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1. Introduction
Reconstructions of global-mean sea level (GMSL) over the 20th-century are predominately based on tide-
gauge observations, which are both sparse and unevenly distributed around the globe. The tide-gauge net-
work consists of a limited number of records, most of which are found along the North American and 
European coastlines, while large parts of the oceans in the Southern Hemisphere are sparsely sampled (e.g., 
Jevrejeva et al., 2017; Woodworth et al., 2011). Since century-scale sea-level trends show a strong regional 
component (Kopp et al., 2015), this sparse sampling results in a considerable uncertainty in reconstructed 

Abstract Sea level in the South Atlantic Ocean has only been measured at a small number of tide-
gauge locations, which causes considerable uncertainty in 20th-century sea-level trend estimates in this 
basin. To obtain a better-constrained sea-level trend in the South Atlantic Ocean, this study aims to answer 
two questions. The first question is: can we combine new observations, vertical land motion estimates, and 
information on spatial sampling biases to obtain a likely range of 20th-century sea-level rise in the South 
Atlantic? We combine existing observations with recovered observations from Dakar and a high-resolution 
sea-level reconstruction based on salt-marsh sediments from the Falkland Islands and find that the rate 
of sea-level rise in the South Atlantic has likely been between 1.1 and 2.2 mm year−1 (5%–95% confidence 
intervals), with a central estimate of 1.6 mm year−1. This rate is on the high side, but not statistically 
different compared to global-mean trends from recent reconstructions. The second question is: are there 
any physical processes that could explain a large deviation from the global-mean sea-level trend in the 
South Atlantic? Sterodynamic (changes in ocean dynamics and steric effects) and gravitation, rotation, 
and deformation effects related to ice mass loss and land water storage have probably led to a 20th-century 
sea-level trend in the South Atlantic above the global mean. Both observations and physical processes thus 
suggest that 20th-century sea-level rise in the South Atlantic has been about 0.3 mm year−1 above the rate 
of global-mean sea-level rise, although even with the additional observations, the uncertainties are still too 
large to distinguish a statistically significant difference.

Plain Language Summary Before the satellite era, we depend on the tide-gauge network 
to measure sea-level changes. In the North Atlantic and Pacific Oceans, many tide gauges have been 
installed, but there are only a handful in the South Atlantic Ocean. Because of this, it is challenging to 
accurately determine 20th-century sea-level changes in the South Atlantic. Because the South Atlantic 
Ocean covers about one-fifth of the global oceans, estimates of global sea-level changes are also affected 
by the low number of observations in the South Atlantic. Here, we try to improve this situation by adding 
recently rescued tide-gauge observation data from Dakar and a new paleo record that has been derived 
from a salt marsh in the Falklands to the existing sea-level records. We find that since 1900, South Atlantic 
sea level has likely risen slightly faster than the global average. This above-average rate makes sense, 
because thermal expansion in the South Atlantic has likely been faster than the global mean, and mass 
loss from ice sheets and glaciers results in above-average sea-level rise in the South Atlantic.
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GMSL trends, which is difficult to quantify, since the causes and magnitude of these regional deviations 
are often unknown. Because all processes that cause sea-level changes have distinct spatial signatures, the 
sparse sampling could also result in biases in these reconstructions (Thompson et al., 2016). Among other 
factors, this uncertainty results in a spread between estimates of the rate of 20th-century sea-level rise: the 
central estimates in recent reconstructions varies from 1.3 to 2.0 mm year−1 between 1901 and 2010, with 
recent reconstructions (e.g., Dangendorf et al., 2017, 2019; Frederikse et al., 2020; Hay et al., 2015) tending 
toward lower trends than previously estimated (e.g., Church & White, 2011; Jevrejeva et al., 2014).

The South Atlantic Ocean is one of the most sparsely sampled oceans (Dangendorf et al., 2017). An anal-
ysis of the sea-level budget in this basin by Frederikse et al.  (2018) points at a discrepancy between re-
constructed sea-level changes and the estimated sum of contributing processes between 1958 and 2014: 
the reconstructed trend over 1958–2014 was 2.56 ± 0.47 mm year−1, which was both significantly larger 
than the global-mean trend of 1.52 ± 0.19 mm year−1 and the sum of contributing processes in the South 
Atlantic, which was estimated at 1.58 ± 0.28 mm year−1. The tide-gauge record in Buenos Aires is the only 
record that provides observations for the first half of the century, and for which estimates of vertical land 
motion (VLM) are available (Santamaría-Gómez et al., 2017). As a result, this station has a large influence 
on sea-level reconstructions, and errors and uncertainties will propagate into GMSL estimates with consid-
erable weight. However, it is unknown how representative this station is for sea-level changes in the South 
Atlantic. The record also shows considerable interannual variability, which is not consistent with the low 
interannual variability in the South Atlantic Ocean that is expected from ocean dynamics models (Forget & 
Ponte, 2015). Furthermore, estimates of VLM in this area differ between nearby Global Navigation Satellite 
Systems (GNSS) stations, as well as between processing centers, although generally, they indicate an uplift 
signal (Santamaría-Gómez et al., 2017; Wöppelmann & Marcos, 2016). Therefore, to increase confidence in 
reconstructed sea-level changes in the South Atlantic, we have to overcome our dependence on this single 
tide-gauge record, and increase the number of sea-level observations that span the whole twentieth century.

An alternative to observation-based sea-level changes is to reconstruct sea level by quantifying and sum-
ming up all relevant physical processes that cause sea-level changes in the South Atlantic Ocean. Since 
for multiple processes no estimates of their contribution to 20th-century basin-mean sea level are availa-
ble, which include the sterodynamic (i.e., the combined effects of ocean dynamics and global-mean steric 
sea-level changes) and the Antarctic Ice Sheet contribution, this approach is not feasible. However, we 
could determine whether there are processes that could likely cause a deviation between GMSL chang-
es and sea-level changes in the South Atlantic Ocean over the 20th-century. Glacial Isostatic Adjustment 
(GIA) and present-day mass redistribution over the 20th-century cause changes in the geoid, Earth rotation 
and deformation (GRD), resulting in spatial sea-level and VLM patterns, which could cause such deviations 
on decadal and longer time scales (e.g., Spada, 2017). Ocean sterodynamic processes related to large-scale 
changes in the ocean temperature and salinity could also drive such deviations (e.g., Durack et al., 2014; 
Kopp et  al.,  2015). A similar process-based analysis was done by Thompson et  al.  (2016), who showed 
that many long tide-gauge records underestimate rather than overestimate the 20th-century global-mean 
sea-level trend.

In this study, we combine existing tide-gauge observations with a new long-term tide-gauge record from Da-
kar and a high-resolution salt-marsh record from the Falkland Islands (Newton, 2017; Newton et al., 2020) 
to estimate a likely range of 20th-century sea-level rise in the South Atlantic. With these new observations, 
we estimate 20th-century sea-level changes in the South Atlantic Ocean. Due to the new records, this es-
timate does not depend solely on the tide-gauge record of Buenos Aires to estimate the sea-level changes 
over the early decades of the 20th-century. We combine these in situ sea-level observations with local VLM 
observations and estimates of spatial sampling biases related to GRD effects due to GIA and present-day 
mass redistribution to reconstruct the 20th-century sea-level trend in this basin, together with an estimate 
of its uncertainty. We then use the process-based approach to determine whether there are known physical 
processes that could cause a difference between global and South Atlantic Ocean sea-level changes over the 
20th-century.

The study is structured as follows: in Section 2, we introduce the data and methods. In Section 3, we discuss 
an array of tide-gauge observations to estimate a likely range of the trend that follows from the observations, 
and in Section 4, we discuss whether the effects of GIA, GRD effects due to present-day mass redistribution, 

FREDERIKSE ET AL.

10.1029/2020JC016970

2 of 16

 21699291, 2021, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020JC

016970 by O
ld D

om
inion U

niversity, W
iley O

nline L
ibrary on [27/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Oceans

or ocean dynamics could explain a difference between the South Atlantic and GMSL, followed by the discus-
sions and conclusions in Section 5. Note that in this study, we try to adhere to the sea-level terminology as 
proposed by Gregory et al. (2019), which introduces some of the terms that are used throughout this study.

2. Data and Methods
To obtain a consistent basin-mean sea-level curve, and to estimate basin-mean sea-level changes, we need 
a consistent definition of the basin. Here, we define the South Atlantic Ocean following the analysis of 
Thompson and Merrifield (2014), who split the global ocean in basins that show a common decadal sea-lev-
el variability signal. With this basin definition, which is depicted in Figure 1, parts of the classic Southern 
Ocean and Indian Ocean are part of the basin. This definition has two advantages over the use of the clas-
sic definition of the South Atlantic: the new domain is bounded by an extra historical tide-gauge record, 
and the basin shares a common variability signal. The same basin definitions were also used in the global 
20th-century sea-level reconstructions from Dangendorf et al. (2017) and Frederikse et al. (2020), and the 
regional budget analysis in Frederikse et al. (2018).

2.1. GIA and GRD Effects due to Present-Day Mass Redistribution

GIA is the ongoing response of sea level, the Earth gravity field, Earth rotation parameters, and the solid 
Earth to the growth and deglaciation of the global ice sheets in the past. This response results in both local 
sea-level and solid-earth changes at the observation locations, as well as in large-scale effects, that could 
affect the basin as a whole. To estimate these effects, and to quantify the related uncertainty, we use 5,000 
members of the large ensemble of GIA models computed by Caron et al. (2018). This ensemble is gener-
ated by perturbing the deglaciation histories and the solid-earth properties, and each ensemble member 
is attributed a likelihood by comparing the modeled changes to an array of paleo benchmarks and GNSS 
observations.

Present-day mass redistribution also causes GRD changes, which could affect local and basin-mean sea 
level. To estimate the effects of individual sources of ice mass loss on South Atlantic sea-level, we have 
computed the GRD effects from uniform mass loss from the Greenland Ice Sheet, the West and East Ant-
arctic Ice Sheet, and from glaciers. For the latter, we determine the relative contribution of each glaciated 
region from the Randolph Glacier Inventory (Pfeffer et al., 2014) using the 20th-century regional estimates 
from Marzeion et al. (2015). We also estimate the total effect of present-day mass redistribution, based on 
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Figure 1. The locations of each region and the individual observations per region, as listed in Table 1. The red line 
denotes the boundary of the South Atlantic Ocean, as defined by Thompson and Merrifield (2014).
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realistic estimates of ice mass loss and terrestrial water storage on sea-level changes in the South Atlantic. 
For this estimate, we use two datasets: the estimate compiled by Adhikari et al. (2018) and the estimate from 
Frederikse et al. (2020). Both sets contain realistic estimates of mass changes related to glaciers, ice sheets, 
terrestrial water storage related to the impoundment of water behind dams, and groundwater depletion, as 
well as an estimate of the uncertainties.

We solve the sea-level equation of an elastic and incompressible Earth using the pseudo-spectral method 
(Tamisiea et al., 2010) and include rotational feedback following Milne and Mitrovica (1998). We use elastic 
load Love numbers from Wang et al. (2012), which are based on the Preliminary Reference Earth Model 
(Dziewonski & Anderson, 1981).

2.2. Sterodynamic Changes and the CMIP5 Ensemble

Local sterodynamic sea-level variability can be separated into the steric part, which are local sea-level 
changes related to local density changes and the local ocean mass part, driven by ocean dynamics. The 
vast majority of the decadal sterodynamic sea-level variability and long-term trends in the South Atlantic 
Ocean are associated with density changes rather than local ocean mass changes (Forget & Ponte, 2015; 
Meyssignac et al., 2017; Piecuch et al., 2013). Therefore, we assume that estimates of temperature- and sa-
linity-driven density changes can be used to assess basin-scale trends in sterodynamic sea level. We use grid-
ded temperature and salinity estimates from four different sources covering the period 1957–2018: monthly 
data from EN4 version 4.2.1 (Cheng & Zhu, 2016; Good et al., 2013; Ishii et al., 2017). From these fields, we 
computed local steric anomalies using the TEOS-10 toolbox (McDougall & Barker, 2011), from which we 
compute linear trends over the 1957–2018 period. We also use the pentadal steric anomaly estimates from 
Levitus et al. (2012).

To further analyze whether sterodynamic processes could lead to basin-mean deviations on century time 
scales, we use the model estimates from Meyssignac et al. (2017) and Slangen et al. (2017), which are com-
piled from the Coupled Model Intercomparison Project 5 (CMIP5) global climate model ensemble. This 
database contains estimates of sterodynamic changes, changes due to GIA, and GRD effects due to pres-
ent-day mass redistribution. The dataset has 12 ensemble members, from which we compute time series of 
20th-century sea-level changes over the South Atlantic basin and over the global oceans. We consider both 
sterodynamic sea level and total sea level, which consists of sterodynamic changes, GIA, and GRD effects 
due to present-day mass redistribution.

2.3. Sea-Level Observations and Estimates of Vertical Land Motion

We use sea-level observations from tide gauges and a salt-marsh record from the Falkland Islands. All loca-
tions from which we use data are shown on the map in Figure 1. We use monthly tide-gauge data from the 
Permanent Service for Mean Sea-Level (Holgate et al., 2013; PSMSL, 2019), as well as historical observations 
from Dakar and Kerguelen Island, which have been the result of multiple data rescue efforts. Le Cozannet 
et al. (2015) analyzed the available data from Dakar from 1942 to 2012. This time series has been expanded 
and now covers large parts of the 20th-century, together with benchmark stability information. We use 
all available data between 1900 and 2010. For Kerguelen Island, we use the measurements from the data 
rescue effort by Testut et al. (2006), which is a synthesis of a year (1962) of tide pole readings and a decade 
(1994–2004) of hourly tide-gauge measurements separated by 3 decades without data. Testut et al. (2006) 
derived a linear trend of 1.1 mm year−1 between 1962 and 2004 from this record.

For the Falkland Islands, Newton (2017) and Newton et al. (2020) have produced a late Holocene sea-level 
reconstruction from the Swan Inlet salt marsh. From this record, we use the 15 sea-level index point that are 
dated within the 20th- and 21st-century. To the best of our knowledge no other suitable paleo records are 
available in this basin, besides the salt-marsh record in eastern South Africa (Strachan et al., 2014) which 
has too low a resolution to resolve recent sea-level changes. A full description of this salt-marsh recon-
struction can be found in Newton (2017) and Newton et al. (2020), and we provide a summary below. Like 
other salt-marsh sea-level reconstructions (e.g., Kopp et al., 2016), the Falkland Islands record is based on 
the assumption that, over multiple decades, the sediment accretion rate in the salt marsh combined with 
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microfossil analyses of the sediments can be used as a proxy for sea-level rise (Gehrels, 2000). This approach 
requires that the sediments can be accurately dated, which was accomplished by a combination of 137Cs and 
14C dating (supporting information S1), providing a 1,300-year long sea-level reconstruction from a 0.9 m 
sediment core (Newton, 2017). The 20th- and 21st-century part of the reconstruction is used here. This 
part consists of 15 index points, with a maximum time step of 10 years between two consecutive points. It 
is based on the top 0.15 m of the core and supported by 137Cs (Figure S3) and 14C (Table S3) measurements 
that provided an age-depth model for the core (Figure S4). Former heights of the salt-marsh surface relative 
to sea level were estimated from detailed analyses of microfossils (diatoms) preserved in the sediments (Fig-
ure S5; Table S1; Newton et al., 2020). To achieve this, the vertical distributions of the modern counterparts 
of the diatoms were first surveyed across Swan Inlet salt marsh, and their relationship with tidal elevations 
was quantified in regression equations (a “transfer function”; supporting information S1; Figures S1 and S2; 
Newton et al., 2020).

This transfer-function approach is widely used in proxy-based sea-level reconstructions (Barlow et al., 2013; 
Kopp et al., 2016). The Swan Inlet transfer function was subsequently applied to the microfossils in a sed-
iment core to calculate former heights of sea level (supporting information  S1, Table  S2) spanning the 
period 1908–2006. For further details of the proxy sea-level reconstruction technique we refer to Newton 
et al. (2020) and to the supporting information (Birks, 1995; Blaauw & Christen, 2011; Brain et al., 2011; 
Juggins, 2003; Kemp & Telford, 2015; Shennan, 1986; Shennan et al., 2015; Watcham et al., 2013). Some 
index points have a higher dissimilarity coefficient to modern analogs. These points are depicted in light 
blue in Figure 2h. We have tested the effect of omitting these points, which only led to minor changes in the 
resulting 20th-century trends. See supporting information S1 for more details on this experiment. Figure 2h 
also depicts two tide-gauge records that are close to the Swan Inlet salt marsh: Port Louis and Port Stanley. 
Woodworth et al. (2010) have analyzed observations collected during individual campaigns in Port Louis, 
and Stanley features a permanent tide-gauge station listed on PSMSL. The tide-gauge data from both Port 
Louis and Port Stanley do not point at any large discrepancies with the index points. This agreement of the 
index points with the tide-gauge observations gives additional trust in the index points that have been dated 
after 1970, who generally have a relatively large minimum dissimilarity coefficient with modern analogs 
(Figure S5), which implies a larger uncertainty that is not directly quantifiable.

The time series of the sea-level observations at individual locations are merged into regions, which are listed 
in Table 1. For some regions, only one location with observation is available, and in that case, the observa-
tion at this single location is used as the regional estimate. For many regions, more than one record is avail-
able. To merge these multiple records into a single regional estimate, we apply the virtual station method 
(Dangendorf et al., 2017; Jevrejeva et al., 2014). First, we remove the seasonal cycle from the time series of 
each record, and then the time series from the two stations are subsequently averaged into a new time series 
at a virtual station until only one virtual station is left, which is used as the regional sea-level curve.

Tide gauges are referenced to a local stable benchmark, and therefore, two different tide gauges, which are 
each referenced to their own benchmark, cannot be combined without defining a common reference level. 
We estimate a common reference level by estimating mean sea level in both merged stations over the period 
where both stations provide observations. We subsequently adjust both records to this mean value. For the 
region estimates, we deviate from the original virtual station method: instead of subsequently merging the 
closest stations, we average the two stations with the longest common overlap period into a new virtual 
station. We have chosen this approach, since all merged stations are located close to each other, and maxi-
mizing the overlapping periods reduces the chance of drifts. The regions with the tide gauges that have been 
used to compute the region-averaged time series are listed in Table 1.

Since tide gauges are located on land, local VLM could affect the observations (Wöppelmann & Marcos, 2016). 
Therefore, we assess VLM at our observation locations using a combination of GNSS and Doppler Orbitog-
raphy and Radiopositioning Integrated by Satellite (DORIS) observations. Due to solid-earth deformation 
caused by present-day mass redistribution, VLM derived over the short GNSS/DORIS records is not neces-
sarily representative of the longer sea-level records (Riva et al., 2017). The coastal regions of South America 
are especially affected by solid-Earth deformation due to changes in terrestrial water storage, which could 
alias into the VLM trend when the VLM observations are not corrected (Frederikse et al., 2019).
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To avoid this aliasing, we use an updated version of the GNSS dataset from Frederikse et al. (2019). This da-
taset uses GNSS data from the University of Nevada, Reno (UNR) database (Blewitt et al., 2018), from which 
solid-Earth deformation due to GIA and contemporary mass redistribution is subtracted. After this sub-
traction, local linear residual VLM trends are computed using the MIDAS approach (Blewitt et al., 2016). 
Note that the specific choice of the GNSS trend estimation approach could have an impact on the estimated 
linear trend (Santamaría-Gómez et al., 2017). We assume that the trend in residual VLM is predominantly 
driven by secular processes and is representative of the whole tide-gauge record. We apply the same ap-
proach to the DORIS data from Klos et al. (2017). For each tide-gauge location, we check all available GNSS 
stations within a 50 km radius for which at least 4 years of data is available, and for which the estimated 
uncertainty in the vertical trend is smaller than 2 mm year−1. We have manually checked every GNSS sta-
tion for spurious signals, and only include stations without obvious issues. Table 1 lists all the GNSS and 
DORIS stations used for each region. For regions with multiple VLM observations, the individual trends are 
averaged, weighted by the inverse of the standard error squared.
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Figure 2. Estimates of sea-level changes and vertical land motion at each region. The left panels show the time series of the resulting RSL curve after merging 
the individual records into region estimates. For clarity, the individual time series have been low-pass filtered using a 13-month Butterworth filter. The right 
panel shows the estimates of the basin-mean sea-level trend using multiple spatial corrections, as described in Equation 1. The trends are computed over the 
periods for which a region provides observations. The error bars show the (5%–95%) confidence intervals. Panels a-g depict tide-gauge records. For the Falkland 
Islands proxy record (Panel h), the Port Stanley tide-gauge observations from PSMSL and Port Louis observations from Woodworth et al. (2010) are shown for 
comparison. The light blue dots in panel h refer to index point with a higher dissimilarity coefficient to modern analogs. The trends are also listed in Table S4. 
PSMSL, Permanent Service for Mean Sea Level.
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2.4. From Observations to a Basin-Mean Estimate

To constrain a likely basin-mean 20th-century trend range from the regional estimates, we have to consider 
that these estimates may be biased due the regional deviation from the basin-mean sea-level signals caused 
by GIA and GRD due to present-day mass redistribution, as well as due to local VLM. To remove these bias-
es, we use the framework of Frederikse et al. (2018): for each region, we compute an estimate of basin-mean 
sea level, based on the regional sea-level observations and the difference between regional and basin-mean 
sea level due to GIA and present-day mass redistribution. This basin-mean estimate i , based on sea-level 
observations ηi in region i reads

          ,residual GIA ,GIA PD ,PD.i i i i iR (1)

here, all overlined terms denote basin-mean values. Ri,residual denotes residual VLM in region i, and ηi,GIA and 
ηi,PD denote RSL changes related to GIA and GRD due to present-day mass changes in the region, while the 
overlined terms denote their basin-mean counterparts.

For each region in Table 1, we compute these basin estimates, as well as the accompanying uncertainties 
by generating 5,000 Monte Carlo ensembles. We start by estimating the properties of the serially correlated 
noise content of each regional estimate. We then generate 5,000 perturbed time series by simulating seri-
ally correlated Gaussian noise with the same properties. We use the Hector software (Bos et al., 2013) to 
estimate the noise properties of each regional sea-level curve, and to generate the artificial noise, which is 
added to the observed sea-level curve. We assume that for all regions, the noise spectrum can be described 
by a Generalized-Gauss-Markov model. This model generally performs well for sea-level data and avoids 
the possible over or underestimation of the temporal variability that could occur when using a first-order 
autoregressive noise model (Bos et al., 2014; Royston et al., 2018). For the salt-marsh data from Swan Inlet, 
Falkland Islands, we generate estimates by randomly perturbing both the time and height of each sea-level 
estimate following the estimated uncertainty in both. To be able to merge the salt-marsh and tide-gauge 
records, we interpolate each generated salt-marsh time series to monthly data. For Kerguelen Island, we 
perturb the estimated trend by the listed uncertainty. For the GIA term, we use an ensemble member, and 
for present-day mass GRD effects, we use the aforementioned reconstruction from Frederikse et al. (2020), 
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Region Time span Completeness (%) PSMSL id GNSS code

Buenos Aires 1905–2018 99.5 157, 832 IGM1, BUE1, BUE2, MA02, LPGS

Montevideo 1938–2018 89.2 431, 434, 761 UYMO, MTV1, MTV2, UYLP

Mar del Plata 1910–2018 96.8 177, 223, 819, 857 BCAR, MPLA, MPL2

Puerto Madryn 1944–2000 72.7 501, 867 RWSN

Dakar 1902–2018 42.1 – DAKR, DAKA, FG02

South Africa 1957–2018 98.4 284, 820, 826, 836,
910, 911, 914, 950,

1192, 1195

DRBA, DRBN, IXOP, PMBG,
SCO1, STNG, PELB, CPNT,

CTWN, HNUS, MALM, STBS,
GEO1, GEOA, FG08, BISO,

ELDN, WORC

Kerguelen 1962–1999 – – KERG, KRGG, KETG, KETBa

Falkland Islands 1908–2006 – – FALK, LKTH

For those regions based on tide-gauge time series, the completeness denotes the percentage of months within the time 
span for which observations are available. Note that for the Falklands and Kerguelen records, because of the use of 
index points instead of monthly data, no completeness has been listed. The PSMSL id denotes the station numbers as 
used by the Permanent Service for Mean Sea Level (PSMSL, Holgate et al., 2013), and the GNSS code refers to the codes 
for each GNSS station as used by Blewitt et al. (2018).
Abbreviations: DORIS, Doppler Orbitography and Radiopositioning Integrated by Satellite; GNSS, Global Navigation 
Satellite Systems.
aDenotes DORIS stations (Klos et al., 2017).

Table 1 
Overview of Tide-Gauge and GNSS Stations Used for Each Region
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and perturb each local estimate using the accompanied uncertainty estimates. The residual VLM trend is 
also perturbed with a value that is derived from a Gaussian random number generator using the uncertainty 
estimate as the standard deviation of the generated noise. We use this ensemble of region estimates to derive 
a mean estimate of the trend, as well as the accompanying confidence intervals.

To average the time series from each region into one basin estimate, we again use the virtual station method. 
We start with the two stations that are closest to each other, which are averaged into one virtual station half-
way. This procedure is repeated until one station is left, which we then use as our basin estimate. We repeat 
this procedure for each of the 5,000 regional sea-level curve ensemble members. This gives us 5,000 basin es-
timates. Similar to the region estimates, we use this ensemble to derive the trend and the accompanying con-
fidence intervals. Note that with this procedure, we obtain a monthly basin-mean time series of basin-mean 
sea level. However, this reconstructed time series consists of monthly mean tide-gauge data, a 40-year linear 
trend from Kerguelen Island, and salt-marsh data that only contain information of longer-term sea-level 
changes, and as a result, the interannual and decadal variability in the resulting basin-mean curve has to 
be treated with caution. To avoid this issue, we only discuss the resulting trends over the period 1901–2010.

3. An Observation-Based Estimate of Sea-Level Rise in the South Atlantic
The time series and sea-level trends from each individual region are shown in Figure 2. Also shown are the 
estimates of the basin-mean sea-level trend from each record after applying one or more of the bias correc-
tions from Equation 1.

The first region we analyze is Buenos Aires, whose time series is the longest available record in this basin 
from the PSMSL database, although it consists of two different tide gauges: Buenos Aires, operating be-
tween 1905 and 1987, and Palermo, which started in 1957, and is still operating today. When these stations 
are merged, they form a near-complete record covering almost the whole 20th-century. The record contains 
a considerable interannual variability signal, which is in contrast to what is expected for the nearby open 
ocean, where models suggest only a small variability signal at these time scales (Forget & Ponte, 2015). Giv-
en that the Rio de la Plata estuary, along which the Buenos Aires tide gauges are located, is the end point 
of the Uruguay and the Paraná rivers and local hydrographic properties are influenced by river outflow 
variability (Guerrero et al., 1997; Santamaria-Aguilar et al., 2017), water levels in the bay may be more rep-
resentative for river-discharge effects rather than open-ocean variability. While the uncorrected trend in the 
merged record is 1.5 mm year−1, the corrections for GIA and present-day mass GRD effects, as well as local 
residual VLM cause a basin estimate with a central value of 2.5 mm year−1 over the 20th-century. In the 
same region, Montevideo also provides a long record, covering 1938–2018. This record shows a similar var-
iability signal as Buenos Aires, which is not surprising as both records are located along the same estuary.

The next region with a long time series is Mar del Plata, which consists of three individual records that have 
been merged into a single composite time series. One of these records (PSMSL id 177) is from the PSMSL 
“metric” database, which means that information on the vertical datum is absent. However, the trends over 
the common overlap period between this and the other records does not reveal any significant differences, 
and from a visual inspection, the metric record from station 177 does not seem to be contaminated with slip-
page or offset issues. The composite record offers a near-continuous record covering the vast majority of the 
20th-century, with less decadal variability than the Buenos Aires record, which is probably due to the fact 
that this region is less affected by river outflow effects (Santamaria-Aguilar et al., 2017). Despite the short 
distance between both locations, both the uncorrected trends and the basin estimates are lower than the 
trend in Buenos Aires. Further South, we use the shorter record from Puerto Madryn, which shows similar 
trends to the Buenos Aires record, although the uncertainties for this location are greater, mostly due to its 
short length and the fact that the single available GNSS record comes with a large uncertainty.

On the other side of the South Atlantic, the Dakar record shows a trend that is close to the global mean, 
while the impact of the GIA and present-day mass GRD effects on the basin estimates are small as well. 
GNSS observations do not point to a large residual VLM signal. However, these estimates are based on GNSS 
records that come with a substantial uncertainty. Next to the GNSS stations that we use to estimate local 
VLM, the DORIS station DAKA also shows a small VLM signal (Klos et al., 2017), but again, there is no 
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overlap between the DORIS and the Gravity Recovery and Climate Ex-
periment records to account for present-day mass redistribution effects. 
Also Le Cozannet et al.  (2015) does not find any substantial VLM that 
could affect the tide-gauge record. The combination of the tide-gauge 
record with the GIA, contemporary mass, and residual VLM estimates 
results in a basin trend estimate with a central value of 1.4 mm year−1.

For South Africa, residual VLM again results in a high basin estimate. 
This uplift signal is not based on a single GPS station, but is a common 
feature throughout Southern Africa, although this uplift cannot be re-
lated to any known elastic feature (Rodell et al., 2018). The large basin 
trends we obtain could be related to the strong warming signal related to 
the Agulhas Current and leakage, as discussed in Section 4.2.

For Kerguelen Island, we again find a smaller corrected and uncorrected 
trend, although the central estimate of the corrected trend is larger than 
most GMSL estimates. The Kerguelen record however, comes with an im-
portant caveat: since the record contains 30-year gap after 1 year of obser-

vations, the estimated trend could be affected by variability that aliased into these observations. While the 
uncertainty estimates of the trend do include an estimated contribution due to the aliasing of interannual 
variability, its magnitude remains poorly constrained (Testut et al., 2006).

Finally, the salt-marsh reconstruction from the Falkland Islands gives a central basin trend estimate of 
1.5 mm year−1 ([5%–95%] confidence intervals 0.5–2.8 mm year−1), despite the subsidence observed by the 
FALK GNSS station, which points at a residual VLM trend of −0.8 mm year−1. There appears to be a note-
worthy jump around the 1970s, which is not apparent from other records. Whether this is a local signal or 
a manifestation of the uncertainties in salt-marsh data is an open question. One possible cause could be 
the issue with the index points after the 1970s: they have a larger minimum dissimilarity coefficient with 
modern analogs, leading to larger uncertainties for these points.

From all regional estimates, we computed the likely range of the trend in sea-level rise in the South Atlantic 
between 1901 and 2010. Figure 3 shows that, using all corrections, we estimate a 20th-century sea-level 
trend of between 1.1 and 2.2 mm year−1 (5%–95% confidence intervals), with a best estimate of 1.6 mm 
year−1. Both the GIA and contemporary GRD correction lead to a larger basin-mean trend estimate. While 
the best estimate without any bias corrections is 1.5 mm year−1, including GIA results in an increase of 
0.3 mm year−1, while the correction for GIA, present-day mass changes and the residual VLM correction 
together result in an increase of 0.1 mm year−1. The residual VLM correction reduces the basin-mean trend 
with 0.2 mm year−1. This reduction can be traced back to the subsidence observed in Kerguelen, Mar del 
Plata, and the Falklands. However, the correction for local residual VLM has a large uncertainty due to 
the low number of observations. This uncertainty is the major reason for the large spread in reconstructed 
basin-mean sea-level changes.

4. Do Physical Processes Explain a Deviation From Global-Mean Sea-Level 
Rise in the South Atlantic Ocean?
The second question we want to answer is: are there known physical processes that could explain a devia-
tion of the long-term sea-level trend in the South Atlantic from the global mean? Possible candidates that 
could result in a difference between global and basin-scale sea-level rise are GIA, GRD effects due to pres-
ent-day mass redistribution, and sterodynamic changes in the ocean.

4.1. GIA and Present-Day Mass Redistribution

Figure 4 shows that the basin-mean sea-level change associated with GIA is −0.03 mm year−1, which to-
gether with the small uncertainty of 0.02 mm year−1 effectively rules out that GIA is responsible for any 
large trend difference between the South Atlantic and the global mean. On the other hand, Figure 4 shows 
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Figure 3. Estimates of the trend in sea level in the South Atlantic Ocean 
between 1901 and 2010 using various correction schemes, as described in 
Equation 1. The error bars show the (5%–95%) confidence intervals. The 
trends are also listed in Table S4.
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a spatial pattern within the basin, with a sea-level drop along the Amer-
ican coast, and a rise at the South-eastern edge of the basin. As a result, 
while the basin-mean GIA signal is small, the signal is non-negligible at 
some of the observation locations. This effect can be seen in the Falkland 
Islands, Puerto Madryn, and Buenos Aires records, where the GIA cor-
rection has a large impact on the estimated trend (Figure 2).

Figure  5 shows that for all sources of ice mass loss, except for the 
East-Antarctic Ice Sheet, the South Atlantic Ocean will see a rise in sea 
level above the global average. The largest differences are found for the 
contribution of the Greenland Ice Sheet and glaciers. The only source 
for which the normalized fingerprint projects a below-average sea-level 
increase in the South Atlantic is the East-Antarctic Ice Sheet. This ice 
sheet is generally assumed to be in balance during the 20th-century 
and the first few years of the 21st century (Bamber et al., 2018; Shep-
herd et al., 2012), and it is unlikely that this ice sheet has contributed 
substantially to global and regional sea-level rise over the 20th-century. 
Therefore, the ice mass loss during the 20th-century will have caused an 
above-average sea-level rise in the South Atlantic, although the largest 
difference is 17% (Greenland), which could only explain deviations on 
the order of a tenth of a millimeter per year over the 20th-century. Sim-
ilar to GIA, present-day mass redistribution could also cause significant 
sampling biases when basin-mean sea level is estimated from the sparse 
set of observations.

The deviation due to GRD effects from present-day mass redistribution is 
confirmed by the estimates from Adhikari et al. (2018) and Frederikse et al. (2020), which are depicted in 
Figure 6. Over the 20th-century, both these estimates show that sea-level rise in the South Atlantic due to 
barystatic processes has been above the global mean: Adhikari et al. (2018) shows a difference of 0.15 mm 
year−1, while Frederikse et al. (2020) report 0.19 mm year−1.

Taken together, GIA and GRD effects due to present-day mass redistribution are likely causing a sea-level 
rise in the South Atlantic that is larger than the GMSL rise, and its combined effect will be on the order of 
a few tenths of a millimeter per year.
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Figure 4. The impact of GIA on present-day relative sea level, based on 
the model ensemble from Caron et al. (2018). Panel (a) shows the mean, 
and the Panel (b) shows the standard error. The numbers in the lower-
left corners denote the mean over the South Atlantic basin. GIA, Glacial 
Isostatic Adjustment.

Figure 5. The spatial patterns of local relative sea-level changes associated with ice mass loss from glaciers (a), and 
spatially uniform mass loss Greenland Ice Sheet (c), and the West and East Antarctic Ice Sheet (b and d). The barystatic 
sea-level change is normalized to 1 mm year−1. The blue number in the lower left corner shows the corresponding rate 
in the South Atlantic basin.
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4.2. Sterodynamic Changes

The next candidate we investigate is the role of sterodynamic changes, 
which could cause basin-scale sea-level variability signals on decadal 
and multi-decadal time scales (Thompson & Merrifield, 2014). The re-
sulting local, basin-mean and global steric trends, computed from in 
situ salinity and temperature observations between 1957 and 2018 are 
depicted in Figure 7. The steric reconstructions do not agree with each 
other on the spatial pattern of steric trends in the South Atlantic basin: 
for example the reconstruction from Cheng and Zhu  (2016) and Ishii 
et al.  (2017) show a stronger expansion in the South Atlantic interior, 
compared to EN4 and Levitus et al. (2012). It must be noted that before 
the Argo era (pre 2005), these reconstructions are based on manually 
collected temperature and salinity profiles, which have relatively sparse 
coverage in this basin (e.g., Johnson & Wijffels,  2011), that could re-
sult in biases in regional and basin-mean steric trends. Despite these 
uncertainties, there are common features visible in each of the recon-
structions: Akin to the present-day mass redistribution case, in all re-
constructions, the trend in the South Atlantic basin is larger than the 
global-mean trend. The difference is on the order of 0.2 mm year−1 and 
is driven by the fact that in this basin, a large heat uptake signals and 
accompanying thermosteric trend is only partially offset by freshening 
(Durack et al., 2014).

Despite the clustering approach to define the South Atlantic basin in such a way that it shows a common 
sea-level variability signal, the trends in steric sea level show spatial variability within the South Atlantic 
basin, with above-average trends along the South American coast and in the South-eastern part in each 
reconstruction, which may result in another deviation between local observations and basin-mean 
sea-level trends. Steric trends of more than 3 mm year−1 are found along the South African coastline. 
This coastline is affected by the Agulhas current and its leakage into the South Atlantic Ocean, and it is 
known that the sea water transported by this current shows rapid warming (Rouault et al., 2009), and as 
such, the above-average local sea-level observations from South Africa (Figure 2) may be caused by this 
rapid warming.

FREDERIKSE ET AL.

10.1029/2020JC016970

11 of 16

Figure 6. Relative sea-level changes associated with 20th-century mass 
redistribution estimated by Adhikari et al. (2018), Panel (a) and Frederikse 
et al. (2020), Panel (b). The estimate in Panel (a) is derived over 1901–2000, 
and the estimate in Panel (b) is computed over 1901–2018. The red number 
shows the global-mean trend, and the black number the trend (mm year−1) 
averaged over the South Atlantic Ocean.

Figure 7. Trends in local steric sea level (1957–2018) from temperature and salinity observations, based on four 
reconstructions. The red number in each panel gives the global-mean trend in steric sea level, and the black number the 
basin-mean trend in the South Atlantic basin. The South Atlantic basin is denoted by the black contour. All units are 
mm year−1. The global-mean steric trend is retained in the local and basin-mean estimates.
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Figure 8 shows the results from this CMIP5 model ensemble (Meyssignac et al., 2017; Slangen et al., 2017): 
for both total and sterodynamic sea level, the ensemble mean shows a larger increase in sea level in the 
South Atlantic compared to the global ocean. To estimate the likely range of differences between the South 
Atlantic and GMSL, we computed the difference in the trend for each ensemble member. The results are 
plotted as a histogram in Figure 8. Most ensemble members show a rate that is on the order of a few tenths 
of a millimeter per year higher in the South Atlantic. This is the case for both the sterodynamic and the total 
changes. The latter is at odds with our conclusions from the previous section, which shows that sea-level 
changes driven by contemporary GRD effects in the South Atlantic are likely about 0.15 mm year−1 higher 
than for the global, while the CMIP5 ensemble shows a smaller GRD-induced difference. Possible reasons 
for this difference could be differences in the sea-level fingerprint computations and/or the use of different 
GIA models.

Both GRD effects and sterodynamic effects are likely to have caused an above-average sea-level change in 
the South Atlantic over the 20th-century, while the role of GIA is small. The magnitude of the difference 
between the 20th-century trend is in the order of a few tenths of millimeters per year. When we average 

the differences from the steric products that include temperature and sa-
linity, and add these numbers to the GRD-induced difference, we obtain 
a difference between the South Atlantic and the global oceans of about 
0.3 mm year−1 (Figure 9).

5. Discussion and Conclusions

We reconstructed 20th-century South Atlantic sea-level rise using new 
observations from Dakar and the Falkland Islands, and used bias cor-
rection schemes to remove the sampling biases related to local VLM and 
GRD effects. Without these correction schemes, we find a reconstructed 
trend in the South Atlantic Ocean of 1.1–1.9 mm year−1, with a central 
estimate of 1.5 mm year−1. When we include these bias corrections, the 
reconstructed trend increases slightly to 1.1–2.2 mm year−1 with a cen-
tral estimate of 1.6 mm year−1. The central estimate is higher than most 
recent GMSL estimates, although the difference is not significant when 
taking the uncertainties into account (Dangendorf et  al.,  2017, 2019; 
Hay et al., 2015). The estimated basin-mean trends in the South Atlantic 
Ocean from Dangendorf et  al.  (2019) and Frederikse et  al.  (2020), are 
also greater than its estimated global-mean trend between 1901 and 2010 
(1.95 vs. 1.45 mm year−1 and 1.50 vs. 1.35 year−1, respectively).
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Figure 8. Global and South Atlantic sea-level changes of the 12-member historical CMIP5 model ensemble 
(Meyssignac et al., 2017; Slangen et al., 2017). Both the total sea level and the sterodynamic component are shown. Thin 
lines denote ensemble members, and thick lines denote the ensemble mean. The right panels show a histogram of the 
trend in the South Atlantic minus the global trend for total and dynamic sea level for each ensemble member. CMIP5, 
Coupled Model Intercomparison Project 5.

Figure 9. Comparison of the probability density function of the 
reconstructed trend in the South Atlantic using no corrections and all 
corrections, to the GMSL and South Atlantic trend from Dangendorf 
et al. (2019) (D2019), Frederikse et al. (2020) (F2020), and other recent 
GMSL reconstructions (Dangendorf et al., 2017, D2017; Hay et al., 2015, 
H2015). All trends have been computed over the period 1901–2010. GMSL, 
global-mean sea level.
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This difference is not caused by a few individual regions, but all regional observations have a central basin 
trend in the South Atlantic above the global mean, except for Mar del Plata. The new records used in this 
study add additional evidence that the above-average central trend observed in the Buenos Aires record, 
which is the longest South Atlantic tide-gauge record in the PSMSL database, can also be found in other 
locations, although the central value of the estimated trend (2.5 mm year−1) is higher than in the other long 
records in the South Atlantic.

The process-based approach also suggests that the 20th-century sea-level trend in the South Atlantic Ocean 
has been larger than the global-mean trend. Both steric expansion and present-day mass redistribution have 
contributed to this difference, each resulting in a difference on the order of 0.1–0.2 mm year−1. Together, 
these processes result in a difference on the order of 0.3 mm year−1, which is confirmed by results from 
CMIP5 models, although they project a smaller GRD-induced difference. GIA plays a minor role, although 
GIA does have an impact at specific tide-gauge sites within the South Atlantic basin. Both the observations 
and the process-based estimates point at an above-average sea-level rise in the South Atlantic Ocean of 
about 0.3 mm year−1.

Even with the extra observations, the uncertainty is still large, and the difference with global-mean sea-level 
rise is not statistically significant. A part of this uncertainty is driven by VLM: estimating VLM trends from 
the short GNSS records introduces a large uncertainty, which affects the reconstructed trends. More GNSS 
records, or other VLM reconstruction methods, such as differenced tide gauge-altimetry trends (Wöppel-
mann & Marcos, 2016) and inSAR (Mahapatra et al., 2018) could improve this situation. One particular 
problem with GNSS records is the issue of the record length: trends estimated over the short GNSS record 
are assumed to hold over the complete tide-gauge records. This assumption does hold for many processes 
that cause VLM, such as sediment compaction, but other processes, such as tectonics and groundwater de-
pletion can cause large short-term VLM signals (Wöppelmann & Marcos, 2016). Because the characteristics 
and causes of local VLM are often unknown, it is difficult to assess the error induced by this assumption. 
Some words of caution must also be added to our analysis of sterodynamic effects. First, the number of in 
situ temperature and salinity observations in the South Atlantic Ocean is limited, especially before the Argo 
era. The low number of observations affects all temperature and salinity datasets used in this study, and 
could cause an additional under or overestimation of the basin-mean trend (Abraham et al., 2013; Durack 
et al., 2014). Regional sterodynamic effects, such as the Agulhas current and leakage around South Africa, 
could cause regional biases, which have not been corrected for. From the observations, we cannot assess this 
spatial sampling bias, since ocean bottom pressure estimates in coastal locations are not available. At the 
coast, where the oceans are generally shallow, sterodynamic changes manifest mainly as bottom pressure 
signals (e.g., Bingham & Hughes, 2012), and sampling the steric fields at the tide-gauge locations is not a 
reliable estimator of this spatial bias. The comparison between observations and the CMIP5 model ensem-
ble also comes with some limitations: this ensemble will not reproduce the internal variability in sea level, 
which could affect trends on decadal to centennial scales (e.g., Dangendorf et al., 2014). Furthermore, many 
processes that affect coastal sea level are not fully resolved in coarse-resolution ocean models, which could 
explain some of the differences between observed local tide-gauge trends and model results (Meyssignac 
et al., 2017; Slangen et al., 2017).

Even with the added records, the number of sea-level observations in the South Atlantic Ocean remains 
small, especially over the first half of the 20th-century, and large parts of the basin interior and many 
coastlines are still not covered by any observation (Marcos et al., 2019). Therefore, the spatial and temporal 
coverage of the observations remains sparse. Despite the addition of the Falklands record and the rescued 
tide-gauge data from Dakar, sea-level changes in the South Atlantic over the first half of the 20th-Century 
are based on only four records, which still results in a large uncertainty in basin-mean sea-level changes. 
Adding more regional sea-level observations to the basin-mean estimate could also reduce the uncertain-
ties. We have omitted some long tide-gauge records from our analysis, mostly because of the presence of 
spurious trends and variability (most notably Cananeia and Ilha Fiscal in Rio de Janeiro), or the lack of 
reliable GNSS estimates, such as Takoradi. To test whether adding these stations affects our conclusions, 
we have estimated the basin-mean trend by including the both tide-gauge records under the assumption of 
no residual VLM. Adding these regions did not significantly change 20th-century trend (it stays at 1.6 mm 
year−1) compared to our analysis based on stations for which VLM estimates are available. Some locations 
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in the PSMSL database also have longer records for which no datum information is available (“metric data”) 
and for which no nearby records can be used as “buddy check,” for example the Santos record near Sao 
Paolo, which has 56 years of data. An analysis on the reliability of these records, as well as data rescue pro-
jects and paleo proxies could all help to improve this situation.

Our understanding could also be improved by applying more sophisticated methods to determine the size 
of the spatial sampling bias due to sterodynamic processes. Given that the South Atlantic basin, as defined 
by Thompson and Merrifield (2014) covers 22% of the global oceans, this uncertainty affects global-mean 
sea-level reconstructions, and further reducing it may be one of the keys steps to reduce the spread among 
the various reconstruction techniques.

Data Availability Statement
The time series from Swan Inlet, the uniform GRD fingerprints from Figure 5, the steric estimates from Fig-
ure 7, and the scripts to compute all the results are available from https://doi.org/10.5281/zenodo.4542572.
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