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ABSTRACT 

A NEW METHOD TO DETERMINE THE POSTERIOR DISTRIBUTION OF COEFFICIENT 
ALPHA 

John Mart V. DelosReyes 
Old Dominion University, 2023 
Director: Dr. Miguel A. Padilla 

There is a focus within the behavioral/social sciences on non-physical, psychological 

constructs (i.e., constructs). These constructs are indirectly measured using measurement 

instruments that consist of questions that capture the manifestations of these constructs. The 

indirect nature of measuring constructs results in a need of ensuring that measurement 

instruments are reliable. The most popular statistic used to estimate reliability is coefficient alpha 

as it is easy to compute and has properties that make it desirable to use. Coefficient alpha’s 

popularity has resulted in a wide breadth of research into its qualities. Notably, research about 

coefficient alpha’s distribution has led to developments about its confidence intervals (CIs) and 

implementation through Bayesian methods with corresponding credible intervals (CrIs). 

Here, a new method to implement a Bayesian coefficient alpha is proposed. This new 

method is built on coefficient alpha having a posterior normal distribution based on a posterior 

mean and variance. To assess the effectiveness of this new method, a simulation was conducted 

that compared it to previously established methods used to obtain coefficient alpha CI/CrIs. 

These include bootstrap CIs and Bayesian CrIs that are based on indirectly generating a 

coefficient alpha posterior though the posterior of the item covariance matrix. All CI/CrIs were 

assessed for 95% coverage probability. Ultimately, the new method to implement Bayesian 

coefficient alpha was found to be effective as it tended to have CrIs that were closer and tighter 

around the target of .95.
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INTRODUCTION 

Measurement is a key component in the sciences as it allows for the accurate collection 

and description of data for phenomena of interest. For the physical sciences, measurements can 

generally be taken directly using the appropriate measurement instrument. For the 

behavioral/social sciences, measurement instruments usually cannot be directly applied to what 

is being measured. This is because the phenomena of interest in the behavioral/social sciences 

are not typically physical, but rather non-physical phenomena known as psychological constructs 

(hereafter referred to as constructs). Unfortunately, constructs cannot be directly observed and 

therefore cannot be directly measured, as such, constructs are indirectly measured with 

measurement instruments that record behaviors and/or responses that are manifestations of the 

construct of interest. Due to the indirect nature of these kinds of measurement instruments, it is 

essential to ensure that these instruments perform as intended by establishing their corresponding 

psychometric properties of reliability and validity. In terms of psychometric properties, 

reliability generally refers to the consistency in responding to a measurement instrument of a 

construct (Furr & Bacharach, 2014). There are several types of reliabilities to consider, and each 

has their own requirements (i.e., assumptions and settings) that warrant their use. Validity can be 

generally thought of as the degree in which a measurement instrument measures what it is 

supposed to measure. Although reliability and validity are both necessary in evaluating a 

measurement instrument for a construct, the focus in the current paper will be on reliability. 

Even so, some validity concepts will be presented as needed within the context of reliability. 

Reliability is a key component in developing a valid measurement instrument. However, 

reliability can take on multiple forms for different purposes and these are often confused or 

misinterpreted in applications. This confusion about reliability can result in erroneous 
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conclusions about the performance of a measurement instrument. There appears to be two 

primary sources to this confusion. First, the reliability literature is scattered over several 

disciplines and decades, making it difficult to fully comprehend reliability. Furthermore, over the 

decades, there have been mix-ups with regards to how reliability has been discussed. For 

example, some reliability statistics have multiple names and these are sometimes confused as 

being different statistics (Cho, 2016). As such, it is difficult to obtain a consistent idea to the 

principles of reliability via the literature. Second, there is a lack of opportunities and resources to 

communicate the nuances and available statistical options for establishing reliability. This can be 

attributed to the lack of available graduate-level training in quantitative psychology; a field 

specializing in measurement. In 2008, Aiken et. al. reported that 64% of 223 graduate 

psychology programs in the United States had courses dedicated to psychometric theory. 

Furthermore, as of 2020, the American Psychological Association (APA) reported that within the 

United States and Canada, only 88 of over 500 universities (including non-research universities) 

have graduate programs that specialize in quantitative psychology. As such, there may be a lack 

of experts in the field that can formally train graduate students or future researchers on the 

subject. 

To help reduce the confusion about reliability, what follows is a discussion of the 

foundations for establishing reliability for a measurement instrument of a construct. This 

discussion includes a collection of currently available reliability statistics along with their 

appropriate use, compares the qualities of each to one another, and shows how they are related to 

one another. Finally, by leveraging and combining this information with Bayesian methodology, 

a novel Bayesian version of Cronbach’s coefficient alpha, the most popular reliability statistic, is 

proposed. 
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Before getting started, one key idea to point out is dimensionality. Dimensionality is a 

validity concept that refers to the number of constructs that represent a set of items (or 

measurement instrument). From this perspective, unidimensional indicates one construct, 

two-dimensional indicates two constructs, etc. Establishing dimensionality is a validity topic that 

is determined separately from reliability with techniques such as factor analysis. Again, 

reliability and validity are related, but each corresponds to different psychometric properties of a 

measurement instrument. Unless otherwise stated, all reliability concepts and models presented 

assume the items to be unidimensional. 

Items, Sub-Measures, Measurement Instruments, and Composites 

 Although the discussion about reliability was introduced in reference to measurement 

instruments, it is important to clarify that Classical Test Theory, the foundation of reliability, 

does not make a distinction between items, sub-measures, or measurement instruments. An item 

refers to a singular item used to measure a construct (e.g., a question used to assess a construct). 

A sub-measure is a subset of items from a measurement instrument. A measurement instrument 

refers to a set of items used to measure a construct. For establishing reliability, it turns out that 

these concepts are equivalent to one another (DeVellis, 2017). As such, the term “measure” will 

be used when collectively referring to an item, sub-measure, and measurement instrument. 

 Along these lines, a composite refers to the sum of measures used to assess a construct. A 

composite for a set of k measures is defined as 

 
1

k

j
j

X x
=

=∑ ,  (1) 

where jx  is an observed score on measure j. In addition, the variance for the composite is 

defined as 
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 2

1 1 1 1
2

k k k k k

X ij ii ij
i j i i j i

σ σ σ σ
= = = = >

= = +∑∑ ∑ ∑∑ .  (2) 

Note that items, sub-measures, or measurement instruments can all be summed with a composite. 

This will be made clear later when discussing Classical Test Theory, and when discussing each 

form of reliability to be presented. Even so, given that items are the simplest and most classical 

components used to establish reliability, the proceeding discussion about reliability will be in 

reference to items unless otherwise stated. 

Classical Test Theory 

 The foundation for establishing reliability for an item of a construct is given within 

Classical Test Theory (CTT; Furr & Bacharach, 2014l Devillis, 2017). Fundamentally, CTT 

indicates that a respondent’s observed score is based on their true score (i.e., true measurement 

of a construct) plus random measurement error. This idea can be expressed with the classical true 

score equation (CTSE) 

 i i ix τ ε= + ,  (3) 

where ix  is an observed score, iτ  is the true score, and iε  is random measurement error for 

respondent i. In addition, it is assumed that a respondent’s true score is constant and that the 

random measurement errors average to zero across infinite, independent, and identically repeated 

administrations of the same item. Infinite, independent, and identically repeated administrations 

indicate that the measurement error is a random variable with an expected value of zero; i.e., 

( ) 0iE ε = . As a function of the random measurement error, the observed score for each 

respondent is also a random variable from a propensity distribution. It can be shown that the 

average of the observed scores is equal to the true score for respondent i; i.e., ( )i iE x τ=  . 
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Something to note is that although the most classical interpretations of CTT and CTSE were 

developed for items, the principles of each can be extended to sub-measures and measurement 

instruments. The CTSE then leads to the following three properties for a population of 

respondents: 

• The measurement errors average to zero; i.e., ( ) 0E ε = . 

• The correlation between true scores and measurement errors is zero; i.e., 0τερ = . 

• The correlation between measurement errors between two separate items or two separate 

occasions of the same item is zero; i.e., 
1 2

0ε ερ = . 

The population properties are a direct consequence of the measurement error properties. It also 

turns out that the CTSE can be further conceptualized into three measurement models. 

Measurement Models 

 There are three measurement models that dictate the appropriate reliability. These models 

will be presented from most restrictive to least restrictive in terms of their own assumptions. In 

this context, more restrictive indicates more or stronger assumptions and less restrictive indicates 

less or weaker assumptions. A common assumption for all the models is that the measurement 

errors are independent and have the same distribution. In addition, respondents will be indexed 

with 1,i =  2, …, n and items with 1,j =  2, …, k. 

 The first measurement model to consider is the parallel model, which is the most 

restrictive measurement model as it assumes that items are parallel (Furr & Bacharach, 2014). 

Items are parallel if and only if their true scores are equal and their variability of the 

measurement errors are equal. This model is expressed as  

 ij i ix τ ε= + ,  (4) 
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where ijx  is the observed score for respondent i on item j, iτ  is the true score for respondent i, 

and iε  is the measurement error for respondent i. This model specifies that each respondent has 

their own true score and measurement error, but that the true score for each respondent is the 

same across all items (this is implied by τ  not having a j subscript). This indicates that all the 

items measure the same construct with the same degree of accuracy and the same amount of 

error (Graham, 2006). For k items that follow a parallel measurement model, the following 

compound symmetric covariance matrix is generated (Raykov & Marcoulides, 2011): 

 

2 2 2 2

2 2 2

PM

2 2 2

τ ε τ τ

τ τ ε

τ τ ε

σ σ σ σ
σ σ σ

σ σ σ

 +
 + =
 
 

+  

Σ



 

   

 

.  (5) 

The second measurement model is the tau-equivalent model, which is less restrictive than 

the parallel model as it assumes that the items have the same true scores but with varying 

amounts of measurement errors (Graham, 2006; Raykov, 1997). The model is expressed as 

 ij i ijx τ ε= + ,  (6) 

where ijx  is an observed score for respondent i on item j, iτ  is the true score for respondent i, 

and ijε  is the measurement error for respondent i on item j. This indicates that the items measure 

the same construct with the same degree of accuracy and varying amounts of measurement error. 

A slightly more relaxed form of the tau-equivalent model is the essentially tau-equivalent 

model which allows for the true scores for the items to differ by some constant (Graham, 2006; 

Raykov, 1997). This model is expressed as 

 ( )ij j i ijx α τ ε= + + ,  (7) 
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where ijx  is an observed score for respondent i on item j, jα  is a unique constant for item j, iτ  is 

the true score for respondent i, and ijε  is the measurement error for respondent i on item j. This 

indicates that the items measure the same construct with varying degrees of accuracy (i.e., 

potentially different true scores between items) and varying amounts of measurement error. The 

inclusion of the constant jα  in the essentially tau-equivalent model affects the mean of an item 

but not its variance nor covariance with another item. As such, for the purposes of discussing 

reliability, the tau-equivalent and essentially tau-equivalent model (i.e., equations 6 and 7) will 

be considered equivalent to one another and are hereafter collectively referred to as the 

(essentially) tau-equivalent model. For k items that follow an (essentially) tau-equivalent model, 

the following compound symmetric covariance matrix with heterogenous variances is generated 

(Raykov & Marcoulides, 2011): 

 

1

2

2 2 2 2

2 2 2

ETM

2 2 2
k

τ ε τ τ

τ τ ε

τ τ ε

σ σ σ σ

σ σ σ

σ σ σ

 +
 

+ =  
 
 + 

Σ



 

   

 

.  (8) 

The final measurement model considered is the congeneric model, which is the least 

restrictive measurement model as it allows the true scores of the items to vary by some linear 

relationship (Graham, 2006; Raykov, 1997). The model is expressed as 

 ( )ij j j i ijx α β τ ε= + + ,  (9) 

where ijx  is an observed score for respondent i on item j, jα  is a unique constant for item j, jβ  

is a unique relationship for item j, iτ  is the true score for respondent i, and ijε  is the 

measurement error for respondent i on item j. This indicates that the items measure the same 
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construct with varying degrees of accuracy and varying amounts of measurement error. For k 

items that follow a congeneric model, the following first-order heterogeneous covariance matrix 

is generated for a respondent (Raykov & Marcoulides, 2011): 

 

1

2 2 2 2 2
1 2 1 1

2 2 2 2
1 2 2

CM

2 2 2 2
1

n

k

k

k k

τ ε τ τ

τ τ ε

τ τ ε

β σ σ β β σ β β σ

β β σ β σ σ

β β σ β σ σ

 +
 

+ =  
 
 + 

Σ



 

   

 

.  (10) 

 Determining the measurement model is crucial for estimating the appropriate reliability. 

Not accounting for the measurement model can result in erroneous reliability estimates (Graham, 

2006; Sijtsma, 2009; Tavakol & Dennick, 2011; Walker, 2006). Graham (2006) provides a 

detailed method and examples for determining the measurement model for the items using 

structural equation modeling (SEM). A summary of this method is that the measurement models 

are fit for the items and are then compared to see which model fits best. Specifically, first the fit 

of a congeneric model is compared to the fit of an (essentially) tau-equivalent model. If the 

model fit is significantly different, then the items follow a congeneric model. Otherwise, the fit 

of the (essentially) tau-equivalent model is compared to that of a parallel model. If the models fit 

significantly different, then the items follow an (essentially) tau-equivalent model. Otherwise, 

the items follow a parallel model. The process is based on the idea that the congeneric model will 

always have better than or equal fit to all other models as it is the least restrictive measurement 

model, but the more restrictive models are justified by model parsimony. 

Defining Reliability 

 Although the concept of reliability can generally be thought of as the consistency in 

responding to a measurement instrument, using CTT allows for a more technical definition of 
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reliability by considering the relationship between true scores and observed scores (Lord & 

Novick, 1968; Raykov & Marcoulides, 2011). This begins with the reliability index, which is 

given by the correlation between true scores and observed scores and is defined as 

 ( )( ) ( )cov ,x x
x

x x x

E x xτ τ
τ

τ τ τ

τ µ µ τ σρ
σ σ σ σ σ σ

− −
= = = .  (11) 

Using algebra and expectation, it can be shown that 

 x
x

τ
τ

σρ
σ

= .  (12) 

Therefore, the reliability index is the ratio of the true score standard deviation over the observed 

score standard deviation. Squaring the reliability index gives the reliability coefficient expressed 

as 

 
2

2
'2x xx

x

τ
τ

σρ ρ
σ

= = .  (13) 

This is the respondent’s observed score variance that is explained by their true score variance of 

a construct and is the formal definition of reliability moving forward. Initially, this definition of 

reliability appears to not have much utility as applied researchers only obtain observed scores 

because true scores are latent and cannot be directly obtained. However, in practice, it turns out 

that only two observed scores are needed to obtain reliability. 

 For the most classical interpretations of CTT, reliability can be obtained by the 

correlation between the observed scores of two parallel items (i.e., measures). As defined by the 

parallel model (equation 4), suppose that there are two items defined as 
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 1 1 1

2 2 2

x
x

τ ε
τ ε

= +
= +

 , (14) 

where 1 2τ τ τ= =  and 
1 2

2 2 2
x x xσ σ σ= = . Using the definition of the correlation coefficient, the 

reliability for parallel items can be expressed as 

 ( ) 1 2

1 2

1 2 1 2

1 2cov , x x
x x

x x x x

x x σ
ρ

σ σ σ σ
= = .  (15) 

Using algebra and expectation, it can be shown that the reliability for parallel items is  

 ( )
1 2

2

'2 2

cov ,
x x xx

x x

ττ τ σρ ρ
σ σ

= = = .  (16) 

Equation 16 is the most classical implementation of reliability provided by CTT, where 

'0 1xxρ≤ ≤  and higher 'xxρ  indicates better reliability (i.e., less measurement error). Although 

this implementation of reliability is intuitive, the scope and options of reliability have expanded 

over the decades. As it stands, there is no single best option when estimating reliability as there 

are multiple details to consider when trying to capture the consistency of a measure. These 

details include such things as measure implementation, underlying measure characteristics, and 

number of necessary measure administrations. Attempting to consider all these details at once 

can be daunting and lead to confusion. As such, we will further the discussion on reliability by 

first considering estimation methods that require two measurement instrument administrations. 

Reliability Requiring Two Administrations 

Test-Retest 

 Test-retest reliability is the earliest form of reliability and is used when a measurement 

instrument is administered and readministered to the same respondents after some time interval 
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(DeVellis, 2017; Furr & Bacharach, 2014; Raykov & Marcoulides, 2011). This form of 

reliability assumes that the measurement instrument follows a parallel measurement model over 

the administrations. Letting 1x  and 2x  be the observed scores at times 1 and 2, respectively, for 

the same measurement instrument (equation 14). Test-retest reliability can be estimated with the 

correlation of the observed scores and is expressed as 

 ( )
1 2

1 2

1 2
TR

cov ,
x x

x x

x x
ρ ρ

σ σ
= = .  (17) 

This follows the result given in equation 16 as the same measurement instrument is used in both 

administrations. Researchers may be interested in using test-retest reliability if they want to 

assess how stable a measurement instrument performs over time. In this context, this form of 

reliability is used to assess constructs that are stable over time or how well a person agrees with 

themselves over time. For example, it may be of interest to assess intelligence in adult 

respondents with two administrations of the same measurement instrument over a one-month 

interval. Intelligence is considered a stable construct and a reliable measure of intelligence 

should capture that stability across administrations of the measurement instrument. 

 Despite being simple to implement, test-retest reliability has three notable limitations 

(Furr & Bacharach, 2014; Raykov & Marcoulides, 2011). First, it is difficult to decide on a time 

interval between administrations as it depends on the construct being measured. Generally, 

shorter time intervals inflate reliability estimates due to measurement artifacts such as carryover 

or learning effects. Contrasting this, longer time intervals deflate reliability estimates. As such, if 

the measurement instrument measures a construct that is suspected to change over the time 

interval used, then test-retest reliability is not appropriate. Second, respondent maturation can be 

problematic. This is more common in children as they may rapidly change over the time interval 
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due to natural changes such as cognitive development. Lastly, respondents may drop out before 

the second administration of the measurement instrument (i.e., attrition); creating missing data. 

Given that correlations are impacted by missing data, the same is true for test-retest reliability.  

Alternate Forms 

 Building off the idea of using the same respondents twice is the idea of using two 

different, yet equivalent forms of a measurement instrument on the same respondents at a single 

point in time or short time interval. This is known as alternate forms reliability (DeVellis, 2017; 

Furr & Bacharach, 2014; Raykov & Marcoulides, 2011). This form of reliability assumes that the 

two forms of the measurement instrument follow a parallel measurement model. Letting Ax  be 

the observed score of form A and Bx  be the observed score of form B, alternate forms reliability 

can be estimated with the correlation of the observed scores and is expressed as 

 ( )
A B

A

A B
AF

cov ,

B

x x
x x

x x
ρ ρ

σ σ
= = .  (18) 

Despite the forms of the measurement instrument being distinct from one another, the result from 

equation 16 still works here as the forms are equivalent to one another and can be conceptually 

thought of as having items that have been randomly sampled from the same content domain of 

the construct. Researchers may be interested in using alternate forms-reliability if they want to 

assess how distinct forms of a measurement instrument consistently capture the same construct. 

  Although alternate forms allow researchers to avoid some of the temporal-based 

limitations of test-retest scenarios, there are still two notable limitations (DeVellis, 2017; Furr & 

Bacharach, 2014; Raykov & Marcoulides, 2011). The first and most salient issue is that it is 

difficult to ensure that the alternative forms are equivalent (i.e., parallel) to one another. In this 

case, the reliability between the two forms may be negatively impacted due to how different 
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content is presented between the two forms. Conversely, reliability between the two forms may 

be positively impacted if the two forms share a similar enough content. Second, respondent 

fatigue is also a potential source of error as the forms are responded to sequentially in the same 

period or short time interval. As such, reliability may be negatively impacted if the forms are too 

long. Additionally, the sequential administrations have potential for carryover effects as the act 

of taking one form of a measurement instrument can influence performance on the following 

form. 

Test-Retest with Alternative Forms 

 Although test-retest and alternative forms were introduced separately, they are not 

mutually exclusive concepts. It is possible to combine the two concepts together to obtain 

reliability for alternate forms of measurement instruments that are used over some time interval. 

This is test-retest with alternative forms reliability (Raykov & Marcoulides, 2011). The benefit 

of using measurement instruments in this manner is that it allows for the evaluation of the 

temporal stability of a measure while minimizing things like carryover or learning effects 

through use of the alternative forms. This form of reliability assumes that the two forms of the 

measurement instrument over the time interval follow a parallel measurement model. Letting 1Ax  

be the observed score at time 1 with form A and 2Bx  be the observed score at time 2 with form B, 

alternate forms reliability can be estimated with the correlation of the observed scores and is 

expressed as 

 ( )
1A 2B

1A 2B

1A 2B
TRAF

cov ,
x x

x x

x x
ρ ρ

σ σ
= = .  (19) 

Although combining test-retest with alternative forms carries some of the benefits of 

those methods (i.e., evaluates temporal stability and minimizing carryover effects), it also carries 
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some of their limitations (Raykov & Marcoulides, 2011). As such, it has the same limitations as 

test-retest reliability: 1) difficulty in deciding on a time interval between administrations, 2) 

respondent maturation, and 3) respondent attrition. Like alternate forms, it may be difficult 

ensuring that the alternative forms are truly equivalent to one another. 

Reliability Requiring One Administration 

 Requiring two measurement instruments and/or administrations to establish reliability 

can be cumbersome in applied settings. It is not always possible for researchers to obtain more 

than one administration of a measurement instrument for each respondent. Fortunately, the 

concepts of CTT can be extended such that at least lower bounds of reliability can be established 

from a single measurement instrument administration. Recall that CTT makes no distinction 

between items, sub measures, or measurement instruments (Furr & Bacharach, 2014; Raykov & 

Marcoulides, 2011). This allows for the relationship among measures to be used as a reliability 

statistic and is commonly implemented with items of a measurement instrument. This 

relationship is captured with the composite (i.e., sum of the measures), and is for this reason the 

proceeding reliabilities are sometimes referred to as composite reliabilities. 

Split-Half 

 The first method used to obtain a reliability estimate from a single measurement 

instrument involves splitting a measurement instrument into two split-halves (i.e., sub-measures) 

after it has been administered. Obtaining a reliability estimate from these split-halves is known 

as split-half reliability (DeVellis, 2017; Furr & Bacharach, 2014). This is justified as it is 

assumed that the items are randomly sampled from the same content domain of the construct. As 

such, splitting the measurement instrument in half essentially creates two alternate forms. The 

only difference is that instead of two whole alternate forms, there are two halved alternate forms. 
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The use of these halved forms is important to note as it means that split-half reliability cannot be 

established in the same way as alternate forms reliability. This is because the reliability (i.e., 

correlation) between measures tends to decrease as the length of each measures decreases (i.e., 

the number of items decreases; Cohen, 2010; Spearman 1910). Conversely, reliability between 

measures tends to increase as the length of each measure increases (i.e., the number of items 

increases). Because splitting a measure in half creates two forms with half the items in each form, 

methods used to estimate reliability from split-halves account for the decrease in the number of 

items in each form. 

 Spearman Brown Prophecy Formula. The earliest method used to establish split-half 

reliability was the Spearman Brown (1910) prophecy formula (SBPF) defined as 
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+ −
,  (20) 

where k is the number of measures being examined and 'xxρ  is the reliability (i.e., correlation) of 

the current pair of measures being examined. When using split-halves ax  and bx , then 2k =  and 

the SBPF can simply be written as 
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where 
a bx xρ  is the correlation between the split-halves. 

 As a reliability statistic, the SBPF works based on the properties of the composite and the 

assumption of a parallel measurement model. For k measures, the composite variance can be 

shown to be 
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Note that this is equation 2. Furthermore, based on the definition of parallel measures, it can be 

shown that each measure has identical variance ( )2
xσ  and that the covariance amongst the 

measures is equal to the true score variance of either of them. The composite sum of the true 

scores is given with 
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=

Τ =∑ .  (23) 

The true score variance is also common among the measures ( )2
τσ  due to the assumptions of the 

parallel measurement model. Recalling the result from equation 16, it can be shown that 

 2 2
'x xxτσ σ ρ= .  (24) 

Using these details, it can be shown that 

 ( ) ( ) ( )2 2 2
' ' 'var 1 1 1x xx x xx x xxX k k k kσ ρ σ ρ σ ρ= + − = + −     (25) 

and 

 ( ) ( )2 2 2 2var 1k k k kτ τ τσ σ σΤ = + − = .  (26) 

Combining this information allows for equation 20 (i.e., the SPBF) to serve as a reliability 

statistic 
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 Rulon Formula. Another method used to estimate reliability for split-halves is given by 

Rulon (1939) and is defined as 

 
2

21 D
D

X

R σ
σ

= − ,  (28) 

where 2
Dσ  is the variance of the difference between the split-halves and 2

Xσ  is the variance of 

the measurement instrument (i.e., the composite variance). This method was initially introduced 

as a shortcut to the result of the SPBF as it forgoes the correlation calculation of the split-halves. 

Additionally, the Rulon formula has added flexibility in that it follows an (essentially) 

tau-equivalent measurement model assumption. This difference in measurement model 

assumptions between the SBPF and Rulon Formula is important to note as it results in different 

outcomes between the two reliability statistics depending on how different the split-halves are 

from each other (Raykov & Marcoulides, 2011; Walker, 2006). Specifically, the SBPF and 

Rulon Formula yield different results from one another as the variances between the split-halves 

become more dissimilar (i.e., non-identical variances). In such cases, the Rulon Formula is 

preferred as it has a more relaxed assumption of (essential) tau-equivalence (Cronbach, 1951). 

An algebraically equivalent form to the Rulon Formula is given by Guttman (1945) as 

 
2 2

4 22 1 a b
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R G σ σ
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 +
= = − 

 
,  (29) 

where 2
aσ  is the variance of the split-half ax  and 2

bσ  is the variance of split-half bx , and 2
Xσ  is 

the composite variance. 
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A notable criticism about using split-halves and their related reliability statistics is that 

there are many ways to split a measurement instrument. In fact, for k items within a measurement 

instrument, there are 

 
( ) 2

.5 !
.5 !

k
k  

  (30) 

possible split-halves. This means that there is a non-unique result with regards to the reported 

split-half reliability of a measurement instrument (i.e., each split has its own reliability). As such, 

the choice in how to split the measurement instrument may impact the reported split-half 

reliability (Cohen, 2010). For example, simply splitting a measurement instrument in the middle 

is not suggested due to potential complications with regards to differences in respondent fatigue 

between the first and last half sections of a measurement instrument, resulting in a lower 

reliability estimate. To reduce such complications, an example of a better way to split a 

measurement instrument is to have one half be comprised of the odd items and the other half be 

comprised of the even items (i.e., an odd-even split). Even so, the split-half reliability of a 

measurement instrument can vary greatly depending on the split. This has led researchers to seek 

alternative methods to estimate reliability from a single measurement instrument. The most 

prevalent of these alternative methods are those that take advantage of the measurement 

instrument’s item covariance matrix. 

Alternatives to Split-Halves 

 The item covariance matrix of a measurement instrument is useful for establishing 

reliability as it neatly summarizes the relationships between each item as well as the composite 

(DeVellis, 2017). Specifically, the diagonal components of the item covariance matrix give the 

variances of the items, the off-diagonal components give the relationships among the items, and 
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the sum of all these components gives the overall variance of the measurement instrument (i.e., 

the composite variance). These details are important to consider as they are used to build from 

the framework given by the split-half approach to establishing reliability (Furr & Bacharach, 

2014). To repeat, the items are considered equivalent and randomly sampled from the same 

content domain of the construct. However, in this case, the individual items are seen as the 

alternate forms. There are several ways to use the covariance matrix of a measurement 

instrument to establish reliability once these ideas are considered, but it should be noted that the 

key idea here is that the items (i.e., measures) should be related to one another as they should all 

be measuring the same construct. For this reason, composite reliability is also called internal 

consistency. With regards to this terminology, the most popular method used to establish internal 

consistency is coefficient alpha and is where this discussion begins. 

 Coefficient Alpha. Assuming that the item covariance matrix is positive definite, it can 

be shown that the true score variance ( )2
iτ

σ  and covariance ( )i iτ τσ  are related as follows 

 2 2 2
i j i jτ τ τ τσ σ σ+ ≥   (31) 

for each ij pair of true scores. This can be more generally written as 
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where k is the number of items. It can then be shown that 
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where 
ijxσ  is the covariance of the ij item pairs, and 2

Xσ  is the variance of the composite. 

Equation 33 can be rewritten as 

 1
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where 
iixσ  is the variance of item i. This is the familiar form of Cronbach’s coefficient alpha 

(hereafter referred to as coefficient alpha; Cronbach, 1951). 

Coefficient alpha is popular due to its ease of implementation, but its usage is only 

warranted when items are at most (essentially) tau-equivalent. Consider a pair of (essentially) 

tau-equivalent items ijx  and 'ijx . It can be shown through expectation that the variance of these 

pair of items is  

 2 2 2
ij i ijx τ εσ σ σ= + .  (35) 

Note that these are the elements in the covariance matrix in equation 8. Subsequently, for a 

respondent, it can be shown that the covariance for the items is simply 2
τσ . Letting the sum of 

the true scores be denoted as 
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the variance of the sum of the true scores can be given as 
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See Appendix A for proof of equation 37. Altogether, this shows how equation 33 and 34 (i.e., 

coefficient alpha) serves as a reliability statistic when considering the measurement model 

assumptions. Additionally, it should be noted that coefficient alpha equals reliability only when 

its measurement model assumption is met. If this is not the case, coefficient alpha is only a lower 

bound to reliability.  

 Kuder-Richardson Formula 20. A reliability statistic closely related to coefficient alpha 

is the Kuder Richardson Formula 20 (KR20; Kuder & Richardson, 1937). The KR20 is 

appropriate for measurement instruments whose items only have two outcomes (i.e., are binary) 

and is defined as 
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where k is the number of items, jp  is the proportion scoring 1 on item j, jq  is the proportion 

scoring 0 on item j, and 2
xσ  is the variance of the composite. The KR20 can be more generally 

written as 
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where k is the number of items, 2
jσ  is the variance of item j, and 2

Xσ  is the variance of the 

composite. Equation 39 shows that the KR20 is a special case of coefficient alpha. As such, the 

properties of coefficient alpha also extend to the KR20 with the assumption that the binary items 

are (essentially) tau-equivalent. 



22 
 

 Guttman Lower Bounds. In the advent of the implementation of split-halves and 

composite reliability, Guttman (1945) proposed six methods to estimate a lower bound to 

reliability based on the (essentially) tau-equivalent measurement model. The fourth method is 

omitted here as it was the DR  (Guttman, 1945) for split-halves introduced earlier (equation 29). 

 The first method is appropriate when considering k measures and is defined as 
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where 2
jσ  is the variance of measure j and 2

Xσ  is composite variance. The second method 

directly builds from the first method and is defined as 
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where 2
ijσ  is the squared covariance of the ij pair of measures. The third method is a simpler 

alternative to the second method, and is defined as 

 3 11
kG G

k
=

−
.  (42) 

Note that 3G  is coefficient alpha. The fifth method is defined as 
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where 2*
ijσ  is the largest of the squared covariances of the ij pair of measures. The sixth method 

is based on the multiple correlation and is defined as 
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where 2
je  is the error variance of item j from its multiple regression on the other 1k −  items. 

 As lower bounds to reliability, Woodhouse and Jackson (1977) show some partial orders 

of the six Guttman lower bounds: 1 3 2 ,G G G≤ ≤  1 4 ,G G≤  1 5 ,G G≤  and 1 6G G≤ . It is interesting 

to note that although 2G  outperforms 3G  (i.e., coefficient alpha), 3G  is vastly used more. This is 

likely due the ease in which 3G  is implemented. However, modern computational tools could 

change that as they have for the next reliability statistic. 

 Coefficient Omega. A limitation of the previously discussed reliability statistics is their 

measurement model assumptions. Both the parallel and (essentially) tau-equivalent measurement 

models are stringent and may be difficult to meet in applied settings. In contrast, a congeneric 

measurement model is more flexible. A reliability statistic that takes advantage of this 

measurement model is coefficient omega defined as 
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where jλ  and jψ  are the thj  factor loading and uniqueness, respectively, from a confirmatory 

factor analyses (CFA; McDonald, 1970). Within the context of reliability, factor loadings can be 

interpreted as correlations and uniqueness can be interpreted as error variance. 

 In general, a factor analysis is a data reduction technique based on the relationships 

amongst the measures and underlying common constructs (only one common construct assumed 
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in the current context). This latter use of factor analysis is what affords coefficient omega its 

flexibility with the congeneric measurement model assumption. To show how the congeneric 

measurement model leads into reliability via coefficient omega, consider how equation 9 works 

within a composite (ignoring the indices for respondents for now; Raykov & Marcoulides, 2011). 

The decomposition of the true and observed scores of a composite here results in 
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and 
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Using the definition of reliability, it can be shown that 
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See Appendix A for proof of equation 48. Note that attempting to estimate all the parameters in 

equation 48 will result in a CFA model that is not identified (i.e., no unique solution for the 

estimated parameters). This issue can be resolved by setting one of the parameters to 1. For 

simplicity, it is suggested to set τ  to 1 and results in  
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whose components have analogous interpretations to the components in equation 45. As such, 

coefficient omega intuitively captures the definition of reliability. 

 The congeneric measurement model assumption gives greater flexibility to coefficient 

omega with regards to determining reliability from a single measurement instrument compared to 

some other reliability statistics, but it still has some limitations. The most salient limitation is that 

coefficient omega is more difficult to compute compared to other reliability statistics (DeVellis, 

2017). For example, coefficient alpha only requires the covariance matrix of the measures, 

whereas coefficient omega requires a CFA. This complexity also resulted in less research, 

development, and application of coefficient omega. However, modern computing power and 

software implementation has reached a point where estimating coefficient omega is viable for 

many applied researchers (e.g., the psych package in R; Revelle, 2022). In addition, modern 

computing power has made confidence interval research more viable for reliability statistics with 

respect to coefficient alpha. 

Confidence Intervals for Coefficients Alpha 

 There are two general methods for estimating a parameter: point and interval. A point 

estimate uses a single value for a parameter estimate. These are useful for establishing a best 

guess for a parameter but do not account for sampling error (i.e., variability) about the parameter 

estimate. In contrast, an interval estimate consists of a range of possible values that are likely to 

contain the population parameter. This range is useful as it provides precision information about 

the parameter estimate. 

 A common type of interval estimate is the confidence interval (CI). A CI is formed by 

creating an error structure around a point estimate based on the standard error (SE) of the 

corresponding sampling distribution along with a confidence level (Hogg, Tanis, & Zimmerman, 
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2015). A confidence level indicates the consistency of a parameter estimate and is denoted as 

( )100 1 %α− , where α  indicates the probability of a type I error. For example, a CI with 

.05α =  indicates that 95% of all CIs created in the same way will contain the corresponding 

parameter. 

CIs are useful as they provide two important pieces of information. First, they provide 

precision information about the parameter estimate. Specifically, narrower intervals indicate 

more precision and wider intervals indicate less precision. Second, they can be used for 

hypothesis testing (i.e., inference). These qualities are so useful that CI estimates of any statistic 

are broadly recommended within the literature (Beaulieu-Prevost, 2006; Benjamin et al., 2017; 

Wilkenson, 1999). Given the prevalence of coefficient alpha within the literature, it has seen the 

most development with regards to CIs. 

CI Research for Coefficient Alpha 

 Coefficient alpha CI research has not seen much development until relatively recently. 

The first coefficient alpha CI was first proposed by Feldt (1965), a decade following its 

introduction in the 1950s. Assuming items to be parallel and normally distributed, Feldt derived 

a sampling distribution for coefficient alpha which allows for a coefficient alpha CI. Barchard 

and Haktstian (1997) investigated the performance of this CI with two Monte Carlo simulations. 

The first simulation considered the a) inter-item covariance (compound symmetric and spherical), 

b) number of items ( 5,k =  20), and c) coefficient alpha ( .60,cα =  .70, .90). Results were based 

on 20,000 simulation replications and .05α = . The second simulation considered the a) 

measurement model, b) number of items ( 5,k =  20), c) coefficient alpha ( .60,cα =  .70, .90), and 

d) heterogeneity of item means and variances. The measurement models investigated were 

parallel, essentially parallel, tau-equivalent, and essentially tau-equivalent. Heterogeneity of 
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means and variances considered combinations of item means 0, 100, or 400 with item variances 

0, 10, 15, or 25. Results were based on 5,000 simulation replications and .05α = . For both 

simulations, sample size was 100 and data was multivariate normal. In general, these simulations 

found that the CI investigated was not accurate if items were not parallel and the accompanying 

inter-item covariance matrix was not compound symmetric. 

Following this, van Zyl et. al. (2000) showed that coefficient alpha is a maximum 

likelihood (ML) estimate with a normal asymptotic distribution. The derivation of this 

distribution required items to be normal but did require them to be parallel. Additionally, the 

authors showed that the results from Feldt (1965) follow the inverse hyperbolic transformation 

used to make a coefficient alpha normal when items are parallel. The authors compared their 

asymptotic normal distribution for coefficient alpha to the exact F-distribution proposed by Feldt 

via simulation when items were parallel. The authors checked for parity between the distribution 

under combinations of a) sample size ( 10,n =  30, 50, 100), b) number of items ( 3,k =  6, 14), 

and c) coefficient alpha ( .7224,cα =  .8514, .6191). Results were based on 500 simulation 

replications. It was found that that the asymptotic normal distribution fit the exact F-distribution 

well based on having similar probability densities, means, and variances. This was beneficial as 

it potentially let coefficient alpha CIs be estimated without assuming items being parallel. 

Duhachek and Iaobucci (2004) would build off these findings to propose a normal theory (NT) 

CI for coefficient alpha. This NT CI was compared to alternative reliability CIs proposed by 

Feldt (1965), Hakstain and Whalen (1976), Nunnally and Bernstein (1994), Lord and Novick 

(1968), and Charter (2000) via a Monte Carlo simulation. The simulation conditions were a) 

sample size ( 30,n =  50, 100, 200), b) number of items ( 5,k =  7), and c) mean item correlation 

ranging from 0.4 to 0.7. Items were normal and considered cases that were unidimensional or 
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two dimensional. Results were based on 1,000 simulation replications and .05α = . It was found 

that the NT CI outperformed all other CIs investigated across all simulation conditions. 

Although CI development for coefficient alpha made estimation less reliant on 

assumptions of item parallelism, there was still restrictions with regards to the assumption of 

items being continuously normal. This is an issue as measurement instruments tend to use 

Likert-type items that are not continuous and may not be normal. To overcome this limitation, 

Yuan, Guarnaccia, and Hayslip (2003) proposed a bootstrap CI for coefficient alpha. The 

bootstrap is a statistical technique that uses resampling of data (i.e., bootstrap samples) to 

generate an empirical sampling distribution (ESD) of a statistic from which inferences can be 

made. It is a potentially powerful tool that requires no distributional assumptions but is 

computationally intensive. Common bootstrap CIs based on the percentiles of the ESD include 

the percentile bootstrap (PB) CI and the bias-corrected and accelerated (BCA) CI. Additionally, 

the authors proposed a new asymptotic distribution free (ADF) CI for coefficient alpha. The 

authors compared the NT, ADF, PB, and BCA CIs on data collected from the Hopkins Symptom 

Checklist (HSCL; Derogatis, Lipman, Rickels, Uhlenhuth, & Covi, 1974). The HSCL consists of 

five dimensions with 58 4-point Likert-type items. The sample size of this study was 419 people, 

all bootstrap CIs were based on 1,000 bootstrap samples, and all CIs were based on .10α = . The 

results indicated that the PB and BCa were the most accurate, followed by the ADF, and NT CIs; 

respectively. However, the difference in performance between the bootstrap and ADF CIs were 

all within three decimals places (Maydeu-Olivares, Coffman, & Hartmann, 2007). 

As the ADF CI performed similarly to the bootstrap CIs while also being less 

computationally intensive, there was interest in further investigating its properties. 

Maydeu-Olivares et. al. (2007) investigated the ADF CI and how it compared to the NT CI in 
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two simulations. Interest here was on how the ADF and NT CIs performed with non-normal 

items. The first simulation investigated parallel items with a) sample size ( 50,n =  100, 200, 400), 

b) number of items ( 5,k =  20), c) common correlation ( .16,ρ =  .36, .64), and d) item type. The 

second simulation investigated congeneric items with a) sample size ( 50,n =  100, 400, 1000), b) 

number of items ( 7,k =  14, 21) and c) item type. For both simulations, item type consisted of 

six combinations of Likert-type items with the following varying skewness and kurtosis: 

• 2 categories ( skewness 2.67,=  kurtosis 5.11= ) 

• 2 categories ( skewness 1.96,=  kurtosis 1.84= ) 

• 2 categories ( skewness 0.41,=  kurtosis 1.83= − ) 

• 5 categories ( skewness 0,=  kurtosis 1.83= − ) 

• 5 categories ( skewness 0,=  kurtosis 0.5= − ) 

• 5 categories ( skewness 0.98,=  kurtosis 0.2= − ) 

Results were based on 1,000 replications and .05α = . The following results were found similar 

for both parallel and congeneric items. When items were distributed close to normal, the NT CI 

had adequate coverage probability with sample sizes 50n ≥ . However, as items became more 

non-normal, the ADF CI outperformed the NT CI. Generally, when 100n ≥  and items are 

non-normal, the ADF CI performed well. 

As more coefficient alpha CIs have developed, so did the interest in finding the best 

performing CIs. Romano, Kromrey, and Hibbard (2010) compared the performance of eight 

coefficient alpha CIs with a Monte Carlo simulation. The eight CI methods were a) the Bonett 

z-transformation (2002), b) Fisher z-transformation (1950), c) Hakstian and Whalen 

z-transformation (1976), d) Feldt F-distribution (1965), e) Duhachek and Iacobucci NT (2004), 
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f) Koning and Franses F-distribution (2003), g) Koning and Franses asymptotic, and h) 

Maydeu-Olivares et. al. ADF (2007). The study investigated a) coefficient alpha 

( .50,cα =  .70, .90), b) sample size ( 10,n =  50, 100, 1000), and c) number of items ( 5,k =  10, 

20, 40). All items were dichotomous and generated from a 3-parameter item response theory 

model. Results were based on 10,000 simulation replications and .01,α =  .05, .10. The results 

indicated that the Fisher z-transformation and Bonett z-transformation CIs had the best coverage 

probability performance. Interestingly, in contrast to previous research, it was found that the 

ADF CI had the poorest coverage probability performance. 

From here, there was further interest in using the bootstrap to estimate coefficient alpha 

CIs. Padilla, Divers, and Newton (2012) proposed investigating bootstrap coefficient alpha CIs 

via simulation and seeing how they compared to previously investigated CIs with regards to their 

performance with non-normal data. The assessed bootstrap CIs were the normal theory bootstrap 

(NTB), PB, and BCA CIs. The assessed non-bootstrap CIs were the Fisher z-transformation 

(1950), Bonett z-transformation (2002), Duhachek and Iacobucci NT (2004), and 

Maydeu-Olivares et. al. ADF (2007) CIs. The simulation investigated the effects of a) number of 

Likert-type items ( 5,k =  10, 15, 20), b) correlation type, c) number of item responses ( 2,c =  3, 

5, 7), d) distribution type, and e) sample size ( 50,n =  100, 150, 200, 250, 300). For correlation 

type, three types of item correlation matrices were used. The first two correlation matrices 

corresponded to a parallel item model with a common correlation of .30ρ =  or .56, respectively. 

The third correlation matrix corresponded to a congeneric item model. For distribution type, 

three different distribution types were investigated based on number of item responses. When 

there were only 2 responses, the distributions were: 
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• Type 1: skewness 0=  and kurtosis 2= −  

• Type 2: skewness 1.70=  and kurtosis 0.88=  

• Type 3: skewness 0.41=  and kurtosis 1.83= −  

When number of item responses 3, 5, or 7, the distributions were: 

• Type 1: skewness 0=  and kurtosis 0=  

• Type 2: skewness 0=  and kurtosis 0.88=  

• Type 3: skewness 0.97=  and kurtosis 0.20= −  

The bootstrap CIs used 2,000 bootstrap samples. Results for the bootstrap CIs were based on 

1,000 replications and results for the non-bootstrap CIs were based on 25,000 replications with 

.05α =  in both cases. In contrast to previous research, it was found that the Fisher 

z-transformation, Bonett z-transformation, and NT CIs had the most instances of inadequate 

performance. However, the Bonett z-transformation and NT CIs had generally adequate 

performance if items were normally distributed or had little skewness. Additionally, it was found 

that the NTB CI was the best performing as it had adequate performance across most of the 

simulation conditions; it had unacceptable coverage in only 4 of the 864 investigated conditions. 

Bayesian Coefficient Alpha 

 Up to this point, the discussion about coefficient alpha has implicitly been within the 

context of traditional statistics (i.e., frequentist statistics). However, developments in recent years 

have enabled exploration into how to approach coefficient alpha from a Bayesian perspective. 

Bayesian Methodology 

 A primary goal in using statistics is to obtain an understanding for a phenomenon through 

a subset of information. This can be seen with how a characteristic of a population θ  is 
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approximated by a sample (subset) of that population y. In traditional statistics, θ  is a constant 

and the only information available to approximate θ  is through the sample y. However, in 

Bayesian statistics, all unknowns are considered random variables by way of Bayes theorem 

 ( ) ( ) ( )
( ) ( )

( ) ( )
p y p

y p y p
p y p d

θ θ
π θ θ θ

θ θ θ
Θ

= ∝
∫

,  (50) 

where ( )yπ θ  is the posterior distribution, ( )p θ  is the prior distribution, ( )p y θ  is the data 

likelihood function and ( ) ( )p y p dθ θ θ
Θ∫  is a normalizing constant. Here, both θ  and y are 

uncertain, but after obtaining the data y (i.e., p(y|θ)), this information can be used to decrease the 

uncertainty of θ . Furthermore, previous information or beliefs about θ  (i.e., p(θ)) can also 

influence the uncertainty about θ . Finding the change in this uncertainty of θ  (i.e., π(θ |y)) is 

the purpose of Bayesian inference. 

Bayesian statistics can be more challenging to implement than traditional statistics but 

yield great benefits. In Bayesian statistics, information about θ  is impacted by data and prior 

information about θ . This can be useful in cases where this sample size is limited but prior 

research about the phenomenon is available. Additionally, Bayesian credible intervals (CrIs) 

have a more intuitive interpretation than their traditional counterparts (i.e., frequentist CIs). For 

example, a 95% CI is interpreted as 95% of all similarly constructed CIs contain the parameter of 

interest θ . In contrast, a 95% CrI is interpreted as the parameter θ  having a 95% chance of 

being within the bounds of the of CrI given the data. Although these qualities benefit many 

statistics, the focus here will be on the most popular reliability statistic, coefficient alpha. 

Previous Developments for Bayesian Coefficient Alpha 
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Padilla and Zhang (2011) proposed an initial Bayesian coefficient alpha. The authors 

noticed that coefficient alpha is completely determined by the item covariance matrix. As such, 

the posterior coefficient alpha can be obtained by using the posterior of the item covariance 

matrix. Starting with a multivariate normal distribution for the data, the corresponding posterior 

distribution is given by 

 ( ) ( ) ( ) ( ) ( ) ( ), , , ,p p p p pπ ∝ =Σ Σ Σ Σ Σ Σμ y y μ μ y μ μ .  (51) 

Separate priors are necessary for the covariance matrix and mean vector. Using the following 

conjugate priors for the covariance matrix 

 ( )1
0 0~ ,W d−Σ SS   (52) 

and mean vector 

 0
0

1~ ,N
n

 
 
 

Σ Σμ μ ,  (53) 

we can obtain the corresponding posterior distributions for the covariance matrix 

 ( ) ( )( )1 0
0 0 0 0

0

~ , 1 'nnW n d n
n n

−  
+ − + + − − + 

Σ y S SS y μ y μ   (54) 

and mean vector 

 ( ) ( )0 0
0 0

1 1, ~ ,N n n
n n n n

 
+ + + 

Σ Σμ y y μ ,  (55) 

where 1W −  denotes an inverted Wishart distribution, 0 ,d  0 ,SS  0 ,μ  and 0n  are hyperparameters 

selected by the analyst, and y  and S are the mean vector and covariance matrix estimated from 
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the data, respectively. By simulating 1,t =  2, …, T values from equation 54 as ( )tΣ y , the 

estimation of the coefficient alpha posterior can be obtained as 

 ( )

( )

( )

1

1 1

1
1

k
t

ii
t i

c k k
t

ij
i j

k
k

σ
α

σ

=

= =

 
 
 = −
 −
 
 

∑

∑∑
,  (56) 

where ( )t
iiσ  and ( )t

ijσ  are elements from ( )tΣ y . Note that ( ),Σμ y  is not necessary as ( )t
cα  only 

relies on Σ y . A Bayesian coefficient alpha is then obtained from the posterior mean as 

 ( )b cEα α= , yΣ   (57) 

or as the posterior median as 

 ( ) ( ), , 1 / 2c b m c b mp pα α α α≤ = ≥ ≥y y .  (58) 

The authors assessed their proposed Bayesian coefficient alpha by the performance of 

two types of CrIs via simulation (Padilla & Zhang, 2011). One of the investigated CrIs was based 

on the lower / 2α  and 1 / 2α−  percentiles of the posterior, where α  was the type I error rate. 

The second investigated CrI was normal theory-based and given by 

 ( )/2ˆ ˆb bz SEαα α± , (59) 

where /2zα  is a value taken from the standard normal distribution based on α  and ( )ˆbSE α  is the 

bα  standard error (i.e., standard deviation). The simulation investigated the a) number of items 

( 5,k =  10, 15, 20), b) mean item correlation ( .1667,ρ =  .2208, .3103), and c) sample size 
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( 50,n =  100, 150, 200, 250, 300). The mean item correlation resulted in coefficient alphas 

ranging from .50 to .90 and is summarized in Table 1. 

 

Table 1 

Population Coefficient Alpha for Items by Mean Item Correlations (Padilla & Zhang, 2011) 

Items Mean Item Correlation 
.1667 .2208 .3103 

5 
10 
15 
20 

.5001 

.6667 

.7500 

.8000 

.5862 

.7392 

.8095 

.8500 

.6923 

.8182 

.8709 

.9000 
 

 

 

For each simulation condition, 1,000 replications were obtained. Priors used for the Bayesian 

coefficient alpha were set to be non-informative. It was found that the percentile based CrIs had 

better performance than the normal theory-based CrIs. Generally, the normal theory-based CrI 

struggled when .3101ρ =  and had further issues as number of items increased. However, this 

limitation is minimized if 250n ≥ . The percentile based CrIs had unacceptable performance if 

sample size was 50n =  and if number of items was 15k ≥  but had generally acceptable 

performance if 100n ≥ . 

Novel Bayesian Coefficient Alpha 

Although the previous study provides a general framework for implementing a Bayesian 

coefficient alpha, it is based on the posterior covariance matrix. As such, the method proposed by 

Padilla and Zhang (2011) requires a prior for the covariance matrix. However, the covariance 

matrix is not often included when reporting coefficient alpha and it is difficult to derive the 
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covariance matrix from just coefficient alpha. Unfortunately, for this version of Bayesian 

coefficient alpha, applications requiring an informative prior can be difficult to implement. To 

overcome this, a new posterior of coefficient alpha is proposed. 

First, under the assumption of normally distributed items, van Zyl et. al. (2000) showed 

that 

 
2

ˆ ~ ,c cN
n
ασα α

 
 
 

,  (60) 

where 

 
( )

( ) ( ) ( )( ) ( )( )
2

22 2 2
3

2 2
1

k tr tr tr
kασ

    ′ ′= + −    − ′    
1 Σ1 Σ Σ Σ 1 Σ 1

1 Σ1
,  (61) 

2
ασ  is the coefficient alpha variance, n is the sample size, k is the number of items, and Σ  is the 

item covariance matrix. The variance estimate ( )2Sα  can be obtained by replacing Σ  with the 

sample estimate 2S . 

 Second, let 1,y=y  …, ny  and using Bayes’ rule for the normal distribution, the posterior 

for coefficient alpha is 

 ( ) ( ) ( )
( )

2 2
2

, ,
,

c c
c

p p

p
α α

α

α σ α σ
π α σ =

y
y

y
.  (62) 

Note that the joint distribution for quantities can be expressed as a product of a conditional 

probability and a marginal probability as 

 ( ) ( ) ( )2 2 2,c cp p pα α αα σ α σ σ= .  (63) 
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Then dropping the denominator in equation 62 gives 

 ( ) ( ) ( ) ( )2 2 2 2, ,c c cp p pα α α απ α σ α σ α σ σ∝y y .  (64) 

 To have simpler posterior calculations, conjugate priors will be used for the parameter of 

interest. If 2
ασ  is known, the conjugate prior for cα  is 

 
2

2
0

0

| ~ ,c N α
α

σα σ α
κ

 
 
 

.  (65) 

Here, 0α  and 0κ  can be thought of as the coefficient alpha and sample size, respectively, from a 

set of prior observations. This leaves a prior for 2
ασ  to be determined. The 2

ασ  requires a 

distribution that has support for ( )0, ∞ . The inverse-gamma (IG) distribution family meets this 

requirement for the normal variance. As such, the conjugate prior for 2
ασ  is 

 
2

2 0 0 0~ ,
2 2

IGα
υ υ σσ
 
 
 

.  (66) 

Here, 0υ  and 2
0σ  can be thought of as the sample size and variance, respectively, of a set of prior 

observations. 

 Suppose that a set of items are normally distributed, then the sampling distribution is 

 ( )2 2, ~ ,c cNIDα αα σ α σy .  (67) 

Using the conjugate priors in equations 65 and 66, respectively, the posterior for coefficient 

alpha is then 
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2

2, ~ ,c n
n

N α
α

σα σ α
κ

 
 
 

y ,  (68) 

where 

 
( ) ( )2 2

0 0 0 0
2 2

0

ˆ/ / ˆ
/ /

c c
n

n

n n
n

α α

α α

κ σ α σ α α κ αα
κ σ σ κ

+ +
= =

+
,  (69) 

0n nκ κ= + , and ˆcα  is the sample coefficient alpha. The posterior distribution of 2
ασ   can be 

obtained by integration over cα  as 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2,c c

p p p

p p p d

α α α

α α α

σ σ σ

σ α σ α σ α

∝

= ∫

y y

y
.  (70) 

Completing the integral in equation 70 results in 

 
2

2 ~ ,
2 2

n n nIGα
υ υ σσ
 
 
 

y ,  (71) 

where 

 ( ) ( )22 2 2 0
0 0 0

1 ˆ1n c
n n

nn Sα
κσ υ σ α α

υ κ
 

= − + + − 
 

,  (72) 

0n nν υ= + , and 2Sα  is the sample variance from equation 61. With non-informative priors, the 

coefficient alpha posterior is completely determined by the data as 

 
2

2 ˆ, ~ ,c N
n
α

α
σα σ α

 
 
 

y   (73) 

and the variance as 
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 ( ) ( )( )2 2~ 1 , 1IG n n Sα ασ − −y .  (74) 

 Assuming a measurement instrument from prior observations ( prn ) with k parallel items, 

using prior information will require the 0α  and 2
0σ  priors. Obtaining the 0α  prior is easy as 

coefficient alpha is readily reported in the literature for a measurement instrument. However, 

obtaining 2
0σ  is a little more challenging as it requires the common item variance ( 2

xσ ). Note 

that the common variance ( )2
xσ  is not the composite variance ( )2

Xσ . Recall that a parallel model 

has a compound symmetric covariance matrix for the items (Equation 5), which can be concisely 

written as 

 ( )2
' '

ˆ ˆ ˆˆ ' 1PM x xx xxσ ρ ρ= + −  Σ 11 I ,  (75) 

where ˆ xσ 2  is the estimated common variance of the items and ˆxxρ ′  the estimated common 

reliability among the items (van Zyl et al., 2000). Again, the parallel model implies that items 

have the same variance and reliability. Using these details, coefficient alpha can be written as 

 
( )

2 ˆˆˆ
ˆ1 1

x xx
c

xx

k
k
σ ρα

ρ
′

′

=
+ −

.  (76) 

Then, equation 76 can be solved for the common reliability as 

 
2

2

ˆ ˆˆ
ˆ ˆ(1 )

c x
xx

c xk k
α σρ

α σ′ = + −
.  (77) 

Taken all together, under the parallel measurement model, given the coefficient alpha estimate 

( ˆcα ) and the common item variance estimate ( 2ˆ xσ  ) allows for one to obtain the common 

reliability estimate ( 'ˆxxρ ) and reconstruct the covariance matrix ( )Σ  using equation 75. Again, 
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note that the common variance is not the composite variance. From here, 2ˆασ   can be computed 

from equation 61. Although the common item variance is not commonly reported in the literature, 

variances for the items are. As such, a simple way to compute the common variance is to average 

the item variances as 

 2 2

1

1ˆ ˆ
k

x j
jk

σ σ
=

= ∑ .  (78) 

Then the priors can be set as 0 ˆcα α= , 2 2
0 ˆασ σ=  , and 0 0 prnν κ= = .  

 For (essentially) tau-equivalent and/or congeneric models, the method previously 

discussed cannot be used for obtaining the 2
0σ  prior. The reason is that for either of these models, 

the item covariance matrix cannot be written as in equation 75. As such, for either of these 

models, a 2
0σ  prior will need to be provided or the item covariance from which the prior can be 

obtained using equation 61.  

Interval Estimation 

 The posterior distribution ( )2,c απ α σy  can then be summarized for inferences. Here, 

three different Bayesian CrIs are of interest. First, a NT CrI can be obtained with 

 ( )/2ˆ ˆc cz SEαα α± ,  (79) 

where ( )ˆcSE α  is the standard deviation of ( )2,c απ α σy . Second, percentile-based CrI can be 

obtained by using the lower / 2α  and upper 1 / 2α−  percentiles from ( )2,c απ α σy . Third, the 

highest probability density (HPD) CrI can be obtained by letting a subset of the parameter space 

for ˆcα , c A⊂ ,  be defined as 
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 ( ){ }2ˆ : | ,c cc hαα π α σ= ≥y ,  (80) 

where h is the largest number such that 

 ( )2| , 1c c
h

dαπ α σ α α= −∫ y .  (81) 

The HPD CrI has unique attributes that make it potentially useful to researchers. For a 

unimodal distribution, HPD CrI is defined as the narrowest interval that contains the specified 

probability of the confidence level ( )1 α− . Here, h can be thought of as a horizontal line that 

shifts down through the distribution until its intersections with the distribution capture the 1 α−  

region. This results in a region that is projected upon the x-axis as an interval. Consequently, all 

x-axis points inside the interval have higher probability than any x-axis point out the interval. 

Additionally, the bounds of this interval will have equal posterior probability to one another. 

Other CrIs may not have these properties for non-symmetric distributions (e.g., percentile-based 

CrIs). Figure 1 illustrates the potential difference between the HPD and percentile-based CrIs for 

a non-symmetric distribution. 
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Figure 1  

Comparison of HPD and Percentile-Based CrIs 

 

 

 

Additionally, to compare the performance of the Bayesian CrIs to frequentist CIs, 

bootstrap CIs were also considered. To summarize, the bootstrap for coefficient alpha can be 

outlined in three steps (Padilla, Divers, & Newton, 2012). Suppose that the data are 

( )1 2, , , n=X x x x , where ( )1 2, , , ,i i i ikx x x=x   is a set of variables. First, obtain the bth 

bootstrap sample with replacement ( ) ( ) ( ) ( )( )1 2, , ,b b b b
n=X x x x   from X. Second, compute and store 

the bth estimate of coefficient alpha from X(b) with 
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where ( )
2

bX
σ  is the variance of the composite and ( )b

jjx
σ  is the variance of variable j for the bth 

sample. Finally, compile the stored estimates ( ) ( ) ( )1 2, , , B
c c cα α α  to create the empirical sampling 

distribution (ESD) for the 1, 2, ,b B=   bootstrap samples. The ESD can then be summarized to 

obtain statistical quantities for inference about cα . The percentile bootstrap (PB) and the 

bias-corrected and accelerated (BCA) methods are commonly used in literature. The PB CI is 

estimated by obtaining the / 2α  and 1 / 2α−  percentiles from the ESD where α  is the type I 

error probability. The BCA CI follows a similar process to the PB CI but the bounds are adjusted 

for bias and skew (i.e., acceleration) of the cα  ESD. See Efron and Tibshirani (1993) for details. 

 The focus here now is a simulation study to investigate the performance of the Bayesian 

CrIs and bootstrap CIs from above for the Bayesian and Bootstrap methods of estimating 

coefficient alpha. Specifically, interest is on the corresponding CrIs for the Bayesian coefficient 

alpha (Balpha 1) proposed by Padilla and Zhang (2011) and the new implementation of Bayesian 

coefficient alpha (Balpha 2) proposed here. The HPD CrI was not previously applied to Balpha 1 

by Padilla & Zhang. As such, it will not be used as a point of comparison between Balpha 1 and 

2. Instead, it will be tentatively explored with Balpha 2. Even so, the other two Balpha 1 and 2 

CrIs will also be compared to the PB and BCA CIs.  
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METHODOLOGY 

Simulation 

 A Monte Carlo simulation was used to investigate the Bayesian coefficient alpha. The 

simulation conditions were 5 (correlation type)  ×  4 (number of items) ×  4 (number of item 

response categories) ×  3 (distribution type) ×  6 (sample size) for a total of 1,440 conditions. All 

simulated items were Likert-type (ordinal) or binary. For each simulation condition, 1,000 

replications were obtained. The priors for the Bayesian coefficient alpha were set to be 

non-informative. This allows the Bayesian CrIs to be compared to frequentist coefficient alpha. 

The Bayesian CrIs and bootstrap CIs used 2,000 posterior draws and bootstrap samples, 

respectively. 

 An outline of the Monte Carlo simulation for the study is given below: 

1. Select the structure of the k k×  correlation matrix P, where k is the number of items. 

2. Select a set of thresholds v to categorize items to a predetermined skewness and kurtosis. 

3. Generate an n k×  multivariate data matrix ( )~ 0,NZ P , where n is the sample size. 

4. Categorize the generated data Z using the thresholds in v to generate the dataset X. Each 

variable x in X is categorized by the thresholds as follows: x m=  if 1m mv z v +< <  for 

0,m =  1, …, 1M −  where 0v = −∞  and Mv = ∞ , and M is the number of item response 

categories. 

5. Compute the true population coefficient alpha ( )cα  according to P and the thresholds in 

v. See Maydeu-Olivares et. al. (2007) for details. 

6. Estimate the Bayesian coefficient alpha CrIs from X as outlined above. 

7. Determine if the CrIs contain the true population coefficient alpha ( )cα  . 
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Details of the simulation conditions are given below. 

Conditions 

Correlation Type ( ρ ) 

 Five different item correlation structures P were investigated. The first two correlation 

structures were from a parallel-item one factor model with common loadings 1 0.55λ =  or 

2 0.705λ = . These two models will generate compound symmetric item correlation structures 

with .30ρ =  or .56, respectively. The next three correlation structures were generated from a 

congeneric item one-factor model with the following loadings: 3 0.2,λ =  0.3, 0.4, 0.5, 0.6; 

4 0.3,λ =  0.4, 0.5, 0.6, 0.7; and 5 0.4,λ =  0.5, 0.6, 0.7, 0.8. These correlation structures were 

chosen for investigation as they were previously investigated by Padilla, Divers, & Newton 

(2012), based on work previously done by Maydeu-Olivares (2007), and allow for a greater 

range of conditions to explore the impact on coefficient alpha CI/CrIs. A summary for the 

population coefficient alphas these correlation structures produce is given in Table 2. 

 

 

Table 2 

Summary of Resultant Population Coefficient Alphas from Correlation Structure Types 

Correlation Structure Type Minimum αc Mean αc Maximum αc 
Parallel: λ = 0.55 
Parallel: λ = 0.705 
Congeneric: λ = 0.2 – 0.6 
Congeneric: λ = 0.3 – 0.7 
Congeneric: λ = 0.4 – 0.8 

.4827 

.7120 

.2960 

.4218 

.5457 

.7513 

.8843 

.5916 

.7060 

.7924 

.8870 

.9570 

.7784 

.8593 

.9106 
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Number of Items (k) 

 Previous research on coefficient alpha has investigated numbers of items ranging from 3 

to 40 (Barchard & Hakstian, 1997; Duhachek & Lacobucci, 2004; Maydeu-Olivares et al., 2007; 

Padilla et al., 2012; Padilla & Zhang, 2011; van Zyl et al., 2000). However, most of this previous 

research focused on numbers of items ranging from 5 to 20. Additionally, it is noted that going 

beyond 20 items for a measurement instrument reaches a point of diminishing returns with 

regards to coefficient alpha. To generalize to most of the previous research, the following 

number of items were investigated: 5,k =  10, 15, 20. 

Number of Item Response Categories (IRC) 

 Previous research on coefficient alpha has investigated numbers of item response 

categories ranging from 2 to 7 (Maydeu-Olivares et al., 2007; Padilla et al., 2012; Romano et al., 

2010; Yuan et al., 2003). To draw parity with previous research, the following common choices 

for response categories were investigated: 2,IRC =  3, 5, 7. For each response category, the first 

category was set to 0. For example, for an item with seven response categories, the categories are 

m = 0, 1, 2, 3, 4, 5, 6. 

Distribution Type 

 Three different distribution types were investigated. When 2IRC =  (i.e., binary items), 

the thresholds for v were chosen such that the distributions had the following characteristics: 

1. Type 1: skewness 0=  and kurtosis 2= −   

2. Type 2: skewness 1.70= −  and kurtosis 0.88=   

3. Type 3: skewness 0.41=  and kurtosis 1.83= −   

The Type 1 and 2 distributions for binary categorization were studied by Padilla et. al. (2012). 

The Type 3 distribution for binary categorization was studied by Maydeu-Olivares et. al. (2007). 
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When 3,IRC =  5, 7 (i.e., IRC > 2) the thresholds for v were be chosen so that the distributions 

had the following characteristics: 

1. Type 1: skewness 0=  and kurtosis 0=   

2. Type 2: skewness 0=  and kurtosis .88=   

3. Type 3: skewness 0.97=  and kurtosis 0.20= −   

The Type 1 distribution for 2IRC >  categorizations was studied by Padilla et. al. (2012). The 

Type 2 and 3 distributions for 2IRC >  categorizations were studied by Maydeu-Olivares et. al. 

(2007). Investigating this breadth of distribution types allows for the assessment of how the 

Bayesian coefficient alpha responds to deviations from normality and draws parity with past 

research. The distribution types for items with two and five categories are presented in Figure 2. 

Sample Size (n) 

 The following sample sizes were investigated: 50,n =  100, 150, 200, 250, 300. This 

selection is in line with most recent research on coefficient alpha (Duhachek & Lacobucci, 2004; 

Maydeu-Olivares et al., 2007; Padilla et al., 2012; Padilla & Zhang, 2011). The sample size 

selections above 200 are beyond the point of diminishing returns for coefficient alpha but were 

investigated as they are typically found in psychological/behavioral research. 

Analysis 

 To evaluate the performance of the CIs/CrIs, coverage probability was used. Coverage 

probability is defined as the proportion of estimated CIs/CrIs that contain the true population 

coefficient alpha. Coverage probability was assessed using Bradley’s (1978) liberal criterion 

defined by 

 *1 1.5 1 1 0.5α α α− ≤ − ≤ − ,  (83) 



48 
 

where *α  is the true type I error probability. Here, the ( )100 1 %α−  CIs/CrIs was estimated 

with .05α = . Therefore, acceptable coverage probability is given by [ ].925, .975 .  

 For the benefit of prospective researchers, the implementation and interpretations of these 

coefficient alpha CIs/CrIs will be outlined with an example after the results of the simulation. 
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Figure 2 

Bar Graphs of Dichotomous and 5-point Likert Items Utilized in Simulation 
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RESULTS 

 The simulated data was generated and analyzed using the R statistical package 4.2.2. The 

5 (correlation type) ×  4 (number of items) ×  4 (number of item response categories) ×  3 

(distribution type) ×  6 (sample size) simulation design resulted in 1,440 simulated conditions for 

coefficient alpha and its corresponding CIs/CrIs (i.e., Balpha 1 percentile, Balpha 1 NT, Balpha 

2 percentile, Balpha 2 NT, balpha 2 HPD, PB, and BCa). There were 1,000 replications for each 

simulation condition. The Bayesian CrIs and bootstrap CIs used 2,000 posterior draws and 

bootstrap samples, respectively. Coverage probability performance for the CIs/CrIs was assessed 

using Bradley’s (2015) liberal criterion (i.e., [ ].925, .975 ). The forthcoming sections discuss the 

results for each simulation main effects and pairwise simulation conditions and are presented in 

figures 3 10− . 

Coverage Probability 

The results for the simulation main effects for all CI/CrI methods investigated are first 

discussed and presented in Figure 3. The results for the pairwise simulations conditions are then 

discussed individually for each CI/CrI method investigated and presented in Figures 4 10− . 

Simulation Main Effects 

Coverage for Correlation Type. In general, the CIs/CrIs tended to have acceptable 

coverage across the correlation types; see Figure 3. However, performance varied slightly among 

the CIs/CrIs in this condition. The BCa and PB CIs had stable performance across the correlation 

types, but the BCa tended to be closer to the target of .95. Even so, the BCa and PB CIs tended to 

be slightly below .95. In general, the Balpha 1 percentile and Balpha 1 NT CrIs tended to be 

slightly above .95. However, for the parallel model with a factor loading of 0.705, the Balpha 1 

percentile CrI tended to be slightly below .95 whereas the Balpha 1 NT CrI tended to be on 
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target. The Balpha 2 percentile, Balpha 2 NT, and Balpha 2 HPD CrIs performed similarly to one 

another with estimates near the target of .95 except in the parallel model case where the factor 

loading was 0.705. Here, each CrI tended to be slightly below .95, and the Balpha 2 HPD did not 

have acceptable coverage. Lastly, the bootstrap CIs were less variable than the Bayesian CrIs. 

Coverage for Number of Items. In general, all CIs/CrIs tended to have acceptable 

coverage across the number of items. However, performance was not equal among the CIs/CrIs 

in this condition. The BCa CI had stable performance across all numbers of items. The PB CI 

tended to be slightly below .95 as number of items increased. Even so, the BCA and PB CIs 

tended to be slightly below .95. The Balpha 1 percentile and Balpha 1 NT CrIs also tended to be 

slightly above .95 as number of items increased. Here, the deviation from .95 was more than the 

PB CI. The Balpha 2 percentile, Balpha 2 NT, and Balpha 2 HPD CrIs tended to have better and 

more stable performance (i.e., closer to the target .95) as number of items increased. Lastly, the 

bootstrap CIs were less variable than the Bayesian CrIs. 

Coverage for Number of Item Response Categories. In general, the CIs/CrIs tended to 

have acceptable coverage across the number of item response categories. However, performance 

was not equal among the CIs/CrIs in this condition. The BCa and PB CIs had stable performance 

across the number of item response categories, but the BCa tended to be closer to the .95 target. 

Even so, the BCA and PB CIs tended to be slightly below .95. All Bayesian CrIs tended to not 

have acceptable coverage when there were 2 item response categories. However, if there were at 

least 3 item response categories, all Bayesian CrIs tended to have acceptable and stable coverage. 

In these cases, the Balpha 1 percentile and Balpha 1 NT CrIs tended to be slightly above .95 and 

the Balpha 2 percentile, Balpha 2 NT, and Balpha 2 HPD CrIs tended to be slightly below .95. 
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Lastly, the bootstrap CIs and Bayesian CrIs had similar variability. The exception here is the 

Bayesian CrIs with 2 item responses categories had more variability than all other CIs/CrIs. 

Coverage for Distribution Type. In general, the CIs/CrIs tended to have acceptable 

coverage across the distribution types. However, performance varied slightly among the CIs/CrIs 

in this condition. The BCa and PB CIs had stable performance across the number of item 

response categories, but the BCa tended to be closer to the target of .95. Even so, the BCA and 

PB CIs tended to be slightly below .95. The Balpha 1 percentile and Balpha 1 NT CrIs had 

performance similar to one another in that they tended to be slightly above .95 with distribution 

type 1 but were closer to the target with distribution types 2 and 3. The Balpha 2 percentile, 

Balpha 2 NT, and Balpha 2 HPD CrIs had performance similar to another. These tended to be 

slightly above .95 with distribution type 1 and slightly below .95 with distribution types 2 and 3. 

There was a larger amount of variability with distribution type 2 and the Balpha 2 HPD CrI did 

not have acceptable coverage in this case. Lastly, the bootstrap CIs and Bayesian CrIs had 

similar variability. The exception here is the Bayesian CrIs with distribution type 2 had more 

variability than all other CIs/CrIs. 

Coverage for Sample Size. In general, the CIs/CrIs tended to have acceptable coverage 

across the sample sizes. However, performance was not equal among the CIs/CrIs in this 

condition. The BCa and PB CIs tended to be slightly below .95 and did not have acceptable 

coverage when sample size was 50. However, they had acceptable coverage when sample size 

was at least 100. The Balpha 1 percentile and Balpha 1 NT CrIs tended to be slightly above .95 

and did not have acceptable coverage when sample size was 50. However, they had acceptable 

coverage when sample size was at least 100. The Balpha 2 percentile, Balpha 2 NT, and Balpha 
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2 HPD CrIs had acceptable coverage across sample sizes but tended to be slightly below .95 as 

sample size increased. Lastly, the bootstrap CIs were less variable than the Bayesian CrIs. 

Pairwise Simulation Effects for Each CI 

PB CI. Figure 4 shows the coverage probability performance for the PB CI for all 

pairwise simulation conditions. In general, this method had acceptable coverage across the 

simulation condition combinations but there were some instances of unacceptable performance 

that stand out. Most noticeably, simulation condition combinations that involved sample size had 

unacceptable coverage when sample size was 50. With greater sample sizes this method tends to 

stabilize around the target coverage of .95 for all simulation condition combinations. 

Additionally, there was some instances of unacceptable coverage with distribution type 2. These 

occurred when distribution type 2 was with 2 item response categories or a congenic model with 

factor loadings of 0.3 0.7− . 

BCa CI. Figure 5 shows the coverage probability performance for the BCa CI for all 

pairwise simulation conditions. In general, this method had acceptable coverage across the 

simulation condition combinations but there were some instances of unacceptable performance 

that stand out. Most noticeably, many simulation condition combinations that involved sample 

size had unacceptable coverage when sample size was 50. The exceptions where with a parallel 

model with a factor loading of 0.705 or with distribution types 1. With greater sample sizes this 

method tends to stabilize around the target coverage of .95 for all simulation condition 

combinations; with less variability than the PB CI. 

Balpha 1 Percentile CrI. Figure 6 shows the coverage probability performance for the 

Balpha 1 percentile CrI for all pairwise simulation conditions. In general, this method had 

acceptable coverage across the simulation condition combinations but there were two main 
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simulation conditions that had instances of unacceptable performance that stand out. First, many 

simulation condition combinations that involved 2 item response categories had unacceptable 

coverage. Exceptions to this was when there was a congeneric model with a factor loading of 

0.2 0.6−  or distribution types 1 and 3. Second, a sample size of 50 had several simulation 

condition combinations that had unacceptable coverage. Specifically, for a sample size of 50, 

there was unacceptable coverage when there were 20 items, for distribution type 1, for 

congeneric models that had factor loadings 0.2 0.6−  and 0.3 0.7− , and a parallel model that had 

a factor loading of 0.55. Additionally, there was unacceptable coverage for a parallel model with 

a factor loading of 0.705 with distribution types 1 and 2. 

Balpha 1 NT CrI. Figure 7 shows the coverage probability performance for the Balpha 1 

NT CrI for all pairwise simulation conditions. In general, this method had acceptable coverage 

across the simulation condition combinations but there were two main simulation conditions that 

had instances of unacceptable performance that stand out. First, many simulation conditions that 

involved 2 item response categories had unacceptable coverage. Exceptions to this were when 

there were 15 items, sample size was 100, when there was a there was a congeneric model with a 

factor loading 0.2 0.6− , or distribution types 1 and 3. Second, a sample size of 50 had several 

combinations of simulation conditions with unacceptable coverage. Specifically, when there was 

more than 10 items, for all levels of correlation type, or for all levels of distribution type. 

Additionally, there was unacceptable coverage when there were 20 items combined with a 

congeneric model with a factor loading of 0.3 0.7− . 

Balpha 2 Percentile CrI. Figure 8 shows the coverage probability performance for the 

Balpha 2 percentile CrI for all pairwise simulation conditions. In general, this method had 

acceptable coverage across the simulation condition combinations but there were two main 
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simulation conditions that had instances of unacceptable performance that stand out. First, many 

simulation conditions that involved 2 item response categories had unacceptable coverage. 

Exceptions to this were a congeneric model with a factor loading of 0.2 0.6− , distribution types 

1 and 3, or sample size of 50. Second, there were also some instances of unacceptable coverage 

for simulation condition combinations that involved correlation type when there was a parallel 

model with a factor loading of 0.705. This includes instances when there were less than 15 items, 

distribution types 2 and 3, or when sample size was 250. Additionally, there were some instances 

of unacceptable coverage for distribution type 2 when sample size was 100, 250 or 300. 

Balpha 2 NT CrI. Figure 9 shows the coverage probability performance for the Balpha 2 

NT CrI for all pairwise simulation conditions. In general, this method had acceptable coverage 

across the simulation condition combinations but there were two main simulation conditions that 

had instances of unacceptable performance that stand out. First, many simulation condition 

combinations that involved 2 item response categories had unacceptable coverage. Exceptions to 

this were when there was a congeneric model with a factor loading of 0.2 0.6−  or distribution 

types 1 and 3. Second, distribution type also had several combinations of simulation conditions 

with unacceptable coverage. For distribution type 2, there was unacceptable coverage when there 

were 10 items, a congeneric model with factor loadings 0.4 0.8− , a parallel model with a factor 

loading of 0.705, or sample sizes 100 and 300. For distribution type 3, there was unacceptable 

coverage for a parallel model with a factor loading of 0.705. Additionally, a parallel model with 

a factor loading of 0.705 did not have acceptable coverage when there was 10 items or sample 

size was greater than 200. 

Balpha 2 HPD CrI. Figure 10 shows the coverage probability performance for the 

Balpha 2 HPD CrI for all pairwise simulation conditions. In general, this method had acceptable 
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coverage across the simulation condition combinations but there were three main simulation 

conditions that had instances of unacceptable performance that stand out. First, many simulation 

condition combinations that involved 2 item response categories had unacceptable coverage. 

Exceptions to this occurred with distribution types 1 and 3. Second, distribution type also had 

several simulation conditions combinations with unacceptable coverage. For distribution type 2, 

there was unacceptable coverage if there were more than 5 items, a congeneric model with factor 

loading 0.4 0.8− , parallel models with factor loadings of 0.55 and 0.705, or sample sizes larger 

than 50. Additionally, for distribution type 3, there was unacceptable coverage for a parallel 

model with factor loading of 0.705. Lastly, the parallel model with a factor loading of 0.705 also 

did not have acceptable coverage when there were 20 items, there were 5-item response 

categories, or sample size was greater than 100. 

Summary 

  From the bootstrap methods, the BCa and PB CIs were generally robust to the conditions 

of the simulation except for conditions that involved a sample size of 50. In such cases, these CIs 

tended to have unacceptable coverage that trended slightly below .95. However, these CIs tended 

to recover and approach the target when sample size was at least 100. The BCa CI tended to 

outperform the PB CI by being closer to the target and by having less variability to certain 

conditions. Notably, the PB CI was observed to have a sensitivity to distribution type 2 by not 

having acceptable coverage when there were 2 item response categories. 

 The Balpha 1 percentile and Balpha 1 NT CrIs were generally robust to the conditions of 

the simulation with certain exceptions. Notably, these CrIs had a sensitivity to conditions that 

involved having 2 item response categories and tended to not have acceptable coverage and/or 

more variability in such cases. Additionally, these CrIs were sensitive to conditions that involved 
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a sample size of 50. At a sample size of 50 and across all the number of item response categories, 

the Balpha 1 percentile and Balpa 1 NT CrIs tended to have unacceptable coverage that trended 

slightly above .95. The effect a sample size of 50 had was also seen across all distribution types, 

with distribution type 2 showing the most variability. The sensitivity to distribution type 2 for 

these CrIs can also be seen by some lack of acceptable coverage with condition combinations 

with the parallel model case where the factor loading was 0.705 and cases with 2 item response 

categories. 

 Like the Balpha 1 percentile and Balpha 1 NT CrIs, the Balpha 2 percentile, Balpha 2 NT, 

and Balpha 2 HPD CrIs were generally robust to the conditions of the simulation with certain 

exceptions. Additionally, like the Balpha 1 CrIs, the Balpha 2 CrIs were also sensitive to 

conditions that involved having 2 item response categories by tending to not have acceptable 

coverage and/or more variability in such cases. The Balpha 2 CrIs do not share a sensitivity to 

sample size but were generally more sensitive to condition combinations that involve a parallel 

model where the factor loading was 0.705. This sensitivity resulted in a lack of acceptable 

coverage and/or more variability. There also appears to be a greater sensitivity to distribution 

type 2 that also resulted in a lack of acceptable coverage and/or greater variability when 

combined with number of items. The Balpha 2 percentile and Balpha 2 NT CrIs tended to 

perform similarly to each other, but the Balpha 2 HPD CrI tended to have less instances of 

acceptable coverage. 

  To further summarize, all CIs/CrIs investigated tended to have acceptable coverage to 

the simulation conditions. However, there are certain nuances to each method. The bootstrap CIs 

are most sensitive to conditions with a sample size of 50. The Balpha 1 and Balpha 1 NT CrIs are 

most sensitive to conditions with 2 item response categories and/or sample size of 50. The 
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Balpha 2, Balpha 2 NT, and Balpha 2 HPD CrIs are most sensitive to conditions with 2 item 

response categories, a parallel model with a factor loading of 0.705, and/or distribution type 2.  
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Figure 3 

Distribution of the 95% Confidence/Credible Intervals for All Simulation Main Effects 

 

Note. Balpha 1 percentile (ba_1), balpha 1 normal theory (ba_1_nt), balpha 2 percentile (ba_2), 

balpha 2 highest probability density (ba_2_hpd), balpha 2 normal theory (ba_2_nt), 

bias-corrected and accelerated (bt_bca), percentile bootstrap (bt_pb); Bootstrap methods (bt_bca 

and bt_pb) based on 2,000 bootstrap samples; Bayesian methods based on 2,000 posterior draws; 

Dashed line at .95 and solid lines at acceptable coverage of [.925, .975].  
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Figure 4 

Percentile Bootstrap 95% Confidence Interval Coverage for all Pairwise Simulation Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Percentile bootstrap confidence interval based on 2,000 

bootstrap samples; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975]. 
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Figure 5 

Bias-Corrected and Accelerated 95% Confidence Interval Coverage for All Pairwise Simulation 

Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Bias-corrected and accelerated confidence interval based on 

2,000 bootstrap samples; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975]. 
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Figure 6 

Balpha 1 Percentile 95% Credible Interval Coverage for All Pairwise Simulation Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Balpha 1 percentile credible interval based on 2,000 

posterior draws; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975].  
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Figure 7 

Balpha 1 Normal Theory 95% Credible Interval Coverage for All Pairwise Simulation 

Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Balpha 1 normal theory credible interval based on 2,000 

posterior draws; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975].  
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Figure 8 

Balpha 2 Percentile 95% Credible Interval Coverage for all Pairwise Simulation Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Balpha 2 percentile credible interval based on 2,000 

posterior draws; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975].  
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Figure 9 

Balpha 2 Normal Theory 95% Credible Interval Coverage for All Pairwise Simulation 

Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Balpha 2 normal theory credible interval based on 2,000 

posterior draws; Dashed line at .95 and solid lines at acceptable coverage of [.925, .975].  
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Figure 10 

Balpha 2 Highest Probability Density 95% Credible Interval Coverage for All Pairwise 

Simulation Conditions 

 

Note. Distributions with 2 categories: type 1 (skewness = 1, kurtosis = -2), type 2 (skewness =     

-1.70, kurtosis = 0.88), type 3 (skewness = 0.41, kurtosis = -1.83); Distributions with > 2 

categories: type 1 (skewness = 0, kurtosis = 0), type 2 (skewness = 0, kurtosis = 0.88), type 3 

(skewness = 0.97, kurtosis = -0.20); Balpha 2 highest probability density credible interval based 

on 2,000 posterior draws; Dashed line at .95 and solid lines at acceptable coverage of 

[.925, .975].  
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Application Example 

The coefficient alpha CIs/CrIs investigated in the simulation were also applied to 

unpublished real data. This data consists of responses to the Short Form Big Five Inventory-2 

(BFI-2-S), which consists of 30 5-point Likert-scale items and was completed by 222 

respondents. The BFI-2-S is a self-report measurement instruments used to assess a respondent’s 

measurement on the constructs of 1) agreeableness, 2) open mindedness, 3) conscientiousness, 4) 

negative emotionality, and 5) extraversion (Soto & John, 2017).  

For demonstration purposes, the coefficient alpha CIs/CrIs were applied to the 

extraversion sub-measure of the BFI-2-S. This sub-measure consists of items 1, 6, 11, 16, 21, 

and 26 from the BFI-2-S. A CFA was performed to investigate the unidimensionality of 

extraversion. Due to convergence issues, item 16 was dropped from the CFA and the subsequent 

coefficient alpha CI/CrI estimations. The results of this CFA can be found in Tables 3 and 4. The 

bootstrap CIs involved generating the bootstrap distribution (ESD) with corresponding CIs and 

were based on 2,000 bootstrap samples. The Bayesian CrIs involved generating the posterior 

distribution with corresponding CrIs and were based on 2,000 posterior draws with a 

non-informative prior. The results of the 95% coefficient alpha CI/CrIs are summarized in Table 

5 and described below. 

For the extraversion sub-measure, the estimated coefficient alpha was .52, the average 

bootstrap coefficient alpha was .51, the average Balpha 1 estimate was .52, and the average 

Balpha 2 estimate was .52. In terms of interval width, the bootstrap methods had smaller widths 

compared to the Bayesian methods; with the PB having the smallest width (at four decimal 

places). Among the Bayesian methods, the Balpha 2 methods had smaller widths than the Balpha 

1 methods; with the HPD having the smallest width (at three decimal places). 
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It is important to note the differences in interpretation between the bootstrap CIs and 

Bayesian CrIs. For example, using the PB method, the interpretation is that for all CIs created in 

the same way, we can be 95% confident that the true parameter of coefficient alpha for the 

measurement instrument is within [ ]0.42, 0.60 . In contrast, using the Balpha 2 percentile method, 

the interpretation is that there is 95% probability that the true parameter of coefficient alpha for 

the measurement instrument is within [ ]0.42, 0.62 . 

 

 

Table 3 
 
CFA Standardized Loadings for Extraversion of the Short Form Big Five Inventory-2 

Extraversion 
Item Estimate 

1 
6 
11 
21 
26 

0.38** 
0.24** 
0.20** 
0.55** 
0.67** 

Note. Model: χ2 (5, N=222) = 96.98. Null: χ2 (10, N=222) = 159.65. ** indicates p < .05. ML 

estimation. Item 16 not included due to convergence issues. 

 

 

Table 4 
 
Model Fit Indices of CFA for Extraversion of the Short Form Big Five Inventory-2 

χ2 df p CFI TLI SRMR  RMSEA 
96.98 5 0.00 0.39 -0.23 0.14 0.29 

Note. Null Model: χ2 (10, N=222) = 159.65. ML estimation. Values in bold did not meet the 

liberal criteria. 
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Table 5 
 
95% Coefficient Alpha Confidence/Credible Intervals for the Extraversion Sub-Measure of the 

Short Form Big Five Inventory-2 

Method Estimate Lower Upper Width 
Percentile Bootstrap 
Bias-Corrected Accelerated 
Balpha 1 Percentile 
Balpha 1 Normal Theory 
Balpha 2 Percentile 
Balpha 2 Normal Theory 
Balpha 2 High Probability Density 

.52 

.52 

.52 

.52 

.52 

.52 

.52 

.42 

.42 

.41 

.41 

.42 

.42 

.42 

.60 

.60 

.61 

.62 

.62 

.62 

.62 

.18 

.18 

.20 

.21 

.20 

.20 

.20 
Note. Bootstrap methods (Percentile Bootstrap and Bias-Corrected Accelerated) based on 2,000 

bootstrap samples; Bayesian methods based on 2,000 posterior draws. 
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DISCUSSION 

 Measurement is a fundamental component of the behavioral/social sciences that has 

plenty of nuance making it difficult to implement. This difficulty stems from the 

behavioral/social sciences typically focusing on constructs that must be indirectly measured. 

Measuring these constructs is usually done through a measurement instrument that records 

behaviors and/or responses that are manifestations of the construct of interest. The indirect nature 

of these measurement instruments leads to measurement error, which is reflected in the 

instrument psychometric properties of reliability and validity. While both psychometric 

properties are important to a measurement instrument, the focus of this paper is reliability. The 

aspects and current development of reliability were outlined in this paper with a focus on the 

most popular form of reliability, coefficient alpha. 

 Coefficient alpha has seen the most development as a reliability statistic due to its 

popularity. Coefficient alpha’s popularity stems from its computational ease as it requires only 

one measurement instrument administration and the instrument’s item covariance matrix. 

However, it should be noted that coefficient alpha is only equal to reliability if the items of the 

measurement instrument are at least (essentially) tau-equivalent (i.e., have a compound 

symmetric item covariance matrix). If this is not the case, coefficient alpha is a lower bound to 

reliability. Even so, coefficient alpha has developed to the point where its distribution is 

understood enough to allow for the estimation of frequentist CIs and Bayesian CrIs.  

An early Bayesian coefficient alpha (Balpha 1) was proposed by Padilla and Zhang 

(2011). Balpha 1 indirectly generates the posterior for coefficient alpha via the posterior for the 

item covariance matrix. Therefore, Balpha 1 uses a prior for the item covariance matrix. If a 

prior is not needed and/or available, then a non-informative prior is easy to obtain for the item 
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covariance matrix. Unfortunately, the item covariance matrix for a measurement instrument is 

typically not reported in the literature, so Balpha 1 is difficult to implement in practice if a prior 

is needed. To reiterate, Balpha 1 requires a prior for the item covariance matrix as opposed to a 

prior for coefficient alpha.  

Building on Balpha 1, a new derivation of Bayesian coefficient alpha (Balpha 2) was 

proposed in this paper. Unlike Balpha 1, Balpha 2 is based on coefficient alpha having a 

posterior normal distribution based on a posterior mean ( )cα  and variance ( )2
ασ  with each 

having a corresponding prior. Coefficient alpha is readily reported in the literature, so using a 

reported coefficient alpha as a prior is straightforward. However, variance for coefficient alpha is 

not reported in the literature. Fortunately, item variances are usually reported and a method for 

using item variances was presented. The method essentially averages the item variances to a 

common variance, which can then be used to get a prior for the coefficient alpha variance. From 

here, interest is in how Balpha 2 performs. 

A Monte Carlo simulation was used to assess the performance of Balpha 2 compared to 

Balpha 1 and bootstrap coefficient alpha via CIs/CrIs. Data were generated with the following 

conditions: correlation type, number of items (k), number of item response categories (IRC), 

distribution type, and sample size (n). The bootstrap CIs were estimated with PB and BCA 

methods, the Balpha 1 CrIs were estimated with percentile and NT methods, and the Balpha 2 

CrIs were estimated using percentile, NT, and HPD methods. Coverage probability performance 

was assessed for each CI/CrI. 

The bootstrap CIs (PB and BCA) were generally robust to conditions of the simulation 

but were negatively impacted by certain conditions. Most notably, the bootstrap CIs tended to 

have unacceptable coverage probability in conditions with the smallest sample size investigated 
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( 50n = ). However, as sample size increased, the bootstrap CIs tended to stabilize toward 

acceptable coverage. The PB CI was noted to not have acceptable coverage when there were 2 

item response categories with distribution type 2. The type 2 distribution with 2 item response 

categories had the highest skew where one response category had a much lower response. 

Although the BCA CI was also negatively impacted by the type 2 distribution with 2 item 

response categories, it still maintained acceptable coverage. If there were more than 2 item 

response categories ( 2IRC > ) with distribution type 2, both the PB and BCA CIs had adequate 

coverage. 

The Balpha 1 CrIs (percentile and NT) were generally robust to the conditions of the 

simulation but were negatively impacted by certain conditions. Most notably, the Balpha 1 CrIs 

tended to have unacceptable coverage probability in conditions that involved having 2 item 

response categories. There were also instances of unacceptable coverage in condition 

combinations with the smallest sample size investigated ( 50n = ), more than 10 items ( )10k > , 

and distribution type 2. Although these conditions affected both the Balpha 1 percentile and 

Balpha 1 NT methods, the Balpha 1 NT tended to have better coverage than the Balpha 1 

percentile. 

The Balpha 2 CrIs (percentile, NT, and HPD) were generally robust to the conditions of 

the simulation but were negatively impacted by certain conditions. As with balpha 1, balpha 2 

also tended to have unacceptable coverage probability in conditions that involved having 2 item 

response categories. There were also instances of unacceptable coverage with conditions using a 

parallel model with a factor loading of 0.705 or distribution type 2. The difference in sensitivities 

to certain conditions between Balpha 1 and Balpha 2 may be due to the number parameters used 

to generate the posterior for each method. Balpha 1 indirectly generates the posterior for 
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coefficient alpha via the posterior for the item covariance matrix. Balpha 2 directly generates the 

coefficient alpha posterior with a posterior mean and variance as reflected by the posterior 

coefficient alpha ( )cα  and corresponding variance ( )2
ασ , respectively. It appears that directly 

generating the posterior distribution with a mean to center it and a variance to stabilize it gives 

Balpha 2 an advantage. This is reflected in that the Balpha 2 CrIs tended to behave better than 

their Balpha 1 equivalents with coverage probability that tended to be closer and tighter around 

the target of .95. These conditions affect all the Balpha 2 CrIs. However, the Balpha 2 percentile 

and NT perform similarly to one another and had better coverage than the Balpha 2 HPD. 

The CI/CrIs were impacted by different conditions. The bootstrap CIs were impacted 

primarily by sample size as they required a sample size of 100 or more to have acceptable 

coverage probability. This is not surprising as the bootstrap is a large sample nonparametric 

method, and estimation of a correlation matrix requires a healthy sample size (Raykov, 1998). 

On the other hand, the Bayesian CrIs were mainly impacted by item response categories, 

distribution type, and correlation type. Specifically, the CrIs were impacted by items with 2 

items response categories, came from distribution type 2, and came from a parallel model with a 

factor loading of 0.705. A common feature of these conditions is that they have some form of 

range restriction, and range restrictions attenuate variability. First, the Balpha CrIs are based on 

making direct draws from a normal posterior distribution. However, items with 2 item response 

categories cannot achieve normality and are at odds with the draws from the normal posterior 

distribution. This is because items with 2 item response categories effectively have range 

restrictions that cannot accurately reflect the variability in the normal distribution. Second, items 

with skewed distributions tend to have range restrictions because of floor/ceiling effects. This 

can clearly be seen for the items with skewness greater or equal to 0.97 in Figure 2. Lastly, a 



74 
 

parallel model with a factor loading of 0.705 had a corresponding compound symmetric item 

correlation structure with .56ρ =  that created the strongest coefficient alphas with an average 

coefficient alpha of 0.88 (see table 2). This created a range restriction at the upper limit of 1 for 

coefficient alpha. Any one of these conditions negatively impacted the CrIs, but any combination 

of them exacerbated the impact. Again, range restrictions attenuate variance and accurate 

variance is required to have accurate CrIs. 

For applications purposes, the BCA CI and Balpha 2 percentile/NT are recommended 

depending on the conditions at play for coefficient alpha. The BCA CI is recommended if the 

sample size is large enough ( )100n ≥  and a Bayesian prior is not necessary and/or available. On 

the other hand, the Balpha 2 percentile/NT CrIs are suggested if the sample size is small 

( )100n < , there are more than 2 item response categories, and a Bayesian prior is not necessary 

and/or available. Note that in situations where a prior is not necessary and/or available, Bayesian 

CrIs with non-informative priors achieve the same conclusions as their frequentist counterparts. 

Additionally, Bayesian CrIs always maintain their interpretation regardless of having informative 

or non-informative priors. However, if a Bayesian prior is necessary and/or available, then the 

Balpha 2 percentile/NT CrIs are recommended. It should be noted that the recommendations 

presented here are based and limited to the conditions investigated in the simulation. Even so, the 

breadth of conditions investigated cover a widespread number of general situations relevant to 

applied settings. 

There are several possibilities to expand on the findings presented in this paper. The HPD 

method for interval estimation was introduced and applied to Balpha 2. Further insight into the 

performance of the HPD for other estimation methods of coefficient alpha was not investigated 

here as the focus of the paper was the development Balpha 2. Although the HPD did not perform 
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as well as the Balpha 2 percentile and NT CrIs, it would be pertinent to explore how the HPD 

performs for Balpha 1 or the bootstrap coefficient alpha. For further parity among the estimation 

methods, it would be worth exploring how a NT bootstrap CI of coefficient alpha performs 

compared to these other methods. Additionally, given that some CI/CrIs methods were impacted 

by sample size, it would be of interest to explore sample size sensitivity. For the Bootstrap CIs, 

this means exploring at what sample size acceptable coverage is achieved and at what sample 

size acceptable coverage is maximized or reaches a point of diminishing returns. For the CrIs, 

this means exploring how small the sample size can be and still maintain acceptable coverage. 

The CrIs were impacted by items with 2 item response categories. In this situation, it may be 

fruitful to explore a Gibbs sampler when making posterior draws (Hoff, 2009). Unlike the 

MCMC method used here that directly makes draws for a normal posterior, an advantage of the 

Gibbs sampler is that it cycles through the data at each draw (i.e., iteration). This cycling through 

the data allows the data to have more of an impact on the posterior, which in turn can help 

improve the situation with items with 2 response categories. Incidentally, cycling through the 

data at each draw may also help with skewed items (i.e., non-normality). Finally, another 

suggestion would be to explore the performance of the CIs/CrIs for the difference between 

coefficient alphas (i.e., 1 2c cα α− ). This is because there may be situations in which researchers 

would like to compare coefficient alphas between groups like males vs. females, treatment vs. no 

treatment, etc. 

 

 

 

  



76 
 

REFERENCES 

 

Aiken, L. S., West, S. G., & Millsap, R. E. (2008). Doctoral training in statistics, measurement, 

and methodology in psychology: Replication and extension of Aiken, West, Sechrest, and 

Reno's (1990) survey of PhD programs in North America. American Psychologist, 63(1), 

32-50. doi: 10.1037/0003-066X.63.1.32 

APA. (2020a). Graduate study in psychology. Retrieved from https://gradstudy.apa.org/ 

APA. (2020b). Quantitative and qualitative programs in the United States of America or Canada. 

Retrieved from https://www.apadivisions.org/division-5/resources/doctoral 

Barchard, K. A., & Hakstian, A. R. (1997). The robustness of confidence intervals for coefficient 

alpha under violation of the assumption of essential parallelism. Multivariate Behavioral 

Research, 32(2), 169-191. doi:10.1207/s15327906mbr3202_4 

Beaulieu-Prevost, D. (2006). Confidence intervals: From tests of statistical significance to 

confidence itnervals, range hypotheses, and substantial effects. Tutorials in Quantitativve 

Methods for Psychology, 2(1), 11-19. doi:10.20982/tqmp.02.1.p011 

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. J., Berk, R., . . . 

Johnson, V. E. (2017). Redefine statistical significance. Nature Human Behavior. 

doi:10.1038/s41562-017-0189-z 

Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. 

Journal of Educational and Behavioral Statistics, 27(4), 335-340. 

doi:10.3102/10769986027004335 

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 

31(2), 144-152. doi:10.1111/j.2044-8317.1978.tb00581.x 



77 
 

Cho, E. (2016). Making reliability reliable: A systematic approach to reliability coefficients. 

Organizational Research Methods, 19(4), 651-682. doi:10.1177/1094428116656239 

Cohen, R. J. (2010). Psychological testing and assessment: An introduction to tests and 

measurement (7th ed.). Boston: McGraw-Hill Higher Education. 

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 

297-334. doi:10.1007/BF02310555 

Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H., & Covi, L. (1974). The Hopkins 

symptom checklist (HSCL): A self-report symptom inventory. Behavioral Science, 19(1), 

1-15. doi:10.1002/bs.3830190102 

DeVellis, R. F. (2017). Scale development : theory and applications (Fourth edition. ed.). Los 

Angeles: SAGE. 

Duhachek, A., & Lacobucci, D. (2004). Alpha's standard error (ASE): an accurate and precise 

confidence interval estimate. The Journal of Applied Psychology, 89(5). 

doi:10.1037/0021-9010.89.5.792 

Feldt, L. S. (1965). The approximate sampling distribution of Kuder-Richardson reliability 

coefficient twenty. Psychometrika, 30(3), 357-370. doi:10.1007/BF02289499 

Fisher, R. A. (1950). Statistical methods for research workers (11th ed.). Edinburgh,: Oliver and 

Boyd. 

Furr, R. M., & Bacharach, V. R. (2014). Psychometrics : an introduction (Second edition. ed.). 

Los Angeles: SAGE. 

Graham, M. J. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability. 

Educational and Psychological Measurement, 66(6), 930-944. 

doi:10.1177/0013164406288165 



78 
 

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 255–282 

doi:https://doi.org/10.1007/BF02288892 

Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha 

coefficients. Psychometrika, 41, 219-231. doi:10.1007/BF02291840 

Hoff, P. D. (2009). A first course in Bayesian statistical methods. London ; New York: Springer. 

Hogg, R. V., Tanis, E. A., & Zimmerman, D. L. (2015). Probability and statistical inference 

(Ninth edition. ed.). Boston: Pearson. 

Koning, A. J., & Franses, P. H. (2003). Confidence intervals for comparing Cronbach's 

coefficient alpha values. Erasmus University and the Erasmus School of Economics 

(ESE) at Erasmus University Rotterdam.: Erasmus Research Institute of Management. 

Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. 

Psychometrika, 2, 151-160. doi:https://doi.org/10.1007/BF02288391 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, Mass.,: 

Addison-Wesley Pub. Co. 

Maydeu-Olivares, A., Coffman, D. L., & Hartmann, W. M. (2007). Asymptotically distribution-

free (ADF) interval estimation of coefficient alpha. Psychological Methods, 12(2), 157-

176. doi:10.1037/1082-989X.12.2.157 

McDonald, R. P. (1970). The theoretical foundations of principal components factor analysis, 

canoncical factor analysis, and alpha factor analysis. British Journal of Mathematical and 

Statistical Psychology, 23(1), 1-21. doi:https://doi.org/10.1111/j.2044-

8317.1970.tb00432.x 



79 
 

Padilla, M. A., Divers, J., & Newton, M. (2012). Coefficient alpha bootstrap confidence interval 

under nonnormality. Applied Psychological Measurement, 36(5), 331-348. 

doi:10.1177/0146621612445470 

Padilla, M. A., & Zhang, G. (2011). Estimating internal consistency using Bayesian methods. 

Journal of Modern Applied Statistical Methods, 10(1), 277-286. 

doi:10.22237/jmasm/1304223840 

Raykov, T. (1997). Estimation of composite for congeneric measures. Applied Psychological 

Measurement, 21(2), 173-184. doi:10.1177/01466216970212006 

Raykov, T. (1998). A method for obtaining standard errors and confidence intervals of composite 

reliability for congeneric items. Applied Psychological Measurement, 22(4), 369-374. 

doi:10.1177/014662169802200406 

Raykov, T., & Marcoulides, G. A. (2011). Introduction to Psychometric Theory: Routledge. 

Revelle, W. (2022). Psych: procedures for psychological, psychometric, and personality research. 

Northwestern University, Evanston, Illinois. R package version 2.2.5, https://CRAN.R-

project.org/package=psych. 

Romano, J. L., Kromrey, J. D., & Hibbard, S. T. (2010). A Monte Carlo study of eight 

confidence interval methods for coefficient alpha. Educational and Psychological 

Measurement, 70(3), 376-393. doi:10.1177/0013164409355690 

Rulon, P. J. (1939). A simplified procedure for determining the reliability of a test by split-halves. 

Harvard Educational Review, 9, 99-103.  

Sijtsma, K. (2009). On the use, misuse, and the very limited usefulness of Cronbach's Alpha. 

Psychometrika, 74(1), 107-120. doi:10.1007/s11336-008-9101-0 



80 
 

Soto, C. J., & John, O. P. (2017). Short and extra-short forms of the Big Five Inventory–2: The 

BFI-2-S and BFI-2-XS. Journal of Research in Personality, 68, 69-81. 

doi:10.1016/j.jrp.2017.02.004 

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3, 

271–295.  

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of 

Education, 2, 53-55. doi:10.5116/ijme.4dfb.8dfd  

van Zyl, J. M., Neudecker, H., & Nel, D. G. (2000). On the distribution of the maximum 

likelihood estimator of Cronbach's alpha. Psychometrika, 65(3), 271-280. 

doi:10.1007/bf02296146 

Walker, D. A. (2006). A comparison of the Spearman-Brown and Flanagan-Rulon formulas for 

split half reliability under various variance parameter conditions. Journal of Modern 

Applied Statistical Methods, 5(2), 443-451. doi:10.22237/jmasm/1162354620 

Wilkenson, L. (1999). Statistical methods in psychology journals. American Psychologist, 54(8), 

594-604. doi:10.1037/0003-066X.54.8.594 

Woodhouse, B., & Jackson, P. H. (1977). Lower bounds for the reliability of the total score on a 

test composed of non-homogeneous items: II: A search procedure to locate the greatest 

lower bound. Psychometrika, 42(4), 343–357. doi:https://doi.org/10.1007/BF02295980 

Yuan, K. H., Guarnaccia, C. A., & Hayslip, B., Jr. (2003). A study of the distribution of sample 

coefficient alpha with the Hopkins Symptom Checklist: Bootstrap versus asymptotics. 

Educational and Psychological Measurement, 63(1), 5-23. 

doi:10.1177/0013164402239314 

  



81 
 

APPENDIX 

SELECTED DERIVATIONS 

Derivations for equation 37. 

( ) ( ) ( )

( )

( )

1 2

1

1 2

1 2
1

2 2 2

1

2 2

1 1

var var cov ,

var

var

k i j

i i j

k

i
i

k
k k

k i j
i j i

k k

i j i

k k k

i i j i

τ τ τ τ τ

τ τ τ

τ

τ τ τ

τ τ τ τ τ

σ σ σ σ

σ σ σ

=

= ≠

= ≠

Τ
= = ≠

Τ =

Τ = + + +

Τ = + + + +

Τ = + + + +

Τ = + =

∑

∑∑

∑∑

∑ ∑∑







  

12

1

12

1 1 1

12

1 1 1

1 12

1

1

1 ;
1 1

1

i j

i

i j

i i j i j

i j

i i j i j i j i j

i j i j

k k

xk
i j i

i
k k

xk k k k k
i j i

x x
i i j i i j i

k k

xk k k k k
i j i

x x
i i j i i j i

k k k

x x
i j i i j i

k

k

k
k k

k

k

τ

τ

τ τ τ τ τ

σ
σ

σ
σ σ σ

σ
σ σ σ σ σ

σ σ
σ

= ≠

=

= ≠

= = ≠ = ≠

= ≠

= = ≠ = ≠

= ≠ = ≠
Τ

≥
−

+ ≥ +
−

− + ≥ + = − − 

≥ +
−

∑∑
∑

∑∑
∑ ∑∑ ∑∑

∑∑
∑ ∑∑ ∑∑

∑∑ ∑
1 2 2

1 1

12

2

1

;
1

1

1

i j

i i j

i j

i j

k k k

x k k k
i j i

i i j i

k k

x
i j i

k k

x
i j i

k

k

k

k
k

τ τ τ

σ
σ σ σ

σ
σ

σ σ

= ≠
Τ

= = ≠

= ≠
Τ

Τ
= ≠

−

= +
−

≥
−
 

≥   −  

∑ ∑∑
∑ ∑∑

∑∑

∑∑
  

 

 



82 
 

Derivation for numerator of equation 48. 
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Derivation for denominator of equation 48. 
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APPENDIX 

SOURCE CODE 

This appendix includes source code for estimating credible intervals for the Bayesian coefficient 
alpha method presented in the manuscript. All code was written in R. 
 
library(invgamma) 
library(HDInterval) 
 
bay_alp_jvd_g_v2= function(x, in_dat=0, alp_0=0, k_0=0, var_0=0, 
v_0=0, n_itr=1000, conf=.95){ 
#------------------------------------------# 
# Author: J. V. DelosReyes                 # 
# Written:  11/30/2022                     # 
# Modified: 10/25/2023                     # 
#------------------------------------------# 
# R function to estimate Bayesian          # 
# coefficient alpha (alp).                 # 
#------------------------------------------# 
# INPUT ARGUMENTS                          # 
#------------------------------------------# 
# x= input data                            # 
# in_dat= type of data for x               # 
#         0= x is a data matrix            # 
#         1= x is a covariance matrix      # 
# alp_0= prior alp                         # 
# k_0=  prior sample size for alp          # 
# var_0= prior alp variance                # 
# nu_0= prior sample size for alp variance # 
# n_itr = number of posterior draws        # 
# conf= confidence level                   # 
#------------------------------------------# 
# OUTPUT                                   # 
#                                          # 
# return= Estimated alp, Bayesian alpha,   # 
#         and CrIs                         #   
#------------------------------------------# 
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cronbach_alpha<- function(x,in_dat=0) { 
#----------------------------------------# 
# INPUT ARGUMENTS                        # 
#                                        # 
# x= input data                          # 
# in_dat= type of data for x             # 
#         0= x is a data matrix          # 
#         1= x is a covariance matrix    # 
#----------------------------------------# 
# OUTPUT                                 # 
#                                        # 
# return= Cronbach Alpha                 # 
#----------------------------------------# 
     
  if (in_dat==0) { 
    covx= cov(x) 
  } 
     
  if (in_dat==1) { 
    covx= x 
  } 
     
  p= ncol(covx) 
  x_num= sum(diag(covx)) 
  x_dem= sum(covx) 
  return((p/(p-1))*(1-x_num/x_dem)) 
     
} 
 
##-- Start bay_alp_jvd --## 
 
# from data 
n= nrow(x) 
p= ncol(x) 
cov_est= cov(x) 
sum_cov_est= sum(cov_est) 
cov_est_2= cov_est %*% cov_est 
sum_cov_est_2= sum(cov_est_2) 
 
alp_est= cronbach_alpha(x=x,in_dat=in_dat) 
alp_var_est= ((p/(p-1))^2) * (2/(sum_cov_est^3)) * 
  (sum_cov_est * (sum(diag(cov_est_2))+sum(diag(cov_est))^2) - 
2*(sum(diag(cov_est)))*sum(cov_est_2)) 
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# priors 
# alp_0= 0 
# k_0= 0 
# var_0= 0 
# v_0= 0 
 
# posterior setups 
k_n= n + k_0 
v_n= n + v_0 
 
var_n= chol((n-1)*alp_var_est + (v_0-1)*var_0 + 
((n*v_0)/(n+v_0))*t(alp_est-alp_0)%*%(alp_est-alp_0)) 
alp_n= ((n*alp_est) + (k_0*alp_0)) / k_n 
 
cnt_itr= 0 
bd_jvd= 0 
balp_post= matrix(data=0,nrow = n_itr,ncol=2) 
 
while(cnt_itr<=n_itr){ 
  var_n_pull= rinvgamma(1, v_n, (v_n*var_n)) 
  balp_post_fit= rnorm(1, alp_n, (var_n_pull)/k_n) 
   
  if(balp_post_fit<1){ 
    balp_post[cnt_itr,1]=cnt_itr 
    balp_post[cnt_itr,2]=balp_post_fit 
    cnt_itr= cnt_itr+1 
  } else { 
    bd_jvd=bd_jvd+1 
  } 
} 
 
# output 
balp_cri= t(quantile(balp_post[,2], c((1-conf)/2,  
1-((1-conf)/2)))) 
names_cri= c("new_lcri","new_ucri") 
colnames(balp_cri)=names_cri 
balp_new_mn= mean(balp_post[,2]) 
balp_new_md= median(balp_post[,2]) 
balp_new_var= var(balp_post[,2]) 
 
# additional credible intervals 
balp_hpdi= hdi(balp_post[,2], credMass = conf)  
balp_hpdi= c(balp_hpdi[1],balp_hpdi[2]) 
hpdi_names= c("balp_l_hpdi","balp_u_hpdi") 
balp_hpdi= t(as.matrix(balp_hpdi)) 
colnames(balp_hpdi)= hpdi_names 
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z_crit= -qnorm((1-conf)/2) 
balp_new_se= sqrt(balp_new_var) 
balp_z_lci= balp_new_mn - (z_crit * balp_new_se) 
balp_z_uci= balp_new_mn + (z_crit * balp_new_se) 
balp_z_ci= cbind(balp_z_lci,balp_z_uci) 
 
balp_out=cbind(alp_est,balp_new_mn,balp_new_md,balp_new_var, 
balp_cri,balp_z_ci,balp_hpdi,n_itr,n,bd_jvd,conf) 
return(list(balp_cri=balp_out,balp_sim=balp_post)) 
}  
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