. Unlike the traditional scheme 
used in 3DMM, DE appears to be robust against stagnation in local minima and sensitiveness to initial values in face 
reconstruction. Benefitting from DE’s successful performance, 3D face models can be created based on a single 2D 
image with respect to various illuminating and pose contexts. Preliminary results demonstrate that we are able to 
automatically create a virtual 3D face from a single 2D image with high performance. The validation process shows that 
there is only an insignificant difference between the input image and the 2D face image projected by the 3D model. 

Keywords: 3D face modeling, 3D morphable model, differential evolution, face recognition  
 

1. INTRODUCTION  
3D face modeling has been one of the greatest challenges for researchers in computer graphics for many years. Various 
methods have been used to model the shape and texture of faces under varying illumination and pose conditions from a 
single given image. Researchers introduced Shape-From-Shade (SFS) [1] [2] to reconstruct the 3D surface of human 
faces. Unfortunately, SFS shows rapid decrement in performance, such as biased calculations and improper estimates of 
surface normals caused by varied lighting conditions and cast shadows on the 2D image. Active appearance model 
(AAM) [3], proposed by Cootes et al., is a statistical deformable technique which has been widely used in computer 
vision. However, AAM only allows a small range of out-of-plane rotation and displays inadaptation to directed light 
sources. 

In this paper, we propose a novel method for the 3D face synthesis and reconstruction by using a simple and efficient 
global optimizer. A 3D-2D matching algorithm which employs the integration of 3D morphable model (3DMM) and 
differential evolution (DE) is addressed. 3DMM is a generic modeling technique based on parametric representation of 
shape and texture information, which could be used to synthesize individual 3D faces from 2D images. The morphable 
model is advantaged by its no restriction on the requirement of illumination or reflectance functions though it has 
additional computational complexity. In 3DMM, the estimation process of fitting shape and texture to 2D images is 
considered as the problem of approximating global minima in a high dimensional feature space. To this end, DE is 
integrated in our model, which demonstrates ease of manipulation and excellent convergence properties of moving away 
from local optima[9] [10]. 

The remaining sections of the paper are organized as follows: The concept of morphable model is introduced in Section 
2. Model matching method based on DE is presented in Section 3. The final experimental results are outlined in Section 
4 and we conclude the paper in Section 5. 
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2. 3D MORPHABLE MODEL 
2.1 Introduction  

In 1999, T. Vetter and T. Poggio proposed 3DMM [6], a realistic modeling method for 3D faces synthesis by 
representing the linear combination of exemplar faces. The reconstruction procedure is regarded as conducting iterations 
of the analysis-by-synthesis process, which are driven by fitting the 3D model to 2D images. Meanwhile, the parameters 
with respect to 3D environment such as focal length of the camera, illumination and color contrast, can also be modeled 
explicitly and estimated automatically.  

 

2.2 Model Construction 

The prototypical 3D faces are acquired by 3D laser scanners, whose range and texture data are digitized with high 
precision. Preprocessed through registration and texture extraction, each face is represented in the form of a shape vector 
and a texture vector as: 

1 1 1 2( , , , ,..., , )T
n nS X Y Z X Y Z=           (1) 

1 1 1 2( , , , , ..., , )T
n nT R G B R G B=       (2) 

where n is the number of vertexes on the 3D face and (Bj Gj Rj) are the corresponding R, G, B color values of the vertex 
(Xj Yj Zj). Therefore, a morphable model can be generated by using the linear combination of shape vectors Si and texture 
vectors Ti of 3D training faces as [6]: 
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in which m is the number of training faces, Si and Ti are shape and texture of training faces and ai and bi are their 
corresponding weights contributed to the new face with 0 <  a, b < 1. 

In the practical consideration of computational effectiveness, a common technique as PCA (Principal Component 
Analysis) is employed to reduce the high dimensionality of 3D face data without the loss of potential face information. 
In particular, PCA performs a transformation of the original cloud data to an orthogonal coordinate system formed by the 
eigenvectors si and ti of the covariance matrices.  
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where Smean and Tmean are the average shape and texture vectors. Si and Ti are principal components. α= (α1, α2,…,αn) and 
β = (β1, β2,…,βn) are shape and texture combination coefficients, and α and β obeys Gaussian distribution as: 
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2.3 Model Matching  

Matching the 3D face morphable model to the given face images is a process of model parameter estimation, in which a 
number of coefficients are required to be determined. For example, camera and illumination model is adopted in the 
projection of the 3D face model into the image plane since 3D face model and 2D input facial images cannot be 

Proc. of SPIE Vol. 8135  813518-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



measured directly. Aiming at retrieving a 3D face the closest projective image to the input facial image, the error 
function between 3D model projective image Imod and input image Iinput is described as: 

2

mod,
( , ) ( , )I inputx y

E I x y I x y= −∑      (6) 

In order to create a realistic 2D output which is close enough to the target face image, we make use of the perspective 
projection and Phong illumination model in the rendering process. Given the kth vertex at (X,Y,Z) with texture value 
(R,G,B), the perspective projection on the image plane is represented as: 

( ), , ,( , ) ( , ), ( , ), ( , )
T

k r k g k b kI x y I x y I x y I x y=     (7) 

where , ( , )c kI x y is computed under the Phong illumination model as: 

( ), , , ,( , ) ( ) ( )n
c k a c dir c s dir cI x y R I I L N K I F V= + ⋅ + ⋅     (8) 

,a cI and ,dir cI are separately intensity of ambient light and direct light of the cth color component. sK  is the reflectance, 
L, N, F, V are light direction, normal, reflective direction and direction of viewer respectively and n is the mirror 
reflectance index. 

   

3. GLOBAL OPTIMIZATION 
The morphable model provides an approach in solving face modeling problems under different illumination and pose 
conditions. However, one of the issues lies in the process of minimizing the cost function (6) that performs error 
evaluation in the pixel-level measurement. This involves algorithms of image matching and a large-scale optimization. 
In 3DMM, fitting shape and texture into 2D images is equal to searching for the global minimum in a high dimensional 
feature space, in which optimization is apt to have local convergence. Stochastic gradient descent [6] and Levenberg-
Marquardt [11] method are used to evaluate the residual and global error as well as objective function optimization. 
Differential Evaluation (DE) appears to be robust against stagnation in local minima and sensitiveness to initial values in 
face reconstruction. Considering its successful performance, we tentatively introduce DE to tackle the problem in 3D-2D 
matching.  

 

3.1 Differential Evolution (DE) 

Differential Evolution (DE) is a “parallel direct search method” [9], which was first proposed by Storn and Price in 1995 
[10]. It is characterized as a stochastic and population-based optimization that is simple and effective for implementation. 
DE repeatedly processes through operations which are, in turn, “mutation, crossover and selection” until an optimal 
solution to the objective function ( )f x  is reached (Figure 1). 

The classic version of DE is defined as follows. Suppose we have N D-dimensional parameter vectors  

[ ], 1 2, ,..., , 1, 2,...,T
i G Dx x x x i N= =      (9) 

representing the population for generation G. The algorithm starts by randomly initializing the vector populations with, 
as the author suggested, a uniform probability distribution [9]. We use a different distribution in our experiment due to 
the special feature of 3DMM, which we will present later in section 4.  

 

3.1.1 Mutation 

For each individual ix , a corresponding mutation vector iv is produced according to the equation: 
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( ), 1, 2, 3,i G r G r G r Gv x F x x= + ∗ −       (10) 

in which random index { }1, 2, 3 1,2,...,r r r N∈ and 1 2 3r r r≠ ≠ . F is a real amplifier designed to control the offset of 

,i Gv to 1,r Gx by scaling the differential variation ( )2, 3,r G r Gx x− . 

 

3.1.2 Crossover 

Trial vectors are introduced in the phase of crossover to expand the range of global search. It is defined in the form as: 

( ), 1 , 2 , ,, ,...,i G i G i G Di Gu u u u=       (11) 

in which 
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In equation (9), ( )randb ⋅ is a random generator with uniform distribution. brI is an integer randomly chosen from 
{1,2,…,D}, which prevents ,i Gx  from being equal to ,i Gu . 

 

3.1.3 Selection 

DE utilizes pair-wise comparison between ,i Gu and ,i Gx to survive the vectors with fewer objectives function values to 
the next generation.  
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Figure 1. Canonical Differential Evolution Procedure 

 

4. EXPERIMENTAL RESULTS 
4.1 3D Face Modeling 

Various 3D face databases have been established during the last decades [15]. In our experiments, we use the 3D Basel 
Face Model (BFM) database [8] to derive the morphable model for 3D shape and texture. The database collects 200 3D 
faces from 100 male and 100 female subjects, each of which keeps neutral expression, without makeup, accessories and 
glasses. The registered 3D faces are parameterized as triangular meshes with 53490 vertices [8]. Figure 2 shows the 
mean face of the 200 faces in the database, which is represented as Smean and Tmean in (4).  

 Initialization Mutation Crossover Selection 
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Figure 4. 3D faces rendered under different lighting and pose conditions. 

 

4.3.2 Validation for Synthesized Faces 

To validate our algorithm, we apply our model on CMU-PIE database whose image gallery is collected from 68 subjects 
across 13 poses and under 43 illumination conditions[12]. We select images of 6 subjects which are taken under 3 
different lighting conditions and with 5 different pose orientations. We use the frontal image as training data for the 3D 
model generation while the rest are included in the test dataset for validation. Figure 5 shows images used in our 
preliminary experiment.  

 

 
Figure 5. 6 subjects with frontal images for training (top) and one of the pose views for test (bottom). 

(Courtesy of CMU-PIE Database) 

 

We utilize Principal Component Analysis (PCA) [14] to evaluate the synthesized images rendered per individual. Each 
test image is associated with a cluster of 9 synthesized 2D images that are included in the PCA training dataset for 
recognition purposes. An example of the test image and its corresponding training images are showed in Figure 6.  

 
Figure 6. Example test image and corresponding training images. The image in the center of clustered images (right) is imposed with 
same orientation as the real image (left). The surrounding images (right) are created by minor orientation offsets to the corresponding 

pose view, which are varied by azimuth and elevation angles ranging from -3 to 3 degrees. 
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Figure 7 shows the evaluation results from PCA with respect to different training datasets. The top curve (star) is 
obtained by using test images as training images. The bottom curve (diamond) informs the FR accuracy merely from 
frontal images training. The curve in the middle (circle) indicates the performance of training images projected by the 
synthesized 3D model. The comparison between these curves shows that the generated images, to some extent, achieve 
similarities to the real images. An illustration of the camera, flash lighting positions as well as head positions are plotted 
in Figure 8. 

 
Figure 7. Face orientations v.s. face recognition accuracy w.r.t different sets of training images. 

 

 
Figure 8. The head position, cameras and flash positions plotted in the 3D Cartesian Coordinate.  

(f* stands for flash and c* cameras) 

 

5. CONCLUSIONS 
In this paper, we propose a novel framework for 3D face model synthesis, which employs 3D Morphable Model and 
Differential Evolution. DE is easy to handle and shows strong ability for global optimization.The experimental results 
show that the new approach is plausible for 3D face model synthesis based on the single 2D image. Future research will 
be focused on the computation efficiency of DE optimization.  
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