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ABSTRACT

A SIMULATION STUDY OF CONVERGENCE SPEED FOR

DISTRIBUTED CODEWORD ADAPTATION ALGORITHMS IN

CDMA WIRELESS SYSTEMS

Sahana Maharjan

Old Dominion University, 2009

Director: Dr. Dimitrie C. Popescu

In this thesis we present a side-by-side comparison of intetference avoidance (IA) algo-

rithms for distributed codeword adaptation in Code Division Multiple Access (CDMA)

systems. In CDMA systems, the interference is determined by the values of the cross-

correlation of codewords assigned to users, and various algorithms can be used for code-

word optimization. The IA algorithms for codeword adaptation considered are the eigen-

algorithm, the Minimum Mean Square Error (MMSE) update, and the adaptive IA algo-

rithm, for which we investigate convergence speed using the extensive simulations of sev-

eral uplink CDMA system scenarios. The results of this thesis were presented at the Fourth

IEEE Radio and Wireless Symposium (RWS), San Diego, CA in January 2009.
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CHAPTER I

INTRODUCTION

Interference from both natural sources and other users of the medium has always been

the problem to be solved by wireless communication designers [5]. In wireless systems,

the transmission medium is shared by all users. Thus, the amount of interference cannot be

limited by restricting physical access to the medium and/or reducing relative noise energy,

Such restrictions can be applied for wired or optical systems, but in radio communication

systems the restrictions on use are legislative in nature and imposed by government regu-

lating agencies such as the Federal Communications Commission (FCC) [5] in the United

States and its counterparts in other countries. Hence, mutual interference is a fact of wire-

less communication systems.

Code Division Multiple Access (CDMA) has been adopted as the major multiple ac-

cess technique in the third generation (3G) wireless systems and is also proposed for use

in future generation wireless communication systems. CDMA enables multiuser commu-

nications along with efficient utilization of available spectmm and transmiuer power in

wireless systems [2, l7,25]. In a CDMA system, the transmitters can use all available

spectrum all of the time unlike Time Division Multiple Access (TDMA) and Frequency

Division Multiple Access (FDMA). In TDMA, the transmitters are restricted to using the

available spectrum part of the time and in FDMA, the transmitters are restricted to using

part of the spectrum all of the time [2]. Access to air interface in CDMA systems is con-

trolled by distinct codewords or spreading sequences that are assigned to active users to

the system [2, 23]. A major advantage of CDMA is that a large number of users can be

This thesis follows the IEEE style.



accommodated if each transmits messages for a short period of time. In such a multiple ac-

cess system, it is relatively easy either to add new users or to decrease the number of users

without disrupting the system. Spread spectrum is always used to accomplish CDMA. All

user data and most implementations of the controlled channel and signaling information

with CDMA are transmitted at the same frequency at the same time. The CDMA system

operates asynchronously, which means that the transition times of a user's data symbols do

not have to coincide with those of other users.

ln general, CDMA system users transmit signature waveforms that are linear superposi-

tion of the signal space basis functions. The basis function might be non-overlapping pulses

(or "chips*') in a typical CDMA system [2] and in another system, it might be "tones*'f

different frequencies as in multicarrier and Orthogonal Frequency Division Multiplexing

(OFDM) systems or even spatial signal distributions. However, the signals coming from

different users are, in general, not orthogonal, and the CDMA system is an interference-

limited system. In addition, fading and dispersive radio channels further distort transmitted

signals by introducing multipath interference.

In order to minimize both the multiple access interference (MAI) and multipath inter-

ference (Ml), and ensure that the specified quality of service (QoS) requirement is met, the

transmitter in a CDMA system may adjust its codewords. IA is a class of methods proposed

recently in the literature for adaptation of CDMA codewords through various distributed

algorithms such as the eigen-algorithm [5], the MMSE algorithm [10,26], and the adaptive

IA algorithm [8]. We note that, while it has been shown that all these algorithms converge

to an optimal ensemble of codewords where desired QoS requirements are satisfied with

minimum transmitter power, a side by side comparison of these algorithms in terms of



convergence speed for similar operating scenarios has not been performed yet.

The relationship between codeword assignment in a CDMA system and performance

metrics such as sum capacity (G,) and general square correlation (GSG) have been studied

in several papers [5, 28—301. These performance metrics are used in conjunction with IA

algorithms to obtain optimal codeword ensembles in a finite number of steps for codeword

adaptation. The main idea behind the interference avoidance algorithms is to maximize

the SINR (Signal-to-Interference plus Noise-Ratio) at the receiver through adaptation of

codewords. All of the interference avoidance algorithms replace the current codeword to

reduce or minimize interference from other sources, including other users, and is performed

at the base station. These codeword updates monotonically decrease GSG and increase G,

and coupled with the fact that these measures are bounded, this implies the convergence

of the algorithms [15, 19]. The goal of this thesis is to compare the convergence speed of

three algorithms (the eigen-algorithm, the MMSE update, and the adaptive IA algorithm)

proposed for distributed codeword adaptation in CDMA wireless systems.

The rest of the thesis is organized as follows: Chapter II presents the system model and

formally states the problem. In Chapter III, we discuss different distributed interference

avoidance algorithms used in codeword adaptation for the system under consideration. We

illustrate the algorithm with numerical examples obtained from the extensive simulations

in Chapter IV, and conclude with final remarks and future work in Chapter V.

The work included in this thesis was presented at the Fourth IEEE Radio and Wireless

Symposium (RWS) Conference, San Diego, CA in ianuary 2009 [I I j.



CHAPTER II

SYSTEM MODEL AND PROBLEM STATEMENT

We consider the uplink of a single cell synchronous CDMA wireless system with L

users in a signal space of dimension N communicating with common base station [5] and

ideal channels. This type of study has never been performed before. The IA-based trans-

mitter adaptation uses information about the interference corrupting the desired signal at

the receiver, which is acquired over a feedback channel, and the transmitter is updated in

response to changing patterns of interference. The amount of interference information that

the receiver may feed back to the transmitter is limited by the capacity of the feedback

channel. The N dimensional received signal at the base station is

e

r = PbevePese+ n = SP'~ b+ n
e=t

where:

~ S is N x L codeword matrix having the column se as unit norm user codeword

corresponding to user f,

sr ... se ... sr

~ b = jbt,...,hrj is the vectorcontaining the information symbols sent by users.

~ P = diag(pt,..., pr) is the power matrix containing the received power at the base

station.



~ n is an Additive White Gaussian Noise (AWGN) that corrupts (he signal at the re-

ceiver.

The correlation matrix of the received signal is

R=E[rr [=SPS +W, (3)

where W = E[nnr] is the noise covariance matrix.

The multiple-access interference (MAI) is a major limitation for this system's perfor-

mance, which is caused by the correlation among the users of signatures, so k = 1, 2, ..., L.

The amount of MAI depends on the number of users, L, relative to length N of the

user signature sequences [21, 30]. If L & N then orthogonal waveforms can be chosen,

eliminating the MAI completely and thereby achieving the performance of a single-user

system. The more interesting situation is when L & N, when the system is overloaded or

oversaturated and when one inevitably encounters MAI.

A unit norm receiver filter [5], cs, is used to estimate the symbol transmitted by a given

user k. This estimate is computed as

L
T T Vbs = csr = bs~p~c„st. +c„~ brv prsr + n

desired signal
interference + noise

(4)

In this case, the SINR for a given user k can be defined as the ratio of the desired signal

corresponding to user k at the receiver to the power of interference and noise that affects

user k's signal at the receiver. The expression for the signal-to-interference plus noise-ratio

(SINR) for user k can be written as

pa(csss)'s(ci sa)
cr Raci.T

E pr(c'si)'+ E[(c~ n)']
r=l xga

(5)



where ca is the unit norm receiver filter used to decode the symbol transmitted by user k

and Ra is the correlation matrix of the interference plus noise seen by user k having the

expression
L

rRs = g press,' W = R — p„.sss„. (6)
e=t,ebs

When codewords are orthogonal, (a~res = 0) for all the values of k and f and matched

filter receivers are used cs = s„ for all the values of k, equation (5) then shows that inter-

ference equivalent to (c~st) = 0 for all the values of L

Using signal to interference ratio as a metric, we present a class of distributed algo-

rithms for synchronous systems that result in an ensemble of optimal waveforms meeting

the Welch Bound with equality and therefore achieve minimum average interference over

the ensemble of signature waveforms.

The performance metric known as General Square Correlation,(GSC) is defined as

GSC = Trace[Ra] = Trace[(SPS + W) j (7)

Since the SINR is inversely proportional to R, and from equations (3), (5) and (6), it can

be seen clearly that the small value of GSC leads to larger SINR, it is to be noted that GSC

is lower bounded by ~~ when L & N and by L when L ( N. The result obtained was

first derived by Welch in [31]. Hence, the codeword ensembles satisfying these bounds

are therefore called Welch Bound Equality sequences, or WBE sequences for short [12,

31].By refering to equation (7), we can say that the resulting codeword ensembles satisfying

the Welch Bound Equality (WBE) sequences are "tuned" to the particular noise structure

specified by covariance matrix W. When the noise matrix is white with covariance matrix

W = asftv then the Welch Bound Equality sequences satisfy [31]

SPS
L

1NN'



An alternative performance metric known as sum capacity is defined as the maximum

sum of reliable error free rates over all users while another performance metric named user

capacity of a CDMA system is defined as the maximum number of admissible users at a

given common target SINR g" [5]. L users are said to be admissible if there exists powers

pr & 0 and signature sequences sr such that each user has an SINR at least as large as p'.

It can be expressed [16, 19, 20] as

1 1
C, = — log [R[ — — Iog[xAr[

2 2
(9)

Clearly, user capacity depends on the performance criterion p" [5]. Therefore, it is nec-

essary to examine the codeword ensembles in terms of objective measures such as informa-

tion theoretic capacity. The sum capacity is achieved by an ensemble S when codewords

are chosen in such a way that they meet the Welch Bound with equality. Hence, we can say

that GSG is a measure of user capacity, but it can be used as a measure of sum capacity in

many cases.

Both the Troce[R ] and sum capacity depend on the eigenvalues of the received signal

covariance matrix R. It is observed that Trace[Rz] is a convex function in these eigenvalues

and sum capacity is a concave function [I, 3, 5). It can also be shown that both Trrrce[R']

and sum capacity are optimized when identical bounds on these eigenvalues are met with

equality. The optimal points that maximize sum capacity and minimize Trace'[Rz] are

identical using the constrained optimization methods or the results from the majorization

theory. Hence, the minimization of Trace[Rz] is equivalent to the maximization of sum

capacity.



11.1 UNDERLOADED AND OVERLOADED SYSTEM

The ratio v in a CDMA system is referred as the load factor of the system. The load

factor plays a significant role in the study of convergence speed for the distributed algo-

rithms in CDMA wireless systems. When the load factor is less than or equal to I, the

system is called an underloaded system; when it is larger than l the system is called an

overloaded system. In the underloaded system, users may be assigned orthogonal code-

words such that they will not interfere with each other, and codeword adaptation is not

necessary. In the overloaded system, the users will adapt their codcwords using IA algo-

rithms until an optimal ensemble is reached where the total interference in the system is

minimized, and whenever there is a change in the system configuration the IA algorithms

should be reiterated to adjust codewords to a new optimal ensemble for the new system

configuration. It is shown that the user capacity is maximized when the codewords are ei-

ther orthonormal or when there are fewer users than signal space dimensions or when they

form WBE sequence sets or when the system is overloaded.

In the case of an overloaded system (f ) N), a set of WBE user codewords and

powers with oversized users for which the sum of allocated powers among all valid power

allocations for the given SINRs is minimum [8,28,30l. A user is said to be oversized if the

effective bandwidth implied by its target SINR is large relative to the effective bandwidths

implied by the other user's target SINR. No user is oversized for every user j if and only if

the user follows the equation given below:

(I0)

When all the input power constraints are equal, no user is oversized, and if a user f is

oversized then every user with input power constraint at least pr is also oversized. Also,



there can be at most N - 1 oversized users in the system.

Various algorithms available for distributed codeword adaptation in uplink CDMA sys-

tems do not have the same performance under a similar CDMA setup. Therefore, it is

worthwhile to compare the performance of the available algorithms to identify a suitable

one for a given system. The assumption made for this thesis is that there is no change in

users'odewords during the codeword replacement. The codeword adaptation algorithms

replace each user's codeword with a new one satisfying the algorithms'equirement [4,6].

This replacement is done sequentially after all the users have updated their codewords. The

codeword ensembles obtained by the application of the eigen algorithm, MMSE algorithm

and adaptive algorithm form WBE sets. The main positive side of using the WBE se-

quences in a CDMA wireless system for users (codewords) is the use of matched filters as

optimal linear receivers that minimize the mean squared error (MSE) for each user. There-

fore, the results of the matched filters satisfy the sufficient statistics for joint processing of

the users and thus achieve the maximum sum capacity. It is to be noted that when the num-

ber of users L is less than or equal to the signal space dimension N, the three algorithms

(eigen, MMSE and adaptive) produce a set of orthonormal codewords.

S S=Iz, if L&iU

For MMSE and an adaptive algorithm, it may take several iterations whereas the eigen

algorithm needs a single pass through all codewords as each user chooses a new codeword

(eigenvector) orthogonal to the previous codewords [5,12]. The most important assumption

used throughout this thesis is L & N. Otherwise, it is observed that the SINR is equal

to the signal-to-noise ratio (SNR) since all the resulting optimal signature sequences are

orthogonal; thus, the given user interference from the other user is zero.
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II.2 SUMMARY

In this chapter, the system model of the uplink synchronous CDMA system is discussed

in brief. The concept of load ratio is also inn'oduced for both the overloaded system and

underloaded system, which are the equivalent performance criteria. The IA procedure is

discussed in which each user will maximize its own signal-to-interference + noise ratio

through the adaptation of user codewords. This procedure also implies maximizing the

sum capacity as well as minimizing the GSC.
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CHAPTER III

DISTRIBUTED CODEWORD ADAPTATION ALGORITHMS

In this chapter, we introduce the algorithms for distributed codeword adaptation based

on repeated application of the interference avoidance procedure [5, 8, 26]. In distributed

implementation of the algorithms, users update their corresponding codewords individually

using only correlation matrix Ra of the interference plus noise given in equation (6). It is

assumed that the correlation matrix R of the received signal is made available through a

feedback channel to all users and they are not required to have complete knowledge about

all the other active users in the system [7, 24].

The IA algorithm is an adaptive modulation technique in which the transmitters in wire-

less communication systems are optimized through the adaptation of individual user code-

words; hence, interference is minimized. Thus, it results in a better environment to operate.

The idea behind the implementation of the proposed IA algorithms is to maximize the

performance metric SINR through the adaptation of user codewords.

III.I THE EIGEN-ALGORITHM FOR IA

For the eigen algorithm, assuming simple matched filters at the receiver for all users,

that is ca = sa, the SINR for user k can be written as

pa

sa Rasa
(12)

The denominator of the SINR is the user interference function [5]. The interference func-

tion depends on user k's codeword since the receiver filter ca depends usually on sa and
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does not depend on user )".'s power. In this eigen algorithm, the interference function can

be expressed as

r
ts = s„Rasa

Thus, equation (12) can be used in order to maximize the SINR through the adaptation

of user codewords, which is equivalent to minimizing the inverse SINR. The inverse SINR

can be defined as,

(14)

A matched filter performs single user detection and can be used for decoding user Rs. It

acts as the optimal tilter in the presence of AWGN and maximizes the signal-to-noise ratio.

The eigen algorithm yields codeword ensembles that minimize the trace of the square of

the received signal covariance matrix R.

The main idea behind the implementation of IA algorithms is to maximize the SINR

(considering SINR as a metric) through the adaptation of user codewords. It is to be noted

that the eigen algorithm can be used to observe the equivalence between the minimization

of Trace[R'] and maximization of the sum capacity. As discussed in Chapter II, both the

Trace(Rs] and sum capacity depend on the eigenvalues of the received signal covariance

matrix R. While Trace[Ra] is a convex function in these eigenvalues and sum capacity is

a concave function, the equation (6) can be rewritten as

R = Ra + passesT

The eigen interference avoidance algorithm consists of changing a user codeword by

replacing codeword sa (in a distributed manner) with the minimum eigenvector of the cor-

relation mattfix Rs [20] such that the user SINR, pt. is maximized. The SINR of user k
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can be greedily maximized by replacing the current codeword sa with the minimum eigen-

vector of the correlation matrix Ra of the interference + noise seen by user k. Replacing

the cunent codeword with the minimum eigenvector of the interference + noise correlation

matrix seen by the individual user avoids interference, placing its transmitted energy in that

region of signal space with minimum interference + noise energy and greedily maximizes

SINR without any negative effects on the other users in the system [5, 18,22]. Thus, the se-

quential application of this greedy procedure by all users defines the minimum eigenvector

algorithm for interference avoidance.

The Eigen Algorithm

1. Initialize the user codeword and power matrices S, P, and the noise covariance ma-

trix W.

2. Fork=I,...,L

(a) Compute the correlation matrix Ra of the interference-plus-noise seen by user

k using equation (6).

(b) Replace the current user codeword by the minimum eigenvector of Ra,

3. Repeat Step 2 until a fixed point is reached

When user k replaces its codeword si with a new codeword x, the difference in GSC

can be written as

6 = Truce[(R„+ sap,s„)'] — Trace[(Rs + xipsx, )'] (16)

After cancelling the like terms and replacing the traces by the corresponding quadratic

form, we have

6 = 2(sa~Rasa — x„Rixa)
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Choosing x as the minimum eigenvector of Rs, we have

sr Rssr. ) xa Rsxx (18)

This equation concludes that 6 & 0. Therefore, the eigen algorithm monotonically

decreases GSC.

We can emphasize from equation (18) that it is an inequality, and the same logic applies

with regard to the eigen algorithm. If xa is chosen as the minimum eigenvector of R.a then

xs is the maximum eigenvector of Rr '.

In summary, the eigen algorithm decreases the GSC and increases the sum capacity

at each step. As the sum capacity and GSC are bounded from above and below the eigen

algorithm must converge to some value. This convergence does not refer to the convergence

of codewords, but the convergence only show the iterative procedure must converge GSC

and sum capacity.

Numerically, the fixed point is reached when the Euclidian distance between a given

codeword and its corresponding replacement is within the tolerance c The convergence of

the eigen algorithm is discussed in [5, )9] where it is shown that it converges to generalized

Welch Bound Equality (WBE) sequences maximizing the sum capacity.

When L ( N, the convergence of the eigen algorithm to a set of orthogonal codewords

in a single ensemble iteration can be proved in a simple way as follows: The correlation

matrix of the interference plus noise seen by user )r, Ra, cannot have full rank when L & N

as the number of available vectors ss is at most N — I which means that Rx is singular

and positive semi definite, hence its minimum eigenvalue is zero for all values of g =

I, ..., L. The new sa is chosen as the eigenvector corresponding to the zero eigenvalue of
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Rk resulting in Rksk = 0. This implies that sk is orthogonal to sr for f g k. Thus, we

can conclude that if L & N then the minimum eigenvalue produces an orthonormal set of

vectors after a single pass through all the vectors.

HI.2 THE MMSE ALGORITHM FOR IA

This algorithm is proposed in order to mitigate the interference where the current code-

word is replaced with the MMSE receiver filter, and the expression of the unit norm MMSE

receiver filter for user I: is [10,26]

R„'sk
(srR— 2 ]t/2

The SINR for user k in the MMSE receiver filter is expressed as

7k pksk Rk sk
T — i (20)

The minimum mean squared error (MMSE) receiver filter is the linear receiver that

minimizes the mean squared error (MSE) between the transmitted symbol and the corre-

sponding decision variable. It is also defined as the optimal linear multiuser detector that

maximizes the SINR [5].

The interference function for the MMSE receiver can be written as

sk Rk 'sk
ik

sk Rk sk
(21)

The SINR for user k can be maximized by replacing the current codeword sk (in a

distributed manner) with the normalized MMSE receiver filter ck [26].



The MMSE Algorithm

1. Initialize user codeword and power matrices S and P and the noise covariance matrix

2. For each user k = 1,..., L

(a) Determine its MMSE receiver ck using equation (19).

(b) Replace the current user codeword by ck.

3. Repeat Step 2 until a fixed point is reached.

For the MMSE update from equation (18), we have

sk Rksk ) ck Rkck (22)

which is equivalent to

— t r — 1

S Rksk ) (23)

or

sk Rk sk ( (sk Rk sk)(sk Rksk) (24)

Clearly Rk is the covariance matrix of the interference plus noise seen by user k, and it

is symmetric and positive definite. Since it is invertible and sk is unit norm, we have

Ilskll = (s„Rk'k sk) = 1 (25)

Applying the Schwarz inequality, we can write

1 = (s'„Rk "R',."s,.')' IIR,. "'s,
I I

IIR,'"s,
I I

(26)
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Equivalently, we can write,

l (s,.R„')(s,R„ss) (27)

We can further simplify the Schwarz inequality and express it as

(s„R„'ss)' ffssff ffR„'ssff = s„R„sr (28)

From equations (27) and (28), we have

st-Rt, ss & (ss~Rs ss) (sr~Rsss) & (stR~ ss)(ssRsss) (29)

Equation (29) proves that the MMSE algorithm monotonically decreases GSC for its

codeword update.

As with the eigen algorithm, the convergence of the MMSE algorithm is guaranteed

by the increase of sum capacity and decrease of GSC coupled with the upper and lower

bounds of C, and GSC. The fixed point is reached when the condition as in the eigen

algorithm is achieved. As with the eigen algorithm, the MMSE algorithm monotonically

increases sum capacity [26,27] and decreases GSC. It is to be noted that the MMSE update

algorithm converges to the fixed point.

HI.3 THE ADAPTIVE ALGORITHM FOR IA

The adaptive interference avoidance algorithm can be applied in a distributed manner

by active users in the CDMA system to obtain an optimal codeword and power for the

specified admissible target SINR 7t'...7z* that satisfy the condition

(3())
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The adaptive algorithm provides flexibility to the system [8) as the active users individ-

ually adapt their codewords and power when they are admitted to the system such that they

optimize a local criterion. The criterion is based on the idea of using little of the feedback

information from the base station. It is to be noted that it must be performed at the base

station after which the codewords and powers are assigned to users.

The local criteria that we mentioned above is the spectral efficiency, which can be

expressed in terms of the user SINR as

r)& = tn(1+ pa) [nats/s/Hz] k = I, ..., K (31)

This equation represents the spectral efficiency of a single-user bandlimited AWGN

channel. The expression is a reasonable optimization criterion for individual users [8] in

the system having access only to their corresponding SINR. The fact to be noted here is the

corresponding SINR has no knowledge of the other user SINRs.

The spectral efficiency for user k can be rewritten as a function of its codeword and

power when replacing the expression of ps it can be written as

rtr = In 1+ r [nuts/s/Hz) k = 1, ..., K
s& Rasa'ence,

it can be observed that each user k will perform joint codeword and power

adaptation to maximize its corresponding spectral efficiency with target SINR constraint

ps = pk* and unit norm constraint on codeword

Tsass = I (33)

The algorithm updates the codeword and power using incremental updates [8) to avoid

abrupt changes of the user codeword and/or power which are not desirable in practical
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implementations. Hence, the receiver is capable of following codeword changes and con-

tinues to detect the transmitted symbol accurately. It is assumed that there is no latency

associated with a change in the number of active users [29, 31]. The adaptive algorithm

adds and drops the users to and from the system as soon as changes occur by updating the

codeword and power matrices (S and P respectively) as per changes.

The codeword and power updates equations for the adaptive algorithm can be derived

by solving the constrained optimization problem based on the maximization of user spectral

efficiency in equation (32).

max qk subject to
~k Sk

Pk
7k

sk Rksk

(34)

sk sk — 1T

User k's Lagrangian function can be defined using the Lagrange multipliers method,

which can be expressed as

Lk(sk, pk, Ak, fk) = r)k{sk pk) + Ak(qk — qk) + fk(sask — I)

(35)

= ln 1 + r + Ak r —
gk + fk(sk sk —

)

where Ak and (k are the Lagrange multipliers associated with user k's constraints in equa-

tion (34).

By taking the partial derivatives of equation (34) [gj with respect to the corresponding

variables, we get the necessary conditions for maximizing the Lagrangian. We obtain an

eigenvalue/eigenvector equation corresponding to matrix Rk by equating the partial deriva-

tive of the Lagrangian with respect to the codeword sk to zero.
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OLk = 0 m Rssr, = vast
t)sr

(36)

where va, all user power pa and codeword sa are expressed in terms of Lagrange multipliers.

The best choice for user k's codeword satisfying the necessary condition in equation (36)

is the eigenvector x& corresponding to the minimum eigenvalue/eigenvector vt* of Ra .

for given power pa it maximizes user k's SINR and implicitly its spectral efficiency by

minimizing the effective interference corrupting user k's signal at the receiver.

The incremental update that adapts the codeword in the direction of the minimum eigen-

vector xa can be expressed as

st(t) + m/yx„(t)

II ss(t) + mt)xt(t) II

(3 /)

where:

~ za(t) is the minimum eigenvector of correlation matrix Ra,

~ m = sgn(s„xs) and

~ t3 is the parameter that limits the Euclidian distance between the cunent codeword

and new codeword. This is an incremental interference avoidance codeword update,

which for given power ps implies an increase in user k's SINR and implicitly in its

spectral efficiency.

Similarly, the power update can be expressed using a gradient-based approach,

ps(t+ l) = pt(t) — p[pr(t) — /*ta(t)l (3g)

with 0 ( /r & L and

ia(t) = s„Rsst is the interference function.
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It is to be noted that the user power will be adapted incrementally to avoid sudden

changes in the system. With the increase in spectral efficiency, the adaptation in the direc-

tion of the corresponding gradient increases as the Lagrangian is a concave function of user

power. Hence, the power update equation can be modified as

OLs
pa(t+ I) = pa(t) + V.„—

sS =sS (i -S 1 )

(39)

where OL&/Ops after the user codeword has been updated as specified by equation (37) is

OLg 1

Ops „, (,~,) ss(t+ I)"Rt(t)ss(t+ I)+ps(t)
(40)

At(t)
+

sg(t + 1)"Rs(t)sa(t + I)

The Lagrange multiplier Aa(t) is adapted incrementally which can be expressed as

OLt
Ak(t) = — tsx

ss =ss (i+ i )

(41)

where tsz ) 0 and

OL„ps(t)
OAa s =s.(i+i) s&(t+ 1) Ri(t)sa(t + I)

(42)

The Lagrangian Ls is a linear function of As, and the slope is determined by OLs/OAa. It

is increased by moving Ak in the corresponding direction indicated by the slope. We note

that the update in equation (41) is the steepest ascent gradient update and, it acts as an extra

correction factor in the power update equation (39) having more or less inHuence depending

on the closeness between the SINR after codeword adaptation and the target SINR 7„".

qa(t) = pi;(t)
ss(t + 1)rRa(t)sa(t + 1)

(43)
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The Adaptive Algorithm

l. Initialize user codeword and power matrices S and P, the noise covariance matrix

W, the target SINRs (7„*) and the algorithm constants It and,8.

2. IF the user target SINRs are admissible GO TO step 3. Otherwise STOP.

3. Fork= I,...,L

(a) Compute current correlation matrix Rt. using equation (6) and determine mini-

mum eigenvectorxt(t) of Rt.

(b) Update user codeword ss(t) using equation (37).

(c) Update user k's power using equation (38).

4. Repeat Step 3 until a fixed point is reached.

The adaptive IA algorithm converges to a fixed point where Euclidian distance between

the codewords of a given user and its corresponding replacements is within some specified

tolerance e. The tolerance and speed of convergence of the adaptive algorithm can be

adjusted with parameters such as e, 4, p. The algorithm can also be run independently by

active users to adapt to changes in the system configuration as reflected by changes in their

SINRs and corresponding spectral efficiencies.

The optimal stopping point for the adaptive interference avoidance algorithm is the

point where the sum of allocated powers among all valid power allocations for the given

target SINRs is minimum and corresponds to generalized Welch Bound Equality (GWBE)

sequences. At this fixed point [9), the specified target SINR values are met for all users

within the specified tolerance e, and user powers are minimized.
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III.4 SUMMARY

The three different distributed codeword algorithms in an adaptive wireless system are

clearly described in this chapter. The distributed IA algorithms are presented in which each

user will greedily seek to maximize its own signal-to-interference + noise ratio through

adaptation of user codewords. This chapter also deals with the distributed algorithm where

the users individually adjust codewords and powers to meet a set of specified target SINRs.

It is also shown that the algorithm is guaranteed to converge in GSC and/or sum capacity,
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CHAPTER IV

SIMULATION SETUP AND NUMERICAL RESULTS

In order to study the convergence speed for distributed codeword adaptation algorithms

in a CDMA wireless system, we consider a CDMA system with L active users in signal

space of dimension N and white noise with covariance matrix W = 0.1Iw. We performed

extensive simulations to evaluate the convergence speed of the IA algorithms discussed in

Chapter III. We considered a scenario in which we have initially L = 0 active users in

N = 5 signal dimensions with the load factor, ~~ = 1.2. In each simulation experiment we

recorded the number of ensemble iterations needed for convergence within tolerance e =

0.001 in 1, 000 trials for three scenarios: starting from a random set of L user codewords,

starting from an optimal WBE set of L user codewords and adding a random codeword to

this set and starting from an optimal WBE set of L user codewords and removing one of the

codewords from this set. These scenarios correspond to a dynamic wireless system where

the IA algorithms are applied to optimize the user codewords from random initializations

as well as from optimal ensembles when one user is added to/removed from the system.

We vary the different values of the active users and signal dimension for (he same load

factor 1.2. Similarly, the scenario was considered for the load factor, ~, = 1.8 and 2.4

with the varying numbers of active users and signai dimensions. Thus, the load factor was

varied from light system overload (~) = 1.2, to moderate overload ( ~.) = 1.8 and heavy

overload (~) = 2.4, and the number of signal dimensions was varied from N = 5 to N =

30. Similarly, the number of users was varied from 6 to 72, In this thesis, we mainly dealt

with eighteen different cases. Tables I, II and III give the value of the average ensemble
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iterations for eighteen different cases with three sub cases including random initialization,

adding one user to the system and dropping one user from the system respectively. For the

load factor ~c = 1.2, the number of users is 6 and the signal space dimension is 5. The nine

different histogram plots for three different algorithms has been considered when the load

factor ~~ = 1.8. The histogram plots for the proposed algorithms when the load factor ~~, =

1.2 and 2.4 are not shown in this thesis, but the plots can be plotted in a similar way. The

nature and properties of these plots are similar to the histogram plots when the load factor

z —— 1.8. In the nine different histogram plots, the z-axis represents the performance index

named "Occurences/bin" while the y-axis represents the "Number of iterations" and the

x-axis represents the "Scenario index". We observe that the value of the average ensemble

iterations can be estimated from the histogram plots, and the plots of the ensemble iterations

of all algorithms follow the Gaussian distribution with the mean/average value given in their

respective table from Tables I, II and III. We nonce that there are six "scenario indexes"

each representing its own scenario in terms of different active users f. and signal dimension

N for random initialization, one user added to the system and one user dropped from the

system. The rest can be found in a similar manner. These three cases are repeated for eigen,

MMSE and adaptive algorithm. The three different tables for three different distributed

codeword adaptation algorithms are shown below in Tables I, II and III respectively.

Since Matlab is widely used due to ease of use, setup, debugging and simplicity due to

library standardization, the simulation study has been completed in Matlab 7.5.
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TABLE I: Convergence Speed of the Eigen Algorithm



IV.I SIMULATION SETUP AND RESULTS FOR EIGEN ALGORITHM

In Table I, the first row corresponding to each load factor gives the average ensemble

iterations when user codewords and powers were initialized randomly; the second row

gives the average ensemble iterations when one user is added without increasing iV (by

appending randomly generated codeword and power for a new user to the corresponding

optimal matrices) to the system when the algorithm reached the fixed point; the third row

gives the average ensemble iterations when one user is dropped from the system when the

algorithm reached the fixed point. We observed the convergence speed of the algorithms

given in Table I.

With the help of the data for 1, 000 trials and the average ensemble iteration, we observe

the three different plots for the eigen algorithm shown in Figures 1, 2 and 3. Figure 1 shows

the convergence speed for random initialization, while Figure 2 shows the convergence

speed when one user was added to the system and Figure 3 represents the scenario when

one user was dropped from the system for the eigen algorithm.

The codeword and power for previous users were taken from the fixed point and the

codeword and power for a newly added user are initialized randomly and appended to thc

corresponding matrices. We have observed that the eigen algorithm diagonalizes the cor-

relation matrix of the interference plus noise seen by the given user at each step. Later, the

given user's codeword is replaced by the minimum eigenvector. The eigen-decomposition

has been performed I times separately on an N x N matrix for one iteration of the algo-

rithm. The system is considered to have L users and N signal dimensional space.

Figures 4, 5 and 6 show the histogram plots for the eigen algorithm for random initial-

ization, one user added to the system and one user dropped from the system respectively.
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FIG. I: Convergence speed for the Eigen Algorithm for the random initialization scenario.
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IV.2 SIMULATION SETUP AND RESULTS FOR MMSE ALGORITHM

The first row conesponding to each load factor in Table II gives the average ensemble

iterations when user codewords and powers were initialized randomly, and the second row

gives the average ensemble iterations when one user is added without increasing ftf to the

system when the algorithm reached the fixed point. Moreover, the third row gives the

average ensemble iterations when one user is dropped from the system when the algorithm

reached the fixed point. From Table II, we can observe that the average ensemble iterations

for random initialization when signal dimension fcf = 5 and active users L = 6 is 14. Table

II can be referred lo the rest of the data with different values of L and N for the load factor
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v = 1.2, 1.8 and 2.4 respectively.

With respect to the data obtained from 1, 000 trials and the corresponding average en-

semble iteration value, we obseive the three different plots for the MMSE algorithm which

is shown in Figures 7, 8 and 9. Figure 7 shows the convergence speed for random ini-

tialization, Figure 8 shows the convergence speed when one user was added to the system

and Figure 9 represents the scenario when one user was dropped from the system for the

MMSE algorithm. Figures 10, 11 and 12 show the histogram plots for the MMSE algorithm

respectively for random initialization, one user added to the system and one user dropped

from the system.

The codeword and power for previous users were taken from a fixed point, and the code-

word and power for newly added users are taken randomly for a new system configuration.
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TABLE II: Convergence Speed of the MMSE A!gorithm
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We observed the convergence speed of the algorithm given in Table II.

IV.3 SIMULATION SETUP AND RESULTS FOR ADAPTIVE ALGORITHM

We also vary the number of users L and signal space dimensions N such that the load

factor (~) becomes 1.2, 1.8 and 2.4. For the adaptive algorithm, the admissible target

SINRs for all users were chosen to be p' 0.7. The algorithm constants were chosen to

be ff = 0.2, p = 0,01, the tolerance e = 0.001. From Table III we noted that the average

ensemble iterations for random initialization when signal dimension N = 5 and active

users L = 6 is 43. Table III can be referred to the rest of the data with different values of L

and N for the load factor z~ —— 1.2, 1.8 and 2.4.

Similar to previous cases, the first row in Table III gives the average ensemble iterations

when user codeword and power were initialized randomly; the second row gives the average

ensemble iterations when one user is added without increasing N; the third row gives the

average ensemble iterations when one user is dropped from the system when the algorithm

reaches the fixed point. All the values of the average ensemble iterations correspond to each

load factor. The codeword and power for previous users as in the previous two algorithms

defined in Sections IV.I and IV.2 were taken from a fixed point, and the codeword and

power for a newly added user are initialized randomly and appended to coizesponding

matrices. We observe the convergence speed of the algorithms given in Table 111.

With the help of these data for 1, 000 trials and the average ensemble iteration, we

observe the three different plots for the adaptive algorithm case as shown in Figures 13,

14 and 15. Figure 13 shows the convergence speed for random initialization, while Figure

14 shows the convergence speed when one user is added to the system, and Figure 15
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represents the scenario when one user is dropped from the system for the adaptive algorithm

as in the previously defined algorithms. We note that the adaptive interference avoidance

algorithm is the slowest one in terms of convergence speed. Figures 16, 17 and 18 show the

histogram plots for the adaptive algorithm respectively for random initialization, one user

added to the system and one user dropped from the system.

Numerically, the fixed point for all three algorithms is reached when the Euclidian dis-

tance between a given codeword and its corresponding replacement is within the tolerance

e. These algorithms converge to generalized Welch Bound Equality (WBE) sequences. We

performed another simulation to find out how the different admissible target SINR affect

the convergence speed of the adaptive algorithm. For this example, we have taken L = 6

users in signal space of dimension It( = 5 (i.e. v —— 1.2 initially) and applied the algorithm
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TABLE III: Convergence Speed of the Adaptive Algorithm
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for 1, 000 trials for different values of 7'nd noted the corresponding average ensemble

iterations. For each target SINR, when the algorithm reached a fixed point one user was

added to the system so that the total active number of users in the system was 8 = 7 in

signal space of dimension N = 5.

The adaptive algorithm was applied again for a new configuration with target SINR

taken as in the previous case for 1, 000 simulation trials, and we noted the corresponding

average ensemble iterations as shown in Table IV. Finally, when the algorithm reached a

fixed point, we dropped one user from the system so that there were L = 6 users in the

signal space of dimensions N = 5 by taking the first six columns of S and P matrices. We

have observed that the algorithm changes the system configuration after adding new active

users in the system, dropping the last user from the system or changing the target SINRs
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TABLE IV: Convergence Speed of the Adaptive Algorithm with Different Target SINR

of the active users. The algorithm adds/drops the user codewords to/from the system when

there is a change after updating the codeword and power matrices(S and P) in the system.

We note that for larger target SINR, the algorithm needs a larger more number of aver-

age ensemble iterations to converge to the fixed point. As in the previous example, we also

note that for the same load factor, 1.2 (i.e, the first row) in Table IV, the average ensemble

iterations is higher for the random initialization of codewords and powers than that of the

dropped user case (i.e. the third row in Table IV). This is because one user was dropped

from the system when the algorithm reached a fixed point (i.e. codewords were placed

almost in their suitable positions), and we applied the algorithm for that set up. Therefore,

the algorithm adjusts the codewords with fewer ensemble iterations.

We observe that all three algorithms considered need more iterations for convergence

in the case of lower values of the system load factor ~ and fewer iterations for higher load

factors. This behavior may be explained by the fact that in the case of light system load

there are more degrees of freedom available to users and algorithms need more time to
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settle into an optimal codeword ensemble, while for heavily loaded systems there is not

much choice available and an optimal ensemble is easily found. We also note that the

average number of ensemble iterations needed for convergence when one user is added to

the system is larger than the corresponding number of iterations when one user is removed

from the system. This may be explained by noting that when one user is added to the system

the total amount of interference in the system is increased making it more dificult for the

algorithms to find the new optimal WBE ensemble with minimum mutual interference. In

contrast, when one user is removed from the system, the total amount of interference in

the system is decreased making it easier for the algorithms to find the new optimal WBE

ensemble.

The adaptive IA algorithm allows joint codeword adaptation and power control and
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enables users to achieve specified target SINR values implied by specific QoS requirements.

Motivated by this observation we have also performed a separate experiment in which we

looked at variation of the convergence speed of the adaptive IA algorithm in 1,000 trials

with fixed dimension of the signal space and increasing value of the target SINRs for the

same scenarios: convergence from random codeword ensembles to optimal ensembles as

well as convergence from an optimal ensemble with L users to a new optimal ensemble

where one user is added to/removed from the system. Results of this experiment for N = 5,

L = 6 and the same SINR values for users ranging from 0.5 to 4.5 are shown in Figure 19.

However, we note that the first two algorithms may lead to abrupt changes of the user

codeword and/or power that are not desirable in a real time wireless system since the sys-

tem may not be able to adapt to the sudden changes. This may lead to increased probability

of error at the receiver or loss of communication link. An adaptive interference avoidance

algorithm allows the receiver to continue detecting transmitted symbols with high accu-

racy. As we expected, the algorithms converge faster when one user was dropped since the

codewords were at almost optimal positions when the algorithm reached a fixed point.

IV.4 SUMMARY

The simulation setup and numerical results of the distributed codeword algorithms is

discussed in detail in this chapter. We note that the number of ensemble iterations needed

for convergence from random to optimal ensembles increases as the target SINR values

increases, but does not change for convergence from an optimal ensemble to a new optimal

ensemble when one user is added to/removed from the system. We note that the eigen

algofithm needs the least number of average ensemble iterations and therefore the fastest



algorithm among the three, and the adaptive interference avoidance algorithm is the slowest

one in terms of convergence speed.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis we have presented a side-by-side comparision of three algorithms for

distributed codeword adaptation in uplink of a CDMA system based on IA: the eigen al-

gorithm, the MMSE update, and the adaptive IA algorithms. The performance of CDMA

wireless systems is analyzed for random initialization scenario and one user added to the

system as well as one user dropped from the system. We have compared the convergence

speed for these three scenarios for the three different algorithms mentioned above. We

have also included in this thesis a list of simulation histogram plots that are of practical

importance and which relate to the implementation of the proposed three IA algorithms

that should be further investigated in order to make interference avoidance a useful tool in

the design of future wireless communication systems. The comparision is based on the nu-

merical results obtained in extensive simulations which show that, on average, the number

of ensemble iterations needed for the convergence is smallest for the eigen algorithm and

largest for the adaptive IA algorithm.

The numerical results have also shown that increasing the load factor ( ~.) and/or dimen-

sionality of the signal space N does not result in significant increase in the average number

of ensemble iterations needed for convergence by the three different IA algorithms. The

obtained simulation plots of the ensemble iterations of all three algorithms follow the Gaus-

sian distribution with the mean/average value of ensemble iteration.

Future work related to this thesis should consider the addition of the channel in the

system to study the convergence speed of the distributed codeword adaptation algorithms
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in conjunction with realistic channel models for wireless systems. Future work may also

include a study of convergence speed for IA algorithms in a downlink of a CDMA system

as well as in collaborative multibase systems [13 — 15].
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