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Adaptive Critic Network for Person Tracking using 3D Skeleton Data 
Joseph G. Zalameda, Alex Glandon, Khan M. Iftekharuddin 

aVision Lab in Department of Electrical and Computer Engineering, Old Dominion University, 

Norfolk, VA 23529 

ABSTRACT  

Analysis of human gait using 3-dimensional co-occurrence skeleton joints extracted from Lidar sensor data has been shown 

a viable method for predicting person identity. The co-occurrence based networks rely on the spatial changes between 

frames of each joint in the skeleton data sequence. Normally, this data is obtained using a Lidar skeleton extraction method 

to estimate these co-occurrence features from raw Lidar frames, which can be prone to incorrect joint estimations when 

part of the body is occluded. These datasets can also be time consuming and expensive to collect and typically offer a 

small number of samples for training and testing network models. The small number of samples and occlusion can cause 

challenges when training deep neural networks to perform real time tracking of the person in the scene. We propose 

preliminary results with a deep reinforcement learning actor critic network for person tracking of 3D skeleton data using 

a small dataset. The proposed approach can achieve an average tracking rate of 68.92±15.90% given limited examples to 

train the network. 

Keywords: Actor Critic Network, Lidar, Skeleton data, Person Tracking, Small Dataset 

 

1. INTRODUCTION  
Three-dimensional skeleton data provides a useful modality for human feature representation. Skeleton data may be used 

with machine learning and deep learning algorithms for applications like person identification1,2, action recognition3-5, and 

gender classification6. These use cases demonstrate the applicable advantages of skeleton data in fields such as security 

and defense, especially when they can be implemented for real time systems. Furthermore, the demand for robust, real-

time deployment of these algorithms has given rise to the need to accurately convert image data to skeleton data through 

the use of joint location estimation techniques. 

Accurate and efficient joint location estimation for different image domains is vital for deep learning algorithms to function 

efficiently. Lidar based silhouette joint estimation for subject skeleton extraction2 has been shown to achieve promising 

results when used to extract datasets to train deep Convolutional Neural Network (CNN) based person identification 

algorithms like Hierarchical Co-occurrence Network for Person Identification1. Lidar based skeleton data is more 

advantageous for on-site deployment as opposed to visual based7 or motion capture (MoCap) based methods as it can work 

at long range and in low light environments.  However, Lidar based skeleton data exhibits outlier joint location issues that 

can stem from environmental noise, occluded joints, and null frames. Additionally, acquisition of Lidar data for skeleton 

extraction can be time consuming and expensive, which leads less available data for training and testing. These issues pose 

challenges for algorithm development using Lidar based skeleton data.  

Utilization of deep neural networks for object tracking have been shown to perform well with image data. Deep CNN 

based architectures have been used to perform both object classification and tracking in real time for images8. This work 

however focuses on utilization of deep networks for tracking and classification. Deep Reinforcement Learning (RL) based 

approaches9 utilize a series of recurrent neural network layers to track objects in image data. Current actor critic based RL 

approaches to track objects in image data in real time utilizes an actor network with a continuous state space that is trained 

both online and offline10 as well as a discrete action space11. Both methods performs well when compared with other state 

of the art approaches. Work on these methods however have been limited to object tracking in the image domain. Inspired 

by the success of deep networks along with RL and recurrent based tracking approaches, we propose a recurrent adaptive 

critic-based network to perform noise resilient tracking of skeleton data in 3-dimensional space. Our adaptive critic 

approach uses the actor critic network structure for training. 
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To the best our knowledge, RL based adaptive critic real time tracking algorithms have not been studied to track person 

in small Lidar based skeleton data.  This work presents preliminary results for  adaptation of this network for tracking 

person utilizing a discrete action space as opposed to the continuous action space used in the current state of the art image-

based object tracking actor critic10. Our implementation is designed to leverage deep neural networks to approximate a 

policy function and value function. This implementation will also require the design of a novel skeleton tracking 

environment.  

The contributions of this work are as follows: 

1. Design a novel framework that adequately represents skeleton joint locations and human movement given a small 

and noisy Lidar extracted skeleton dataset. 

2. Train an actor critic design network with a discrete policy action space to track skeletons in real time given limited 

training data. 

3. Evaluate actor critic tracking performance on unseen Lidar skeleton data. 

2. BACKGROUND 
2.1 Actor Critic Design 

The actor critic design used in this work consists of an actor network 𝜋𝜃𝑎  with parameters 𝜃𝑎 , critic network 𝐽𝜃𝑐 with 

parameters 𝜃𝑐, and an Environment containing an infinite number of states 𝑠𝑡 given a finite number of skeleton data 

samples. following previous feedforward actor critic network implementation examples12,13. The actor’s job is to 

approximate a policy function which takes as input, a set of environmental conditions known as the state 𝑠 and outputs an 

action distribution that consists of probabilities to take each action. This relationship is given in Eq. 1 where 𝑠𝑡 is the 

environmental state at time 𝑡 and 𝐴𝑡 is the action space output at time t as, 

𝐴𝑡 = 𝜋𝜃𝑎(𝑠𝑡). (1)      

Here 𝐴𝑡 is a 1-dimensional tensor where indexed values represent the probability of the action equaling that index. Because 

𝐴𝑡 is limited in the number of actions, one actor critic network is trained to track each axis in the scene. Final testing of 

the network combines the outputs of multiple actor networks to update the position of a bounding box drawn in 2-

dimensions in the scene.  The critic network approximates the value function given current state 𝑠𝑡. The environment is 

designed to output the state, which contains information of 𝐴𝑡 in addition to the raw joint data. The value function 

approximates the discounted cost to go function 𝑉𝑡, which estimates total current and future reward given 𝑠𝑡. This function 

is shown in Eq. 2. 

𝑉𝑡 = 𝐽𝜃𝑐(𝑠𝑡). (2)     

There are three main functions of the environment in this design. The first function is to output a set of environmental 

conditions to the actor and critic networks known as the state 𝑠𝑡. The second function is to interpret and apply the action 

set 𝐴𝑡 with the goal of making a move within the state space. This move results in an updated state at time 𝑡 + 1 denoted 

as 𝑠𝑡+1.  The third function is to output a reward value 𝑟𝑡 to train the actor and critic networks. The environment function 

is given in Eq. 3.  

𝑠𝑡+1, 𝑟𝑡 = 𝐸𝑛𝑣(𝐴𝑡|𝑠𝑡) (3)     

As the actor critic is inherently a real time-based approach, network training of both the actor and critic occurs at the 

simultaneously. The loss function for both the actor and critic networks utilizes the advantage function13 in Eq. 4, which 

quantifies current, and future expected total reward given the 𝑠𝑡 and 𝑠𝑡+1. The critic loss is designed to better approximate 

the Q value function given observed values of 𝑟𝑡. This advantage function and critic error are adapted from the critic error 

function used in. The goal of the actor loss is to use the advantage function to weight actions with higher expected reward 

higher than actions with lower expected reward.  

𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒(𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑡) = 𝑟𝑡 + 𝐽𝜃𝑐(𝑠𝑡+1) − 𝐽𝜃𝑐(𝑠𝑡); (4)    
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Actor Loss = − log (πθa(st)) ∗ Advantage(st, st+1, rt); (5)    

 𝐶𝑟𝑖𝑡𝑖𝑐 𝐿𝑜𝑠𝑠 = 0.5 ∗ 𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒(𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑡)
2 (6)    

2.2 Skeleton Data 

The skeleton dataset used to train this model is extracted from Lidar videos2. All videos are acquired at a fixed camera 

position with the subject walking in a circular pattern in the scene. The dataset consists of 10 subjects divided among 22 

videos ranging from roughly 120 to 500 frames each. Skeleton video is denoted by the tensor 𝑋𝑖 where 𝑖 corresponds with 

the video number. Each video sample 𝑋𝑖 contains 13 joints tracked over 3 spatial dimensions and is structured according 

to Eq. 7.  

𝑋𝑖 = [𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑓𝑟𝑎𝑚𝑒, 𝑗𝑜𝑖𝑛𝑡] (7)    

  

Figure 1. Example Lidar Skeleton Frames Without Occluded Joints 

  

Figure 2. Example Lidar Skeleton Frames with Occluded Joints 

Figure 1 gives examples of clean skeleton tracking of the Lidar data. In this case, the subject is oriented in a manner shows 

all joints to the camera. Therefore, the skeleton extraction algorithm can accurately detect and map the joint locations in 

the space. Because the skeleton remains on level ground through the entire video duration, tracking will be limited to the 

X and Y axes. 

Figure 2 gives an example of sequential noisy frames where the skeleton is turning. In this case, while the skeleton is 

turning in the scene, the occluded joint locations are estimated using matrix completion2. This results in joint estimations 

that exhibit high noise. This noise is a huge obstacle to develop classification and tracking algorithms that may be trained 

and tested on this Lidar based skeleton dataset.  

3. METHODOLOGY 
3.1 Dataset 

Once extracted from the Lidar videos, the skeleton data is preprocessed in two steps. The first step is to normalize the X-

axis and Y-Axis from [-3,3]. The second step is to create a set of ground truth locations for all frames of each video. This 

step is done by utilizing several low pass averaging filter convolutions on the average joint locations projected along the 
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X and Y Axes separately. This results in a smoother and more accurate location representation along each axis when 

compared with the average location. This step can only be done with prerecorded videos as it takes into account past and 

future joint locations, which is not feasible for real time operation. This method however proved to work well for training 

the actor critic network. To show the actor critic network does not need all joints to track the skeleton, a subset of joints is 

used as data for the environment which encompasses data from the legs, torso, and upper body. 

3.2 The Overall Network Framework 

 

Figure 3. Actor Critic Network 

The overall network structure for the online training method is shown in Figure 3. The network performs backpropagation 

after each time step in the training process. The main difference between the structure for batch training and online training 

is the link from the advantage function to the environment. In the case of online training, the environment will only move 

to the next frame in the video sequence when the advantage value meets a predetermined threshold, or a maximum count 

is reached. This indicates an optimal state trajectory for the network. Meeting this threshold implies the actor network is 

sufficiently trained on the current frame and the environment should move to the next frame in the skeleton video. This 

method has the advantage of being able to check for correct convergence at each frame before moving to the next frame, 

which will ensure the model is training only on highly rewarding state paths within the environment. 

3.3 Environment Design 

The actor critic network utilized for this tracking problem requires a novel Environment structure that accurately maps 

actions to location estimations of the skeleton data over time. This environment is designed to provide tracking information 

to the actor critic along one spatial dimension, indicated by the dimension input in Figure 4. This environment can be used 

for both online and batch training of the actor critic. The reward output from the environment needs to accurately reinforce 

good tracking actions taken by the actor network. Because the action space 𝐴𝑡 is discrete in this design, each action must 

correlate with a fixed movement for state t in the estimated skeleton location 𝑌𝑡̂ and compared with the actual location 𝑌𝑡. 

Both 𝑌𝑡̂ and 𝑌𝑡 are stored and updated internally within the Environment. Using the stored values, the environment in this 

network computes four functions that are needed for the recurrent operation of this actor critic design, which are, action 

interpretation, reward computation, state output, and episode termination.  
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Figure 4. Environment Structure 

The goal of action interpretation is to sample 𝐴𝑡 using the probability values within the action according to Eq. 8 and 

update 𝑌𝑡̂ 𝑡𝑜 𝑌𝑡+1̂  following the logic in Eq. 9. This equation takes as input the current estimated location 𝑌𝑡̂, the movement 

size 𝑆𝑡𝑒𝑝, and 𝐴𝑡. The Step value in Eq. 9 is a predefined constant which influences the maximum movement 𝑌𝑡̂ can make 

in one iteration.  

𝑎𝑐𝑡𝑖𝑜𝑛 = prob_sample(𝑠𝑎𝑚𝑝𝑙𝑒(− log(𝐴𝑡))) (8)    

𝑌𝑡+1̂ =

{
 
 
 

 
 
 
𝑌𝑡̂ − 𝑆𝑡𝑒𝑝    𝑎𝑐𝑡𝑖𝑜𝑛 = 0

𝑌𝑡̂ −
𝑆𝑡𝑒𝑝

10
    𝑎𝑐𝑡𝑖𝑜𝑛 = 1

𝑌𝑡̂                    𝑎𝑐𝑡𝑖𝑜𝑛 = 2

𝑌𝑡̂ +
𝑆𝑡𝑒𝑝

10
    𝑎𝑐𝑡𝑖𝑜𝑛 = 3

𝑌𝑡̂ + 𝑆𝑡𝑒𝑝    𝑎𝑐𝑡𝑖𝑜𝑛 = 4

(9)    

The reward computation function is implemented as a binary reward structure with reward being 𝑟𝑡 =1 and punishment 

being 𝑟𝑡 =0 for batch training. The 𝑤𝑖𝑛𝑑𝑜𝑤 constant seen in Figure 4 specifies the margin of error for the tracking 

algorithm. Eq. 10 shows the reward conditional output of the reward computation function as follows,  

𝑟𝑡 = {1  |𝑌𝑡+1
̂ − 𝑌𝑡+1| ≤

𝑤𝑖𝑛𝑑𝑜𝑤

2
 𝑜𝑟 |𝑌𝑡 − 𝑌̂𝑡| ≥ |𝑌𝑡+1 − 𝑌𝑡̂|

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

(10)     

This function outputs a reward of 1 if either 𝑌𝑡+1̂  is within the window range of 𝑌𝑡+1 with the window being centered at 

𝑌𝑡+1 or if the 𝑌𝑡+1̂  is outside the window but makes a move towards 𝑌𝑡+1. If either of these conditions are not met, 𝑟𝑡 =0, 

which punishes the network. Online training utilizes the reward structure shown in Eq. 11, which adds extra reinforcement 

to positive moves within the tracking window as well as discounted reinforcement to positive moves outside the window. 

The episode termination function is required to set two conditions under which the training episode ends. The first 

condition involves keeping a running total of the number of times 𝑟𝑡 = 0 during a training episode. Once the total reaches 

max count 𝑀, the episode ends. The second condition is met if the episode has reached the end of the skeleton video. Once 

the episode is ended, the episode termination function will output a signal of 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒, which will trigger the training 

of the network. In online training this condition is always set to True and 𝑛𝑡 only resets if the end of the video is reached. 

The lead variable is a constant that offsets the ground truth output of the real skeleton locations by a fixed amount.  
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𝑟𝑡 =

{
 
 

 
       1      |𝑌𝑡+1̂ − 𝑌𝑡+1| ≤

𝑤𝑖𝑛𝑑𝑜𝑤

2
 𝑎𝑛𝑑 |𝑌𝑡 − 𝑌̂𝑡| ≠ |𝑌𝑡+1 − 𝑌𝑡̂|

      2      |𝑌𝑡+1̂ − 𝑌𝑡+1| ≤
𝑤𝑖𝑛𝑑𝑜𝑤

2
 𝑎𝑛𝑑 |𝑌𝑡 − 𝑌̂𝑡| = |𝑌𝑡+1 − 𝑌𝑡̂|

 0.5    |𝑌𝑡 − 𝑌̂𝑡| > |𝑌𝑡+1 − 𝑌𝑡̂|                                                     

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

(11)    

3.4  Network Training 

Both batch and online methods are used to train the actor critic network on this environment. Both batch and online training 

methods leverage the same loss functions in Eq. 5 and Eq. 6, with the main differences being gradient computation at time 

of backpropagation and design of the Episode Termination function. Figure 3 shows the actor critic network structure with 

backpropagation.  

The batch train method is performed by utilizing the actor network to navigate the environment using an episodic approach. 

Each episode allows the network to navigate the environment until the done=True condition is satisfied by the Episode 

Termination function. At each time step, the reward, actor output, and critic output are saved to a memory buffer. Once 

the episode terminates, the returns and Advantage at each time step are compiled into a set of actor and critic losses. This 

compilation of losses is then used as a batch loss and the mean derivative is used for backpropagation through the network. 

This method has the advantage of observing more of the environment per training step.  

The network structure for the online training method performs Backpropagation after each time step in the training process. 

The main difference between the structure for batch training and online training is the link from the advantage function to 

the environment. In this case, the environment will only move to the next frame in the video sequence when the advantage 

value meets a predetermined threshold or a maximum count is reach, indication a sub optimal state for the network. 

Meeting this threshold implies the actor network is sufficiently trained on the current frame and the environment should 

move to the next frame in the skeleton video. This method has the advantage of being able to converge correctly at each 

state, which will ensure the model is training only on highly rewarding state paths within the environment. 

3.5 Experiment 

The metric used to quantify performance of the network is tracking success rate, which computes the percentage of frames 

within a video the network is able to estimate the correct skeleton location within the window size it is trained on. To 

assess the ability of the actor critic to learn to track skeletons through the proposed environment, we organize our train/test 

structure into folds. Each fold will only train on one continuous video in our 22-video dataset and test on all 21 remaining 

videos in the dataset. We perform this train/test cycle once per each video. The testing results for each video are then 

averaged across all folds for both training methods.  

Because training the actor critic method using the batch method is inherently unstable, an early stopping feature is 

implemented, which stops training the network if the maximum frame number in the video is reached in 5 consecutive 

episodes. This helps to prevent the network from overfitting on a suboptimal state trajectory, or hopping between state 

trajectories, which can occur in later stages of training. The hyperparameters for batch training are determined empirically, 

with an actor learning rate of 0.001, a critic learning rate of 0.01, a step value of 1, window size of 2, max count of 5, and 

a lead value of 0, respectively. The Adam optimization algorithm14 is used with 𝛽1 = 0.9 and 𝛽2 = 0.999 to update the 

network weights. 

To assess network performance with online training, the networks are trained for 30 cycles over the skeleton video 

following the inherent online training capability of the actor-critic network to increment the frames in the video. Early 

stopping is not needed in this case because the online training method increases the chance that the network will train on 

more optimal state trajectories. The hyperparameters for online training are determined empirically, with an actor learning 

rate of 0.001, a critic learning rate of 0.001, a step value of 1, and a lead value of 0, respectively. An internal training 

iteration limit for each state of 30 is used to prevent overfitting. The Stochastic Gradient Descent optimization algorithm 

is used to update the network weights. 
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4. RESULTS 
4.1 Training Convergence 

The proposed network shows a strong tendency to converge toward a given state trajectory during training. An example 

of this convergence can be seen in Figure 5 (A) and (B), which shows the mean loss for each episode using batch training. 

Here the network converges to multiple state trajectories which are indicated by the sudden spikes around episode number 

100 and 300. This is an example of the network moving between multiple states that are deemed to yield high accumulative 

reward values and therefore produce a good tracking output. Figure 5 (C) shows the iteration total per episode. This 

measures then number of frames the network can track before the environment ends the episode. This is a good indication 

of how well the network is tracking the skeleton because the closer the estimated location is to the actual location, the 

higher the probability the environment will continue the track. The goal of tracking the whole video without an episode 

termination is reached around episode 100 which is again reflected in the convergence in both the actor and critic losses. 

This pattern is reflected in the online training functions as well, though the state transition logic requires convergence at 

each frame, which significantly increases the noise in the overall training plots in this case. 

 

Figure 5. Batch Train Metric Plots Actor Loss (A.), Critic Loss (B.), and Iterations per Episode (C.) 

4.2 Quantitative Results 

Because the convergence of the actor critic network can be unstable, tracking success rate over all folds exhibits high 

variance for both batch and online training. Table 1 shows the test time tracking success rate average across all folds for 

both training methods. Table 1 breaks down the tracking success rate for only X-axis, only Y-axis, and a bounding box 

approach which combines the X and Y axes. The batch training method achieves the highest bounding box tracking success 

rate at 68.92±15.90%. The highest single axis accuracy is achieved by the X-axis through batch training at 86.53±7.99%. 

While both networks learn to track the skeleton in the space, the online training method achieves a much lower bounding 

box tracking success rate at 39.79±14.80%. The per axis results also achieves lower tracking success rates when compared 

with batch training. 

Table 1. Average Test Time Tracking Success Rate. 

Train Method X-Axis Y-Axis Bounding Box (X and Y Axis) 

Batch Train 86.53±7.99% 79.26±16.87% 68.92±15.90% 

Online Train 69.20±6.89% 58.78±20.56% 39.79±14.80% 
 

4.3 Qualitative Results 

Figure 6 shows a 3-frame qualitative example of the bounding box tracking using the actor critic model on a skeleton with 

additive zero mean gaussian noise with a magnitude of 0.4 to emphasize variability in tracking performance between the 

actor critic network and simply taking the mean of the joints used. The blue box in Figure 6 represents the bounding box 

drawn by taking the mean of the joints locations and the black box represents the bounding box estimated by the trained 

actor critic model. The actual skeleton location between all 3 frames in Figure 6 should remain close together. However, 

the added gaussian noise along with the noise caused by the occluded joints along with the gaussian in frame 2 shown the 

actor critic can outperform tracking by simply taking the average location.  
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Figure 6. Bounding Box Tracking of Turning Skeleton Sequence - Mean Location Tracking (Blue Box), Actor Critic 

Tracking (Black Box) 

5. CONCLUSION
This work utilizes an actor critic network to show feasibility of a novel tracking environment for a small Lidar extracted 

skeleton dataset. The actor critic network is trained using both batch and online training methods. The batch training 

method exhibits better convergence of the network resulting to better person tracking when compared that with the online 

training method. This convergence however is extremely sensitive to underlying conditions within the networks and 

environment which yield high variability in the results. Future work should address this high degree of variability when 

training the actor critic model, which should improve both mean tracking test success rate and variance of this success 

rate. Future work should also assess tracking performance of the actor critic network with extended videos and multiple 

objects within the scene. The recurrent structure of this actor critic design can, in the future, be leveraged to predict future 

skeleton locations using a similar environment to the one utilized in this paper. 
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