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ABSTRACT 

 

FRAMING AUTOMATION TRUST: HOW INITIAL INFORMATION ABOUT 

AUTOMATED DRIVING SYSTEMS INFLUENCES SWIFT TRUST IN AUTOMATION 

AND TRUST REPAIR FOR HUMAN AUTOMATION COLLABORATION 

 

Scott Anthony Mishler 

Old Dominion University, 2023 

Director: Dr. Jing Chen 

The study examines how trust in automation is influenced by initial framing of 

information before interaction and how later active calibration methods can further influence 

trust repair or dampening after an automation error in a three-experiment study. As more human 

drivers begin to use automated driving systems (ADSs) for the first time, their initial 

understanding of the system can influence their trust leading to a miscalibration of trust. Prior 

studies have investigated how trust develops through interactions with an automated system, but 

few have looked at integrating swift trust and framing to calibrate trust before interaction and 

investigate further active calibration methods after an error. We conducted three experiments 

using multiple drives with an ADS to test manipulations of user’s initial trust calibration, how 

resilient that trust manipulation would be to an automation error, and if the trust could be 

repaired or further dampened after the error. Three initial framing methods were employed 

before the drives: Positive/Promotion, Control, and Negative/Dampening. The second 

experiment implemented an error during one of the drives and the third experiment implemented 

a positive, control, or negative active trust calibration strategy after the error. Positive/Promotion 

framing did indeed show an increase in trust for the first experiment and that increased trust was 

resilient in drives after an error in the second experiment. However, the third experiment showed 



   

 

mixed results and was unable to demonstrate an effect of active trust calibration after the error. 

Overall, the study showed that framing information is impactful on trust for driver’s initial 

interactions with an ADS, certain active calibration methods might not be effective depending on 

the individual, and designers and researchers should be careful to consider these effects to avoid 

endorsing overtrust or undertrust. 
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CHAPTER 1 

INTRODUCTION 

Automation is an ever-increasing aspect of human life, and it is important to ensure that 

humans and automation work cooperatively to promote safety and efficiency. However, neither 

humans nor automation are perfect and therefore it is important to understand the interactions 

between them to ensure optimal workload distribution. Collaborative teaming between humans 

and automation has been a large push in recent literature with more improvements and better 

automation coming out (Endsley, 2017; Hancock, 2017). A commonly referenced statistic about 

traffic accidents reports that 94% of accidents are due to the human driver, often reported as due 

to human error (Read et al., 2021; Singh, 2018). The majority of these driver-related reasons are 

usually recognition, decision, or performance errors. Advanced automotive assistance systems 

(ADAS) have been shown to help for such cases (Benson et al., 2018; Cicchino, 2017).  

However, implementation of these systems has shown sometimes either unwillingness to 

use the systems that result in loss of benefits (de Visser et al., 2020; Parasuraman & Manzey, 

2010; Sanchez et al., 2014) or overreliance on the system that leads to issues if automation errors 

occur (Dunn et al., 2021; Parasuraman & Manzey, 2010; Parasuraman & Riley, 1997). Ensuring 

proper trust calibration between the human-automation team, much like human-human teams 

(Madhavan & Wiegmann, 2007), is crucial for safety (de Visser et al., 2020; Parasuraman & 

Riley, 1997). For some new and unknown systems, swift trust, which is defined as quickly 

formed trust in situations with little prior interaction that require fast cooperation due to 

heightened risk or stakes, needs to be introduced to calibrate trust to the capabilities of the 

system (Capiola et al., 2020; Haring et al., 2021). Creating trust quickly can help create teams 

that work together more efficiently for new groups (Kroeger et al., 2021; Meyerson et al., 1996). 
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In human-machine collaboration, calibrating trust for different automation systems can require 

trust repairs due to error or dampening if trust is too high (de Visser et al., 2018, 2020). In 

ADAS, many systems can be new to drivers or are constantly updated and might not be fully 

implemented or understood (DeGuzman & Donmez, 2021b). Integrating trust repair and 

dampening techniques should improve trust calibration, particularly in situations where 

assistance systems might be novel to the user.  

1.1 Autonomous Vehicles 

 Autonomous vehicles are currently a hot topic, yet their future is uncertain. Certain 

experts have predicted that we would have fully autonomous vehicles by this point and some still 

put that prediction far off into the future. In the meantime, we are stuck in an intermediary period 

where there are automated driving system (ADS) features that help the human driver navigate the 

roadway and watch out for hazardous situations. Features like Adaptive Cruise Control (ACC) 

and Lane Keeping Assistance (LKA) help drivers maintain a consistent speed with the flow of 

traffic and stay in the proper lane without drifting. These ADS features allow the human driver to 

offload some of the driving task and focus on monitoring other potential hazards. As the 

technology improves, driving will become increasingly automated. On the transition to highly 

automated driving (HAD), many drivers will be on the forefront of the technology and will have 

to learn how it works along the way.  

 According to the SAE levels of driving automation (SAE, 2021) there are six levels of 

automation from 0 – no automation – to 5 – full automation – with the current commercially 

available ADSs ranging around 2 and HADs that companies are working toward at level 4. Level 

2 automation only requires that the vehicle performs the steering and acceleration, and the 

human driver monitors and is ready to take control. At Level 2 automation system continuously 
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assists the driver by integrating both acceleration and steering in certain conditions using 

technologies like highway pilot. The human driver is still required to be fully attentive and 

engaged throughout the entire driving task. Level 3 gives more responsibility to the vehicle, and 

it monitors the roadway environment, but the human is still required to take over. At Level 3, the 

automation now takes over the complete object and event detection and response (OEDR), 

meaning that the human only needs to monitor the automation’s performance, but is not required 

to maintain attention on the roadway environment unless the vehicle requests their action. At 

Level 4, the automation completes the full driving task but there are limitations on where this can 

be performed, leaving the driver the option for override but not the requirement within those 

confines.  

Automation errors or limitations can occur at Levels 2 to 3 as system-limit or system-

malfunction (DeGuzman et al., 2020; Mishler & Chen, 2023). System-limit errors occur when 

the system is no longer able to perform the task because the boundaries of its capabilities have 

been reached, like when the road conditions change to one outside the operational definition or 

the weather conditions prevent proper functioning. In contrast, the system-malfunction errors 

occur when the system should be functioning properly in its operational conditions, such as when 

the system does not see a vehicle slowing down and react by slowing down accordingly. 

Compensating for these automation errors requires some cooperation between the automation 

system and the human driver. Much discussion has surrounded the idea of who is responsible in 

cases of crashes or incidents during these levels of driving, but that is mostly outside the scope of 

this study. However, it is important to point out that at Levels 2 and 3 there is a shared 

responsibility of the driving task wherein both the human and the automation must take actions 

that can change the trajectory of the vehicle (Bennett et al., 2020; SAE, 2021). 
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Most car companies shy away from explicitly labeling their technology along the levels 

put forth by the SAE, leading to some difficulty fully classifying current systems and creating 

room for confusion. Additionally, manufacturers have made promises of higher advance 

automated driving that still have not come to fruition, leaving question about when these future 

levels might actually be feasible and if they will be able to fully perform with only the driver as 

the fallback or without human need (Ford Motor Company, 2016). This resistance to official 

labeling is likely to continue into the future as the technology improves and makes the jump to 

levels 3 and 4, during which human becomes further removed from the process, but automation 

is required to be much more reliable and robust. Current automation classification schema might 

change and adapt as the technology grows and many questions about automation levels are 

already in question because of the lack of human-automation teamwork and coordination 

involved and the focus on what “man does better versus machine does better” (Dekker & Woods, 

2002; Jamieson & Skraaning, 2018; Kaber, 2018).  

Periodic updates and improvements to automated vehicles are likely needed to improve 

the automation capability – along with vehicle system function and cybersecurity – over time, 

whether through over-the-air updates or larger updates while in the workshop. Vehicle software 

updates, like our phones and computers, could introduce critical changes that adapt the way 

drivers interact with the system. Even small improvements over time to various driving 

assistance systems can result in larger changes to the driving behavior and capabilities of the 

system. The novelty of the update can change the way the individuals perceive, use, understand, 

and interact with the system. The current study focused on system updates as such.  
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1.2 Trust in Automation 

Trust in automation literature started in the realm of human-human trust, applying 

principles of how humans interact and build trust with each other to situations of humans 

interacting with automation (Muir, 1987; Muir & Moray, 1996). Many similarities in the level of 

trust between human-human pairs and human-automation pairs exist but can differ depending on 

the initial level of acceptance, anthropomorphism or how humanlike the automated agent is, the 

reliability of the agent and many other factors. Trust is a psychological state in which one party 

accepts a certain level of uncertainty of the other party with the expectation of positive results of 

behavior or subsequent interactions from that party (Rousseau et al., 1998). Applied specifically 

to human-automation trust, Lee and See (2004) define trust as the belief that an agent will help 

the user achieve a task or goal when that goal has some level of uncertainty and vulnerability. In 

both cases, the uncertainty and vulnerability are present because the individual must rely on an 

external entity that is outside of their control and must believe that the other is both capable and 

willing to do whatever was agreed upon. Often in human-human interactions, trust can be more 

uncertain due to the other human having individual desires and goals that might be separate than 

the individual. However, in human-automation pairs, the automation is typically programmed 

with the intent of explicitly helping the individual and therefore the issue of trust often comes 

from the potential of its capability and not the willingness or motivation to help. Although the 

automation is only there to assist, humans are often prone to the automation bias, expecting 

much more from automation than their human counterparts, leading to unrealistically high 

standards for automation (Dzindolet et al., 2003). 

Trust changes and develops based on the behavior of the collaborative agent. However, 

determinants of that trust can vary depending on the nature of that agent. Parasuraman and 
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Manzey (2010) assert that trust develops differently in humans than in technology because of a 

common positivity bias towards new technologies. Dzindolet and colleagues (2003) posit that 

people are potentially unrealistically optimistic about new technologies regarding its capabilities. 

However, this positivity may not be resilient as mentioned earlier where the automation bias can 

make humans more critical toward mistakes made by automation (Dzindolet et al., 2003; 

Goodyear et al., 2017). Additionally, the common positivity toward new technologies does not 

always hold across the board. Some technologies such as AI-created art show more negative 

reactions compared to human created art (Hong & Curran, 2019). Trust can develop and increase 

over time, though errors can lead to trust decreases as commonly seen with technology 

(Madhavan & Wiegmann, 2007). Humans are also more prone to blaming technology for errors 

due to the fundamental attribution error (Jones & Harris, 1967)and shifting responsibility for 

errors while also being unwilling to give automation credit for positive results (Madhavan & 

Wiegmann, 2007). This is further supported from findings of algorithm aversion where 

participants did not depend on a forecasting aid after an error but preferred to follow a human 

input even when the errors were more severe (Dietvorst et al., 2015; Glikson & Woolley, 2020).  

Prior literature on human-automation trust has focused on the idea that humans use 

automation as a tool, and it is either used or not. However, automation’s role is shifting from that 

of only a tool to that of a teammate (Demir et al., 2021). As AI and robots become more capable, 

they could be seen as collaborators. In such situations, humans can depend on AI to 

autonomously complete a task while the human works on something else or the human-

automation team can work in tandem to accomplish a task. Errors in work are almost guaranteed, 

by both humans and automation. That is why cooperative teamwork exists to benefit from each 

other’s strengths and make up for individual weaknesses. One member can notice the error of 
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another and help correct it or provide input to help prevent the error again in the future. 

Cooperative research for automated vehicles has explored communication strategies to avoid 

misunderstandings that might lead to errors through the automation communicating lane change 

intent (Kauffmann et al., 2018). Alternatively, automation should not be designed to supplant the 

human driver, at least for this stage of AVs. The best way to design for AVs would not be 

something that fully replaces the tasks and capabilities of the human driver, because that would 

push the human out of the loop (Endsley, 2017; Endsley & Kiris, 1995). 

One of the most influential factors influencing trust for human-automation is the 

reliability of the system (Chen et al., 2021, 2022; Hoff & Bashir, 2015). De Visser and 

Parasuraman (2011) manipulated both static reliability and adaptive reliability for human-robot 

teaming of monitoring robotic vehicles and showed significantly higher trust for aids with higher 

reliability than those with lower reliability. Chen and colleagues (2021) manipulated the 

reliability of a phishing detection aid to either 60% or 90% reliability and found that trust was 

significantly higher for the 90% reliable aid. Additionally, they found that with higher reliability, 

participants trusted the aid more regardless of the error type compared to lower reliability where 

trust calibration varied depending on if the error was a miss or false alarm. False alarms are more 

prevalent in less reliable automation, so trust is calibrated down to account for the noticeable 

errors. But misses for unreliable automation might go unnoticed so trust is never decreased. 

Seong and Bisantz (2008) showed that reliability information and feedback can significantly 

contribute to accurate trust calibration by informing users when it is appropriate to remember the 

aid’s imperfections or ignore the aid when necessary. Showing if an aid is unreliable lets users 

decide when to use it and highlighting its high reliability still reminds them it is not perfect. 

Errors demonstrate the reliability of the automation to the operator; however, some errors might 
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result in small trust breaks whereas others are seen as major trust violations (de Visser et al., 

2018; Hoff & Bashir, 2015). For errors in automated driving, some studies have shown that 

takeover requests lower trust (Hergeth et al., 2015; Mishler, 2019; Mishler & Chen, 2023), 

whereas others have shown that a takeover might not be considered an error depending on how it 

is presented and thus does not influence trust (Gold et al., 2015; Körber et al., 2018).  

The amount of time that the individual spends with the automation can also affect their 

trust level (Hoff & Bashir, 2015). Trust is built over time and the experiences that the individual 

has with the automation can influence their current level of trust calibration. However, this is not 

always the case (Bailey & Scerbo, 2007). Sometimes, operators might not be able to detect the 

reliability of the automation or notice errors, especially at high levels of automation where the 

discrepancy between perfect and near perfect automation is very small (Bailey & Scerbo, 2007). 

Glickson and Woolley (2020) review the current work on human trust in AI in specific regard to 

the differences between trust in AI and other forms of technology, with a focus on the specific 

form of AI representation (robot, virtual, embedded). As machine intelligence gets better, that 

leads to more complex capabilities requiring a higher user understanding to fully grasp the 

innerworkings of the system (Hancock, et al., 2011). Trust is often derived from a user’s 

perceived capabilities of the system rather than its true capabilities. An additional complication 

arises due to the non-deterministic nature of AI meaning that the decision-making process is hard 

to make transparent and decisions are often hard to predict (Danks & London, 2017). 

1.3 Trust Calibration 

Trust calibration is the concept through which the level of trust in the automation by the 

human is adjusted to properly match the capabilities of the automation (Lee & See, 2004; Muir, 

1987). Trust calibration is critical for human-automation collaboration because improper 
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calibration can result in either overreliance on the system if the human is too trusting or 

underreliance if they are not trusting enough. Overreliance on automation is problematic for 

human-automation teams because it leads to misuse of the system.  

One can find many examples in the literature of instances where an operator overtrusted 

and misused an automated system resulting in catastrophic errors. The 2018 Uber incident where 

an ADS (Levels 3-5 of automation) hit and killed a pedestrian crossing the road was one of the 

watershed cases for the real-world consequences of automated driving systems (National 

Transportation Safety Board, 2018). The general conclusion of the NTSB report was that the 

ADS was never able to accurately identify the pedestrian even though it was tracking the object; 

however, if the human driver would have been paying attention, they would have likely had 

enough time to intervene and avoid the pedestrian. Though the system was being tested at higher 

levels where the human driver is not required to pay attention, there are situations where the 

lower level ADASs will fail, and the ADS does not detect it. Some individuals even misuse 

automation further by overriding safety checks of ADASs to keep the automation going past the 

operating specifications, like the product called the “autopilot buddy” for Tesla vehicles sold to 

trick the automation into thinking that the driver’s hands were still on the wheel (Hawkins, 

2018). Clearly some individuals have too high of trust in systems that are not yet worthy of such 

level of trust. 

Conversely, automated driving systems could go unused due to underreliance, resulting 

in disuse. Disuse of highly reliable automation systems can cause a loss of safety that the 

automation would have otherwise provided through its ability to detect threats and potentially act 

quicker than the human (SAE, 2021). In other words, the added safety benefits provided by a 

reliable system might not be realized by drivers who disuse the system. Additionally, if they 
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distrust the system, they may not heed alerts or understand certain features of the automation 

enough to perform a task where automation is required. With some technologies, people are 

forced to trust the system because they must use it. In situations like these, disuse can manifest in 

a resistance to listening to system recommendations or warnings, or purposely sabotaging the 

system to get around requirements. This can be seen in minor ways like drivers modifying their 

seatbelts so that the automated sensors do not constantly warn them the seatbelt is unbuckled. 

The consequences from a lack of proper trust can be monumental without correct calibration.  

Trust can be calibrated through interacting with the system. Interaction with the system 

and time spent are among the best ways for the human operator to understand how the system 

functions and develop a proper level of trust (Chen et al., 2018, 2022; Hergeth et al., 2017; Lee, 

& See, 2004). However, individuals do not always have sufficient time spent interacting with the 

system or may stop interacting with a system before they have appropriately calibrated their 

trust. This is especially true for new and innovative systems, as well as for new updates on 

known systems. Properly designed features of automation systems such as communication style, 

system appearance, and transparency can lead to proper trust calibration (de Visser et al., 2012; 

Dzindolet et al., 2002; Lee, 2008). Transparency is when a system provides information about 

how it is working or its decision-making process to the user to keep the user in the loop. 

Improving the transparency of the system helps demonstrate how the system is working and how 

well it is performing, which has been shown to improve trust and trust calibration, especially in 

systems where high trust is needed (Hoff & Bashir, 2015; Dzindolet et al., 2002). However, 

transparency information is often lacking for human-machine systems which can leave the user 

out of theloop regarding what the system is doing or how the system is going to perform in 

certain circumstances. A system can convey uncertainty or show performance directly, but many 
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ADSs have too broad of an operating range or do not have enough testing data to know specifics 

about its own operational reliability, nor is giving explicit reliability rates always useful (de 

Visser et al., 2020; Du et al., 2020; Katrakazas et al., 2015; Kunze et al., 2019). Additionally, the 

way transparency information is communicated to the user can influence their understanding and 

ability to use the given information.  

1.4 Framing Effect 

 The same information can be presented in different ways, or framed, which affects how 

decisions are made based on the information (Tversky & Kahneman, 1981). In classic framing-

effect experiments, individuals are more risk-seeking when a negative frame is presented 

compared to a positive frame of a question (Kahneman & Tversky, 1979; Tversky & Kahneman, 

1981). The studies often frame one question in a positive light by highlighting the savings aspect, 

such as the number of lives or money that might be saved, in contrast to the negative or loss frame, 

highlighting the number of lives or money that will be lost. By using proper phrasing and 

highlighting the positive or negative aspects involved with certain decisions, it is possible to 

influence individuals’ decisions. Individuals do not always think rationally and the way a situation 

is represented to them can influence their decision or attention to certain aspects of a task.   

Some prior research has focused on the effects of attribute and goal framing on decision 

making. Researchers looked at how displaying an automated aid’s actual accuracy or inaccuracy 

percentages compared to highlighting the general goal of maximizing hits and correct rejections 

or minimizing misses and false alarms (Lacson et al., 2005). In other words, they wanted to know 

if specific percentages help more than general goals. They found that positive framing, 

highlighting the accuracy or maximizing hits and correct rejections influenced participants to 

better utilize the aid. However, Lacson and colleagues also found that showing both positive and 
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negative forms of information lead to increased compliance rates compared to uninformed groups. 

This finding shows that more information can sometimes make users simply rely on the automation 

without questioning it, especially when risk information is hard to understand (Brust-Renck et al., 

2013; McLaughlin & Mayhorn, 2014). Research has shown that summary risk information can be 

helpful for users to establish a mental framework, and safety framing of the summary information 

influences users to pick less risky options (Chen et al., 2015).   

Information can be conveyed in different ways and sometimes simply displaying specific 

reliability information can have unintended consequences, especially when the risk information 

is hard to understand (Brust-Renck et al., 2013; Lacson et al., 2005). Depending on the 

transparency information the user is told and how it is communicated, it can influence their trust 

and performance during subsequent interactions with the system. However, the way the system 

information is described to users can greatly influence their understanding of how the system 

works. Singer and Jenness (2020) told participants about a driving assistance system, with the 

system being called “AutonoDrive” for half of the participants, and for the other half it was 

called “DriveAssist”. Participants who received AutonoDrive materials thought the system was 

much more capable than it really was and were more prone to risky behaviors during system use.  

Similarly, with updates to a system giving it new capabilities, the brief descriptions of 

these updates to the user are important, as seen from previously discussed framing studies with 

minor wording changes. System updates are ubiquitous among technology because features are 

constantly being added and improved, or bugs are getting fixed. Some short patch update notes 

are relatively common and can quickly inform individuals about what has changed, as with small 

security warnings (Chen et al., 2015, 2018; McLaughlin & Mayhorn, 2014). Communicating 

system capabilities to users through quick messages about the aid can influence users’ perception 



   

 

13 

(Bass et al., 2013; Mishler et al., 2019; Pak et al., 2012). ADSs do not require individuals to be 

trained before use and as previously discussed, even when individuals have access to training 

documentation, usually very little time is spent reading it.  

1.5 Trust Promotion, Dampening, and Repair 

Sometimes it can be helpful to adjust a user’s trust in the system to help with trust 

calibration before their interaction with the system. Even though users are constantly calibrating 

their trust in automation through interaction with the system, sometimes starting too trusting or 

too resistant is undesired. Additionally, trust adjustments before the interaction can be useful as 

an error might be rare or the system has learned from a previous error. Calibrating trust before 

interaction helps users set reasonable expectations for future interactions. It is important for 

proper trust calibration to set proper expectations for an upcoming task. This is the case for both 

the user, who has little experience with the new system update, and the system that has is not yet 

proven its competence in a new update.  

As previously discussed in the framing section, positive or negative framing of messages 

can impact the way a user understands information and consequently makes a decision. 

Specifically for conveying reliability information, displaying either too much information or hard 

to understand information can simply lead to compliance instead of proper trust calibration 

(Brust-Renck et al., 2013; Lacson et al., 2005). Positive framing of information can lead users to 

see more benefits, thus highlighting the system’s usefulness. Whereas negative framing can lead 

to better understanding of the risks, leading to more cautious behavior. Setting expectations for 

how an automation is going to perform can be accomplished through this initial framing before 

interaction.  
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Positive framing can result in trust promotion, highlighting the benefits of the automation 

and improving the individual’s trust and confidence in the system. Under-reliance on a system, 

or disuse, can stem from uneasiness about how capable the system is and reluctance to trust new 

technology, especially when there is limited experience (Parasuraman & Riley, 1997). As will be 

discussed later, quickly inciting trust in a system can be critical to successful cooperation, 

especially for new teams (Haring et al., 2021; Kroeger et al., 2021; Meyerson et al., 1996). 

In contrast, negative framing can result in trust dampening, highlighting the risks or 

potential points of failure of an automation can set realistic understandings of the automation’s 

capabilities and reliability. In some cases, individuals are prone to misuse of the automation 

wherein their overreliance on the automation leads them to neglect proper monitoring behavior 

(de Visser et al., 2020; Lee, & See, 2004). Trust dampening is intended to reduce the amount of 

overtrust a user has in the automation to dissuade them from overreliance thus insuring a more 

appropriate level of trust calibration (de Visser et al., 2020). Trust dampening is important for 

calibrating trust to avoid danger of omission errors through missing critical signal due to lowered 

monitoring or being too slow to respond due to overreliance and lack of situation awareness. 

Overtrust can be an unhealthy adaptive strategy that humans adapt when they are in situations of 

complacency or when burdened with a secondary task (Hancock et al., 2011; Hoff & Bashir, 

2015; Parasuraman & Manzey, 2010). In Level 3 autonomous driving, the human driver is not 

intended to actively monitor the driving environment but must be ready to take over if the 

situation requires (SAE, 2021). The human driver is likely engaged in a secondary, non-driving 

related task (NDRT) and thus is highly prone to relying on the automation to safely perform the 

driving task. Even for lower levels of automation where the human is supposed to be in control 

of the driving task, human drivers are prone to engaging in secondary NDRTs, resulting in 
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accidents due to distracted driving (Overton et al., 2015). Both trust promotion and dampening 

strategies can act as preventative measures against improper trust calibration before first 

interacting with a system, combatting misuse or disuse. However, if these strategies are 

misapplied, they could end up doing more damage.  

During interaction with the system, it is important to ensure trust stays properly calibrated 

after an error. A system error is a violation of trust that should result in a decrease of trust 

(Chancey et al., 2017; Hoff & Bashir, 2015; Mishler & Chen, 2023). However, errors are 

typically not an if, but a when. Even a professional athlete or writer with decades of experiences 

can make a critical error. Trust repair is the idea that one member of a team tries to prevent or 

recover from trust loss after an error by increasing trustworthiness (de Visser et al., 2018; Kim et 

al., 2006). The concept is familiar in human-human trust situations where one party makes an 

error, and they implement certain strategies to correct their behavior in the eyes of the other party 

so that the task operation can continue. One method of cooperative interaction for human-

automation teams is the regulation of relationship equity through repair strategies after an error 

(de Visser et al., 2020). 

Trust repair strategies are useful for recalibrating a human’s trust after an automation 

error. If the human does not know why the error occurred, they might believe that it may occur 

again soon, therefore decreasing trust which could result in an incorrect trust calibration level. 

De Visser and colleagues (2018) list a series of repair strategies, a few key strategies are to 

apologize (Kim et al., 2004, 2006), explain (Dzindolet et al., 2003), and deny (Kim et al., 2004, 

2006). Using the apologize strategy, the system would make a simple apology for the fault. The 

explain strategy would describe to the user the reason for the error they just experienced. For the 

deny strategy, the system would tell the user that it did not make an error. An apology accepts 
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the blame whereas the denial tries to place the blame elsewhere. The explain strategy implements 

some form of system transparency, allowing the user to see what might have gone wrong in the 

process and allow them to look out for the potential of this issue in the future. After a violation of 

trust, an effort to repair this trust can ensure a healthy working relationship between the team. 

Trust repair is especially helpful in situations where there is an initial bias against trust by one 

party and certain errors might confirm their lack of trust, even if those errors are rare (Baker et 

al., 2018; Marinaccio et al., 2015). Said differently, if an individual is biased to disuse a system, 

a small error might confirm this bias. This is especially pertinent for human-automation teams 

where humans have unrealistically high standards for automation, which can lead to more 

negative reactions to automation than to a human teammate (Dzindolet et al., 2003; Goodyear et 

al., 2017). A well-timed trust repair strategy could encourage the team to continue to work 

together but would allow the user to be more watchful of the potential for an error in the future 

and to be more prepared for it, while still benefiting from the mutual teamwork in the meantime.  

The process of trust development for automation, from introduction of the system to how 

the human responds to and recovers from errors, is highly important for understanding how users 

will interact with the system. De Visser and colleagues (2018) provide an illustration of the 

transactional model of trust repair and demonstrate how relationship acts can be beneficial 

(repair, politeness, positive interaction) or costly (error, damage, time loss, inefficiency). These 

acts are adjusted through a relationship regulation act such as a repair act or a dampening act 

(i.e., a repair act counteracts a costly act, and a dampening act counteracts a beneficial act). They 

also demonstrate possible trust recovery trajectories over time with small declines in trust after 

mini trust breaks, a large drop after a major violation then baseline recovery with no 

intervention, fast recovery after one repair effort, and delayed recovery for another repair effort. 
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These depictions set up the theoretical underpinnings behind trust development and calibration. 

However, this framework only covers repair and dampening after interaction and does not 

consider trust dampening or trust promotion strategies before interaction and interaction with 

newly formed teams. Additionally, these models need more research and validation through 

further demonstration of human-automation teams. This is where a gap in the research lies and 

further contributions to the field of human-automation interaction can be made. 

My prior work (Mishler, 2019; Mishler & Chen, 2023) demonstrated that trust could be 

developed and calibrated over seven short six-minute drives using an ADAS. For the condition 

with no failures on any of the drives, there was a positive increasing linear trend of trust. 

However, for the conditions with a takeover request and a system-malfunction (system did not 

avoid construction event in the lane and did not warn the driver) on the fourth drive, there was a 

significant drop in trust. On subsequent drives after the takeover request and system-malfunction, 

there was a steady positive improvement of trust similar to the trend of baseline recovery 

proposed by de Visser and colleagues (2018). Active trust repair strategies in the field of human-

robot interaction have shown positive results for the ability to recover trust (Alarcon et al., 2020; 

Esterwood & Robert, 2021). Although some research in the human-human team trust field has 

found less importance for active trust building strategies that actively test trust early in the 

relationship (Kroeger et al., 2021). However, this active trust was dependent on individuals 

testing each other and not using strategies like apologize or giving transparency information. 

Other strategies for managing driver’s trust in AVs have even attempted to have the vehicle 

observe the driver’s behavior and compare that to the current driving context, then using 

different communication styles to repair or dampen trust for the driver (Azevedo-Sa et al., 2020). 
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In practical applications, perfect trust calibration or even good calibration is hard to 

quantify. It is hard to measure reliability of ADS/AVs in the real world (Kalra & Paddock, 2016) 

and would take months or years of testing to establish a relatively accurate level of reliability. 

During that hypothetical testing time, new iterations, developments, and changes to the software 

and performance would alter the results. Endsley (1995) commented on a similar topic regarding 

the proper calibration of situation awareness an individual would need to have. She concluded 

that the amount of situation awareness one would need is fully reliant on how much probability 

of error one is willing to accept (Endsley, 1995). She added that perhaps instead of an overall 

requirement of situation awareness, it should require specific levels of situation awareness for 

certain components at definite points in time. The same can be said for trust in automation, 

which is almost inherent in the common definition: a willingness to use a system based on 

uncertainty and vulnerability (Lee & See, 2004). Many situations during driving can be variable 

in terms of risk and level of ability required, and ADSs have different functionality depending on 

conditions and operating modes. So, understanding how certain situations influence trust in 

automation, especially when the automation is new to an individual or has new features can be 

vitally important.  

1.6 Initial Systems Interaction and Experience 

When experiencing new technology, a novice user would rather be safe than sorry 

(Annett & Stanton, 2006). The novice user tends to have a conservative bias when interacting 

with a new system, meaning that they predict a higher number of errors than what actually 

occurs. New systems are complex in terms of human-automation interaction because improved 

performance of the system may be masked by other factors in evaluation testing due to its 

newness (Endsley, 1995). A new automated system might perform better than its earlier version, 
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but a user might not have enough experience with the system to properly trust it and gain its full 

advantage. For instance, the individual might not be proficient in using the new system so their 

understanding of the task and performance might be lowered while they acclimate but could 

improve after adaption.  

When new features of a technology are introduced, it is much the same as that of a human 

collaborator attempting a new task that they have not yet established competency in. A human 

learning a new instrument and then giving a performance with others might be expected to make 

a few mistakes along the way but will correct their mistakes and improve. Similar with an 

automated system introducing a new feature and requiring a bit of time to work out the bugs. 

However, small development errors can be especially difficult for a human collaborator to 

understand if they are unfamiliar with how the task or system works (de Visser et al., 2020; 

DeGuzman & Donmez, 2021a, 2021b). In certain systems like adaptive cruise control (AAC), 

drivers have limited knowledge about how the system works even if they own it (DeGuzman & 

Donmez, 2021a). Even with the introduction of anti-lock braking systems many years ago, many 

drivers did not understand the technology and had unintended reactions to the system such as 

taking their foot off the brake because they were unfamiliar with the vibration (Smiley, 2000). A 

study by Singer and Jenness (2020) found that a majority of participants knew some of the 

limitations of ADASs such that it does not work in harsh weather or when road lines are faded, 

but a majority thought that ACC would be able to take action to avoid a collision if a car ahead 

brakes quickly. As the level of automation increases and new technologies are introduced, the 

automation system could see improvements to the limitations and would be able to avoid 

collisions that were not previously possible, as with Level 3 automation. Additionally, individual 

elements of a system might adjust, change, and improve. A Level 3 automation vehicle might 
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have features and capabilities tied to lower mode levels and individuals might react differently to 

changes in these isolated elements (Lee, 2018). 

First interactions with a system are much different than those after familiarity has been 

established. With the future integration of Level 3 automation and the capabilities involved, it is 

important to understand how these new systems are adapted and understood by the human driver. 

Initial experiences with an automation system or new feature might heavily impact trust 

especially if there are errors early on as compared to later (Fox & Boehm-Davis, 1998; Lee, & 

See, 2004). A large portion of the human automation interaction literature focuses on how 

experts or experienced individuals with training interact with automated systems that have been 

around for a while such as nuclear power plants or process control systems. Trust is more prone 

to fluctuation early on and less resilient compared to individuals experienced with a system, 

especially when reliability varies (Chiou & Lee, 2021; Fox & Boehm-Davis, 1998). Even a 

subject matter expert using a newly developed system or feature will have different insights and 

experiences interacting with the system for the first time than an individual who is unfamiliar 

with the task or process. Commercial pilots are required to undergo many hours of training, must 

be certified, and are re-evaluated regularly. Thus, they are more experienced in their task than the 

typical driver of an automobile who has a relatively short and less in-depth training. Whereas a 

typical road vehicle driver would receive no formal training or evaluation and might not even be 

fully aware of the functionality of the new system, though new ISO standards for automotive 

updates could have certain requirements, depending on adoption (International Organization for 

Standardization, 2023).  

Familiarity with a system highly influences the calibration of trust. Initial interactions 

with a system or feature can have a more pronounced effect on trust, but after long exposure to a 
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system, user trust is more resilient (Hoff & Bashir, 2015). Tenhundfeld et al. (2019) tested the 

effect of familiarity on trust by manipulating familiarity through providing either verbal 

information about the autopark feature or giving a demonstration of how to use the autopark 

feature to participants using the automated parking feature of a Tesla. The demonstration 

provided a higher level of familiarity than simply giving the participant information. The lack of 

familiarity resulted in more distrust of the system as shown through a higher rate of intervention 

– the human taking over control of the vehicle during the parking process – by the participants in 

the information condition. However, as they gained more familiarity with the system through 

multiple parking trials, the rate of intervention decreased. The automated parking system still 

made some slight errors and had to correct itself sometimes, but participants were able to 

calibrate their trust based on this behavior through experience to reach an appropriate level for 

this system. However, this experiment did not manipulate the way the information was provided 

to the individual. Hands-on experience is clearly more useful than general information, but how 

the information is presented and what type of information is conveyed can have varying effects 

on trust. Similar results were also found for conveying information regarding the automated aid 

reliability through description versus experience (Chen et al., 2018; Mishler et al., 2017). They 

found that descriptive information provided to users about an aid’s reliability improved 

subjective trust in the system, but only feedback on users’ performance via experiences improved 

both subjective and objective trust calibration. Initial descriptive information could be helpful at 

first, but later interaction helps to verify the level of trust, leading to proper calibration. 

Sometimes, users do not act according to expectations even when provided with system 

limitation information. Victor et al. (2018) trained participants on the limitations of an ADS and 

found that 28% of participants did not take over control of the vehicle in time to avoid a hazard 
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even though they were informed of the limitations. Semi-structured interviews revealed that the 

individuals who did not avoid the collisions trusted that the vehicle would handle the situation. 

Related research has found similar findings, showing that participants were prone to overtrust 

and complacency. Participants did not switch from “hands-free” to “hold the steering wheel” 

even when warned at both 60 seconds and 15 seconds in advance and remained hands off for 

other times when the Tesla autopilot was engaged (Banks et al., 2018). Other research has shown 

that training focused on de-emphasizing the system’s limitations results in higher trust in the 

system compared to training that emphasizes the limitations (Körber et al., 2018). In a survey of 

non-owners and owners of vehicles with ACC and LKA systems, researchers found that 

knowledge of system capabilities influenced trust for non-owners with little experience, but not 

for owners with experience in the system (DeGuzman & Donmez, 2021b). DeGuzman and 

Donmenz conclude that it could be more beneficial to focus on simply making individuals aware 

that the system is fallible and reinforcing the human driver’s role in use of the systems.  

1.7 Swift Trust 

Swift trust refers to trust that needs to be developed rapidly among individuals or groups 

in the absence of extended prior interactions. Or, more formally as summarized from the seminal 

swift trust article of Meyerson and colleagues (1996), it is an initial expectation that upon first 

interaction between members of a group, the other party will meet performance expectations 

even though no prior experience or concrete evidence has led them to this conclusion. The 

fundamental aspect defining swift trust is that it does not rely on a history of interaction 

experience to inform trust but must arrive at a quick judgement to trust. The basis for the 

decision to trust comes from sources other than experience (Meyerson et al., 1996). The 

importance of swift trust has been seen for human-human teams in organizations where 
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cooperation between colleagues with no interpersonal history is commonplace (Bakker, 2010). 

Even on a wider scale, in day-to-day interactions with individuals like healthcare providers, 

public transit drivers, and rideshare drivers, and more require reliance on their expertise without 

prior history.  

Swift trust relies on importing information from various sources based on stereotypes 

about the agent. Separate from information gathering, which may take additional time, imported 

trust is quickly acquired, similar to a downloaded dataset or template based on predetermined 

heuristics (Meyerson et al., 1996; Wildman et al., 2012). Compared to traditional sources of trust 

where it is built through interaction, the initial trust is assumed and then checked later. The 

imported information consists of information from other sources like their qualifications, group 

membership, job/title, and more. The information an individual receives about the other agent 

could greatly impact their initial trust formation or swift trust (McKnight et al., 1998). Kroeger 

and colleagues (2020) discuss how the role of the individual agent impacts swift trust. A role is 

defined as what the agent is required to do in the teamwork process. They found that when roles 

are clear, trust is augmented, but when roles are blurred or inconsistent, trust is compromised. 

Greenberg and colleagues (2007) discuss how one’s within-role ability inspires swift trust. 

Individuals are not trusted simply because they fit the role, but because they seem capable of 

fulfilling the duties of that role given the specific task. Likening this to automated driving, 

individuals do not simply trust an AV to perform because that is its role but need more context of 

either ethos of the vehicle’s abilities, reputation of the brand, or seeing a brief performance to 

know the tasks that fit the driving role can be accomplished. Role clarity is not often provided to 

the user in partial automation driving, with even sales personnel not fully understanding the roles 

(Endsley, 2017). Human drivers often do not fully understand what they are expected to do for a 
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driving task and what the ADS is responsible for (Degani et al., 1999; Sarter & Woods, 1995; 

Tesla, 2017).  

Swift trust is also supposed to be for semi-temporary groups that have indefinite time 

together. However, that amount of time is not well defined, and some research has studied swift 

trust for just initial meetings or over an entire semester for a virtual online course with a 

professor (Coppola et al., 2004). Swift trust is ephemeral, as the concept no longer applies after a 

certain amount of time because the two agents are interacting and thus grow to know each other 

as time continues. The core idea of swift trust is that it is initially assumed until further 

interactions can either justify the trust or adjust their beliefs as needed (Langfred, 2004); of 

course, the adjustment of trust and transition into interaction-based trust models would follow 

this initial swift trust development stage. The common goal of the team necessarily requires 

initial trust to function but trust calibration through later interaction and more long-term 

developments come into play (Haring et al., 2021). All of that considered, it is a useful 

framework to understand initial trust levels in both human-human and human-automation teams 

as they begin before transitioning to a longer-term model of trust.  

Swift trust literature has focused on human-human interactions, but the same basic 

interactions can originate in the human-automation realm such as the first time interacting with 

an unknown technology such as an ATM, a new phone app, or an automated parking meter. 

However, we have not seen much application of swift trust to this human-automation, though 

there have been some researchers trying to fill this gap in human-robot interaction (Haring et al., 

2021). The role of an individual is a contributor to swift trust and understanding another’s role 

can help inform the other individual of what to expect (Kroeger et al., 2021; Meyerson et al., 

1996). When meeting with a medical doctor, one can know what to expect in terms of their 
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credentials and experience based on the role of the doctor. The same can be said for human-

automation pairings where a certain type of technology and its role can help the human 

understand what they can expect. However, further definition of certain roles might be helpful to 

clarify what type of individual action is required in that role (Coppola et al., 2004; Kroeger et al., 

2021). For example, knowing the doctor’s specialty or even information about their prior 

behavior from a friend can help specify the role.  

Members of human-automation or human-robot pairings might have even less 

antecedents of swift trust than traditional human-human pairings due to the nature of automation 

(Haring et al., 2021). It is more difficult for an automated agent to convey their goals or abilities 

than for a human, especially during an initial interaction. Humans have more verifiable 

credentials such as job experience or degrees attained compared to a potential untested or 

unknown automation. Though branding information associated with automation could play a role 

in user confidence, it is much more variable and less tangible than something like a person’s job 

experience. Humans have more innate surface level cues (e.g., age, appearance, facial 

expression, body language) that are easily observable compared to an automation partner, 

although some automation can be designed to emulate these human cues utilizing 

anthropomorphism through a humanistic look or voice. However, not all automation needs to or 

can be anthropomorphized. It is helpful to understand how an automated system can convey 

information to a human because the automation lacks many of the traditional interaction cues 

that typical human-human teams have. Communicating initial role information or importing 

information for human-automation teams may be more complicated than human-human pairs, 

thus it is necessary to introduce these concepts into the literature and further explore this gap. 
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The way initial information is conveyed by the automation to the human could vastly change 

their swift trust and thus affect the later development of trust through extended interaction. 
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CHAPTER 2 

EXPERIMENTS 

The goal of these experiments was to understand the initial, swift trust development 

process of new human-automation teams after an automation update and calibrate trust after 

automation errors to support proper trust calibration. Considering how critical proper trust in 

automation is for using an ADS, and how variable some framing and trust designs can be, the 

first experiment investigated how the presentation of update information can influence human 

drivers’ trust through positive and negative framing. The initial interaction after an automation 

update between the human and automation is perfect for testing swift trust between human-

automation teams because the team is brand new with no prior experience.  

This first experiment ensured that the results would properly align with the desired goals 

as the ideas and applications are in a new domain with potentially uncertain designs. The first 

experiment demonstrated calibrations of trust over three drives using an ADS after either a 

positive (trust-promotion), negative (trust-dampening), or neutral control framing of an update. 

After demonstrating the expected differences due to framing and supporting the hypotheses, 

Experiment 2 expanded the length to five drives and added an automation error to see how swift 

trust begins transitioning to learned trust after interaction and how the framing effects their trust 

in response to an error and the subsequent trust recovery after the error. The third experiment 

examined ways of actively calibrating trust following an error. Figure 1 shows the overall 

procedure of each of the three experiments. 
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Figure 1 

The Overall Procedure of Each of the Three Experiments  

 

 

 

2.1 Experiment 1 

Positive and negative framing can be used to promote or dampen a specific feeling such 

as trust. By focusing on the positive aspects of a system or choice, the benefits are highlighted 

which in turn promotes more positive feelings about the object. Whereas damping can highlight 

the negative or uncertain features of a system which can help users understand the limitations of 

the system and adjust accordingly. 

This study aimed at understanding how the presentation of a new update of an ADS can 

influence human drivers’ trust calibration when the update information was presented as positive 

or negative framing. Typically, system updates will notify a user that new features are available 
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but does not illustrate the potential downfalls or benefits, leaving a user in the dark about the 

system’s new capabilities regarding trust. The experiment was set up to demonstrate the 

differences in calibration of trust over three drives using an ADS after either a positive, negative, 

or neutral framing of an update.  

2.1.1 Hypotheses 

The first hypothesis was a confirmatory hypothesis that trust would increase over time 

(increasing trust linearly from drives 1-3; H1). Increasing trust through experience has been 

shown in numerous driving studies and is a staple of trust research findings (Gold et al., 2015; 

Hoff & Bashir, 2015; Kraus et al., 2019; Mishler & Chen, 2023). Trust in a system should 

continue to be built quickly and evenly because the system does not make any errors and swift 

trust that exists prior to interaction is being confirmed (Hancock et al., 2011; Kroeger et al., 

2021; Sanchez et al., 2014). 

Hypothesis 2 was that the positive framing of update information would result in greater 

trust than both control and negative framing; and conversely, that negative framing would result 

in lower trust than both control and positive framing (H2). This result of framing would be 

expected from both prior framing research and transparency research showing that information 

about the system’s performance helps users calibrate trust to the capabilities of the system (de 

Visser et al., 2012; Dzindolet et al., 2002; Tversky & Kahneman, 1981).  

Hypothesis 3 predicted that trust calibration would stay consistent with the initial levels 

of trust as time/drive continued for each framing condition. This is predicted from the swift trust 

literature showing that the quick development of trust continues to hold because the automation’s 

role has been made clear, so calibration follows the set path once the level of trust has been 

established (Greenberg et al., 2007; Kroeger et al., 2021). 
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2.1.2 Method 

2.1.2.1 Participants. A total of 84 participants (61 female, 23 male; age M = 21.05, SD = 

6.34) were recruited through SONA, an online research participation system, at Old Dominion 

University (ODU) during the 2022 Fall semester. All participants received credit towards a 

course research experience requirement. A demographics form was used to gather their 

information before the study (see Appendix A). This and the following studies have been 

approved by the Institutional Review Board at Old Dominion University according to the ethics 

guidelines. 

2.1.2.2 Materials. The study was presented through a simulated driving environment 

created in STISIM driving simulation software (stisimdrive.com). The study was presented on a 

Dell P2717H 27-inch monitor with a 1920x1080 resolution and using a Logitech G29 wheel.  

The study also employed the Trust in Automation Questionnaire (Jian et al., 2000). This 

survey has been used and evaluated in numerous studies and is the most well-known and utilized 

trust survey to date. The authors validated the survey through three experiments to develop an 

empirically-based scale. Though this study yielded terms relevant to trust and allowed for a 12-

item scale, further validation of the psychometric properties was necessary. Spain and colleagues 

(2008) went on to further validate the questionnaire, finding from prior use of the study the 

internal consistency was acceptable (Fallon and colleagues (2005) had an internal consistency 

reliability of Cronback’s α = .93 and Safar and Turner (2005) additionally demonstrated its high 

reliability); however, they went on to test the validity for real-world use. Safar and Turner further 

validated, through confirmatory factor analysis based on their own experiment, that trust and 

distrust are related factors, which supports empirical findings from Benamati and colleagues 

(2006) and other real-world applications of trust (Balfe et al., 2018). Additionally, researchers 
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have compared these ratings to trust-related behaviors like automation reliance and physiological 

measures (Bethel et al., 2007; Meyer, 2004; Montague et al., 2014). Based on these prior studies, 

this scale adequately assesses real-world trust in systems due to prior tests of reliability and 

validity, thus making it useful for the current study. 

The drives used in this experiment were balanced among each other to be similar in terms 

of content regarding what participants experienced on the road. Typical experiences during 

driving such as merging vehicle, traffic lights, stop signs, construction events, etc. were included 

in the drives and balanced so that similar numbers of these events were experienced across 

drives. However, each drive was intended to be unique, so each drive contained different 

interactions at different times and unique environments. On average, the drives were six minutes.  

Drive 1 was a two-lane road in a rural setting with a speed limit of 55 mph. It had various 

curves and hills, with one traffic light that it stopped at, several lane changes because of a slowed 

vehicle, and a brief section where the road was expanded to four lanes and then cut back down to 

two where the ego vehicle – vehicle that the driver is in – was forced to yield to a vehicle 

merging in.  

Drive 2 began on a six-lane highway at 55 mph which looked like it was exiting a city. 

Traffic merged to four lanes and the ego vehicle had to yield as it merged. Traffic merged down 

to two lanes and the ego vehicle had to zipper merge. There were also various curves and hills 

with a speed limit decrease due to a curve then back to 55 and had one traffic light.  

Drive 3 started at 45 mph on a two-lane road in a rural area with several trees. The ego 

car had some cones on the right side of the road which it needed to merge slightly over into the 

opposing lane to avoid. There was one stop sign it had to stop at, then resumed driving and soon 

after the road expanded to a four-lane road with small buildings on the side and a few cars 



   

 

32 

parked, with one car entering then exiting the roadway. There was one traffic light that it slowed 

for but then the light turned green.  

2.1.2.3 Experimental design. The independent variables (IVs) included framing 

(positive/promotion, negative/dampening, control) and drive (Drives 1-3). Framing was the 

framing of the update information, which was manipulated between subjects. Participants were 

assigned to one of the Positive, Negative, or Control groups. In the instructions displayed on the 

driving simulator screen directly before Drive 1, participants were told to read the instructions – 

including the framing information – aloud to ensure that they fully read and understood them. 

The Control group presented with a neutral sentence, “For the next few drives, we have upgraded 

your vehicle with an automated driving feature”. The Positive group was given the same base 

information as the control group with the additional positive frame, “We are excited about this 

new feature, and we are sure that you will enjoy it” and the negative frame was alternatively 

given, “We are testing something new, and you might need to keep watch to ensure everything 

goes well”. The positive instructions were intended to show the potential gain from using the 

system (joy and help driving) and the negative instructions were intended to show the potential 

loss (unease and increased vigilance) After the instructions, participants went straight into the 

first drive so that their trust was not influenced by any practice, especially as this was framed as 

a new update. The factor of drive was manipulated within subjects, and participants experienced 

three separate and distinct six-minute drives. Figure 2 shows an image of one of the drives. All 

the drives contained similar experiences with various scenery, traffic, curves, etc. for the ADS to 

navigate, but were all uniquely different to show that they were different driving situations. The 

automation trust measure was the dependent variable (DV) and was administered after each of 

the three drives to assess their trust calibration over time. 
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Figure 2 

A Screenshot of a Drive that the Participant Would See During the Experiment. 

 

 

 

 2.1.2.4 Procedure. Participants signed the consent form, were randomly assigned to one 

of the three framing conditions, and then read the instructions according to their group as they 

were seated at the driving simulator. They were told that the vehicle would start in the automated 

driving mode but that they needed to keep their hands on the wheel and foot near the pedals 

throughout the drive. Each drive was about 6 minutes long, with a total of 18 minutes of driving 

plus the transition period between each drive – no longer than one minute – for the survey and 

loading the next drive. During the drive, participants needed to monitor the performance of the 

ADS and be ready to take over if necessary, according to Level 2 automation requirements. 

However, they were not required to take over at any point as the performance for each drive was 

perfect. Then, upon completion of each drive, participants filled out the automation trust survey. 

Demographics information (including age and gender) was collected after completion of all three 

drives.  
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2.1.3 Results 

 A mixed Analysis of Variance (ANOVA) was conducted to determine the effect of the 

between-subject factor of framing (promotion/positive, dampening/negative, control) on trust 

over the within-subject factor drives (1-3). Analysis of trust showed a significant main effect of 

drive (Ms = 5.30, 5.48, 5.71, for each drive 1-3, respectively), F(2, 162) = 11.29, p < .001 ηp
2 = 

.12. A linear trend analysis showed significant changes for between within-subject variables to 

determine increasing or decreasing trends. There was a significant linear trend of trust, F(1,81) = 

16.67, p < .001, ηp
2 = .17, showing that trust significantly increased over time between drives. 

This supported H1 that trust would improve over time. See Figure 3 for graph. 

 The analysis of trust also showed a significant main effect of framing (Ms = 5.55, 5.14, 

5.81, for control, dampening, promotion, respectively), F(2, 81) = 3.27, p = .043, ηp
2 = .08. 

Pairwise comparisons using t-tests indicated that the mean score for the dampening condition (M 

= 5.14, SD = 1.23) was significantly lower than the promotion condition (M = 5.81, SD = 1.02), 

p = .013. However, the control (M = 5.55, SD = 0.92) did not significantly differ from the 

dampening or promotion conditions, ps > .05. Simple main effects analysis showed a significant 

difference between the dampening and promotion conditions for drives 2 and 3, ps = .023 and 

.007, but not for drive 1, p = .063. This provided partial support for hypotheses 2 and 3 that trust 

would be higher for promotion/positive than dampening/negative framing, and that these would 

continue to show differences as time went on due to the established framing and role. There was 

no significant interaction between drive and framing for trust, F(4, 162) = .625, p = .645 ηp
2 = 

.02. 
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Figure 3 

A Graph of the Mean Trust Measure as a Function of Both Drive and Framing Condition. 

 

Note. The error bars are 95% Confidence Intervals. 

 

 

2.1.4 Discussion 

This study sought to test if trust calibration could be manipulated through something as 

simple as the way an update to an ADS was framed. The framing of a question can influence an 

individual’s choice even when the resulting answer is the same. Trust calibration is a critical 

consideration for human interactions with ADSs because overtrust could cause the human to 

overestimate the capabilities of the automation and reduce their monitoring, resulting in the 

human not being in-the-loop when needed. In contrast, undertrust could cause the human to 

disengage the automation and not gain the benefits or try to overtake control at an improper time. 

This experiment confirmed what prior studies of trust calibration in driving have shown 

regarding similar growth of trust over time through drives, demonstrating that experience with 
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the system improves trust (Kraus et al., 2019; Mishler & Chen, 2023). Experiencing how the 

ADS performs through several drives without error improves trust and the current study showed 

that all framing conditions had similar increases in trust over time. However, the initial starting 

points and subsequent ending points showed that the framing of the automation update 

influenced trust. As expected, trust was lower for the dampening group than the promotion 

group. Note that for the initial drive the difference between the two groups was not significant 

but it was trending in that direction. However, even though trust improved over time, trust was 

significantly lower overall compared to the promotion condition for drives 2 and 3. This result 

supports previous and expected findings where some errors might be expected so the system 

provides transparency to the user through dampening framing to encourage proper trust 

calibration (de Visser et al., 2020). The trust dampening framing encourages the user to expect 

potential violations of trust so that if an error occurs, they can be ready. The transparency 

provided by the trust dampening also encourages an accurate mental model of trust during swift 

trust development.  

The results of this study demonstrate that simple framing that either presents the 

information in positive or negative frame while introducing an ADS update can significantly 

influence an individual’s trust. This helps to reinforce the previous literature that framing can 

change one’s views even when the situation is the same, and that framing has the potential to 

influence an individual’s trust calibration (de Visser et al., 2012; Dzindolet et al., 2002; Tversky 

& Kahneman, 1981). The present study showed that when trust was promoted, trust was created 

quickly compared to intentional dampening of trust. The negative frame was successful in 

dampening the trust calibration over time and is useful in situations where the automation might 

still be prone to errors and requires the individual to keep watch. Trust promotion can quickly 
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build trust in the system, though if the system’s capabilities do not match the trust, it would leave 

individuals with improper trust calibration. Similarly, if trust is dampened in a system that 

performs very well, individuals might not have enough opportunity to calibrate their trust 

through experience before disengaging from the system due to low trust. It is important when 

these new updates are rolled out to set proper levels of trust for the users so that they are 

calibrated in the loop as soon as possible without need for excessive experience. 

Transparency helps clarify the ADS’s role to the human driver and sets a realistic 

standard (Greenberg et al., 2007; Kroeger et al., 2021). Transparency itself using promotion or 

dampening may not be enough if the performance of the system does not match the information 

provided. As Greenberg and colleagues (2007) stated, it is not necessarily the role that matters, 

but how one performs in that role. Promoting trust is clarifying the role and trust is built very 

swiftly but it could fall greatly after a violation of trust. Thus, promotion may be improperly 

calibrating trust which could result in steep trust drops after a violation. Proper trust calibration is 

important, especially for human interaction with automation because humans are prone to 

automation bias, leading to unrealistically high standards for automation (Dzindolet et al., 2003). 

Because of the automation bias, people tend to react more negatively to automation failures as 

compared to humans who make the same mistake (Goodyear et al., 2017).  

Properly clarifying roles and expectations for automation can be even more important in 

human-automation teams because of the biases that exist and a designer’s ability to choose what 

information to show. By setting the expectations prior to interaction, trust can be swiftly 

developed in a trust promotion setting or dampened to realistic standards when the automation’s 

performance might not live up to its expected standard. However, further research still needs to 

be conducted to examine how system errors can influence trust calibration while using 
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promotion or dampening methods. Mishler and Chen (2023) showed significant drops in trust 

after an automation error, as did Kraus and colleagues (2020). There was a natural repair of trust 

after the violation; however, neither study included transparency information about the systems’ 

capabilities or role. De Visser and colleagues (2020) estimate that promotion and dampening can 

help influence proper calibration to enhance trust resilience in situations of error, but more work 

still needs to be done in this area. 

One limitation of this experiment is that we did not include an initial or dispositional trust 

measure before the study. A premeasure of trust would ensure that all participants were starting 

on the same level of trust. However, with 28 participants per group, any potential extremes in 

beginning levels of automation trust between groups should regress to the mean so the groups 

should be even in terms of initial trust. Additionally for this initial investigation, we did not want 

to prime individuals about trust before the framing manipulation by asking them about trust in 

automation. Priming them with trust might make them dwell on the idea of automation trust thus 

rending the framing manipulation less effective, decreasing external validity.  

Another limitation is that this experiment featured no automation errors and the vehicle 

performed perfectly for each drive. This was intended as a baseline to understand how both 

promotion and dampening framing might affect trust in an ADS update scenario. The next study 

includes an error during the driving sequence to see if framing makes trust more resilient and if it 

effects the repair of trust after an error.  

2.2 Experiment 2 

 Experiment 2 built upon the findings from Experiment 1 and implemented an automation 

error into one of the drives for two purposes: (1) to further validate the results on how framing 

impacts initial trust calibration and (2) to examine how framing affects trust calibration 
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following an automation error. We also wanted to ensure that all participants had the same trust 

and opinions on automated driving coming into the experiment, which was a potential limitation 

from Experiment 1. However, the goal of Experiment 1 was to ensure that the framing effect was 

viable and any questions about trust in automation beforehand might prime them about trust 

making the initial framing less potent. With Experiment 2 we controled for the initial trust and 

attitudes toward automation to understand how framing influences trust after errors. Framing 

should help to form the trust calibration to make sure the operator responds to automation errors 

in a safe manner.  

2.2.1 Hypotheses 

 Following Experiment 1, we expected some initial differences in trust between framing 

conditions after the second drive. However, as stated above, the presence of the initial trust and 

opinions towards automation survey at the beginning of the study might influence the initial 

effect of the framing by causing participants to consider the idea of trust before reading the 

prompt and before the first rating of trust. Therefore, we expected trust to show some differences 

in the initial trust for Drives 1 and 2 with promotion showing higher trust scores than dampening 

(H1), with the caveat that Experiment 1 did not show a significant difference for Drive 1.   

We expected that after the error, trust will decrease for all conditions regardless of the 

framing (H2). We do not expect differences between the decreases in trust across the conditions 

because errors perceived as a failure or major violation will decrease trust across the board, 

regardless of framing, as has been found repeatedly in trust research (Hoff & Bashir, 2015; Lee, 

& See, 2004; Mishler & Chen, 2023; Muir & Moray, 1996). Previous research has found errors 

cause similar decreases in trust even when varying task difficulty, error type, and reliability 

(Kraus et al., 2019; Mishler, 2019; Mishler & Chen, 2023). 
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We expected the trust recovery to be different for the framing conditions for those drives 

after the error (H3). Trust should be higher for the trust promotion condition than for the trust 

dampening condition because stronger swift trust has already been established earlier on. (Haring 

et al., 2021; Kroeger et al., 2021; Meyerson et al., 1996). The dampening group did not have the 

bolstered trust and should have lower trust afterward, but this ought to be an expected calibration 

of trust after an error (de Visser et al., 2018, 2020; Kraus et al., 2019; McGuirl & Sarter, 2006). 

2.2.2 Method 

The method for Experiment 2 was similar to Experiment 1 except that the number of 

drives was increased from 3 to 5 to include the error on Drive 3 and the participants were given 

the adapted Automated Driving Opinion Survey (ADOS; Kyriakidis et al., 2015; see Appendix 

B) at the beginning of the study. The third drive included an automation error (see Figure 4) in 

which the ADS does not stay in the lines of the road and swerves off the road for several 

seconds, driving partially on the shoulder. After all five drives were completed, the researcher 

conducted a structured interview of around ten questions (see Appendix C) asking about 

participants’ experience with the system, if they noticed the error, and what they thought about 

the error and how that reflected on the system. 
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Figure 4 

The Driving Error with the Vehicle in the Shoulder During Drive 3 in Experiment 2 

 

 

2.2.2.1 Participants. We ran 72 participants from the ODU SONA pool based on the 

G*power analysis using an estimate of ηp
2 = .08 from the main effect of framing in Experiment 

1, resulting in effect size f = .29. This calculation showed that for a power of .80 the total sample 

size should be around 72 participants (see Appendix D). Therefore, we collected 72 participants 

(24 in each group). The mean age was 20.17 (SD = 4.76) years and there were 17 males and 55 

females. The participants were required to have a valid driver’s license and reported that their 

amount of driving experience was 3.63 (SD = 1.49). The participants’ ethnicities were Caucasian 

(25), African American (30), Asian (3), American Indian/Alaska Native (2), more than one race 

(8) and other (3). All participants had normal or corrected-to-normal hearing and vision. The 

students recruited from SONA were given class credits. 

2.2.2.2 Materials. The Automated Driving Opinion Survey (ADOS) was based on 

Kyriakidis and colleagues’ (2015) survey but was be modified to use only questions about driver 
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behavior and attitudes toward automated vehicles. It was implemented to gain insight into 

participants’ initial thoughts on automated driving before beginning the study. The ADOS helped 

assess whether participants in each group are similar in their thoughts and opinions toward 

automation. This survey was used to gather manual driving experience, automated driving 

experience, and opinions on automated vehicles from each of the participants. Kyriakidis and 

colleagues (2015) used the survey to find out about public opinions on automated driving across 

many cultures and therefore contains many unrelated questions, such as income and disability. 

Therefore, the participants were only be asked the questions related to manual and automated 

driving behaviors and opinions. This scale was given to participants at the beginning of the study 

and showed overall information about participant’s beliefs about autonomous vehicles before 

they perform any of the automated driving in the experiment. The results of the ADOS were used 

as a covariate to control for potential differences on these items. 

The drives in the study were the same as those from Experiment 1, but a new drive 3 was 

inserted so that the error could occur, making the former drive 3 now drive 4. Additionally drive 

5 was added so that there were now two initial drives with no error, an error on the third drive, 

and two more drives after with no error.  

Drive 3 was a four-lane highway with a shoulder and a speed limit of 55 mph. The ego 

vehicle had to navigate curves and hills and two vehicles on the shoulder at separate times, with 

the second one merging onto the road. Later towards the end of the drive, the error occurred 

where the ego vehicle crossed the solid white line on the right side of the road and rode in the 

shoulder for 10 seconds, attempted to return to the lane only making it halfway before returning 

to the shoulder, then fully recovering back onto the road. This was done to make it look like the 

ADS had lost the main road lane and was navigating its way back on.  
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Drive 5 started at 35 miles per hour as it was driving out of a neighborhood two-lane road 

with several houses and parked cars. Once it left the neighborhood it sped up to 45 mph on a 

rural road with many trees. It came to a small city with one traffic light that it must stop at before 

continuing back to the forested road. The road expanded to a four-lane road then later the ego 

vehicle had to slow down to 35 mph for a construction event with one non-moving, seated 

worker and it was not required to change lanes in the construction zone. After the construction it 

speed back up to 55 mph. 

Participants were also interviewed after the study with a brief structured interview 

(Appendix E) to understand what their subjective thoughts were about the automation during the 

study and how they thought about the error. This allowed them to elaborate more on their trust in 

and opinion about the automated vehicle giving more qualitative data to help explain their 

behavior and inform the design of Experiment 3. 

2.2.2.3 Procedure. Participants first signed the consent form and be randomly assigned to 

one of the three framing conditions (promotion, dampening, control), and then read the 

instructions according to their condition after they are seated at the driving simulator. Similar to 

Experiment 1, participants were instructed to read the instructions aloud before Drive 1. They 

were told that the vehicle would start in the automated driving mode, in which the vehicle can 

control lateral and longitudinal movement, but they needed to keep their hands on the wheel and 

foot near the pedals throughout the drives. During the drives, participants needed to monitor the 

performance of the ADS and be prepared to intervene if necessary, according to Level 2 

automation requirements. They performed five drives in total but were not told how many there 

would be ahead of time. Then, upon completion of each drive, participants filled out the 

automation trust survey. Near the end of Drive 3, an error was introduced, and the vehicle slowly 
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drifted over the right road line into the shoulder. The vehicle fully crossed the line, drove 

halfway back as if trying to find the road, drove further right again before finally correcting and 

driving back to the center of the lane. This entire error process took approximately 20 seconds. 

They performed five drives in total but were not told ahead of time in terms of how many there 

would be or any other information about them, including the upcoming error. Demographics 

information (including age, gender, driving experience) was collected after completion of all five 

drives. After the driving simulation section was completed, the instructor conducted the 

structured interview, digitally recording their responses via a recording tablet. After the 

conclusion of the interview, the experiment was completed and they were thanked, given credit, 

and ushered out of the lab. 

2.2.3 Results 

2.2.3.1 Quantitative Results. This section contains the quantitative analyses of the ADOS 

and trust data collected prior and during the experiment, separate from the qualitative data from 

the post-experiment interview. 

To confirm that there were no differences between groups for initial trust, ADOS was 

analyzed using a one-way ANOVA with condition (control, dampening, promotion) as the 

between-subjects independent variable. The analysis revealed that there was not a significant 

effect of ADOS between condition (Ms = 4.56, 4.69, and 4.68 for control, dampening, and 

promotion, respectively), F < 1. Follow up equivalence tests for the ADOS data using the two 

one-sided t-tests (TOST) method to verify there were no differences for starting automated 

driving opinions between groups, further clarifying that all groups started equal. The TOST test 

used 90% confidence intervals (CIs) around the mean and rejects any effects of Cohen’s d = 0.4 

or larger to ensure that if the CIs are within the effect size interval, we can conclude equivalence 
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between the two samples (Lakens, 2017). We used two one-sided tests – right and left – to obtain 

p values tested against the defined interval, with the right one-sided t-test on the lower bound and 

a left one-sided t-test on the upper bound. The greatest p-value reflects that of the equivalence 

test, and a significant effect means a claim of equivalence is supported. All compared groups’ 

90% CIs for equivalence was within the equivalence interval of [-.5, .5], ps < .05, meaning a 

claim of equivalence is supported. Table 1 shows the results of the t tests with the greater of the 

two p values listed for each group comparison.  

 

 

Table 1 

Results of the TOST Equivalence Test for the ADOS in Experiment 2 

 
Control Promotion Dampening 

Control      - t(46) = 2.19, p = .017 t(46) = 1.79, p = .040 

Promotion t(46) = 2.19, p = .017      - t(46) = 2.25, p = .015 

Dampening t(46) = 1.79, p = .040 t(46) = 2.25, p = .015      - 

Note: Significant effects indicate that the groups are equivalent 

 

 

To test H1-H3, I analyzed the trust data similar to Experiment 1, but used a 3x5 mixed 

Analysis of Covariance (ANCOVA) with Framing (Control, Promotion, Dampening) as the 

between-subject variable, Drive (1-5) as the within-subject variable, and the automated driving 

opinion survey (ADOS) results as the covariate to account for differences in initial trust and 

opinions on automated driving systems. Even though there were no differences between groups 
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for initial trust, individuals within the groups might have different starting levels of trust and 

adding the ADOS as a covariate helps to control for these differences.  

Of note, I used Type 2 Sum of Squares for these analyses to avoid throwing out a portion 

of model power. Type 3 Sum of Squares is more often used; however, the benefit of using Type 

2 in these analyses is that it considers the interactions with higher importance, but also recovers 

the power for the main effect if interactions are not present (Langsrud, 2003). Due to the 

inclusion of multiple drives and the covariate, this was the most viable consideration for the 

analyses. 

The main effect of drive was significant, F(4, 272) = 75.01, p < .001, ηp
2 = .52, indicating 

that trust was not the same across drives (Ms = 5.28, 5.53, 3.82, 5.10, 5.38 for drives 1-5, 

respectively). See Figure 5 for graph. This main effect of drive helps support H1, H2, and H3, 

demonstrating that there are changes in trust at different points in time. To investigate the 

differences across the drives, a trend analysis was used to analyze the overall pattern of trust 

using within-groups contrasts. The analysis revealed a significant quadratic trend, F(1, 68) = 

11.09, p < .001, ηp
2 = .14, which demonstrated a trendline with one significant curve, indicating 

a decrease in trust after the first two drives because of the error in drive 3, then an increase in 

trust for the final two drives. The trend demonstrates the significant decrease in trust for the third 

drive compared to the initial and subsequent errorless drives. The trend analysis provided support 

for H2, demonstrating that all conditions decreased during the error in drive 3. There was a 

significant effect of the covariate ADOS, indicating that an individual’s prior opinions on 

automated vehicles influenced their trust during the study, F(1, 68) = 6.65, p = .012, ηp
2 = .09. 

Through the use of ADOS as a covariate, the analysis was able to help control for initial levels of 
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trust and opinions of automated driving, eliminating preconceived ideas about automation as a 

factor affecting the data. 

There was a significant main effect of framing, F(2, 68) = 3.45, p = .037, ηp
2 = .09. 

Planned contrasts showed that participants in the promotion framing condition (M = 5.40) were 

significantly more trusting than those in the control condition (M = 4.83), t(68) = 2.29, p = .025, 

and those in the dampening condition (M = 4.84), t(68) = 2.26, p = .027. The planned contrasts 

provided further support for differences of the promotion framing condition, demonstrating that 

the promotion condition was significantly higher in trust than the other conditions. 

There was a significant interaction between drive and framing for trust, F(8,272) = 2.11, 

p = .035, ηp
2 = .05. Simple main effects analysis showed a significant difference between the 

control and promotion conditions for drives 1, 4, and 5, ps = .033, .025, and .043, but not for 

drives 2 or 3, ps = .106 and .171, respectively. The promotion condition was also significantly 

different from dampening for drives 4 and 5, ps = .008 and .026, but not drives 1-3, ps = .133, 

.096, and .263, respectively. There were no significant differences between control and 

dampening conditions, ps > .05. This provided partial support for H1 and H3 that trust would be 

higher for promotion/positive than dampening/negative framing, and that these would continue 

to show differences after the error due to the established framing and role. There was no 

significant interaction of drive and ADOS, F(4, 272) = 1.64, p = .164, ηp
2 = .02. 
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Figure 5 

Average Trust Over the Five Drives for Each of the Three Conditions in Experiment 2 

 

Note. The ADOS covariate appearing in the model was evaluated at 4.64 and the error bars are 

95% Confidence Intervals.  

 

 

2.2.3.2 Post-task Interview Results. This section contains the qualitative analyses from 

the post-experiment interview. Voice recordings of the interviews were fed into an AI 

transcription service (dovetail.com) to generate text transcriptions, and then undergraduate 

research assistants, and I went over the transcriptions to ensure the accuracy. The data was then 

fed into MAXQDA (maxqda.com), a qualitative data coding tool. The interview data was coded 

to mark each question’s response. For any keywords including mentions of trust, safety touching 

wheels/pedals, vehicle performance, the relevant statement was marked as well as other 
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interesting statements up to the coder’s discretion. The coded statements and keyword phrases 

were separated, analyzed for their respective important information, and is reported below.  

The interview data showed a variety of results. For the first question (Q1) that 

participants were asked after being reminded of the initial framing instructions, “When you read 

this instruction at the beginning, what did you think about the vehicle?” we expected more 

comments about the actual framing text but many of the participants only commented on their 

expectations of what the vehicle would be doing. We did not want to influence them by asking 

directly if the instructions gave them a positive or negative impression of the system because that 

was too leading. However, the resulting responses to this question were too varied and broad to 

understand their direct thoughts about introspective feelings toward the automated system after 

the instructions. In general, participants still felt uncertain about how the vehicle would perform 

or behave before starting the drive. 

Participants were asked if they noticed anything strange about the automated driving 

system during their experience (Q5) and a vast majority (67 out of 72 or 93.06%) of them 

mentioned the error of driving off the road either during this question, or at some point prior to 

the question being asked. The remaining participants that did not mention the error during this 

question or prior to the question were shown a short clip of the error and asked if they had seen 

this occur and all did see it and through later questioning did consider it an error of the 

automation. They had either forgotten to mention it or described it vaguely in previous 

statements that were not fully clarified. This question helps verify that participants were noticing 

and responding to the error and that it was noteworthy enough to be acknowledged. 

The seventh question (Q7) asked participants, “What did you think might be the reason 

for the error?” and the main responses to this question were either a “glitch in the system”, a 
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“sensor or lane issue”, or an “AI or system training issue”. The respondents who mentioned that 

it was just a glitch in the system demonstrated an overall lack of knowledge about how these 

automated system work, which was to be expected. They did not go into any detail about what 

specifically might be wrong, but essentially said that technology is just broken sometimes, and 

that kind of stuff happens. Some individuals mentioned the sensor or lane detection issue which 

shows a more specific understanding of what piece of the technology could have been causing 

the error. These participants showed a more critical understanding of the issue, applying a better 

knowledge of how ADSs behave and rely on sensor and other input to process the road and 

drive. Lastly, a few participants showed an understanding of how AI is trained to understand and 

react to driving environments through training data. They mentioned that since the system might 

be new it did not have enough training or was not trained on enough roads of this type so it might 

need further fine tuning. This question shows the individual differences in knowledge bases and 

mental models of an ADS, which could influence their trust development in the system 

differently, prior to an experience, during an error, and through later interaction. Unfortunately, 

there was not enough data collected to show a distinct difference between groups but all the 

individuals with different understandings of the error were equally spread throughout the priming 

groups. 

Participants were directly asked (Q8) if the error “influenced their trust in the vehicle’s 

capabilities” and they all reported that their trust decreased, albeit to a varied extent. Some 

reported that it only affected their trust a little bit, whereas others stated that it brought their trust 

way down. Much of this data is already in the questionnaire, but of note from this question is 

some of their explanations of why their trust decreased or what happened after the error. Several 

of the participants mentioned thoughts along the lines of other potential errors that might occur 
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given the error they just saw happen during the drive, encapsulated in this response from a 

participant, “It would affect me really, because I don't know what else like it can do like error 

can do if there's like an accident or something, right? Like if there's like a kid just suddenly ran 

right in the street and I don't know if the car is gonna be fully, you know, fully stopped or, or 

keep going.” However, several other participants noted that while they were concerned with the 

error in the moment, the automation was able to correct itself and then even later on it drove well 

enough to make them trust it again, which can be seen in this response, “It shook it a little bit, 

not gonna lie. But then after that we were presented with a lot more, you know, stuff in the road 

and cars coming out in front of us that the system was able to correct. So, it made… it restored 

my confidence in the safety.” This again highlights the different emphasis individuals place on 

various aspects of the system and what their attitudes and opinions can be like depending on their 

priority and mental model. 

Participants had a diverse reaction when asked (Q4), “If you had the chance in real life, 

would you use the automated vehicle that would perform the same as the one you just saw in the 

study?” There were 40.28% (29) of participants who said yes, 43.06% (31) of participants who 

said no, and 16.67% (12) of participants who were uncertain or needed more experience with the 

system first. Several mentioned a mixed opinion stating that they might be interested in checking 

it out, but they would not want to give up full control or that using the system would be boring or 

takes the fun out of driving and they would rather drive themselves. However, others mentioned 

that it would be nice to use sometimes and for certain situations but not as a use in everyday 

situations.  
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2.2.4 Discussion 

Experiment 2 investigated the framing effect’s ability to influence swift trust before 

interaction with an automated driving system experiencing a new update to fully automated 

driving while also experiencing an error. The outcome builds upon the findings of Experiment 1 

which found that manipulations of how an update was described to an individual can influence 

their initial trust and later trust development. We found similar results for the initial levels of 

swift trust after their first interaction, then further supported the hypotheses that a positive 

framing of the automated system would lead to higher calibrations of trust over the subsequent 

drives. The critical new finding of this study was that after receiving a positive trust framing, 

participants continued to have higher trust even after an error. 

Similar to Experiment 1, framing the update instructions in a positive way contributed to 

a higher calibration of swift trust and then subsequent trust levels later on. However, Experiment 

2 demonstrated increased trust even after an error for the trust promotion group. Even though the 

automation performed exactly the same for each group, those receiving a positive framing before 

interaction still had higher trust recovery after an error, showing a potential for greater trust 

resilience and better trust repair. Trust after the error in the third drive was not significantly 

different between framing conditions but did show a trend that the trust promotion condition was 

higher. Trust recovery after the error in drives 4 and 5 further demonstrated that trust promotion 

at the beginning stages before user interactions will continually influence trust over time during 

the interaction. The interactions with a system is often cited as a highly influential factor for 

building and calibrating trust (Hoff & Bashir, 2015; Kraus et al., 2019; Metcalfe et al., 2017) and 

is typically how users discover the reliability and capabilities of the system. However, even 
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though the users were interacting with the exact same system, their trust was indeed manipulated 

prior to interaction which influenced later trust.  

The design of the framing for both the promotion and dampening conditions was to 

influence their initial swift trust by importing specific capability information and telling them 

about the role (Kroeger et al., 2021; Meyerson et al., 1996). The promotion condition focused on 

reassuring them that the automation was good (importing) and would take care of everything 

(role) whereas the dampening let them know it might need oversight (importing) and they need 

to keep watch (role). Kroger and colleagues (2021) found positive associations between role 

clarity and swift trust; however, Experiment 2 only found higher swift trust for promotion. This 

would be expected because the description of role for dampening told them they would need to 

oversee the automation and was intentionally phrased to not increase swift trust. This finding 

adds to swift trust literature showing that the type of role information given can influence swift 

trust and that simply clarifying role might not increase trust. Similarly with importing trust, 

Kroeger and colleagues (2021) found a positive association between positive reputational 

information and swift trust. Trust promotion highlighted the positive reputational aspects of the 

system, imbuing confidence in the system’s abilities, whereas the dampening attempted to make 

the individual more uncertain about the capabilities. The promotion was able to increase swift 

trust and maintain that over time, whereas the dampening was similar to the control, showing 

that swift trust might be harder to dampen and might not exist on an opposite spectrum (trust 

increases might not function the same as trust decreases). This might also be a limitation of the 

trust measurement scale that does not fully capture negative aspects of trust.  

Providing participants with too much information can limit their understanding and 

overwhelm them. A balance of detail given to the individual, and the length of the content is 
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required. Ideally, giving individuals all the information about the system to make a cohesive 

mental model of the system would allow for the best trust calibration. However, even that is not 

feasible because individuals could not maintain and process all that information and would 

develop different mental models. Therefore, it is best to make the information short and pertinent 

to the task (Brust-Renck et al., 2013; Lacson et al., 2005).   

A few outcomes from the interview data were that the error was sufficient to evoke a 

reaction from the participants because the majority noticed and mentioned it in the interview or 

did recall it after being reminded. I decided to keep the error the same for Experiment 3 based on 

these findings. Another outcome that showed some potential for individual differences based on 

users’ understanding of the technology they are interacting with. The varied responses to the 

question asking about their understanding of why the error might have occurred demonstrate a 

differential understanding and mental model of how and ADS functions and what systems exist 

within automated driving. Similarly, participants had a varied reaction to the error, thinking 

about the potential for other more significant errors later on, or understanding that these small 

problems can occur, but the later performance reassured them that the system was okay. Though 

the interview data is broad and cannot fully explain participant behavior, it shows how various 

differences in experience to the same situations can result. Through further intervention I to 

evoke these different responses through instructions and system messages.  

Given the findings from this study, I moved on to the final experiment of the series which 

investigated the same scenario but with the addition of active trust repair after the third drive. 

2.3 Experiment 3  

The goal of Experiment 3 was to investigate the effects of different active trust 

calibration strategies after an error to further influence trust calibration after initial priming. The 
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initial impacts of framing on swift trust can help bolster the initial building of trust as shown in 

the first two experiments, but swift trust might have implications for trust behavior in the case of 

an error even after extended interaction. Based on de Visser and colleagues (2020), there are 

multiple ways to either repair or dampen trust after an error. The intent of repair would be to 

continue promoting trust to the individual, therefore the participants in the trust promotion 

condition were presented with a trust repair strategy after the error. One of the methods most for 

trust repair would be an apology where fault is admitted, and some form of regret is conveyed 

(Kohn et al., 2018; Nayyar & Wagner, 2018). Kohn and colleagues used a variety of different 

strategies that have been successful in human-human studies and showed that two of the 

strategies involving apology (timed apology and apology with entity attribution) showed the 

most success. The apology can be conveyed with the addition of a promise to improve in the 

future. Modern systems are constantly adapting, and telemetry sent to the manufacturer or even 

AI processes could help ensure similar mistakes are actually decreased in the future. However, 

some cases might not be easily fixable, and a dampening strategy might be more useful. The goal 

of a dampening strategy is to calibrate trust to be lower, preventing overtrust. Therefore, 

participants in the dampening condition were presented with a trust dampening strategy after the 

error. De Visser and colleagues (2020) again put forward a method for trust dampening as 

conveying the system limitations. The operational domain is highly important in the field of 

automated driving and certain systems cannot function if certain conditions are not met (SAE, 

2021). For example, faded lines on the road surface might cause an LKS to veer away from the 

middle of the lane. If the vehicle notifies the individual of this limitation, it could dampen the 

user’s trust in the system, but improve their trust calibration for the system leading the human to 

keep a better lookout for such situations in the future.  
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For Experiment 3, I implemented the apology-with-promise (trust repair) and conveying-

system-limitations (trust dampening) strategies after the error in Drive 3 to the trust promotion 

and trust dampening groups, respectively. The intent of combining multiple repair and 

dampening strategies (e.g., apology and promise, and error explanation with limitations) was to 

get the highest effect of the intervention. This is based on prior advice on trust repair research 

that states no strategy should be implemented by itself and should be combined with others for 

the most benefit (de Visser et al., 2018). The goal was to test the implementation of an active 

trust calibration strategy after an error in addition to the framing manipulation from the 

beginning of the experiment. The results were also compared to Experiment 2 using a quasi-

experiment design to examine the effects of the active repair/dampening strategy after an error. 

2.3.1 Hypotheses 

I expected a main effect of framing-with-active-calibration (H1), such that trust repair 

(with both promotion framing and active trust repair after the error) would have higher overall 

trust compared to the trust dampening (with both dampening framing and active trust dampening 

after the error). By their nature, repair strategies are intended to prevent decreases in trust and 

dampening is intended to keep trust lower (de Visser et al., 2018, 2020; Kohn et al., 2018).  

I expected results similar to Experiment 2’s H1, trust should be higher for promotion 

group showing higher trust scores for Drives 1 and 2 than dampening (H2), with the caveat that 

Experiment 1 did not show a significant difference for Drive 1. 

I expected that following the error and trust calibration strategies in Drive 3, trust would 

be highest for the promotion, showing little trust decrease, moderate trust decreases for 

dampening as they were already calibrated for anticipating errors, both of which should show 

smaller decreases than the control as the system does not acknowledge the error in the latter 
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(H3). The initial framing at the beginning should work as a preventative measure for the trust 

dampening condition because they already expected a potential trust violation as was explained 

through the potential limitations included (de Visser et al., 2020). The control condition had no 

such indication and only saw the error, counting as a miss that the human noticed, which is 

known to decrease trust (Hoff & Bashir, 2015). 

I expected that for Drives 4 and 5, trust would continue to increase for the promotion 

condition, would slightly improve for dampening, and would rebound for control (H4). Trust 

dampening should more appropriately calibrate trust – less trust increase after an error – because 

role and expectation are already established and an error should not be a surprise (de Visser et 

al., 2020; Haring et al., 2021; Kroeger et al., 2021). For the control, trust violations decrease trust 

but show improvement after subsequent perfect trials (Hoff & Bashir, 2015; Kraus et al., 2019; 

Mishler, 2019; Mishler & Chen, 2023).  

I expected that for the trust repair condition within Experiment 3, trust would be higher 

directly after and following the error compared to the promotion framing condition in 

Experiment 2 and that for the dampening condition in Experiment 3, trust would be higher 

directly after the error compared to the dampening framing condition in Experiment 2 (H5). 

Trust repair should prevent declines in trust and continue promoting trust even after an error (de 

Visser et al., 2020). Trust dampening after an error should still show an acknowledgement of the 

error compared to completely ignoring the error, which would provide some transparency. This 

should decrease trust but not as much as ignoring the error because the system primed them to 

beware that an error may occur and then explaining the system limitations as initially described 

(de Visser et al., 2020).  
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2.3.2 Method 

 The method for Experiment 3 was similar to Experiment 2 with the exception of three 

changes. The first change was that the initial framing for the negative/dampening condition was 

adjusted to be clearer and avoid using specific language telling participants to watch the road. 

This adjustment was done to ensure the negative/dampening condition was more consistent with 

the wording in the positive/promotion condition. The statement, “We are testing something new, 

and you might need to keep watch to ensure everything goes well” was changed to, “We are 

testing something new, and we are not yet sure that it will perform perfectly”. Additionally, the 

control condition was updated with, “We have completed the installation of the update, and you 

may proceed with your drive now.” as an additional line to ensure the length of each passage was 

equivalent. This addition did not impart any new information about the vehicle but gave a neutral 

sentence telling them they could now use the car. All initial framing instructions were balanced 

for word number, with a total of 26 words each.  

 The second change involved a few updates to the structured interview questions 

(Appendix F). I added a few more questions based on the addition of the promotion and 

dampening information provided to participants after the third drive. Additionally, a couple of 

questions were added to elicit more elaboration about the participants’ experience during the 

error. Lastly, the question about if the participant would use the vehicle in real life was added to 

the end. 

The final and most important change was the addition of the active calibration using trust 

repair or dampening strategies implemented following the error of Drive 3. To stay similar to the 

initial framing, participants in the trust promotion condition saw an active trust repair message 

after the error and participants in the trust dampening condition saw an active trust dampening 
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message after the error. At the end of Drive 3, participants in the trust promotion condition 

received the trust repair information as an apology-with-improvement. The apology-with-

improvement was implemented as a visual dialogue box that they read aloud, similar to the initial 

display of trust promotion at the beginning. The trust repair message said, “I am sorry for leaving 

the center of the lane and driving on the road edge. I have processed the diagnostic information 

and will not make this mistake in the future”. Participants in the trust dampening condition 

received trust dampening information after the error in a similar way, in the form of conveying 

system limitations and were told, “I left the center of the lane and drove on the road edge. The 

previous section of the road had irregular road lines, which is outside of my current system 

limitations.” Participants were able to see the road line during the drive and there was no 

noticeable fading, though I did not expect participants to notice at the time because it would have 

happened at the beginning when the ADS first went off the road. The control condition was 

included to keep a message in the drive after the error to ensure it was balanced with the other 

two conditions. It was difficult to balance this condition so that it did not tip off the participant 

about the error or seem like an acknowledgement of the error. Based on the responses from 

Experiment 2, participants noticed the error by themselves – as expected – so the extra message 

should not inform them of anything additional and as long as the message does not discuss the 

error, it should not be directly tied to the error. So, for the message, it did not contain any 

information relevant to the drive or automated system, but said, “You have a new notification 

from American Red Cross which is reminding you to donate blood. There are several blood 

drives in your area if you want to schedule an appointment.”  

2.3.2.1 Participants. I recruited 72 participants (24 in each group) from the ODU SONA 

pool or ODU community based on the same power analysis from Experiment 2. The mean age 
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was 22.56 (SD = 7.14) years and there were 26 males and 46 females. The participants were 

required to have a valid driver’s license and reported that their amount of driving experience was 

4.28 (SD = 1.90) years. The participants’ ethnicities were Caucasian (31), African American 

(19), Asian (4), American Indian/Alaska Native (1), more than one race (13) and other (4). All 

participants had normal or corrected-to-normal hearing and vision. The participants from the 

ODU community were recruited via flyers posted on campus or a flyer link in the psychology 

daily announcements email and emails to psychology course teachers to forward to their students 

with the intent of capturing psychology student populations and result in either students, 

professors, or others employed by ODU. The students recruited from SONA were given class 

credits and the participants from the community were given $10 in Amazon gift cards for their 

time. 

2.3.2.2 Materials. Similar to Experiment 2, The ADOS based on Kyriakidis and 

colleagues (2015) was implemented to gain insight into participants’ initial thoughts on 

automated driving before beginning the study. This helped evaluate whether participants in each 

group were similar in their thoughts and opinions toward automation.  

Participants were also interviewed after the study with a brief structured interview to 

understand what their subjective thoughts were about the automation during the study and how 

they thought about the error and trust calibration strategy. As stated in the method, this was 

similar to the structured interview from Experiment 2, but with a few more added questions 

(Appendix F). 

2.3.2.3 Procedure. Participants signed the consent form and were randomly assigned to 

one of the three framing conditions (promotion, dampening, control), and then read the 

instructions aloud according to their group after they were seated at the driving simulator. In the 
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instructions were displayed similar to the prior two experiments, requiring the participants to 

read the instructions aloud. They were told that the vehicle would start in the automated driving 

mode but that they need to keep their hands on the wheel and foot near the pedals throughout the 

drives. During the drives, participants needed to monitor the performance of the ADS and be 

prepared to intervene if necessary, according to Level 2 automation requirements. They 

performed five drives in total but were not told how many there would be or any information 

about them, including the upcoming error. Then, upon completion of each drive, participants 

filled out the automation trust survey. Near the end of Drive 3, the vehicle slowly drifted over the 

right road line into the shoulder. The vehicle fully crossed the line, drove halfway back so as if 

trying to find the road, drove further right again before finally correcting and driving back to the 

center of the lane. This entire error process took approximately 20 seconds. After the automation 

had recovered from the error, participants saw a dialogue box on the screen showing them the 

active trust calibration message, according to their condition. They were instructed to read this 

aloud to ensure they had fully read and understood the message. Demographics information 

(including age and gender) was collected after the completion of all five drives. After the driving 

simulation section was completed, the instructor conducted the structured interview, digitally 

recording their responses via a recording tablet. After the conclusion of the interview, the 

experiment was complete and they were be thanked, given credit, and ushered out of the lab. 
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2.3.3 Results 

2.3.3.1 Quantitative Results. This section contains the quantitative analyses of the ADOS 

and trust data collected prior and during the experiment, separate from the qualitative data from 

the post-experiment interview. 

To confirm that there were no differences between groups for initial trust, ADOS was 

analyzed using a one-way ANOVA with condition (control, dampening, promotion) as the 

independent variable. The analysis revealed that there was not a significant effect of ADOS 

between condition, (Ms = 5.01, 4.77, and 4.73 for control, dampening, and promotion, 

respectively) F < 1. Follow up equivalence tests for the ADOS data using the two one-sided t-

tests (TOST) method to verify there were no differences for starting automated driving opinions 

between groups, further clarifying that all groups started equal. Only the promotion and 

dampening group’s 90% confidence interval for equivalence was within the equivalence interval 

of [-.5, .5], ps < .05, meaning a claim of equivalence is supported. However, for the control and 

dampening and the control and promotion groups the results were not significant. Therefore, the 

conclusion for equivalence is inconclusive. The overall ANOVA (F < 1) and the individual 

independent samples t-tests between each set of groups, t(46) = 0.96, p = .343, t(46) = 1.37, p = 

.176, t(46) = 0.17, p = .864 for the groups control and dampening, control and promotion, and 

promotion and dampening, respectively). Therefore, the data cannot fully support a claim of 

equivalence, but does provide some evidence that they are not different. Based on these results, 

the ADOS was used as a covariate in follow-up analyses to ensure any differences are controlled. 

Table 2 shows the results of the t-tests with the greater of the two p values listed for each group 

comparison.  
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Table 2 

Results of the TOST Equivalence Test for the ADOS for Experiment 2 

 
Control Promotion Dampening 

Control      - t(46) = 1.07, p = .145 t(46) = 1.06, p = .148 

Promotion t(46) = 1.07, p = .145      - t(46) = 1.83, p = .037* 

Dampening t(46) = 1.06, p = .148 t(46) = 1.83, p = .037*      - 

Note: Significant effects indicate that the groups are equivalent 

 

 

To test H1-H4, I analyzed the trust data similar to Experiment 2, using a 3x5 mixed 

ANCOVA with Framing (Control, Promotion, Dampening) as the between-subject variable, 

Drive (1-5) as the within-subject variable, and the automated driving opinion survey (ADOS) 

results as the covariate to account for differences in initial trust and opinions on automated 

driving systems.  

The main effect of drive was significant, F(4, 272) = 49.92, p < .001, ηp
2 = .42, indicating 

that trust was not the same across drives (Ms = 5.21, 5.54, 3.99, 4.95, 5.25 for drives 1-5, 

respectively). See Figure 6 for graph. This main effect of drive supported Experiment 1 and 2 

demonstrating that there are changes in trust at different points in time. To investigate the 

differences across the drives, a trend analysis was used to analyze the overall pattern of trust 

using within-groups contrasts. The analysis revealed there was not a significant quadratic trend, 

F(1, 68) = 2.20, p = .143, ηp
2 = .03. However, there was not a significant linear or cubic trendline 

either, Fs < 1, indicating that no trend line could be fit to the data. Further analysis looking at the 

pairwise comparisons between drive 3 and the other drives showed that drive 3 was significantly 
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different than all four other drives (ps < .001 for all). This analysis demonstrates the significant 

decrease in trust for the third drive compared to the initial and subsequent errorless drives. The 

pairwise comparisons provided support for the results found in Experiment 2, demonstrating that 

all conditions decreased during the error in drive 3. However, this did not support H3 and 

actually demonstrated the opposite of what was expected showing that active promotion repair 

did not positively influence trust and active dampening did not further decrease trust. There was 

a significant effect of the covariate ADOS, indicating that an individual’s prior opinions on 

automated vehicles influenced their trust during the study, F(1, 68) = 13.75, p < .001 , ηp
2 = .17. 

Using ADOS as a covariate, the analysis was able to control for initial levels of trust and 

opinions of automated driving, eliminating preconceived ideas about automation as a factor 

affecting the data. 

There was not a significant main effect of framing, F(2, 68) = .09, p = .913, ηp
2 = .01, 

showing that participants did not have a difference in trust after any framing. H1-H4 were not 

supported demonstrating that not only did the initial framings not replicate from the prior two 

experiments, but the active repair and active dampening strategies had not effect. 

There was a significant interaction between drive and framing for trust, F(8, 272) = 2.11, 

p = .035, ηp
2 = .06. Simple main effects analysis showed only one significant difference control 

and dampening conditions in drive 2, p = .043. This did not match with any expected hypotheses 

because the framing conditions here seem to be leading the effect as the dampening and control 

conditions are switching after drive 3. I expected promotion to start higher, stay higher after the 

error on drive 3 and increase higher on drives 4 and 5, but this result was not shown. Though 

visually there seems to be variation in the drives, the results did not show much significant 

difference between conditions over drive.  
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H5 proposed an analysis integrating Experiment 2 and Experiment 3 as a quasi-

experiment; however, due to the present findings, the analysis was disregarded as it is no longer 

necessary. However, I ran a new a quasi-experimental analysis to demonstrate that there were no 

major differences in the levels of trust for each drive. A t-test comparing the means of trust for 

each drive between Experiment 2 and Experiment 3 was performed. The tests showed that there 

was no significant difference in mean trust for any drive between Experiments 2 and 3, ps = .686, 

.994, .397, .426, and .497, for drives 1-5, respectively. This provides partial support for the idea 

that the groups did not have different interactions with the system and that trust repair strategies 

were overall not effective as they did not significantly shift trust. 

 

 

Figure 6 

Average trust over the five drives for each of the three conditions in Experiment 3 

 

Note. The ADOS covariate appearing in the model was evaluated at 4.83 and the error bars are 

95% Confidence Intervals. 
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2.3.3.2 Post-task Interview Results. This section contains the qualitative analyses from 

the post-experiment interview. The interview data was analyzed similarly to the data from 

experiment 2.  

Participants were asked if they noticed anything strange about the automated driving 

system during their experience and a vast majority (95.83% or 69/72) of them mentioned the 

error of driving off the road either during this question, or at some point prior to the question 

being asked. The remaining participants that did not mention the error during this question or 

prior to the question were shown a short clip of the error and asked if they had seen this occur 

and all did see it and through later questioning did consider it an error of the automation. They 

had either forgotten to mention it or described it vaguely in previous statements that were not 

fully clarified.  

Participants echoed very similar thoughts to those in Experiment 2 regarding why they 

thought the error occurred; however, those in the negative framing condition expressed more 

blame for the road having irregular road lines as the cause of the error because the trust 

dampening information provided this explanation. However, those in the control and positive 

framing condition had similar responses to participants in Experiment 2 because they were not 

told any specific cause of the error.  

Again, participants echoed similar responses as Experiment 2 for the question about how 

the error influenced their trust. Two later questions asked specifically about the active calibration 

message (Q10, “What did you think about the message from the automated driving system after 

the drive where the error occurred?”) and if that influenced their trust (Q11, “How do you feel 

that this message influence your trust in the system?”). Participants in the control condition that 

saw a generic message about donating blood to the red cross stated that they did not associate the 
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message with the error and didn’t think anything of it or thought that the message was strange 

and were uncertain why it showed up. A couple participants added that they liked it as a nice 

reminder and thought it was safe because they did not have to look at their phone. 

For the positive and negative active calibration messages, responses were mixed with 

some participants liking the explanation and thinking that the message was potentially helpful to 

hear, compared to nothing. Others thought that if it could recognize the problem, they weren’t 

sure why it would not just avoid it or notify them during the drive. There were not many 

distinguishing themes between the positive and negative messages, perhaps indicating that the 

content of the messages could have been too similar resulting in no difference in effects. For 

over half participants in the positive (18/24) and negative (13/24) message conditions (31/48), 

the opinion was mixed with participants glad that it at least said something but were still 

concerned that it did not avoid the error. A few participants also mentioned that they wished the 

alert would have shown up sooner or wished it had shown up while the error was occurring. 

Similarly with the effect of the message on trust, those who had a mixed reaction also stated a 

mixed feeling of trust. There was no conclusive positive or negative impact of trust stemming 

from the message. 

Again, similar to Experiment 2, participants had a diverse reaction when asked (Q4), “If 

you had the chance in real life, would you use the automated vehicle that would perform the 

same as the one you just saw in the study?” There were 44.44% of participants who said yes, 

34.72% of participants who said no, and 27.78% of participants who were uncertain or needed 

more experience with the system first. Participants similarly expressed interest in checking it out 

but were still not fully certain about use all the time or in all situations. 
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2.3.4 Discussion 

Experiment 3 had a few differences in results from the prior studies that did not turn out 

as expected. The active repair and active dampening strategies post-error did not have any 

different effects as we expected them to influence trust. It is hard to say whether this stemmed 

from the lack of replication from the previous studies or if it was due to a difficulty in actively 

repairing or dampening trust. The latter is very likely, considering that in much of trust repair 

research, there are a myriad of factors that can influence repair potential and this trend has been 

noted various times for individual differences such as working memory (Ku & Pak, 2023), 

differences in attention allocation (Sato et al., 2023) and for different types of automation 

systems or errors (Esterwood et al., 2023; Schelble et al., 2022; Xu & Howard, 2022), 

demonstrating that trust repair research is mutable and often many repair strategies are 

ineffective. An insight from the interview data is that participants who received the trust 

dampening information after the error stated more specific information about the potential cause 

of the error because they were told that was the reason. This increase in transparency or 

explanation might have influenced their trust; however, there were no differences between 

conditions so even through understanding a potential reason for the error, participants did not 

adapt their trust. 

The obvious difference for Experiment 3 is that the trust promotion difference for the 

initial framing did not replicate. The effect of trust calibration framing did not appear the same as 

Experiments 1 and 2, and instead showed that trust did not differ across all conditions. Though 

the trend over the five drives was across conditions, the framing condition did not show the same 

effect. While this was unexpected, there are several viable explanations. First, I already 

discussed some limitations of trust repair, that it is fickle, depending on individual differences, 
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mental models, and automation differences. Various underlying factors could impact individual’s 

trust as a dynamic process and further as a sociocognitive process. Depending on an individual’s 

relational understanding of an automated system at a current time, the framing could be more or 

less effective. Enacting swift trust could depend on more factors than reinforcing role and 

importing information. The interview data from this study highlights how certain individual 

differences can alter how people might respond differently to various situations. An individual’s 

mental model about how a system works and behaves can influence their subsequent trust 

development process. Some individuals might view some mistakes as unforgiveable or have 

difficulty believing that an error can be corrected, requiring further proof of reliability over time. 

However, some individuals are more willing to trust – have higher dispositional trust – and their 

trust might be more malleable or easier to influence.  

This leads to another potential issue: the specific wording of some of the frames were 

adapted for Experiment 3. The intent was to further align them as balanced opposites, but some 

positive or negative aspects may have been lost, which were unable to activate a change in trust. 

The wording of the positive framing was not changed but the control framing had additional 

neutral text added (“we have completed the installation of the update, and you may proceed with 

your drive now”) and the negative framing changed from telling them they might need to watch 

to expressing that the reliability is uncertain (“you might need to keep watch to ensure 

everything goes well” to “we are not yet sure that it will perform perfectly”). The negative 

framing could be viewed as giving more transparency to the user about the reliability of the 

system, or that the idea of their role is less clear because they are not explicitly told that they 

might need to keep watch. These changes might have adjusted the base level trust of both control 

and negative framing, making them more equal to the unchanged positive framing, but this is 



   

 

70 

unlikely. There is not enough evidence at this point to say that a wording change would be the 

cause of this difference, but it is worth highlighting. 

One finding that Experiment 3 showed consistent with prior experiments was the 

significant differences across drives. The trend for the natural repair of trust – to increase after 

experience, decrease for an error, and then recover after the error – was shown, again backing up 

findings from Experiment 1 and 2, as well as prior research showing this similar trend (de Visser 

et al., 2018; Kraus et al., 2019; Mishler & Chen, 2023) but the active repair methods had no 

influence on this trust recovery. The trust framework through interacting with an automated 

driving system seems to consistently follow this trend and continual studies back it up. However, 

Experiment 3 was expected to displace this trend through the addition of active trust calibration 

after an error. I expected that providing an apology about the error with a promise to do better in 

the future would be able to lessen the decrease of trust. Prior research into automation errors has 

shown different results from a human-automation trust perspective depending on the type of 

error. This may be a running issue with trust repair research: errors are substantial and making a 

believable apology from an automation is difficult. The phenomenon of automation bias shows 

that errors from automated systems are more costly compared to their human counterparts 

(Dzindolet et al., 2003; Goodyear et al., 2017). The lack of robust findings for trust repair shows 

one way in which human-automation trust might be different from human-human trust. Humans 

are less likely to forgive automation errors and this could be due to the lack of belief that an 

automation can actually change. Often apologies or promises are offered as a band-aid without 

any actual change, and the human user might see through the veil if there are only words and not 

a tangible adjustment. I thought that by adding apology – one of the most widely applied trust 

repair methods – with promise, it might benefit trust repair, as combinations can be helpful (de 
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Visser et al., 2018) and some work on using promises as repair have been marginally successful, 

albeit not always for overall trust measures (Esterwood et al., 2023; Xu & Howard, 2022).  

Another explanation for potential lack of findings for trust repair is that the apology took 

place too late. After the error occurred, the vehicle fully recovered and spent up to thirty seconds 

finishing the drive before the end, where the message was displayed. After the error, the vehicle 

drove on a straight section of the road with no further incidents, but only maintained speed and 

stayed in the lines. I expected that the apology – and the dampening – would still be given in 

sufficient time letting them settle with the situation and then process the repair or dampening 

intervention. The idea that some trust repair or recovery might have already happened can be 

seen from the interview data, showing that participants seeing good performance after the error 

started to reinstate their trust in the system. Additionally, several participants mentioned that they 

wish the message had happened sooner or while the error occurred and not so late after. Other 

research has shown that timing can have strong influence over the effectiveness of trust repair 

strategies. Kohn and colleagues (2018) found timed apology to be the most effective strategy, 

and Robinette and colleagues (2015) along with Nayyar and Wagner (2018) found that repair 

strategies during an emergency and early soon after were more effective for an office evacuation 

with robot interaction task. For Experiment 3, I did not want to display a visual warning during 

the drive that would take participants’ eyes off the screen during the drive right after the error in 

case they were still concerned that another error might occur. If the text was presented right after 

the error, they might not have even trusted the system enough to continue driving unmonitored 

while they read the message. However, other methods for displaying the message sooner and in a 

way that is easier to process and understand could be considered for more effective trust repair.  
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CHAPTER 3 

GENERAL DISCUSSION AND CONTRIBUTIONS 

The findings of this study contributed to the theoretical understandings of trust and trust 

calibration towards newly introduced automation. As the use of automation increases, humans 

will be interacting and teaming with new automated technology in numerous parts of their lives. 

Trust in automation has major implications for the use, misuse, or disuse of automation, so 

understanding factors that affect trust can have far reaching-consequences if they are not 

accounted for (Parasuraman & Riley, 1997). Interactions with new and recently updated 

technology can affect adoption of a technology or how much user oversight is given to the 

functions during its use. Some individuals might never use a system if they do not trust it, losing 

out on any helpful benefits it can offer. Conversely, some individuals might misuse a system if 

trust it too much, allowing it far more unmoderated action than it should have. This study 

contributes to the current literature on trust calibration by showing how initial framing, errors, 

and active calibration strategies influence trust.  

This study implemented swift trust to contribute to the understanding of how human-

automation teams quickly develop trust to work together after new automation updates have been 

implemented. Well known framing literature was applied in a unique way to inspire initial levels 

of trust for the new automation features to uniquely tune the humans’ trust calibration. Positive 

and negative framing has been shown to alter risk taking behavior. The current study has 

expanded those findings to framing an individual’s initial swift trust through highlighting 

positive and negative aspects of an automated system. This is beneficial for introducing new 

human-automation teams and helping to calibrate their trust. The swift trust literature for human-

human teams has tried to increase imported trust at initial meetings through active engagement 
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strategies meant to boost team trust with limited benefit (Kroeger et al. 2021). Initial human 

interactions can be highly variable, depending on context and cues that cannot be controlled 

(Haring et al., 2021). The current study showed that it is possible to create different trust 

outcomes depending on the framing of initial swift trust, contributing to the scarce literature on 

applying swift trust to human-automation teams. It showed the importance of how initial framing 

of the automation’s role and capabilities influences human trust in automation which has 

important implications for overtrust and undertrust in later interactions. 

The outcomes for implementing framing of swift trust in this study demonstrate the 

importance of instruction and prior information before individuals interact with an automated 

system. The capacity to promote or dampen trust before someone interacts with a system can be 

greatly beneficial in helping to properly match their trust calibration with the performance of the 

system. However, trust calibration is more complex than just pairing trust and performance. The 

performance of an ADS can be highly variable depending on the level of automation, driving and 

road conditions, brand of the vehicle, and many more variables. It is extremely challenging to 

match a user’s expected trust in the system with the performance of a system and therefore 

chasing a perfect trust calibration is worthless. Instead, it is important to consider what level of 

calibration would be acceptable and try to fit the user into that range while keeping in mind the 

acceptable reliability of the system. An acceptable level of calibration would be one that results 

in the highest level of safety. Trust in automation is constantly adapting and changing, especially 

among individuals. This study showed that participants’ trust in a system could be influenced by 

changing the way of describing an automated update, and any subsequent overtrust in a system 

like an ADS could end up costing someone’s life. On the other hand, many systems are 

performing better than a human and in a complex environment like driving, human drivers 
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cannot account for everything. If an individual thinks they can manage without a safety system 

or tries to override a system that could be preventing a crash, this again could result in bodily 

harm or loss of life. Disregard for the human being’s understanding of the automated system 

while placing them in a dangerous situation is tantamount to condemning them to failure. In a 

new system that users are unfamiliar with, it is too easy to alter their trust. Designers and 

researchers should be wary of human drivers using features that they do not understand which 

have the potential for harm. 

In addition to manipulating swift trust calibration at the beginning of the interaction, I 

tried to actively calibrate trust after interaction with the system and the experience of a system 

error. To keep in line with trust promotion or trust dampening, strategies either intended to 

nullify the negative effects of the error on trust (positive/promotion) or highlight the error and 

explain the weaknesses of the system to temper trust (negative/dampening) were implemented to 

further understand how the automation in human-automation teams can influence trust. Initial 

influences on trust are important, but the longer lasting implications of these influences might be 

affected by the team interaction over time. Understanding how the trust calibration is influenced 

through interaction is important for these novel situations. Automation errors are bound to 

happen as no automation is perfect. Human-human teams often implement repair strategies or 

social responses after trust violations, whether as a premeditated plan or as an innate reaction to 

doing something wrong (de Visser et al., 2020; Madhavan & Wiegmann, 2007). Testing active 

strategies of trust calibration after an error is still relatively unexplored in the field of human-

automation interaction, especially for autonomous vehicles. For a new automation system or new 

update, designers might need to dampen trust to prevent users from misusing the system if the 

automation reliability is not fully verified. Alternatively, certain situations might call for trust 
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promotion when an error can be learned from and actively corrected for the future. Automation 

systems might be able to dynamically implement these different strategies depending on what is 

required, and this study provides insights into the entire process of framing initial trust and trying 

to calibrate the trust over time.  

The results of the study show that active trust calibration is not simple. Some participants 

were very impressed by the automation and its ability to detect the error and say that it would 

correct it, while others doubted the validity of these messages and simply refused to trust the 

system. Most participants were somewhere in the middle, left uncertain about the future 

performance of the system. Designers need to be careful how they communicate the information 

about the system to the end user and what the user is told during the interaction. The metrics and 

capacities of the system are not always known or easily understood by the end user, so the way 

in which they are told what is happening or what they should be expecting can be highly 

impactful on their experience and future actions. 

If there is a lot of text or documentation, one thing that can almost be guaranteed is that 

people will not read it all or might not read any of it. Therefore, according to best practices, the 

wording and content was made to be as short and simple as possible (Brust-Renck et al., 2013; 

Lacson et al., 2005; Norman, 1983). By making the text short it allowed users to quickly intake 

the message. However, there are many other facets to the information that could be displayed. 

The focus on role and importing trust were thought to be the most important, but there could be 

other categories of information that could be important. Balancing detail and information length 

is complicated, but enough information was provided to get a positive response for this study. 

The promotion and dampening information from the current study was abridged and did 

not always fully explain exactly what was happening with the vehicle, meaning that the system 
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transparency was insufficient in this case. The information was given to them after the fact and 

not as the error was unfolding, which could have contributed to a lesser effect of the repair 

effect. This is one of the core aspects of transparency that it should show the steps to complete a 

successful task, or the specific data being used at a point in time to make a decision. The vehicle 

should show the transparency of the system at the time to allow the human user to understand 

what is happening. In contrast to the system notifying the user after something has occurred and 

relying on the user remembering the error and recoding their experience of the memory to update 

what might have been going on with the system. While the error was occurring, the participant 

was not able to have control and therefore might not have been able to repair trust due to the lack 

of empowerment of the user. However, when providing transparency information, one needs to 

ensure that the user knows what to do with that information. Increasing transparency can 

increase an individual’s use of the system without increasing their understanding. The individual 

might have a surface-level way of thinking about the information, explanation, or response that 

they have not generated through their own thought. The user might simply accept the 

information from the system, even if that is not optimal. Some potential explanations of an 

ADS’s behavior used for trust repair or dampening might not be understood or processed the 

same way by different individuals, especially if they do not have a proper mental model or 

context for understanding what happened. Therefore, careful thought should go into the design of 

transparency or explainable behavior from the system to the user if the user might take away the 

wrong message. 

In Experiment 2, trust promotion was shown to increase trust, and the effect even lasted 

after an error. This finding is of great importance relative to calibration because it shows a 

potential for miscalibration of trust. Numerous studies have demonstrated an overtrust for miss-
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prone automation (Bailey & Scerbo, 2007; de Visser et al., 2016; Dzindolet et al., 2001; Mishler 

et al., 2019; Molloy & Parasuraman, 1996). However, many studies or designers also 

recommend ways to improve trust in automation through design alterations not related to a 

system’s actual reliability, but instead its design features or preexisting knowledge such as 

anthropomorphism, appearance, and communication style, brand reputation (de Visser et al., 

2016; Endsley, 2017; Hoff & Bashir, 2015; Sanchez et al., 2014). To be clear, many of these 

studies are not simply recommending increasing trust as much as possible and do consider a 

proper calibration of trust to be imperative. The closest designers can come to proper trust 

calibration is one that allows the user to let the automation function without intervention for as 

long as reasonable, but still be ready and capable of intervening when necessary.  

Experiments 1 and 2 demonstrated that trust calibration is fickle. Even though drivers 

experience the same exact ADS, their trust is uniquely calibrated simply by a manipulation to 

swift trust before interaction with the system. Experiment 2 showed the potential downfall of 

simply designing to inspire automation trust because even though the system drove off the road, 

users that were primed to have increased trust had higher trust recovery after that error compared 

to the other conditions, demonstrating an easily manipulable ‘bias’ that can be introduced. This 

directly falls in line with Endsley’s (2017) study, which found that sellers of a new Tesla vehicle 

misrepresented the capabilities of the system and oversold its ability to drive and spot hazards. If 

a user did not know the system’s limitations and the capabilities were overexaggerated, the 

driver might not be able to properly calibrate their trust even after interaction with the system. 

Interaction with the system and dynamically learned trust is one of the highly touted ways that 

individuals learn about a system establish a proper calibration, but if this initial learned trust can 
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be manipulated beforehand, it could fundamentally alter their later interactions with the system 

leading to problematic and dangerous behavior.   

Overall, the results show that trust can be easily influenced, leading to a more in depth 

understanding of trust as a physiological construct. Due to the nature of human cognition, 

decisions can be quickly influenced, and new information can alter risk taking behavior. This 

study has demonstrated that the same can be said about trust in automation. Trust is a behavioral 

reaction to an understanding of a system, and perceived opinion can be altered. In contrast to 

traditional prospect theory expecting that shows loss aversion, my study showed greater benefits 

of gain (Kahneman & Tversky, 1979). Typically, risk incites greater emotional impact; however, 

the gain/promotion condition of Experiment 2 only showed an increase in trust after the error, 

demonstrating the swift trust building from the initial framing. Though Experiment 1 showed 

increases for promotion and decreases for dampening, a further difference was uncovered when 

trust was tested during the error in Experiment 2. Trust is understood to be a variety of 

preexisting knowledge and initial learned trust prior to interacting with a system (Hoff & Bashir, 

2015), but this study demonstrated that initial learned trust could be manipulated reflecting a 

change in trust. Trust is also understood to be variable in nature; however, the variability of trust 

is often said to be developed during interaction in the dynamic learning of trust. The present 

study demonstrates the variability in trust calibration outcomes through initial information given 

before interaction. Trust does develop during repeated interaction, but the path of development 

during interaction can be altered by adjustments just prior to the interaction. 

This study only investigated the occurrence of one error; however, in many situations 

there might be repeated errors which could change their trust calibration. The difficulty of the 

driving situation and the severity of such errors could also impact drivers’ trust. The natural 
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recovery of trust after an error found in this study and prior research (Kraus et al., 2019; Mishler 

& Chen, 2023) could be lesser after a more severe error or after multiple errors either in quick 

succession or spread over time. Additionally, because of the increased trust recovery for the 

positive framing, it is unclear if the framing would still be as effective after multiple errors. After 

a certain number of errors, disuse becomes a more and more likely outcome. The positive 

framing could influence the users to continue use of the system past the point of other drivers as 

errors stack up. Potentially, positive framing could make trust more resilient to errors over time 

and error severity though further research is needed to uncover further impacts of the early initial 

trust development process.  

Something not always discussed in the trust in automation literature is the ethics of 

design. Often people discuss the ‘trolley problem’ in relation to how an automated vehicle might 

choose to kill a pedestrian to save the human occupant or vice-versa (Bruers et al., 2014; Wu, 

2020). The trolley problem works from a theoretical standpoint and makes for an interesting 

thought experiment. But no automotive company ought to state that they are making such a 

binary choice for such a complex situation, though some are trying to create risk cost functions 

for trajectory planning (Geisslinger et al., 2021). However, the design features and system 

introduction/training are a more practical ethical quandary because improper design or training 

can and has led a user to misuse a two-ton system of death.  

A potential issue regarding combining trust promotion and then having participants see 

an error after a relatively short time is the contrast between assuring them that the automation 

would be performing well (promotion) and then seeing an error. This resulting contrast effect 

could have erased any effect of trust promotion and even had the inverse effect after an error, 

further decreasing trust. Whereas with dampening trust, participants might have been expecting 
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an error, then when an error occurred, it confirmed their suspicions. It would be different to 

determine the latter in this study because there was no difference found for the trust dampening 

and control conditions for Experiments 2 and 3. There was not a contrast effect in this 

experiment for promotion because trust did not decrease different from the other conditions 

during the error, and still recovered higher after the error. 

One limitation with the current study is that trust is a hard concept to study, especially 

though surveys. Many different types of surveys are used in trust research, and there is not a 

general consensus on the best to use, and none have been solidly established for trust in ADS, 

though many are in development. The current trust survey used (Jian et al., 2000) is widely 

accepted and validated; however, it might not be able to fully capture the full range of positive 

and negative changes in trust. The survey was not developed with the thought of continual 

repeated use to measure trust changes over time or developed for newer frameworks that 

consider the full aspects of dispositional, situational, and learned trust influencing interaction 

(Chiou & Lee, 2021; Hoff & Bashir, 2015). Another limitation is the potential that the framing 

text might not have been equivalently balanced in terms of content and information, even though 

there was an attempt to balance them. There can be a lot of different combinations of information 

given to participants or the phrasing to promote certain aspects could be adjusted and might not 

be equivalent across groups of individuals. In future studies, deeper examination into various 

different framing information to influence swift trust could be explored to see if some are more 

effective at eliciting higher and lower trust. A final limitation is that this was all run on a 

simulator. Though simulators can of sufficient fidelity, some of the risk involved might not be 

conveyed to the participant as strongly as in a real automated vehicle. If the study was done 

using a real system on the roads, the added risk could produce larger effects.  
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CHAPTER 4 

CONCLUSION 

Overall, the findings of this study helped explain the trust process for new human-

automation teams, leading to a clearer picture of the teamwork dynamic between this emerging 

enterprise. New automation systems with various new updates are ubiquitous in modern life and 

understanding how to get users to team with and work alongside automation is a necessity. This 

study provided some of the first applications of trust-calibration manipulation both before and 

during interaction for autonomous vehicles and following an automation error. These results 

demonstrate a unique understanding for trust in automation as it relates to development before 

interaction. The framing of the automation before interaction has lasting effects for trust 

development and calibration. This contributes to further understandings of initial trust before 

interaction and how the impact of positive framing further demonstrates the variability of trust. 

The idea that trust is developed, calibrated, and established during interaction is incomplete, and 

there is much more research to be done in the factors that influence trust based on initial 

information, mental models, and automation understanding before interaction. In terms of design 

implications, future designers should look to implement trust calibration strategies to ensure 

automation and humans can work together as a team. Determining the proper way to explain the 

system, its performance, capabilities, and role are all important for helping the user to properly 

calibrate their trust. Knowing how much one can rely on a teammate or when they need to assist 

or monitor another teammates behavior can become critically important for successful teams. 

Additionally, the findings highlighted many potential individual differences that are not yet fully 

explored. A consideration for future designers and researchers is to consider the audience you are 

designing for and understand their mental models of the system beforehand. Overall, this study 
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lays out a foundation for future trust calibration research and design between human-automation 

teams. 
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APPENDIX A 

DEMOGRAPHIC INFORMATION SURVEY 
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APPENDIX B 

AUTOMATED DRIVING OPINION SURVEY 

The purpose of this survey is to gather your experience with manual driving and your opinions 

on automated driving. The following is a description of the levels of driving automation from the 

2016 SAE Taxonomy and Definitions for Driving Automation systems that is referenced in the 

following survey.  

• Manual driving: The human driver executes the driving task him/herself using the 

steering wheel and pedals. 

• Partially Driving Automation: The automated driving system takes over both speed and 

steering control on some roads. However, the system cannot handle all possible 

situations. Therefore, the driver shall permanently monitor the road and be prepared to 

take over control at any time. 

• Conditional Driving Automation: The automated driving system takes over both speed 

and steering control on most roads. The driver is not required to permanently monitor the 

road. If automation cannot handle a situation it provides a take-over request, and the 

driver must take-over control with a time buffer of 7 s. 

• Highly Driving Automation: The automated driving system takes over both speed and 

steering control on all roads. The driver is not required to permanently monitor the road. 

There is no expectation of the user to respond to a request to intervene. 

• Full Driving Automation: The system takes over speed and steering control completely 

and permanently, on all roads and in all situations. The driver sets a destination via a 

touchscreen. The driver cannot drive manually, because the vehicle does not have a 

steering wheel. 
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APPENDIX B (Continued) 

 

Question Unit/Coding 

1. Have you read and understood the above instructions? 
1 = Yes 

2. The definitions given in the instructions are clear to me. 
1= Disagree Strongly, 7= Agree Strongly 

4. What is your primary mode of transportation? 1= Private Vehicle, 2= Public Transportation, 3= 
Motorcycle, 4= Walking, 5= Other 

5. At what age did you obtain your first driver’s license? 
Year 

6. On average, how often did you drive a vehicle in the last 12 months? 
1=Never, 6=Every Day 

7.  About how many miles did you drive in the last 12 months? 
1=0, 2=1-5000, …, 11= more than 50,000 

8. Have you ever heard of the Google Driverless Car (Waymo) or other 
driverless cars? 2=No, 1=Yes 

9. The idea of fully automated driving is fascinating. 
1= Disagree Strongly, 7= Agree Strongly 

10.  Manual driving is enjoyable. 
1= Disagree Strongly, 7= Agree Strongly 

11.  Partially Driving Automation will be enjoyable. 
1= Disagree Strongly, 7= Agree Strongly 

12.  Conditional Driving Automation will be enjoyable. 
1= Disagree Strongly, 7= Agree Strongly 

13.  Highly Driving Automation will be enjoyable. 
1= Disagree Strongly, 7= Agree Strongly 

14.  Fully Driving Automation will be enjoyable. 
1= Disagree Strongly, 7= Agree Strongly 

15.  Partially Driving Automation will be easier than manual driving. 
1= Disagree Strongly, 7= Agree Strongly 

16.  Conditional Driving Automation will be easier than manual driving. 
1= Disagree Strongly, 7= Agree Strongly 

17.  Highly Driving Automation will be easier than manual driving. 
1= Disagree Strongly, 7= Agree Strongly 

18.  Fully Driving Automation will be easier than manual driving. 
1= Disagree Strongly, 7= Agree Strongly 

19.  Some modern cars are equipped with Adaptive Cruise Control (a system 
that can automatically follow another car). How often did you use Adaptive 
Cruise Control (ACC) when driving in the last 12 months? 1=Never, 6=Every Day, (-1 = I do not have ACC, -

2= I do not know what ACC is) 

20.  I would be comfortable driving in a fully automated driving vehicle without 
a steering wheel. 1= Disagree Strongly, 7= Agree Strongly 

21.  The idea of fully automated driving is silly. Scientists should focus on other, 
more important, research topics. 1= Disagree Strongly, 7= Agree Strongly 

22.  I believe that within 30 years, automated driving systems will be so 
advanced that it will be irresponsible to drive manually. 1= Disagree Strongly, 7= Agree Strongly 
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APPENDIX C 

STRUCTURED INTERVIEW QUESTIONS 

  

[read the framing instruction again] 

• When you read this instruction at the beginning, what did you think about the vehicle? 

• How did you think about the vehicle’s performance? 

• Do you think the car was driving in a safe manner? 

• If you had the chance in real life, would you use the automated vehicle that would 

perform the same as the one you just saw in the study? 

• Did you notice anything wrong with or strange about the vehicle during the study? 

If Yes 

 -> What did you think while the error occurred? 

-> What did you think might be the reason for the error? 

->How did that affect your trust in the vehicle’s capabilities? 

->What did you think about the drives after the error?  

-> followup: did these drives make you think about the reliability of the vehicle? 

If No 

> Show video of error 

> Did you notice this during the drive?  

o If “Yes” ->  

▪ What did you think? 

o If “No” ->  

▪ What would you think if you had seen this error? 

▪ Why do you think you didn’t notice this error? 

> Do you consider this an error of the Driving Automation System? 

> What did you think might be the reason for the error? 

> How would this error affect your trust in the vehicle’s capabilities? 

>  If you imagine drives after this error that do not have any errors, what would you 

think about those drives? 

o Followup: would these drives make you think about the reliability of the 

vehicle? 
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APPENDIX D 

POWER ANALYSIS FOR EXPERIMENTS 2 AND 3 

 

 

  



   

 

105 

APPENDIX E 

POST-STUDY 2 STRUCTURED INTERVIEW QUESITONS 

[read the framing instruction again] 

• When you read this instruction at the beginning, what did you think about the vehicle? 

• How did you think about the vehicle’s performance? 

• Do you think the car was driving in a safe manner? 

• If you had the chance in real life, would you use the automated vehicle that would 

perform the same as the one you just saw in the study? 

• Did you notice anything wrong with or strange about the vehicle during the study? 

-> What did you think while the error occurred? 

-> What did you think might be the reason for the error? 

->How did that affect your trust in the vehicle’s capabilities? 

->What did you think about the drives after the error?  

-> followup: did these drives make you think about the reliability of the vehicle? 
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APPENDIX F 

POST-STUDY 3 STRUCTURED INTERVIEW QUESITONS 

[read the framing instruction again] 

• When you read this instruction at the beginning, what did you think about the vehicle? 

• Overall during the drive, what did you think about the vehicle’s performance? 

• Did you think the car was driving in a safe manner? 

• Did you notice anything wrong with or strange about the vehicle during the study? 

 -> Can you describe what you saw?  

 -> Would you consider what you described an error? 

 -> What did you think while the [error, event, strange situation, etc.] occurred? 

-> What did you think might be the reason for the [error]? 

-> How did that affect your trust in the vehicle’s capabilities? 

-> [Remind of the post drive 3 message] – What did you think about the message from 

the automated driving system after the drive where the [error] occurred? 

-> How do you feel that this message influenced your trust in the system? 

-> What did you think about the drives after the error?  

-> followup: What did these drives make you think about the performance of the vehicle? 

• If you had the chance in real life, would you use the automated vehicle that would 

perform the same as the one you just saw in the study? 
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