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Review Article

Microbially Induced Sedimentary Structures in Clastic
Deposits: Implication for the Prospection for Fossil

Life on Mars

Nora Noffke

Abstract

Abundant and well-preserved fossil microbenthos occurs in siliciclastic deposits of all Earth ages, from the
early Archean to today. Studies in modern settings show how microbenthos responds to sediment dynamics by
baffling and trapping, binding, biostabilization, and growth. Results of this microbial-sediment interaction are
microbially induced sedimentary structures (MISS). Successful prospection for rich MISS occurrences in the
terrestrial lithological record requires unraveling genesis and taphonomy of MISS, both of which are defined
only by a narrow range of specific conditions. These conditions have to coincide with high detectability which
is a function of outcrop quality, bedding character, and rock type. Assertions on biogenicity of MISS
morphologies must be based on the presence of microbially induced sedimentary textures (MIST), which are
MISS-internal textures comprising replacement minerals arranged into microscopic biological morphologies,
ancient carbonaceous matter, trace fossils, and geochemical signals. MISS serve as possible templates for the
decryption of ancient life-processes on Mars. This article closes with a perspective on selected deposits and
ancient environments in Meridiani Planum, Gale Crater, and Jezero Crater, Mars, regarding their potential for
MISS occurrences. The earlier hypothesis of structures on Mars as potentially being MISS is revised. Key
Words: MISS—Early life—Mars—Biosignature—MIST—Archean. Astrobiology 21, 866–892.

1. Introduction

It is a common expectation that if life on Earth’s
neighbor planet ever existed, it must have been microbial.

Historically, life exploration on other planets is rooted in the
paleontological work on early microbial life chronicled in
terrestrial Archean rocks. Here, pioneering studies revealed
body fossils of microbial cells and filaments, stromatolites,
and a wealth of chemical signals and biomarker molecules
(reviews by Hickman-Lewis et al., 2018; Lepot, 2020).
Naturally, proposed search strategies for extraterrestrial life
are nurtured by the large data sets on these features, already
tested from all angles of perspectives (Summons et al., 2011
[for MSL]; Westall et al., 2015; Vago and Westall, 2017; and
Vago et al., 2017 [for ExoMars]; McMahon et al., 2018 [for
Mars2020]). In contrast, Archean siliciclastic deposits have
long been regarded as comparably poor in paleontological
information and only more recently addressed in more detail
(review by Noffke et al., 2021). In siliciclastic lithologies,

microbially induced sedimentary structures (MISS) consti-
tute one window into past life. Because clastic sediments and
sedimentary rocks form a large volume of deposits on Mars,
the aim of this paper is to shed light on the significance of
MISS as potentially important, but until now little discussed,
biosignatures. This contribution starts with a review of where
Earth’s exceptionally preserved MISS can be found. Then
equivalent clastic deposits and paleoenvironments on Mars
will be discussed with respect to their potential for hosting
such valuable fossil sites.

2. Which Characteristics Are Typical
for Fossil-rich Sites?

In order to find locales rich in well-preserved fossils,
three aspects are of concern. First, it is necessary to un-
derstand the paleoenvironment intricately documented in
rock successions (stacks of rock layers) and whether con-
ditions for habitation have once been favorable enough to
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support high numbers of organisms. Second, of equal im-
portance to habitability are the ancient conditions that
eventually lead to preservation of organisms as fossils in the
substrate. Ancient sedimentary conditions must have fos-
tered transformation of organic matter to mineralic sub-
stances or the in situ recrystallization of organismic hard
parts to highly resistant mineralogies. In rare circumstances,
original organic material may have endured time and ag-
gressive diagenetic alteration resulting in soft parts of an-
cient organisms preserved in detail. Third, the practical issue
of detectability of a fossil-rich locale must be discussed.
Fossils buried under a heap of debris or preserved in host
rocks deep below Earth’s surface may be plentiful and
beautiful but—obviously—of not much use. The easiest way
to explore a fossil site is to investigate in outcrop, where
rock layers are widely exposed and easily visible. However,
where intense chemical and physical weathering, modern or
at some point in the past, has altered the rock, the quality of
fossil presentation is diminished. Ideally, habitability of a
paleoenvironment and a high preservation potential of the
ancient sediments should overlap to produce abundant and
complete fossils, and the fossil site should be easily de-
tectable (Fig. 1; Noffke et al., 2002).

3. Biofilms and Microbial Mats in Clastic Deposits

Clastic deposits are substrates composed of loose parti-
cles of mud-, silt-, sand-, and gravel-sizes (Fig. 2). De-
pending on climate conditions, evaporitic grains or cement
may be present. On Earth, sediments also include a bulk of
organisms, including microbenthos (Fig. 2). Like every-
where in natural settings, the benthic microorganisms
commonly arrange into biofilms (Stoodley et al., 2002;
Espinoza-Ortiz and Gerlach, 2021). These are layers of cells

and the mucus, called extracellular polymeric substances
(EPS; Decho and Gutierrez, 2017), that the cells secrete. At
ecologically favorable locales, substantial centimeter-thick
biofilms of meter-scale extensions may develop. Such bio-
films are called microbial mats (Cohen and Rosenberg,
1989; Franks and Stolz, 2009). Best known examples are
those mats predominantly constructed by cyanobacteria
growing in coastal lagoons and on tidal flats and shelves
(Hardie and Garrett, 1977; Horodyski and Bloeser, 1977;
Ginsburg, 1991; Stal and Caumette, 1994; Pearl et al., 2000;
Stolz, 2000; Visscher and Stolz, 2005; Noffke, 2010; Car-
mona et al., 2012). However, with water being the funda-
mental limiting requirement for life (Westall and Brack,
2018), microbial mats may develop at all sites, where this
prerequisite is offered, plentiful or at least to bare minimum:
playas and sabkhas, rivers and flood plains, in and around
lakes, under ice, in interdune flats, and many other places
(Hardie and Garrett, 1977; Horodyski and Bloeser, 1977;
Pearl et al., 2000; Gallardo and Espinoza, 2007; Gerbersdorf
et al., 2008). Such settings provide environmental condi-
tions favored by microbenthos composed by cyanobacteria
and numerous other microorganisms (Caumette et al.,
1994).

It is readily apparent that microbenthos must compete
with sediment dynamics to maintain a finely tuned and
functional biofilm community. For many microbes, a muddy
deposit (particles with diameters less than 0.004 mm) con-
stitutes a difficult substrate for colonization, because accu-
mulations of fine-grained particles (especially in the
presence of clay minerals) are cohesive. Such a substrate is
difficult to move through, for example by mobile cyano-
bacteria (Stal, 2003). More so, where fines remain sus-
pended in the water column and block essential light from
reaching the bottom, photoautotrophy as an energy-
providing mechanism may fall short. That said, at sites of
prolonged subaerial exposure and only low input of fine
debris, cyanobacteria may form mats on top of a surface,
even a muddy one. Intrasedimentary chemotrophic microbes
relying on diffusion processes, however, may make use of
the stability of coherent mud (Fig. 2A).

It appears that for photoautotrophic microbes, sand (par-
ticles with diameters ranging from 0.06 to 2 mm) offers the
best substrate for microbial mat formation (Stal, 2003). This
is the case especially where merely gentle currents and
waves occur, too weak to erode sand-sized grains and to
transport them as suspension load (Fig. 2B). Where in ad-
dition the sandy deposit is composed of translucent quartz
grains, photosynthesis is unhampered, and growth of mi-
crobes may be supported by ample provision of nutrients
through water circulating in abundant pore space and across
the sedimentary surface.

Gravel (particles >2 mm) is also a difficult substrate for
microbenthos: gravel accumulates where water currents are
too strong for mud- or sand-sized particles to be deposited.
Such turbulent water currents cause mechanical abrasion by
moving pebbles, which would lead to rupture of any bio-
films and mats and to dispersal of organic fragments. Only
where a channel or a beach has migrated away from its
original position, fine debris and clastic material may fill in
the large pore space between the gravel components, pro-
viding a suitable substrate for biofilms and microbial mats to
establish (Fig. 2C).

FIG. 1. Three factors controlling the quality of fossil-rich
sites. Where favorable habitability (the ecological window)
and favorable preservation conditions (the taphonomic
window) overlap, the potential for bountiful occurrences of
fossils in a rock succession is high. Good detectability in-
creases the value of such locales (the window of detect-
ability).
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In marine settings dominated by carbonate precipitation
(e.g., in the tropical climate zone), microbial mats construct
massive, rigid buildups generally called microbialites, of
which stromatolites are commonly more familiar (Grey and
Awramik, 2020). Aside from microbial accumulation of
loose grains by microbial baffling and trapping (Black,
1933), the main process leading to positive topographies of
such domal microbialites is the in situ lithification of
abundant EPS. In siliciclastic areas, where such EPS-
lithification fades, microbial mats only construct sedimen-
tary structures of more planar morphologies (Fig. 3).

Here it is mostly the mechanically complex interaction of
microbes with the loose sediment that results in character-
istic MISS (Noffke et al., 2001; Noffke, 2010), Figs. 4 and
5. Also, while due to the nature of their formation, the most
conspicuous feature of stromatolites is their internal lami-
nation (Grotzinger and Knoll, 1999), MISS—with few
exceptions—lack thick stacks of laminae. As will be ex-
plained in more detail below, the formation of MISS can be
monitored in modern aquatic settings.

Overburden and diagenetic alterations lead to consolida-
tion of deposits, meaning sediment turns into sedimentary
rock. Depending on the composition of a clastic parent-
substrate, mudstone (called ‘‘shale’’ if fissile), siltstone,

sandstone, or conglomerates form. Obviously, MISS in-
cluding expired microbenthos are subject to lithification as
well.

MISS occur in aquatic sediments and sedimentary rocks
of all Earth ages including the early Archean (Schieber,
1986, 1999; Gerdes and Krumbein, 1987; contributions in
Hagadorn et al., 1999; Eriksson et al., 2000; Gerdes et al.,
2000; Noffke, 2000; Prave, 2002; Noffke et al., 2002, 2003,
2006a, 2006b, 2008, 2013; Pruss et al., 2006; Sarkar et al.,
2006; contributions in Schieber et al., 2007; Gehling and
Droser, 2009; Heubeck, 2009; contributions in Noffke,
2009; Javeaux et al, 2010; Carmona et al., 2012; Flannery
and Walter, 2012; contributions in Noffke and Chafetz,
2012; Sheldon, 2012; Beraldi-Campesi, 2013; Wilmeth
et al., 2014, 2019; Chu et al., 2015; Homann et al., 2015;
Taher and Abdel-Motelib, 2015; Peterffy et al., 2016;
Cuadrado and Pan, 2018; Homann, 2019; Maisano et al.,
2019; Basilici et al., 2020; Noffke et al., 2021, and many
more contributions). Despite the fact that in a geological
field survey they are relatively difficult to detect (compared
to stromatolites, for example), MISS appear to have a much
higher abundance than such precipitated microbialites.
Their ubiquitous occurrence throughout the geological rec-
ord makes them promising targets for quests for ancient life

FIG. 2. Clastic deposits and microbenthos. Top: Clastic deposits are loose grains of mud, sand, or gravel sizes. After
consolidation, they form mudstone (shale, if fissile), sandstone, and conglomerates. Bottom: Photos show microbial mats
(MM) colonizing modern mud (A), sand (B), and gravel (C). Also, microbenthos, once expired, is subjected to fossilization
and becomes part of the sedimentary rock.
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in clastic successions, especially successions otherwise
dreaded for their lithological monotony.

Understanding the formation of MISS provides infor-
mation for assessment of the (ancient) habitability of an
environment. Understanding the mode of preservation of
MISS provides criteria to pinpoint occurrences of well-
preserved specimens in vast outcrop. This will be explored
in the following sections, starting with the formation of
MISS.

4. Formation of MISS

Clastic sedimentary deposits are affected by erosion and
deposition (Fig. 6). Deposition is accumulation of sediment
by moving water (waves and currents). In arid climates,
vertically directed water movement (ascending/descending
capillary groundwater) dominates and contributes to evapo-
rite mineral precipitation at the sedimentary surface. In
consequence of deposition or mineral precipitation, the
sedimentary surface rises. Erosion, on the other hand, is the
shear and uplift of sedimentary grains by horizontally moving
water, or, in arid climates, dissolution of evaporite minerals.
In consequence of erosion or dissolution, the sedimentary
surface lowers over time. In between those events, there is a
time period called ‘‘latency’’ of no effect on sediment. During
latencies, the sedimentary surface is stable.

Microbial mats like those in tidal flats balance such sedi-
ment dynamics by modifying erosional and depositional ef-
fects. Indeed, they bioengineer suitable dynamic conditions
(Noffke, 2010). Starting with microbial response to laten-
cies, the time period of dynamic quiescence, a microbial
mat develops by growth and/or binding. Binding is the
organization of a functioning biofilm by microorganisms
moving actively through the sediment and constructing a
carpetlike network (Bebout and Garcia-Pichel, 1995; She-
pard and Sumner, 2010). In contrast, growth includes cell
replication and EPS production—the mat becomes thicker.
Due to the hydrodynamic pattern being a function of geo-
morphology, different sites within an environmental setting
have different latencies, and different types of microbial mats
may develop. Independent from their community composi-
tion, the mats can be roughly divided into epibenthic (living
on the substrate) and endobenthic (living in the sediment) mat
types (Noffke, 2010). Biofilms, of course, are the initial stage
for both (Fig. 7).

The microbial response to deposition of sediment is dif-
ferent. With increasing rate of particle fall-out, filaments
orientate themselves perpendicularly to the mat surface and
reach into the supernatant water. This baffling and trapping
behavior reduces water velocity (Black, 1933; Noffke, 2010;
Frantz et al., 2015; Noffke et al., 2021). The drop in hy-
drodynamic energy releases grains of smaller sizes or of

FIG. 3. Difference between carbonate stromatolites and clastic MISS. Top: MISS derive from binding (the formation of
microbial mat fabrics), biostabilization (the fixation of sedimentary grains by the microbial mat), baffling and trapping
(sediment accumulation by microbial mats), as well as subsequent diagenetic processes of lithification. Bottom: In stro-
matolites, the same processes occur. The one decisive difference in stromatolites is that a high amount of extracellular
polymeric substances (EPS) rapidly mineralizes to carbonate, which contributes to their typical domal or columnar mor-
phology. From: Noffke and Awramik, 2013.
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heavier weights that otherwise—under the same dy-
namic conditions—would remain suspended in the water
column. Indeed, in thin-section viewed under the micro-
scope, many mat layers include populations of such small or
heavy mineral grains.

Microbes respond to erosion by biostabilization (Paterson,
1994; Amos et al., 2004; Gerbersdorf and Wieprecht, 2015).
More generally, microbial biostabilization simply means sedi-
ment fixation by filaments and their adhesive mucilages (EPS).
In more detail, there are three types of biostabilization, Fig. 8.

(i) A mat layer atop the sedimentary surface shelters the
deposits against erosion by currents and waves. This bio-
stabilization against erosion is three-fold (Fig. 9), in prin-

ciple a function of the mat type (biofilm, endobenthic,
epibenthic; Noffke, 2010). If erosion by horizontally
moving water exceeds the biostabilization properties of a
microbial mat, erosional remnants and pockets (Noffke,
1999), mat chips, as well as multidirectional ripple marks
(Noffke, 1998) form (Fig. 4A to C). Microbial mats com-
monly are firmly attached to their substrates and hence in
situ. Mat chips that may be ripped off can be transported
over several hundred meters until they are accumulated
behind current obstacles. Therefore, mat chips are the only
allochthonous MISS (Figs. 4B and 13A). All other MISS
are in situ. That said, mat chips may regrow onto their new
substrate within hours (Fig. 13B).

FIG. 4. Examples for MISS formed in an environment with horizontally directed water flow (e.g., water currents crossing
bottom sediments). The top row of photos (A–C) shows modern MISS; the bottom row of photos (A’–C’) shows fossil
counterparts, sketched for clarity. (A/A’) Erosional remnants and pockets. The surface morphology is composed of elevated
parts (erosional remnants = er; covered by sediment-stabilizing microbial mats) and of depressions (erosional pockets = ep;
that show the barren substrate, often with ripple marks). Such a structure rises from partial erosion of a microbial mat–
covered surface by tidal flood currents. Modern example from Mellum Island, Germany; fossil example from the Cretaceous
Dakota Sandstone, Colorado, USA; scales ca. 50 cm. (B/B’) Fragments (chips = ch) were ripped off the margin (m) of a
microbial mat by a strong current and immediately redeposited directly below the mat margin. Modern example from
Mellum Island, Germany; fossil examples from the 3.48 Ga Dresser Formation, Pilbara, Western Australia; scales ca.
2.5 cm. (C/C’) Multidirectional ripple marks result from a succession of episodic storms causing strong currents to cross the
sedimentary surface. The episodic currents interfere with continuing mat development. Such ripple mark patterns develop in
course of the late summer and fall. Modern example from Mellum Island, Germany, with two ripple mark directions (1 and
2); fossil example from the 2.9 Ga Pongola Supergroup, South Africa, with three ripple mark directions (1 to 3); scales ca.
25 cm.
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(ii) Because the otherwise loose grains of sand are fixed
within the organic mat or biofilm layer, the sandy-organic
substrate reacts to deformation in the same ductile manner
as a cohesive mud would (Fig. 8). Desiccation of a microbial
mat produces cracks defining mat polygons with upward-
curled margins. In evaporitic settings of vertical ground-
water oscillation, the pressure of evaporite crystals growing
inside a mat causes folding of the mat and the formation of
cauliflower-shaped petees, not to be confused with abiotic
tepees (Fig. 5A).

(iii) Biostabilization also prohibits release of in-
trasedimentary gases into the atmosphere (Fig. 8). The in-
creasing gas pressure produces high porosity in the substrate
and may even locally lift the mat up (gas dome, Fig. 5B).

Important to note is that microbial mats show seasonality
in their distribution. In consequence, the MISS they form
may be seasonal phenomena. For example, multidirectional
ripple marks (Fig. 4C) are a typical phenomenon in the
moderate climate zone and can be observed at the end of the
summer (Noffke, 1998). Microbial mat chips are released

FIG. 5. Examples for MISS formed in an environment with vertically oriented water flow (e.g., groundwater oscillating
up and down). The top row of photos (A–C) shows modern MISS; the bottom row of photos (A’–C’) shows fossil
counterparts, sketched for clarity. (A/A’) Petees developing in semiarid sabkha settings as a result of upward migrating
groundwater evaporating at the sediment surface. The cauliflower-like appearance of the microbial mat is caused by
evaporite crystals precipitating within the mat fabrics. Modern example from the sabkha El Bibane, Tunisia; fossil example
is a cast from a surface of a Jurassic deposit in the French Alps, provided by Paul Bernier; scales ca. 10 cm. (B/B’)
Polygonal oscillation cracks forming in a microbial mat in a sabkha. Modern example from the sabkha El Bibane, Tunisia;
fossil example from the 3.48 Ga Dresser Formation, Pilbara, Western Australia. The cracks show two parallel rims (arrows
1). The rims are the margins of the microbial mat polygons that are defined by the cracks. The cracks themselves are
overgrown by a thin microbial mat layer (arrows 2) establishing during humid weather conditions. In subsequent dry
weather conditions, the polygons shrink, and the cracks open again. Repetition of growth and desiccation leads to such an
oscillation of the polygons, and the bulged rims (arrows 1) form. During desiccation, the centers of the polygons may be
pushed upward due to gases accumulating beneath the microbial mats. Eventually these gas domes open and collapse. Close
examination of the fossil polygonal oscillation cracks in the Dresser Formation reveals a hole close to or in the centers of
many polygons (arrow 3); scales ca. 10 cm. (C/C’) Reticulate pattern of ridges and tufts on a surface of a microbial mat.
Modern example from Portsmouth Island, North Carolina, USA; fossil example from the 3.48 Ga Dresser Formation,
Pilbara, Western Australia; scales ca. 2.5 cm.

MISS PROSPECTION ON MARS 871

' ' ' A' B' C' 



predominantly in the fall, when mats degrade. In a semiarid
sabkha, evaporite mineral precipitation and gas dome up-
heaval take place during the hot and dry seasons, whereas
subsequent humid conditions lead to evaporite mineral
dissolution and dome collapse. Intimately connected to gas
domes are polygonal oscillation cracks (Fig. 5B). Also tufts
(Fig. 5C) are abundant in sabkhas and playas (Gerdes et al.,
2000; Noffke, 2010; Taher, 2014; Aref and Taj, 2018).

Based on the microbial activities and their interaction,
MISS were classified into five categories: structures formed
by growth (category 1), biostabilization (category 2), baf-
fling and trapping (category 3), binding (category 4), all
microbial activities (category 5) (Noffke et al., 2001;
Noffke, 2010; Fig. 10A).

In the field, many MISS occur in association. For exam-
ple, erosional remnants and pockets may co-occur with
multidirectional ripple marks, individual gas domes, and
heaps of mat chips. Also, changes in morphology across a
field site are possible. One example would be erosional
remnants and pockets that show a sharp-edged vertical
projection in lower supratidal areas but turn to unassuming
surface morphologies toward the lower intertidal zone

(Noffke and Krumbein, 1999). Based on these data, occur-
rences and morphologies of MISS in a paleoenvironment are
indeed predictable.

5. Preservation of MISS

Understanding formation and distribution patterns, the
next question is how MISS are preserved. Until now, MISS
were described to be seemingly sole products of mechanical
sediment-microbial interaction producing sedimentary
structures—almost like the formation of traces in sand (trace
fossils; Häntzschel, 1962). This perception of a trace fossil
character, however, is not entirely correct. It is true that
microscopic textures such as oriented grains (Fig. 11A),
mat-layer-bound grain sizes, or accumulations of heavy
minerals are traces, rising purely from sediment-organismic
interaction. At microscopic scales, however, MISS include
not only traces but also direct evidence of mineralized mat
fabrics (Fig. 11B), and body fossils of microorganisms
(Fig. 11C).

All characteristics taken together, MISS include (i) a
macroscopic sedimentary structure (already visible in the
field, e.g., multidirectional ripple marks); (ii) microscopic
traces (e.g., mat-layer-bound small grains); and (iii) micro-
scopic, in situ preserved fossil biofilm. Due to this, MISS are
said to have a ternary character (Noffke, 2010; Fig. 12).

This is fundamentally different from stromatolites, where
only conservatively estimated 1% of all described stromat-
olites show fossils of microbes (Grotzinger and Knoll,
1999). In MISS, such body fossils are preserved by various
lithification processes transforming organic matter to stone.
Commonly, sandy sedimentary rocks are notorious for of-
tentimes poor body fossil preservation. With respect to the
taphonomy of MISS, however, the preservation potential of
sandy sediments is improved by biofilms and microbial
mats. For example, even in porous sandy substrates, the EPS
produced ubiquitously by microbes reduce transfer of gases
and water up to 10,000 times compared to sterile sand.
In situ mineralization of organic mass of biofilms in clastic
deposits is therefore common, even in modern, oxygenated
settings, and delivers lithological products analytically ac-
cessible. These steps of mineralization of organic matter are
well studied (Ferris et al., 1987; Schultze-Lam et al., 1996;
Westall, 1999; Laflamme et al., 2011; Konhauser and Rid-
ing, 2012; Blumenberg et al., 2015; Newman et al., 2017;
Gomes et al., 2020, and many more contributions) and
elucidated briefly in the following. In vertical section, a
microbial mat consists of a stack of layers, each layer
containing specific microbes (Stal et al., 1985; Stal and
Caumette, 1994; Franks and Stolz, 2009). The population of
microbes of each layer interacts with the population of the
layer above and below. Due to this metabolic interlocking,
this stack of layers functions like a bioreactor: the top layer
(usually cyanobacteria) harvests sunlight and transforms it
into organic matter. Once the cyanobacteria are deceased,
their organic matter is decomposed by chemoorganotrophic
microbes beneath. Small biomolecules released from this
process are further decomposed by chemolithoautotrophic
microbes. Finally, the ions released as waste provide ex-
cellent docking sites for ions and water molecules derived
from the surrounding medium. First, precipitates such as
tenorite (FeS0) form. Over time, the crystallinity of the

FIG. 6. Physical sediment dynamics and microbial re-
sponse. Top: Clastic deposits are governed by physical
sediment dynamics. This dynamics includes erosion and
deposition of sediment. Dynamic events are separated by
periods of quiescence, called latencies. Bottom: The mi-
crobenthos must respond to these sediment dynamics in
order to ensure survival. During latencies, biofilms and
microbial mats establish by binding and growth. Biostabil-
ization acts versus erosion. Baffling and trapping is triggered
by deposition of sediment.

872 NOFFKE

A 
physical sediment 

/ dynamics :\ 

erosion deposition 

' groA ng 
microbial response 

/ :\ 
biostabilization baffling, trapping 









deviation [sdev]=0.31 cm). The area in the middle of the
trench appears to be occupied by grains of average 0.97 cm
estimated diameters (sdev=0.30 cm). The highest part of the
trench bottom is covered by the largest grains with sizes
averaging estimated 1.31 cm (sdev=0.54 cm). It appears
from these values and from the asymmetry of the transect
relief that the main abrasion takes place closer to the
slopeÑperhaps an effect of scouring.

Other sedimentary surface structures displayed in outcrop
include centimeter-high ßat-topped elevations of a meter or
two extensions (Fig. 2 in Noffke, 2015). Such table-shaped
elevations may represent parts of a rock bed that everywhere
else was eroded away. Wind-transported dust is accumu-

lated along the lee-sides of such mesas, leading to the im-
pression of irregular edges of the mesa top layer. Such
accumulations of dust also form arcuate, round-crested
ripples on the mesa top giving rise to an impression of a
formerly ductile surface.

Centimeter-deep pits in the outcrop are local blow-outs
caused by wind erosion that now are Þlled in in part by dust.
Selective dissolution may have assisted in erasing less re-
sistant parts of the rock surface (Grotzingeret al., 2014).
One larger pit (Fig. 3 in Noffke [2015]) may have been
caused by pebble impact during a storm that also ejected
material onto one side. This impact must have been more
recent, because it covers a crack on the surface. On one

FIG. 20. Examples of sedimentary structures caused by weathering, Mars; MSL Curiosity imagery (mars.jpl.nasa.gov/
msl/multimedia/raw). The top row of photos (A–C) shows examples of such structures; the bottom row of photos (A’–C’ )
shows the same photos traced for clarity, and a sketch beneath. (A/A’) Slope affected by sand-blasting; note the serration
caused by abrasion. Holes in the rock may have accommodated pebbles or concretions, some of which may now be
accumulated in the trench on the right. The pebbles in the trench may also constitute abraded rock fragments that over time
became rounded by turbulent reworking. Note that the pebbles closer to the slope, where the trench is deepest, show smaller
grain sizes and higher sphericities than those more toward the right; scaleca.10 cm; Sol 306. (B/B’) Eroded surface cutting
into a rock bed at low angle; the surface is covered by cracks probably caused by insolation. Note that some cracks continue
across ledges (stippled lines), making a syndepositional origin impossible; scaleca. 5 cm; Sol 155. (C/C’ ) Eroded surfaces
(marked by stippled lines and numbered 1Ð8) in the Gillespie Lake Member sandstone. Note that each surface shows similar
surface morphologies. The eroded surfaces do not correspond to the original environmental surface of the rock bed. In
consequence, their surface morphologies were caused by weathering long after consolidation of the sandstone bed; scaleca.
20 cm; Sol 127.
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bedding surface (Fig. 5 in Noffke [2015]), pit distribution
appears to have been guided by a decimeter-scale polygonal
pattern of cracks covering the sandstone surface. However,
the pits may well have formed before such cracks estab-
lished, so an apparent relation of pits to polygons may be a
mere consequence of overlapping processes.

Gypsum (a mineral that is able to store water molecules)
fills in many cracks on Mars (Chavdarian and Sumner,
2006). Irregularly bended cracks at the Gillespie Lake
Member outcrop may be designed by recurrent mineral in-
jection with the resulting crystallization generations now
obscuring the crack symmetry. In outcrop, cracks may occur
as negative relief forming a furrow in the sedimentary sur-
face, or as positive relief forming two parallel ridges that
project slightly from the bedding surface. The cracks may
transition between such negative and positive relief (Fig. 6
in Noffke [2015]). At those areas, where the mineral filling
of the cracks now projects from the surface, weathering may
have eroded away the originally surrounding sediment.

In general sedimentology, weathering may be so intense
that original surfaces in an outcrop are deconstructed com-
pletely and new surfaces are shaped. For example, in
Fig. 20B, an exposed upper bedding plane appears to be
oriented in a low angle to the rock bed itself. This is an
important observation, because this arrangement of the
bedding plane supports its interpretation as a secondarily
eroded surface caused by weathering. Indeed, close exami-
nation of this surface reveals that cracks of linear to arcuate
shapes cross any proceeding surface relief, suggesting that
they formed only recently. They may be the result of inso-
lation. Insolation is a weathering process caused by the
much higher periodic temperature ranges in sun-exposed
surface positions in comparison to shady settings (Thomas
et al., 2005; Viles et al., 2010). The different ranges in
temperatures in periodically sun-exposed areas lead to ten-
sion forces within a rock that eventually are released by
sudden fracturing of the rock. Insolation may have lead also
to shedding of centimeter-sized splinters now ubiquitously
distributed at random across bedding surfaces on Mars.

In Fig. 20C, eight surfaces are visible in outcrop. Surface
1 potentially could represent an upper bedding plane dis-
playing an original environmental surface of the top rock
bed. In contrast, surface 2 is in a low angle to the rock bed
and therefore should be interpreted as weathering surface.
Surfaces 3, 4, and 5 either occupy the tops of two dislocated
blocks that appear to have sheared off the main rock bed
above, or that represent broken-off pieces from a rock bed
located stratigraphically beneath the top bed. Surface 6 be-
longs to an individual, dislodged bolder. The large block in
the foreground including surfaces 7 and 8 may be a sheared-
off block that may have once belonged to the top rock bed.
In any case, it appears to be allochthonous. Of importance
here is that all surfaces 1 to 8 include similar surface
morphologies independently from their angles of exposure.
With that, the formation of the surface relief of each of these
surfaces postdates the sediment formation itself.

Closing the discussion on the nature of the Gillespie Lake
Member structures, these observations support that the mac-
roscopic surface design can be easily attributed to widespread
weathering processes. As discussed earlier, environmental
bedding planes must be identified as such by the presence of
confirmed syndepositional structures such as ripple marks.

Biogenicity of MISS is supported by presence of MIST re-
quiring core sampling or in situ analyses (Noffke, 2010).

9. Conclusions

Returning to the motivating question how to prospect for
MISS occurrences in face of the vast martian clastic land-
scapes and lithologies, the main points are here reiterated.

� Rich occurrences of MISS are found where aquatic
paleoenvironments allowed abundant population by
microbenthos and their excellent preservation. Such
sites must be well detectable by remotely controlled
technologies.

� The structures are formed by biofilms and microbial
mats. The benthic communities interact with physical
sediment dynamics by biostabilization, growth, binding
and baffling and trapping. Such processes demand
moderate sediment dynamics that is manifested in
sedimentary structures visible in outcrop analyses.

� In outcrop, the search focuses on a typical rock bedding
character representing dynamic conditions once per-
mitting conservation of environmental paleosurfaces. A
short succession of three rock beds consisting of
centimeter-thick fine sandstone, millimeter-thick silt-
stone, and decimeter-thick sandstone testifies a com-
plete taphonomic path leading potentially to exquisite
MISS preservation. On Earth, regression-transgression
branches in stratigraphy appear to be especially prom-
ising starting points for exploration. Clearly, the de-
tailed sedimentological survey constitutes an important
part of prospection.

� MISS show characteristic macroscopic morphologies
that differ significantly from that of precipitated mi-
crobialites. Optical documentation in field view from
many angles allows collecting morphometric data that
can be stored for future use. Similarities in surface
morphologies of upper bedding surfaces displayed in
outcrop in differing strikes and dips should raise sus-
picion of weathering being the causal factor for the
surface morphology.

� In microscale analyses of thin sections, MISS include a
wealth of trace and body fossils, replacement minerals,
organic matter, and isotope signals. Such daughter
features are summarized as MIST. They must be
present to confirm biogenicity. MIST pose a multifac-
eted opportunity for a great variety of standard analyses
during missions as well as on returned sample cores.
They serve as indicators for ancient biological pro-
cesses, especially within a backdrop of mature clastic
deposits.
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