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ABSTRACT

IMPACT OF PRIMARY USER ACTIVITY ON THE PERFORMANCE
OF ENERGY-BASED SPECTRUM SENSING IN COGNITIVE RADIO

SYSTEMS

Sara L. MacDonald
Old Dominion University, 2013

Director: Dr. Dimitrie C. Popescu

Increasing numbers of wireless devices and mobile data requirements have led to a spec-

num shortage. However spectrum utilization percentages are often low due to the current

static spectrum allocation process where primary users (PUs) are given exclusive use to

spectrum. Several mechanisms to increase spectrum utilization have been proposed includ-

ing opportunistic spectrum access (OSA). Cognitive Radio (CR) is an emerging concept

in wireless communication systems that aims to enable OSA in licensed frequencies by

secondary users (SUs). CR systems are expected to sense the spectrum in order to deter-

mine if the PU is transmitting. Therefore OSA performance relies on the ability of the SU

to accurately sense the spectrum and detect the PU activity. Numerous approaches have

been studied for spectrum sensing; one of the most common is energy-based detection due

to the SU needing no prior knowledge of the PU waveform. While energy detection has

been widely studied, the assumption has been made that the PU status, either ON or OFF,

does not change while the SU is actively sensing the spectrum. The work presented in

this thesis examines specifically the impact to performance of energy detectors when the

PU status changes during the spectrum sensing period. Two alternative analytic expres-

sions for the probabilities of detection and false alarm are derived and corroborated with

numerical results obtained from simulations. While the work presented in this thesis is

discussed in terms of SU spectrum sensing performance, the analytic expressions apply to

all applications in which energy detection is used.
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CHAPTER I

INTRODUCTION

The RF spectrum in the United States and other parts of the world appears to be over-

crowded. The ever growing bandwidth demands of commercial and military users have

made spectrum a shortage. Wireless devices are growing in number and in data rate re-

quirements. It is increasingly the case where the hardware is no longer the limiting factor

in the achievable data rate of a wireless device, but instead spectrum availability.

According to measurements taken by the FCC's Spectrum Policy Task Force, spectmm

utilization ranges geographically and temporally from 15% to 85% [1]. Ideally, the duty

cycle would be much higher, but the current spectrum allocation policy provides exclusive

rights to the spectrum holder. If the spectrum holder is not using the frequency, it remains

idle. Therefore, the apparent spectrum shortage is partially an artifact of the current spec-

trum policy. In unlicensed bands where there is no spectrum holder, the duty cycle is very

high. Because wireless devices have equal access to the spectrum in unlicensed bands,

techniques have been implemented to share spectrum and ensure spectral efficiency and

the highest achievable data rates.

There are further policy reasons for exploring spectrum sharing. The White House has

backed FCC plans to make 500 MHz of government and commercial spectrum available for

auction [2]. The goal of the reallocation is to get 500 MHz more spectrum in the hands of

wireless broadband providers over the next decade as part of the FCCs National Broadband

Plan. While 500 MHz will help, it likely will not be adequate using conventional static allo-

cation techniques. Additionally, due to the expense of moving current government systems

to new frequency bands, the President's Council of Advisors on Science and Technology

(PCAST) report recently recommended sharing of spectrum rather than reallocation [3].

Therefore, exploring methods to successfully share spectrum is of importance.



1.1 COGNITIVE RADIO SYSTEMS

Cognitive Radio (CR) is an emerging concept that is expected to contribute to spectrum

sharing and more ef'ficient use of the frequency spectrum in future generations of wireless

systems by enabling dynamic spectrum access (DSA) [4]. While there are many variations

on the definition of a CR, the FCCs definition has been widely adopted:

"Cognitive Radio: A radio or system that senses its operational electromag-

netic environment and can dynamically and autonomously adjust its radio op-

erating parameters to modify system operation, such as maximize through-

put, mingate interference, facilitate interoperability, access secondary mar-

kets." [l].

Using this definition of CR, techniques for detecting the radio environment is clearly a

key component of CR technology. However, CR is a broad interdisciplinary topic, in-

volving spectral analysis, control systems, computer networking, game theory, and formal

languages, amongst other technical disciplines [5].

Dr. Joseph Mitola III led the research and development in the area of CR. His early

work in software-defined radios led to his concept of CR. Mitola's vision of CR was more

robust than the FCCs definition. He first described software-defined radios that were fully

aware of not only spectrum availability, but other aspects of the communication system [6].

Between 2002 and 2005, Mitola served as Special Assistant to the Director of the De-

fense Advanced Research Projects Agency (DARPA) to develop the Next Generation (XG)

and Wireless Network after Next (WNaN) programs. DARPAs XG and WNAN programs

focused on the development of low cost military handheld terminals that utilize CR tech-

niques. The WNaN military radios are capable of sensing spectrum, opportunistically uti-

lizing unused spectrum, and dynamically shifting utilized spectrum to optimize specuitm

utilization across the entire channel.

Outside of military applications, there are several commercial applications that make

use of CR. In the 2.4 and 5.725 GHz unlicensed bands, several devices are beginning to

implement CR technology. IEEE 802. I lk is an update to the WLAN standard that includes

specnitm sensing to help determine which access point a WLAN device should connect



to. Additionally, Bluetooth now includes Adaptive Frequency Hopping (AFH) as a way

of reducing interference with the numerous other devices operating in this band. AFH

senses which portions of the band are busy and does not transmit on those frequencies.

This reduces interference and thus increases performance for both the Bluetooth device

and other wireless devices operating in the band.

An additional commercial application of CR is the work being done by the IEEE 802.22

Working Group on Wireless Regional Area Networks (WRAN). IEEE802.22 has a goal of

developing a standard for unlicensed access to white spaces in UHF TV bands (400-800

MHz). The FCC indicates that in most geographical areas there are multiple unused 6 MHz

channels. Because of the long range propagation characteristics in this band, the aim of this

technology is to provide wireless broadband access in rural areas.

1.2 OPPORTUNISTIC SPECTRUM ACCESS

Several DSA techniques have been proposed to increase utilization of available spec-

trum over the current static allocation method. DSA techniques fall into three subcate-

gories; dynamic exclusive use model, open sharing model, and hierarchical access model

as shown in Figure l. One of the subcategories of the hierarchical access model, oppor-

tunistic spectrum access (OSA) has received a lot of attention because it is believed to be

achievable with little impact on legacy systems operating within the current static spectrum

allocation system.

OSA is a technology that is within the realm of CR. As indicated in Figure I, OSA

is a form of hierarchical access. It is hierarchical in the sense that there are primary and

secondary users to given frequency spectrum. The assignment of spectrum to primary users

(PUs) is generally assumed to be static much like the current spectrum allocation system. It

is also assumed that the PU will access the spectrum in the same manner, or similar to, the

current method. That is, the PU will transmit without consideration of potential interference

to secondary users (SUs). On the other hand, the SUs will only access spectrum if the

transmission will not interfere with PUs.

There are multiple dimensions in which SUs may transmit without interfering with

the PU as shown in Figure 2 and described below. SUs may take advantage of spectrum



Figure 1: Dynamic spectrum access techniques.

opportunities, or spectrum holes, in one or more of these dimensions.

A. Frequency: If the spectrum allocation is broken into multiple narrow hands of spec-

trum, some of these smaller bands may go unused by the PU. These smaller bands of

spectrum could potentially be used by SUs. The UHF TV bands are an extreme example

of opportunities within the frequency domain. In the case of UHF TV bands these oppor-

tunities are relatively static over time, so they can be exploited with negligible impact to

PUs.

B. Time: If the PU is not transmitting constantly, there are periods when the spectrum is

idle and a SU could access the spectrum. Because network loading generally varies greatly

over time, certain times of the day may have extended opportunities in the time domain

while others may have relatively few opportunities.

C. Geospatial: If a SU is an adequate distance from the PU, then that SU may be able
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Figure 2: Potential OSA dimensions.

to transmit without interfering with the PUs transmission. Geospatial separation can also

take advantage of directional transmissions and often relies on power control of the SU.

It is critical within OSA that the SU causes minimal interference to the PU. OSA is

therefore reliant on the SU ability to accurately sense spectrum occupancy by the PU. The

following section provides an overview of spectrum sensing.

1.3 SPECTRUM SENSING TECHNIQUES

Spectrum sensing is the general term used to describe methods in which SUs sense PU

transmissions. The objective of spectrum sensing is for the SU to decide between the two

hypotheses:

Ha . r(n) — u(n)

HI: r(n) = s(n) + u(n), (2)

where r(n) is the received signal, u(n) is the noise, and s(n) is the signal transmitted by

the PUs. Many approaches to spectrum sensing have been identified. These techniques

range in complexity and accuracy. The most popular of these approaches are summarized

in the following sections.



1.3.1 ENERGY DETECTION

The most basic and most common form of spectrum sensing is energy detection. It

requires no knowledge of the PU's waveform so it is more universal than other forms of

spectrum sensing. However, it is less accurate and does not work with CDMA systems [7].

An energy detector will compare the power spectral density (PSD) of the received signal to

a threshold level A . The value of A is critical as it determines the success of the opportunity

identification using the probabilities [8]

Ps = P(~r(t)~' A~H,)

Pf = P(lr(t)I & AIHo),

(3)

(4)

where Pz is the probability of successfully detecting a transmitted signal and Pt is the

probability of a false alarm. A detailed discussion of energy detection follows in Chapter 2.

1.3.2 WAVEFORM-BASED SENSING

Also called coherent sensing, this method requires knowledge of the PU's waveform. It

utilizes preambles, spreading sequences, and other patterns. These pilot patterns allow the

waveform to be detected by correlating the received signal with a copy of itself. Using the

same hypothesis in (1) and (2), the values of Pz and Pt are [9]

Ps = P{r(t)s*(t) & A~H,}

Pf = P(r(t)s*(t) & A~Ho).

(5)

Just as in energy detection, setting the threshold level A is critical to the performance of the

both the primary and secondary users.

1.3.3 CYCLOSTATIONARY SENSING

Also called feature detection, cyclostationary sensing does not use the power spectral

density of the receive signal but instead uses a cyclic correlation function. Cyclostationary

detection is capable of differentiating noise from the transmitted signal. This is possible

because AWGN is wide sense stationary with no correlation and transmitted signals are



typically spectrally correlated. Cyclostationary sensing uses a spectral correlation density

(SCD) function [10],

S(f,n) = QR„e "r

where

R„= E[y(n+ 7)y*(n — r)e ' '].

Therefore the decision probabilities are

Ps = P(S(f,o) ) A~II,)

Py = P{S{f,rr) & A~H,). (10)

1.3.4 MATCHED FILTER

A matched filter requires demodulation of the PUs signal. This equates to knowledge

of the PUs media access schema, frame formatting, modulation technique, pulse shaping,

etc. With matched-filtering a certain Pd or Py can be achieved with relatively few samples,

although the rate at which this is achieved is wavefonn dependent [11]. It is the most

accurate of the mentioned schema. However, it is considered somewhat impractical because

of power constraints and hardware requirements to demodulate the signal of all potential

PU waveforms.

1.4 SPECTRUM SENSING PERFOMANCE MEASURES

If a spectral hole or opportunity has been identified after sensing the spectrum, the

SU then determines whether to exploit the opportunity. This decision is multifaceted and

must be determined by sharing information collaboratively between the media access con-

trol (MAC) and physical (PHY) layers. Additionally the decision to exploit the spectrum

hole may be based on the number of SUs in the area, the number of PUs in the area, the

MAC layer performance and techniques, and the channel condition. Finally, opportunity

exploitation will depend largely on regulatory policy which will define the tolerable impact
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or the PU. Spectrum sensing performance measures are utilized to examine the impact on

the PU.

When examining spectrum sensing performance, the two probabilities discussed in the

prior section are of concern. The first is the probability of detection, Pq, which is the

probability of the SU accurately detecting the PU. The other probability of concern is the

probability of false alarm, Py, or the probability of the SU falsely determining that the

PU is active. These values are often plotted against each other in a receiver operating

characteristic (ROC) curve. Figure 3 provides an example ROC curve.

The spectrum sensing techniques described are dependent on the threshold value A.

Different values of A will result in different points on the ROC curve. If A is set too large

then the probability of false alarm will also be high resulting in missed opportunities to ac-

cess the specuum. However if A is set too low then the probability of missed identification,

P = I — Pz, will be high. A high P value could result in interference to the PUs.
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In addition to utilizing ROC curves, spectrum sensing performance is often evaluated

based on the probability of error P,„„,„which is described as

P,„„,„= o P + (I — a) Pf.

where a is a weighing factor which determines the weight of the individual contributions.

Figure 1.4 illustrates an example P„„„versus A where a is set to 0.5. Examining sensing

performance in this manner facilitates the selection of the proper threshold value of A.

1.5 PROBLEM STATEMENT

In order to increase spectrum utilization, it is desirable to explore spectrum sharing

techniques. CR through the use of OSA offers an avenue for spectrum sharing. However,

OSA is reliant on spectrum sensing techniques. Numerous approaches have been studied

for spectrum sensing, among which the most common ones are based on energy detection,

matched filtering, waveform-based sensing, or cyclostationarity [12]. Each is suitable for
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different scenarios dependent on the SU knowledge of the PU waveform and the processing

capability of the SU. This thesis considers a SU with no knowledge of the PU waveform.

Therefore energy detection is a suitable technique. Commonly cited analytic expressions

have been derived which quantify the performance of energy based detectors [8], [13],

and [14]. However, these analytic expressions are obtained under the assumption that the

PU signal does not change state during the spectrum sensing period in which the SU is

making its determination as to whether the spectrum is available or not. This is a restrictive

assumption that limits the applicability of the analytic expressions.

The work presented in this thesis considers energy-based spectrum sensing in dynamic

CR systems where PU transmissions occur at random time instances and have limited du-

rations [15]. These result in spectrum holes [16] with finite duration determined by the

PU activity, that must be accurately detected by SU for OSA. Further, this work assumes

that the PU signal may change while the SU senses the spectrum. The performance of the

energy detector is studied in terms of the probabilities of detection Pz and false alarm P~.

Specifically, two alternative expressions for Pz and P~ are derived which explicitly include

the probability of the PU signal switching state while the SU senses the spectrum P, The

value of P, is determined based on the dynamic activity of the PU described by the average

duration of PU transmissions, the average duration of spectrum holes, and the length of the

SU sensing window.

1.6 THESIS OUTLINE

This thesis is organized by first providing an overview of prior research and then detail-

ing the contributions of this thesis. Chapter 2 provides energy detection analytic expres-

sions which have been previously studied under the assumption that the PU does not switch

states during the SU sensing period. Commonly cited energy detection performance met-

rics are provided. Chapter 3 and 4 contain the original contribution of this thesis. Chapter 3

derives analytic energy detection performance metrics which explicitly consider the prob-

ability that a PU switches states while the SU is actively sensing the spectrum. The work

in Chapter 3 assumes that the PU switches states a single time while the SU is sensing the

spectrum. Chapter 4 removes this assumption and provides alternative analytic expressions
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for energy detection performance. Conclusions are provided in Chapter 5.

The original work described within this thesis has been submitted for inclusion in IEEE

Globecomm 2013 conference proceedings.
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CHAPTER 2

ENERGY DETECTION

In this work a SU is considered with no a priori knowledge of the PU waveform or

u ansmission timing. Energy-based spectrum sensing is a suitable technique when SUs have

no knowledge of the PU signals. Energy detection has been studied in various scenarios

[17—22]. This chapter first provides detail of the energy detection model and provides the

derivation of commonly utilized analytic expressions for energy-based detection and its

performance. This chapter then outlines a dynamic energy detection scenario in which

the aforementioned analytic expressions for energy-based detection and its performance

require modification.

2.1 THE ENERGY DETECTOR

The spectrum sensing and energy detection model are described following the work

in [14). The PU signal received at the SU is

r(n) = s(n) + u(n), (12)

where the PU signal s(n) is a real-valued, zero-mean iid random process with signal vari-

ance a,'. The noise u(n) is a real-valued Gaussian, iid process with zero-mean and variance

a,. Therefore the signal-to-noise ratio (SNR) is 7 = a,/a„. Further, when the PU signal

is absent, the signal received at the SU is

r(n) = u(n).

The role of the energy detector is to determine between two hypothesis Ht and FIa or

the presence or absence of the PU respectively. As illustrated in Figure 5, this is done by

squaring the sampled received signals and integrating them over the sensing window T

where Ftf = Tf, samples represent the received samples within the sensing window. The
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Figure 5: Basic energy detector block diagram.

average of the N samples is compared to the threshold value A to formulate a hypothesis.

Therefore the test statistic for distinguishing between the two hypotheses Ha and Ht which

corresponds to energy detection is:

Hx

Y(N) = — P]r(n)~' &A. (14)

Under the assumption that the PU state (either ON or OFF) is constant for the entire sensing

window the test statistic Y(N) follows a chi-squared distribution

for H,
Y(N)

)('„(3), for H„
(15)

where A~ and A~(p) denote the central and non-central chi-squared distributions with N

degrees of freedom and a non-centrality parameter of p in the case of H, [8]. The output of

the integrator Y(N) is compared to a threshold value, A and the result of this comparison

provides a hypothesis as to whether the PUs signal is present or not. In a non-fading

environment, the probability of false alarm and detection using the N samples received in

observation window T is shown in [23] to be

P (N) = P (Y ) A~Ho) —

J X d
f ~ I'(N, A/2)J„F(N)

p(N) I'(Y& lxxx)fx (x)& ='q (Wxx,~&)

(16)

(17)

where I'( ) and I'(, ) are complete and incomplete gamma functions, respectively, and

QM(, ) is the generalized Marcum Q-function.
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When X is large, the central limit theorem may be applied thus simplifying the expres-

sions. The tail regions of the chi-squared distributions corresponding to the test statistic in

(15) larger than the threshold Y(f)f) & A may be approximated by corresponding tails of

normal distributions [14]:

JV(a~, —'o4), for Ho
Vyr)

A(((I+ 7)a, ), N~a (1+ 27)a4). for H).
(18)

This implies that the probabilities of false alarm and detection may be computed using the

standard Q-function as [14]

A-
Pf (X) = Pr(Y & A!Ho) —

Q (a2~2'
(N) = P (r ) ) (H,) = Q

f A — (r+p) ',)

2(1+2p)))r)

(19)

(20)

Pf is independent of 7 since in the case of Ho there is no primary signal present. How-

ever, Pd is dependent on 7, and as shown in [24], is hence dependent on the channel fading

conditions. Therefore, in the presence of fading, 17 becomes

(21)

where f~(r) is the probability distribution function of the 7 under fading. In the case of

Rayleigh fading, 7 has an exponential distribution, and Pd is shown in [24] to be

1 A „1
Pa(T) =e ' —

(
—

) +(
n! 2n=o

N— 2+7N, A 1 A7
) x (e '('+4) — e a Q —

( )"), (22)
7 n! 2(I+7)

where 7 is the mean value of 7.

2.2 ENERGY DETECTION IN A DYNAMIC SCENARIO

The dynamic energy detection scenario considers a single SU. The SU employs CR

for OSA to a licensed spectrum band where a PU signal switches ON and OFF at random

time instances with random transmission and spectral hole durations. The SU samples

the received signal at a sampling rate of f, over the sensing window of length T. The
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SU determines its hypothesis, Ha or Hn based on the samples collected over the sensing

window. The total number of samples collected over the sensing window is /y = Tf,. This

scenario is illustrated in Figure 6.

Pt [ At A2 Ps

Continuous Time PU Activity

Discrete Time SU Sampling

T3 T4

SU Sensing Window

Figure 6: Sensing spectrum holes with finite duration in discrete time domain.

The sequence of PU transmissions (PU signal is present/ON) and spectrum holes (PU

signal is absent/OFF) are respectively represented in Figure 6 by {P;) and (A,). These

correspond to mutually exclusive states of the spectrum as the occurrence of a PU trans-

mission 'Pt implies the absence of a spectrum hole A; and vice versa. The duration of a

spectrum hole A; and that of a PU transmission P, are exponentially distributed with means

/t, and r, respectively [25]. For convenience, p and r are defined from the perspective of the

SU. Therefore, in the context of discrete time processing by the SU where signals are sam-

pled with some sampling frequency f„ the values of /I and r represent the average number

of samples corresponding to PU transmissions and spectrum holes. Thus, the continuous

time duration of a spectrum hole A; and that of a PU uansmission 'P, have means p/f, and

r/ f„respectively.

The analytic expressions in the prior section do not appropriatly capture the perfor-

mance of a system when the PU changes states within an SU sensing window. The next

two chapters will extend the energy detection performance metrics such that the expressions

are inclusive of the dynamic scenario described. It is noted that discontinuous PU signals

are described in [22,26], but the corresponding analysis is presented in a static context.

Furthermore [21] considers a dynamic PU which may switch states between the end of the
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sensing window and the time when the SU exploits the perceived spectrum hole. However,

the probability of the PU switching states during the sensing window is not considered.
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CHAPTER 3

SPECTRUM SENSING IN DYNAMIC SCENARIOS

The expressions for the probabilities of detection and false alarm provided in the prior

chapter were obtained under the assumption that the PU state does not change during the

sensing window. However, this is a restrictive assumption that limits the applicability of

the derived expressions in a dynamic scenario where the PU transmission timing is not

known to the SU. Thus, the PU state may change while calculation of the spectrum sensing

test statistic is in progress. In this chapter the activity of the PU is explicitly considered.

The average durations of PU transmissions and spectrum holes are used to determine a

probability of PU state switch P, during a sensing window of duration T. Furthermore, an-

alytic expressions which consider the inliuence of P, on the energy detection performance

metrics Pd and Pf are derived. This chapter is concluded with numerical results which

corroborate the proposed analytic expressions.

3.1 PROBABILITY OF DYNAMIC PRIMARY USER STATE SWITCH

Again, the work presented in this thesis considers energy-based spectrum sensing in

dynamic CR systems where PU transmissions occur at random time instances and have

limited durations [17]. Consider the example shown in Figure 7 which illustrates a possible

scenario of PU activity over four consecutive sampling windows, labeled Tt through T&'.

T2

T2p
l T2x Tsa T4p, T~p

Figure 7: Switching during observation period.

As seen from Figure 7, the four sensing windows shown may be subdivided into non-

overlapping intervals corresponding to PU state ON (or present denoted by the subscript P:



18

Trp, Tsp and T4F), respectively intervals corresponding to PU state OFF (or absent denoted

by the subscript A: Tsz, Tsz, and T4&). Within Figure 7 four cases are distinguished; T,

in which the PU state in ON for the entire window, Tz where the PU state switches from

ON to OFF, T3 in which the PU state is OFF the entire window, and T4 where the PU state

switches from OFF to ON. The probabilities of each of these cases occuring in any given

sensing window are defined as as PoN PoNwoFF PoFF attd PoFF~oN

To evaluate the four sensing window probabilities, first observe that the four cases are

mutually exclusive, thus their probabilities add to unity. Second, it is noted that each case

is dependent on both the state of the PU at the beginning of the sensing window and the

PU activity during the sensing window, In the context of the dynamic scenario described

in Chapter 2 and illustrated in Figure 6, the probability of the PU being present (ON) at the

beginning of a sensing window (or at any time instant) is

T
pp =

7+/L
(23)

while the probability of the PU being absent (OFF) is

/4
pll

T + /l
(24)

The PU activity during the sensing window captures the probability of the PU switching

(or not switching) in N samples and is derived from the exponential probability distribution

function. The PU state and the PU switching behavior are independent. Therefore, the

probability of each type of sensing window occurring is defined as the joint probability of

two independent probabilities. Beginning with PON, the probability of the PU being ON

for the duration of a sensing window is the joint probability of the PU being present and

the probability the PU does not switch during within N samples, namely,

— N/~PoN=p, e (25)

Similarly, the probability of the PU switching ON to OFF within a sensing window is the

joint probability of the PU being present and the PU switching within N samples,

PoNwoFF — Pp 'I e ). (26)
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It is noted that the latter part of this expression represents the probability of the PU switch-

ing one or more times during the sensing window. It is assumed however that the probabil-

ity of higher order PU switching, i.e., more than once in a sensing window, is negligible.

Therefore, this expression is used under the limiting assumption that if the PU is ON at the

beginning of the sensing window and switches during that sensing window, the PU will be

OFF at the end of the sensing window. The work presented in the next chapter will remove

this limitation. The probability of the PU remaining OFF for the duration of a sensing

window is the joint probability of the PU being absent and the PU not switching within N

samples,

OFF — pa ' — N/P (27)

Finally, the probability of the PU switching OFF to ON within a sensing window is the

joint probability of the PU being absent and the PU switching within 1V samples,

+OFF-aON = pa 'I e ) (28)

Again, this expression is used under the limiting assumption that probability of higher order

PU state switching during a sensing window is negligible.

While not used explicitly in further calculations, it is informative to define an overall

probability of PU switching (either ON to OFF or from OFF to ON) during a sensing

window as:

P,(N) = PON~OFF+ +OFF-aON

(I -N/r) + (I
— N/a)

r+p r+p. (29)

Figure 8 illustrates the dependence of the PU state switch during a sensing window P,

on the size of the sensing window N for different patterns of the PU activity given by the

average values r and p.. It is noted that P, increases with N as the longer the sensing

window is the more chances there are for a dynamic PU to switch states. It is also noted

that for a given size of the spectrum sensing window, P, increases when the activity of the

PU is more dynamic, as implied by a smaller 7 value.

Figures 9, 10, and 11 provide the individual switching window probabilities versus N

for the three PU activity levels: r = 10 and p = 100, r = 100 and p = 100, and r = 200
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Figure 8: P, versus N for varying PU activity levels.

and p = 100. It is noted that in all three figures the sum of the sensing window probabilities

adds to unity for each value of N. Examining the figures independently reveals further

items of interest concerning the three PU activity levels.

Figure 9 illustrates the switching probabilities for PU activity level 7 = 10 and p = 100.

Of interest are the probabilities which contribute to P,. PoFF o& is the major contribu-

tor to P, while Poz~oFF is upper bounded by p„, in this case 9.1%. In fact PpFF p~

also uPPer bounded, but by P„which is equal to 90.9%. Therefore, Porr~oN does not

approach its upper bound until approximately N = 400. Furthermore, Figure 9 illustrates

Poz is negligible for larger values of N.

As one would expect, equal values of p and r result in Po& and PoFF being equal and

PojvwoFF and PoFF~ojv being equal. This is shown in Figure 10 for a PU activity level

of r = 100 and p, = 100.

When examining Figure 11 which illustrates the PU activity level 7 = 200 and p = 100,

it is noted that the values of Poz~oFz and PoFF~o& closely track one another until N is

approximatly 30. This is despite the value r being twice as large as p.
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Figure 9: Dynamic PU sensing window probabilities versus N for @=100, r=10.
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Figure 11: Dynamic PU sensing window probabilities versus N for p=100, r=200.

3.2 DYNAMIC PRIMARY USER IMPACT ON SENSING PERFORMANCE

In order to evaluate the impact of the PU state switch on the performance of the SU

spectrum sensing it is first recognized that the definitions of the probabilities of detection

and false alarm given in Chapter 2, equations (16) and (17), are no longer accurate when

the state of the PU switches while spectrum sensing is performed. Specifically, in the

context of OSA, sensing is performed to determine if the specttum is available for use

at the completion of the sensing window. Thus, the probabilities of detection and false

alarm should be redefined by comparing the test statistic Y(N) in (15) to the threshold A

given that the state of the PU at the end of the sensing window corresponds to a specific

hypothesis, that is

P„'(ftf) = Pr(Y ) A
~
Ht is true at time instant fV) (30)

Pf (N) = Pr(Y ) A~ Ha is true at time instant N) . (31)

It is noted that in [22] the probabilities of false alarm and detection were also redefined
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to consider PU switching. However within [22] this is done using alternate hypotheses

Hfree and Hbusy that correspond to the PU absent during the spectrum sensing window,

respectively present at any point during the spectrum sensing window.

To determine the expression for the probability of detection that factors in the impact

of the PU state switch, one should consider both the case where the PU is ON for the

entire sensing window and the case where the PU switches from OFF to ON at some point

during the sensing window. These cases are illustrated by the sensing windows Tt and T4

in Figure 7 and represented by the probabilities Po4v in equation (25) and PoFF~ofd in

equation (28). According to the new definition of the probability of detection (30), only the

cases where the PU is present at the end of the sensing window should be considered, and

thus, the other two cases are not. considered. Furthermore, when the PU state is ON for the

entire sensing window the probability of detection is Pd(N) as outlined in Chapter 2 and is

given by either (17) in the case of AWGN channels or (21) for fading channels. Whereas

when the PU state switches from OFF to ON, the probability of detection Pd,(N) is given

by

Pds (N) = pp 'd(NF) + pa 'f (NA) (32)

where NF = N p„, Nz = N p„Pd(NF) is the probability of detection corresponding to

a sensing window size NF and no PU switch, and Pf(Nd) is the probability of false alarm

corresponding to a sensing window of size N, and no PU switch. This is illustrated in

Figure 7 where the sampling window T4 is subdivided into sampling windows T4d and T4F

Thus, the expression of the probability of detection that considers the PU state switch is:

POrd 'd(N) + POFF~ON 'ds(N)
PON + POFF—&ON

(33)

To determine the expression for the probability of false alarm that takes into account

the impact of the PU state switch, a similar analysis is carried out. In this case one should

consider the case where the PU is OFF for the entire sensing window along with the case

where the PU switches from ON to OFF during the sensing window. When the PU state

is OFF for the entire sensing window the probability of false alarm is Pf(N) as outlined

in Chapter 2 and is given by (16), while when the PU state switches from ON to OFF, the
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probability of false alarm Pf,. (N) is

Pfs(N) — pp 'd(NF) + pa Pf(NA)i (34)

where NF, NA, Pd(NF), and Pf(N,) have the same meaning as in the previous case. It

is noted that expression (34) for Pf, and expression (32) for Pd, are equivalent. Thus, the

expression for the probability of false alarm that considers the PU state switch is

POFF Pf(N) + PoN~OFF 'fs(N)
POFF + PONwOFF

(35)

3.3 DYNAMIC PRIMARY USER NUMERICAL EXAMPLES

This section presents simulated results which are compared to the theoretical ROC ex-

pressions from Chapter 2, which do not consider P„and the proposed theoretical ROC

expressions within this chapter, which considers P,. The results illustrate the performance

of the proposed expressions. The simulation considered the varying PU activity levels rep-

resented in Figure 8. The PU activity was simulated for a period equivalent to 100,000

samples. The SU sampled the received signal in consecutive sensing windows of size N.

As shown in Figure 6, the SU sensing windows are independent of the PU activity. In each

simulation the number of samples N was selected to yield optimal ROC performance.

The threshold value of A was calculated using target values of Pz in a non-fading envi-

ronment using (20). Each simulation used target values of Pa between 69% and 99%. The

same threshold values were used within the AWGN and Rayleigh channels, which accounts

for theoretical Pd values for Rayleigh fading channels being less than 69%.

AWGN and Rayleigh fading channels were analyzed. The theoretical ROC which con-

siders P, used the expressions for Pd and Pf in this chapter, respectively equation (33) and

(35), where Pd and Pf used in the expressions are respectively (22) and (19) for Rayleigh

fading channels and respectively (20) and (19) for AWGN channels. The theoretical ROC

which does not consider P, uses equations (22) and (19) for Rayleigh channels and (20)

and (19) for AWGN channels. Finally, for each of the PU activity levels two SNR values,

3 = — 5 dB and y = 0 dB, were simulated.

The first two simulations examined an average PU signal duration which was small

relative to the average hole duration, i.e., p„( p,. The PU activity level represented by
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r = 10 and p, = 100 was examined first with a 7 = — 5 dB with results in Figure 12. With

N = 35 and r = 10 the value of P, is particularly high. As illustrated, the simulated results

are a far better fit to the ROC which considers P, for both the AWGN and Rayleigh fading

channels. Of interest, there is little difference between the AWGN and Rayleigh fading

channels in both the simulated results and the theoretical ROC which considers P,. This

can be attributed to P~ being dominated by the case Pozz~o& in which the probability

of detection is determined by Pz, in (32). Furthermore, when p, is much larger than p„,

as is the case with this PU activity level, the value of Pz, is dominated by P~. As noted

in Chapter 2, Py is independent of the communication channel thus the two channels have

similar performance.

The second simulation used the same PU activity level as the first but 7 was increased

to 0 dB. The results of the second simulation are provided in Figure 13. The higher SNR

allowed for a smaller sensing window with N = 17 thus reducing P,. While the simulated

values are a better fit to the theoretical ROC in which P, was considered, neither of the

theoretical expressions are truly representative of the simulated results.

The next two simulations considered a PU activity level in which p„was equal to p,.

The PU activity level represented by r = 100 and p = 100 was examined first with

a 7 — — 5 dB with results in Figure 14 then with 7 = 0 dB with results in Figure 15.

Both simulations yielded results that closely matched the curve of the theoretical ROC in

which P, was considered, however, the points on the curve are shifted indicating that the

theoretical expressions for P„'nd P& are slightly optimistic in this case.

The final two simulations considered a PU activity level in which the average PU signal

duration was larger than the average hole duration. The PU activity level represented by

r = 200 and p = 100 was first simulated with 7 = — 5 dB with results in Figure 16

then with 7 = 0 dB with results in Figure 17. Both simulations yielded results that were

a relatively close match to the theoretical ROC in which P, was considered. Again, the

simulation values are aligned well the theoretical ROC in which P, was considered, but the

indiviual points were shifted on the curve.

In this chapter, the impact of PU activity level on the overall sensing peiformance of

an energy detector was examined. The simulation results indicate that in the context of the
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dynamic scenario described in Chapter 2, the proposed expressions for Ps and P& within

this chapter are a better analytical measure of performance than the values of Pz and Pr

given in Chapter 2. However, the values of P„'nd PJ consider a single PU state switch

within the sensing window; OFF to ON in the calculation of P„'nd ON to OFF in the case

of P&. While this limitation is likely adequate for most PU activity levels, the next chapter

considers instances of higher order PU switching.
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CHAPTER 4

EXTENSION TO VOLATILE SCENARIOS

The probability of the PU switching during a sensing window, P„and corresponding

expressions for P~ and P& derived in Chapter 3 assumed the probability of higher order PU

state switching was negligible and if the PU switched states during the sensing window, it

would be in opposing states at the beginning and end of that sensing window. That is, if the

PU was ON at the beginning of a sensing window and the PU switched during that sensing

window, the PU was then assumed to be OFF at the end of the sensing window and vice

versa. The case where the PU switched more than once and was in the same state at the

beginning and end of the sensing window was not considered. The work presented in this

chapter addresses this case.

Again, the dynamic scenario described in Chapter 2 and illustrated in Figure 6 is as-

sumed. Therefore, the PU may switch at any time, independent of the SU sensing window.

Furthermore, if during a sensing window a PU is both ON and OFF the definitions of the

probabilities of detection and false alarm given in Chapter 2, equations (16) and (17), are

no longer valid. Therefore the expressions are redefined as in Chapter 3, equations (30) and

(31) which are repeated here for convenience.

Pd(N) = Pr(Y & A~Htis true at time instant JV ) (36)

P&(JV) = Pr(Y & A~Httis true at time instant N). (37)

Using these definitions for P~ and P& one could consider all potential variants of PU

activity within a sensing window. Specifically, the PU may switch states anywhere between

zero and N — 1 times during a sensing window. Figure 18 illustrates various PU activity

scenarios with respect to a single sensing window.

4.1 PROBABILITY OF VOLATILE PRIMARY USER STATE SWITCH

The scenarios in Figure 18 are subdivided into two groups. Those scenarios on the left

result in the PU being ON at the end of the sensing window while the scenarios on the right
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Figure 18: Higher order PU switching during sensing window.

result in the PU being OFF at the end of the sensing window. Focusing on the scenarios

on the left, the scenarios are organized into three cases. In the first case the PU is active

the entire sensing window. The second case is representative of the PU being OFF at the

beginning of the sensing window then switches states an odd number of times during the

sensing window. This results in the PU being ON at the end of the sensing window. Finally,

in the third case the PU is ON at the beginning of the sensing window then switches states

an even number of times during the sensing window. In this case the PU is ON at both the

beginning and end of the sensing window. The scenarios resulting in the PU being OFF

at the end of the sensing window can be described in a similar manner. In total, there are

six distinct cases versus the four cases described in Chapter 3. The probabilities of each of

these cases occurring is: Porv Pot:j'~QN, Ppg pjvr, Porr, Pmr~ovr, and PoJ'j'~QFF.

The overbar is meant to create a distinction between these probabilities and those presented

in Chapter 3.

Like the four cases described in Chapter 3, the six cases in Figure 18 are mutually

exclusive, thus their probabilities add to unity. Further, it is again noted that each case is

dependent on both the state of the PU at the beginning of the sensing window and the PU

activity during the sensing window.

Using the PU activity described in Chapter 2 and illustrated in Figure 6, the duration

of a spectrum hole and that of a PU transmission, relative to the SU discrete samples, are
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Figure 19: Markov chain representation of PU activity.

exponentially distributed with respective means )1 and r. Thus the probability of the PU

being present (ON) at the beginning of a sensing window is provided in equation (23),

while the probability of the PU being absent (OFF) is provided in equation (24). These

expressions are repeated here for convinience:

r
Pp-

T + /1

)1
PG r+p,

(3g)

(39)

The PU activity during the sensing window captures the PU switching behavior in N

samples. In order to capture higher order switching behavior, the analysis must deviate

from that presented in Chapter 3. Thus, the PU activity is described with the two-state

Markov chain in Figure 19. In this figure, rr, I represents the probabilities of a PU, which

is in state i in sample n, switching to state j in sample n + 1. To simplify notation, the

state when the PU is OFF is designated by the subscript 0, while the state when the PU is

ON is designated by the subscript 1. The switching probabilities are defined in the one-step

transition matrix:

110 1 110 1

&1,0 &1,1

(40)



33

Given that the spectrum hole and PU transmission are exponentially distributed with re-

spective means p, and r, the one-step transition matrix is:

(e "") (I — e "")

(I e
— 1/w) (e

— 1/w)
(41)

Because the Markov chain in Figure 19 is homogeneous, the X-step transition matrix is

IIN, where rr;, is the (i, j)th entry of II . Furthermore, 1r„represents the probabilities(N) . N (N)

of a PU, which is in state i in sample n, being in state j in sample n + /1/. It is critical to

note the distinction between rr,, and vr,, The prior is an individual probability raised to(N)

the Nth power while the latter is an element of a matrix which was raised to the Nth power.

As like all homogenous Markov chains, the system is completely defined by the one-

step transition matrix and the initial probability disuibution [27]. In this case the initial

probability distributions are pp and p,. Therefore, it is possible to define the probability of

each of the six sensing window cases occurring. PoN, represents the probability of the PU

being ON for the duration of a sensing window. It is the joint probability of the PU being

present and the probability the PU does not switch during within // samples

N — N/7.
FON — Pp 7I1,1 Pp ' (42)

As would be expected, the equation for PoN is equal to (25) for PoN in Chapter 3. Simi-

larly, the probability that the PU remains OFF for the duration of a sensing window is the

joint probability of the PU being absent and the PU not switching within N samples

n N -N/pPOFF pa 'o,o p~ ' (43)

This is equal to (27) for PoFF in Chapter 3.

The four remaining cases utilize the individual entries in the N-step transition matrix.

The probability of the PU switching from ON to OFF over a sensing window is the joint

probability of the PU being present and the PU switching an odd number of times within

A/ samples resulting in the PU being OFF at the end of the sensing window

(N)PoN—&oFF pp 'uo (44)
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It is important to note that PoN~oFF is not equivalent to PoN~oFF as given in (26) in

Chapter 3.

The probability of the PU switching from OFF to ON over a sensing window is the joint

probability of the PU being absent and the PU switching an odd number of times within N

samples resulting in the PU being ON at the end of the sensing window

(N)~OFF—&ON pa '0,1 (45)

Again, PoFF~oN is not equivalent to PoFF~oN in Chapter 3 equation (28). However,

while not immediatly apparent the expressions PoFF~oN and PoN~oFF are equivalent.

Based on knowledge of the Markov chain from which these expressions were derived, it

does stand to reason that the probability of the PU being ON at n = I and OFF at n = 1V

is the same as the probability of the PU being OFF at n = I and ON at n = Itf.

The probability of the PU switching from ON to ON over a sensing window is the joint

probability of the PU being present and the PU switching an even number of times within

N samples resulting in the PU being ON at the end of the sensing window

(N)PoN oN = Pp 'xt
1 xl,l). (46)

In this case e» represents the probability of the PU which was ON at the beginning of the(N)

sampling window is also ON at the end of the sampling window. In order to distinguish

between the case where the PU switched states an even number of times and the case where

the PU did not switch at all, 11» was subuacted from 11»N (N)

The probability of the PU switching from OFF to OFF over a sensing window is derived

in a similar manner as the expression for PoN~oN. This is the joint probability of the PU

being absent and the PU switching an even number of times within It( samples resulting in

the PU being OFF at the end of the sensing window

(N)POFFaOFF = pa 'tt0,0 rrl,l) (47)

The total probability of the PU switching states during a sensing period P, is the sum

of the last four cases presented

Fs — PON—&OFF + OFFwON + ONION + POFFaOFF. (48)
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Figure 20: Volatile PU sensing window probabilities versus N for p=100, r= 1 0.

It is of interest that for any given set of input values p, 7., and N, the value of P, is equivalent

to (29) for P, in Chaper 4. This equivalency is due to the following identities:

PONwOFF =PONwOFF + PONTOON

POFFwON — POFF~ON + POFF~OFF

(49)

(50)

Because P, is equivalent to P„Figure 8 in Chapter 3 and observations made from this

figure not only represents P„but P, as well.

Figures 20, 21, and 22 provide the individual switching window probabilities versus N

for the three PU activity levels simulated in Chapter 3: r = 10 and F = 100; 7 = 100

and p = 100; and r = 200 and p. = 100. In all three figures the sum of the sensing

window probabilities adds to unity for each value of 717. Additionally it can be seen in all

three figures that PoFF oN and PoN oFF are equivalent as stated previously. Examining

the figures independently reveals further items of interest concerning the three PU activity

levels.

Figure 20 reveals that with a sensing window larger than X = 17 samples, the value of
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Poi;r~ozz exceeds all other switching window probabilities except Pope. The relatively

high probability of Po&»&-~ozz is of interest due to the fact that the analysis provided

in Chapter 3 assumed the probability of higher order switching was negligible. Because

Pprp~ppr represents the case when the PU switches at least twice during the sensing

window, this assumption is clearly not valid for the PU activity level r = 10 and p, = 100.

As one would expect, equal values of p and r result in PoJv and Po&-z- being equal

as well as Pox~oz and Porr:~orr being equal. This is shown in Figure 21. While

Pppr ptv and Pp~ or@ are also equivalent in Figure 21, this is again true for all values

of p and r and not just the case where p equals r.

Additionally, Figure 21 reveals that PoJv~oz and Pozr~or t; each are relatively small

and for smaller values of X the assumptions made in Chapter 3 concerning higher order

PU switching are reasonable for this PU activity level. Figure 22 again shows that that

Porv~prr and Pozz~or'r each are relatively small and again for smaller values of N the

assumptions made in Chapter 3 are reasonable for the PU activity level.

4.2 VOLATILE PRIMARY USER IMPACT ON SENSING PERFORMANCE

To determine the expression of the probability of detection, as defined by equation (36),

that includes the impact of higher order PU state switching, one should consider three case;

the PU is ON for the entire sensing window, the PU is OFF at the beginning of the sensing

window, then switches an odd number of times and is ON at the end of the sensing window,

and the PU is ON at the beginning of the sensing window then switches an even number

of times and is ON at the end of the sensing window. These cases are illustrated by the

sensing windows on the left side of Figure 18 and represented by the probabilities Pox in

equation (42), Por r ~orv in equation (45), and Poz o+ in equation (46).

When the PU state is ON for the entire sensing window the probability of detection is

Pz(N) as outlined in Chapter 2, equation (17) in the case of AWGN channels or (21) for

fading channels. If, however, the PU state switches during the sensing window from either

OFF to ON or ON to ON, the probability of detection Pa,(K) is given by equation (32) in

Chapter 3. Thus, the expression of the probability of detection that considers higher order



PU state switching is:

PON 'd(N) + (POFF—sON + PON—sON) 'ds(N)
Pd (N)—

PON + POFFwON + PONTOON

PON 'd(N) + (POFF-sON + PONTOON) 'dsg )

PF
(51)

The simplification of the denominator is possible due to the fact that the probabilities were

derived from a homogenous Markov chain [27].

To determine the expression of the probability of false alarm as defined by (37) which

takes into account the impact of higher order PU state switch, a similar analysis is carried

out. In this situation one should consider the case where the PU is OFF for the entire sensing

window, the case where the PU switches from ON to OFF during the sensing window, and

the case where the PU switches from OFF to OFF during the sensing window. When the

PU state is OFF for the entire sensing window the probability of false alarm is Pf(N) as

outlined in Chapter 2 and is given by equation (16). When the PU state switches either

from ON to OFF or OFF to OFF the probability of false alarm Pf, is as given in Chapter 3

equation (34). Thus, the expression of the probability of false alarm that considers higher

order PU state switching is

POFF 'f (N) + (PON—sOFF + POFF—sOFF) 'fs(N)
Pf (N)—

POFF + PONsOFF + POFF~OFF
POFF 'f(7Y) + (PONwOFF + POFFsOFF) Pf.(N)

pa
(52)

4.3 VOLATILE PRIMARY USER NUMERICAL RESULTS

This section illustrates the performance of the proposed expressions for Pd and PJ in

equations (51) and (52), respectively. Simulation results are presented and are compared

to the theoretical ROC expressions from Chapter 2, which do not consider P„and the

proposed theoretical ROC expressions from this chapter, which consider higher order PU

switching.

The simulation set up was as described in Chapter 3. Again, AWGN and Rayleigh fad-

ing channels were analyzed. The theoretical ROC which considers P, used the expressions
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for P~ in equation (51) and P~ in equation (52), where Pz and P~ used in the expressions

are are respectively (22) and (19) for Rayleigh fading channels and respectively (20) and

(19) for AWGN channels. The theoretical ROC which does not consider P, uses equations

(22) and (19) for Rayleigh channels and (20) and (19) for AWGN channels.

The first simulation used the PU activity level r = 10 and p = 100 and 7 = — 5 dB

with results in Figure 23. While the second simulation used the same PU activity level as

the first but 7 was increased to 0 dB. The results of the second simulation are provided in

Figure 24. In both cases, the simulated results were a better match to the theoretical ROC

which considered P, than the ROC which did not. However, the theoretical expressions

derived in this chapter did not perform any better than those derived in Chapter 3. Given

the volatile PU activity level in the first two simulations this was unexpected.

The next two simulations considered the PU activity level r = 100 and p = 100 first

with a 7 = — 5 dB with results in Figure 25 then with 7 = 0 dB with results in Figure

26. The final two simulations considered a PU activity level r = 200 and p = 100. This

activity level was first simulated with 7 = — 5 dB with results in Figure 27 then with 7 = 0

dB with results in Figure 28. In all four simulations the simulated results were close to

the theoretical ROC which considered P,. Furthermore, like the first two simulations the

theoretical expressions derived in this chapter did not perform any better than those derived

in Chapter 3. However, with the less dynamic PU activity levels this was expected.

In this chapter, the impact of PU higher order PU switching on the overall sensing

performance of an energy detector was examined. The simulation results indicate that

in the context of the dynamic scenario described in Chapter 2 the proposed expressions

for Pa and PI within this chapter are a better analytical measure of perfotmance than the

expressions for Pa and PJ within Chapter 2 but do not appear to outperform the analytic

expressions of Pa and P& proposed in Chapter 3.
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Figure 23: Volatile PU ROCs for @=100, v=10, and p — — 5 dB.
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Figure 24: Volatile PU ROCs for @=100, 7=10, and p = 0 dB.
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Figure 25: Volatile PU ROCs for p=100, 7=100, and p = — 5 dB.
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Figure 26: Volatile PU ROCs for @=100, v=100, and p = 0 dB.
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Figure 28: Volatile PU ROCs for 74=100, v =100, and 7 = 0 dB.
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CHAPTER 5

CONCLUSIONS

CR is an emerging technology that has promising potential to enable the sharing of

spectrum in order to meet ever growing spectral demands. Over the past decade there has

been a great amount of research in the area of CR, however the technology is still in its

early stages and there are several technical issues to research. This thesis explored one of

those issues related to reliable spectrum sensing.

CR is a broad technology which is comprised of several technical fields, one of which

is spectrum sensing. Within CR systems, spectrum sensing is done by the SU in order to

opportunistically access the spectrum. There are multiple spectrum sensing technologies;

this thesis focused on energy-based spectrum sensing.

The contributions of this thesis are analytic expressions for performance of energy de-

tection in a dynamic PU scenario. In the dynamic PU scenario, the SU was unaware of

the PU waveform or transmission timing. Therefore, the PU switched states during the SU

sensing window with probability P,. This thesis provided two alternative approaches for

calculating P, and derived corresponding analytical expressions for Pz and Pf which con-

sidered P,. The first set of analytic expressions for energy detection assumed the PU only

switched once during the SU sensing window. In general the numerical results supported

the derived analytic expressions, with the exception of a single case with a volitile PU and

a smaller sensing window. The second set of analytic expression removed the assumption

that the PU would only switch once during a sensing window such that the case of a more

volatile PU would be considered. Unexpectedly, this expression did not do a better job of

matching the results from the simulation with a volatile PU and a smaller sensing window.

Examining the reason for these unexpected results will be included in short-term future

research.

As noted, CR is still in its early stages with significant opportunities for future research.

In the short-term this work can be extended. This work considered a single PU with activity
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that was exponentially distributed. The derived expressions should be extended to consider

general cases of PU activity. In particular PU activity distributions that are not memory-

less should be considered as well as a multiple PU scenario. Long-term research includes

the exploration of spectrum sensing using automatic modulation classification, a signal

processing technique to estimate the modulation scheme of unknown noisy signals based

on multiple hypotheses.
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