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Consistency checks for two-body finite-volume matrix elements.
II. Perturbative systems
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Using the general formalism presented in [Phys. Rev. D 94, 013008 (2016); Phys. Rev. D 100, 034511
(2019)], we study the finite-volume effects for the 2þ J → 2 matrix element of an external current
coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic
volume with periodicity L, we derive a 1=L expansion of the matrix element throughOð1=L5Þ and find that
it is governed by two universal current-dependent parameters, the scalar charge and the threshold two-
particle form factor. We confirm the result through a numerical study of the general formalism and
additionally through an independent perturbative calculation. We further demonstrate a consistency with
the Feynman-Hellmann theorem, which can be used to relate the 1=L expansions of the ground-state energy
and matrix element. The latter gives a simple insight into why the leading volume corrections to the matrix
element have the same scaling as those in the energy, 1=L3, in contradiction to Phys. Rev. D 91, 074509
(2015), which found a 1=L2 contribution to the matrix element. We show here that such a term arises at
intermediate stages in the perturbative calculation, but cancels in the final result.

DOI: 10.1103/PhysRevD.101.094508

I. INTRODUCTION

Understanding the emergence of hadrons from the
interactions of their constituent quarks and gluons has
remained a challenge, even many decades after the formu-
lation of the fundamental theory of quantum chromody-
namics (QCD). In recent years, significant progress has been
made in determining the properties single-hadron ground
states via numerical calculations using lattice QCD [1–3].
Most states, however,manifest as resonances inmultihadron
scattering processes, and are rigorously defined only as
poles in analytically continued scattering amplitudes. In
addition, while hadronic amplitudes allow the extraction
of masses, widths and couplings, to constrain structural,
information including charge radii or parton distribution
functions, one must calculate and analytically continue
electroweak transition amplitudes, in which an external
current is coupled to the multihadron scattering states.

Determining scattering and transition amplitudes in
lattice QCD calculations is complicated by the fact that
the latter are necessarily performed in a finite Euclidean
spacetime, where one cannot directly construct asymptotic
states. Presently, the most systematic method to overcome
this issue is to derive and apply nonperturbative mappings
between finite-volume spectra and matrix elements (which
are directly calculable) and infinite-volume scattering and
transition amplitudes. This methodology was first intro-
duced by Lüscher [4,5], in the context of relating the finite-
volume energies of two pions, in a cubic periodic volume of
length L, to the elastic 2 → 2 scattering amplitude.
Within this framework, on-shell intermediate states yield

power-law finite-volume corrections, Oð1=LnÞ, while the
contribution from off-shell quantities is exponentially sup-
pressed, scaling as e−mπL, where mπ is the pion mass. For
sufficiently large box sizes, the second class of corrections
can be neglected, giving a systematic path toward
extracting scattering observables. In the past decades,
Lüscher’s formalism has been extended to include nonzero
momentum in the finite-volume frame as well as coupled
two-particle channels and particles with spin [6–14].
Lattice QCD applications of the methodology have proven
highly effective in the determination of two-hadron bound
and resonant states [15–33], including those at energies
where multiple channels are kinematically open [34–42].
This success in the two-hadron sector has also motivated
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the extension to 2 → 3 and 3 → 3 scattering [43–52], with
the first lattice QCD computations of the 3πþ system
published last year [53–56].1
Extensions of these finite-volume mappings have also

been derived to extract electroweak transition amplitudes
from lattice QCD calculations. As first shown in Ref. [59]
in the context of K → ππ decays, finite-volume matrix
elements are related to electroweak transition amplitudes
through a mapping that depends on both the box size and
the scattering amplitude of the multiparticle final state. This
has been generalized to arbitrary 1þ J → 2 amplitudes
[7,10,60–63] and applied in lattice QCD studies of K → ππ
decay [64–67] as well as γ⋆ → ππ [68,69] and πγ⋆ → ππ
[70–72] transition amplitudes. The ideas have further been
generalized to 1þ J → 1þ J matrix elements, with long
range-contributions form multiparticle intermediate states
[73–75]. Most recently, the formalism for 2þ J → 2
electroweak transition amplitudes has been developed
[76,77], generalizing previous studies based in fixed-order
calculations in a specific effective field theory [11,78]. As
compared to the 1þ J → 2 methodology, the relations in
Refs. [76,77] are more complicated due to the presence
of additional finite-volume effects from triangle-diagram
topologies.
Because the 2þ J → 2 finite-volume mapping is com-

plicated, it is necessary to provide various nontrivial checks
on the formalism, and calculate limiting cases in which
more straightforward predictions may be extracted. With
this in mind, in a previous study [79] we provided two
important checks on the general relations. First we dem-
onstrated that the formalism, in conjunction with the Ward-
Takahashi identity, protects the electromagnetic charge of
finite-volume states. Though obvious from the general
properties of the theory, in the context of our mapping
this required exact cancellations between various combi-
nations of finite-volume functions and thus provided a clear
demonstration that all effects have been properly incorpo-
rated. We then explored the bound-state limit of matrix
elements and recovered the expected result, that finite-
volume corrections scale as e−κL for large L, where κ is the
binding momentum of the two-particle bound state. As is
already well known for finite-volume bound-state energies
[80–82], in the case of a shallow bound state, κL ≪ mπL,
many terms in the large-volume expansion (scaling as
powers of e−κL) give significant contributions. As a result,
we find it is crucial to consider the all-orders framework of
Refs. [76,77] to extract reliable predictions of bound-state
form factors.
In the present article, we continue our series of con-

sistency checks by studying the 1=L expansion of the
finite-volume matrix element, hE0; LjJ ð0ÞjE0; Li, where
jE0; Li is the ground state of a perturbative two-scalar

system and J ðxÞ is a scalar current. In contrast to our
previous check, here we restrict attention to finite-volume
scattering states meaning that the energy, E0ðLÞ,
approaches the two-scalar threshold as L → ∞. For finite
L, both E0ðLÞ and hE0; LjJ ð0ÞjE0; Li admit 1=L expan-
sions with coefficients depending on the geometry of the
finite volume as well as infinite-volume parameters gov-
erning the interactions. In the case of the energy, the
expansion is well-known and has been studied, through
various orders in 1=L, in Refs. [4,83–88]. An analogous
study for matrix elements was performed in Ref. [89], in
which nonrelativistic quantum mechanics is used to expand
an n-particle ground-state matrix element through 1=L4.
In this work, we derive the 1=L expansion of

L3hE0; LjJ ð0ÞjE0; Li through Oð1=L5Þ. We compare
our result with Ref. [89] and find significant disagreement,
including a difference in the behavior of the leading volume
correction, with our result scaling as 1=L3 and that of the
earlier work as 1=L2. To confirm our own determination,
we cross-check both through a numerical study of the
general formalism and through an independent perturbative
calculation. In addition we use the Feynman-Hellmann
theorem to relate hE0; LjJ ð0ÞjE0; Li to a mass derivative
of E0ðLÞ and show that this enforces certain common
features between the two expansions, e.g., that both start
at Oð1=L3Þ. Finally, in our perturbative cross-check, we
identify classes of terms that, if omitted, lead to the
behavior reported by Ref. [89].
The remainder of this article is organized as follows: We

first review the 1=L expansion ofE0ðLÞ in Sec. II A, based in
the Lüscher scattering formalism. Then, in Sec. II B, we
derive the corresponding expansion of hE0; LjJ ð0ÞjE0; Li
using the relations of Refs. [76,77], and also describe how
the results for the energy and matrix element are related via
the Feynman-Hellman theorem. The main expressions
are succinctly summarized in Eqs. (1) and (3) below. In
Sec. II C we provide a numerical check of our expansion
against the all-orders formalism and in II D we provide a
detailed comparison of our result with Ref. [89]. Section III
then describes the perturbative confirmation of our results and
gives additional insight into the discrepancy with Ref. [89].
We briefly conclude in Sec. IV. We also include an appendix
to derive one of the technical results required for Sec. II B,
concerning the imaginary part of the trianglediagramentering
the infinite-volume 2þ J → 2 matrix element.

II. THRESHOLD EXPANSION

In this section we review the 1=L expansion of the
ground-state two-particle energy, E0ðLÞ, and then turn to
the main result of this work, the corresponding expansion
of the finite-volume matrix element. The expressions hold
for a generic, relativistic quantum field theory in a periodic,
cubic spatial volume with side-length L, provided the
lowest-lying two-particle state consists of two identical

1For recent reviews on this topic we point the reader to
Refs. [57,58].
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scalars with mass m. We additionally require that the
center-of-momentum frame (CMF) and finite-volume
frame coincide, i.e., that the particles have zero momentum,
P ¼ 0, in the finite volume.
For convenience we summarize the two key results here:
(1) In Sec. II A we review the well-known expansion of

the two-particle energy [4,83–88]

E0ðLÞ ¼ 2mþ 4πa
mL3

�
1−I

a
πL

þðI2−J Þ a2

π2L2

þ
�
2π4r
a

−
π4

m2a2
− ðI3− 3IJ þKÞ

�
a3

π3L3

�

þOð1=L7Þ; ð1Þ

where a and r are the scattering length and effective
range respectively, defined in Eq. (7) below, andm is
the physical mass. The three geometric constants

I ¼ −8.913 633;

J ¼ 16.532 316;

K ¼ 8.401 924; ð2Þ

are defined and evaluated to high precision in
Refs. [4,84].

(2) In Sec. II B we show that the ground-state matrix
element of a scalar current at zero momentum
transfer admits an analogous expansion

L3hE0; LjJ ð0ÞjE0; Li

¼ g
m

�
1 −

2π4

m2a2

�
ð1 −maT Þ a3

π3L3

− ð1 − 2maT ÞI a4

π4L4

þ ð1 − 3maT ÞðI2 − J Þ a5

π5L5

��
þOð1=L6Þ;

ð3Þ

where hE0; LjE0; Li ¼ 1, g is the scalar charge of a
single particle under the scalar current, J ðxÞ, and

T ≡mrþ 64πm2

g
F 0: ð4Þ

Here F 0 is the threshold form factor, defined in
Eqs. (24) and (27) below via a straightforward
relation to the infinite-volume 2þ J → 2 transition
amplitude.

A. Finite-volume energies

For a range of CMF energies from 2m up to the first
inelastic threshold, the finite-volume spectrum is described

by the Lüscher quantization condition [4], which is exact
up to exponentially suppressed L dependence of the form
e−mL. The result of Ref. [4] relates the discrete energies,
EnðLÞ, to the physical scattering amplitude, by expressing
the former as roots of a determinant in the space of two-
particle angular momenta. The effects of higher angular
momenta first appear in powers of 1=L well-beyond the
orders that we control,2 so that for our purposes it is
sufficient to consider the truncated quantization condition

M−1ðEnÞ ¼ −FðEn; LÞ; ð5Þ

where F is a known finite-volume function, and M is the
S-wave scattering amplitude, related to the S-wave scatter-
ing phase shift, δ, via

MðEÞ≡ 16πE
q cot δðqÞ − iq

: ð6Þ

Here q is the relative momentum of the two particles in the
CMF, defined via E≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
. We recall also that

q cot δðqÞ admits a convergent expansion about two-
particle threshold, referred to as the effective range
expansion:

q cot δ ¼ −
1

a
þ 1

2
rq2 þOðq4Þ; ð7Þ

where a is the scattering length and r the effective range.
The finite-volume function, F, can be expressed in many

forms, all equivalent up to exponentially suppressed cor-
rections (see, e.g., Refs. [6,7,9,13,76]). We begin with the
following definition,

FðE;LÞ ¼ 1

2
lim
Λ→∞

"XZΛ

k

#
1

2ωk

1

EðE − 2ωk þ iϵÞ ; ð8Þ

≡ i
q

16πE
þ FpvðE;LÞ; ð9Þ

where

�XZΛ

k

�
≡ 1

L3

Xjkj<Λ
k∈ð2π=LÞZ3

−
Z

d3k
ð2πÞ3ΘðΛ − jkjÞ; ð10Þ

2The leading corrections from nontrivial angular momenta
enter via a finite-volume function denoted by F40;00ðE; LÞ and
defined, for example, in Ref. [7]. This quantity encodes the
mixing of the S-wave (l ¼ 0) and the G-wave (l ¼ 4) due to the
reduced rotational symmetry of the cubic volume. The F40;00-
correction enters as an additive term in Eq. (5), scaling as
F40;00ðE;LÞ2 ¼ Oð1=L8Þ. The corresponding G-wave correction
to the ground-state energy, E0ðLÞ, then scales as 1=L11 and is
therefore five orders beyond the 1=L6 contributions that we keep.
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and Θ is the usual Heaviside step function, included here to
implement the hard cutoff. In Eq. (9) we have separated F
into its real and imaginary parts, denoting the former by
Fpv. The subscript “pv” stands for principal value, indicat-
ing that the real part of F is equivalently given by taking the
original definition and replacing the iϵ pole prescription in
the integral with a principal value. Separating out the
imaginary part is useful as it exactly cancels the imaginary
part of the inverse scattering amplitude [see Eq. (6)]. It
follows that Eq. (5) is exactly equivalent to the real equation

qn cot δðqnÞ ¼ −16πEnFpvðEn; LÞ; ð11Þ

where q2n ≡ E2
n=4 −m2.

From these relations, it is straightforward to determine
the 1=L expansion of the lowest lying two-particle energy,
denoted E0ðLÞ and defined as smallest Hamiltonian eigen-
value satisfying limL→∞ E0ðLÞ ¼ 2m. The infinite-volume
value motivates the definitions

ΔE0ðLÞ≡ E0ðLÞ − 2m≡ 2m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q20ðLÞ

m2

r
− 1

#
; ð12Þ

¼ 4πa
mL3

X∞
j¼−2

γj

�
a
πL

�
j
: ð13Þ

Here the first line serves to define ΔE0 (the distance from
the finite-volume state to the infinite-volume threshold) and
its relation to q20. Equation (13) introduces notation for a
generic power series in 1=L, and the 1=L3 prefactor, as well
as the factors of scattering length, simplify the form of γj in
the final result. The aim of this subsection is to review the
determination of the coefficients γj, defining the large-
volume expansion of E0ðLÞ.
The final nontrivial ingredient is the threshold expansion

of Fpv, which can be written as

FpvðE;LÞ ¼
1

4Eq2L3

�
1 −

X∞
j¼1

�
qL
2π

�
2j
I j

�
; ð14Þ

where I j are numerical constants characterizing the cubic
geometry,

I j ¼

8>><
>>:

lim
Λ→∞

hP
n<Λ
n≠0 −4π

R
Λ
0 dn n2

i
1
n2 ; j ¼ 1;

P
n≠0

1
n2j ; j ≥ 2;

ð15Þ

with n ¼ jnj and with the sums running over all nonzero
integer vectors, n ∈ Z3=f0g.3

The coefficients, γj, can now be determined in a two step
procedure: First, one substitutes the effective range expan-
sion, Eq. (7), and the expansion of Fpv, Eq. (14), into the
real version of the quantization condition, Eq. (11). In this
way, both sides of the equation are expressed as poly-
nomials in q20 or, via the relation q20 ¼ E2

0=4 −m2, as
polynomials in E2

0. Second, substituting the 1=L expansion
of ΔE0ðLÞ given in Eq. (12), one reaches an equality
involving two series of 1=L. The result can only be satisfied
for all L by tuning the values of γj to enforce the equality of
all coefficients. One finds γ−2 ¼ γ−1 ¼ 0, meaning that
ΔE0ðLÞ scales as 1=L3. The first few nontrivial coefficients
are then given by [4,83–88]

γ0 ¼ 1; γ1 ¼ −I ; γ2 ¼ I2 − J ;

γ3 ¼ −ðI3 − 3IJ þKÞ þ 2π4r
a

−
π4

m2a2
; ð16Þ

where we have adopted the notation of Ref. [84]:
I1 ¼ I ; I2 ¼ J ;I3 ¼ K.4 This result is summarized
in Eq. (1).

B. Finite-volume matrix elements

We now turn to the 1=L expansion of the finite-volume
2þ J → 2 matrix element, where J is a generic scalar
current density. As above, we assume that the total
momentum vanishes in the finite-volume frame, and we
truncate all infinite-volume amplitudes to the Swave. Then
the formalism presented in Refs. [76,77] simplifies to

L3hE0
n; LjJ ð0ÞjEn; Li

¼ WL;dfðE0
n; En; LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðE0

n; LÞRðEn; LÞ
p

; ð17Þ

where jEn; Li is the nth finite-volume excited state,
normalized to unity. As with the Lüscher quantization
condition, this relation holds up to the first inelastic
threshold and is exact up to exponentially suppressed
corrections of the form e−mL.
The right-hand side is composed of the Lellouch-

Lüscher factor, R, defined via

RðEn; LÞ≡ lim
E→En

E − En

F−1ðE; LÞ þMðEÞ ; ð18Þ

¼ −M−2ðEnÞ lim
E→En

� ∂
∂E

�
FpvðE; LÞ þ

q
16πE

cot δ

��
−1
;

ð19Þ
3A convenient method to evaluate these is given in Ref. [87], in

which an exponential damping function is used to accelerate
convergence.

4High-precision numerical determinations of these constants
can also be found in that reference.
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and WL;df , a finite-volume quantity that contains the
infinite-volume 2þ J → 2 transition amplitude

WL;dfðE0; E; LÞ
¼ WdfðE0; EÞ þ fðQ2ÞMðE0ÞGðE0; E; LÞMðEÞ: ð20Þ

Here fðQ2Þ is the single-particle form factor with momen-
tum transfer Q2 ≡ −ðE0 − EÞ2. In the forward limit this
becomes the scalar charge, denoted by g≡ fð0Þ. In the
second term in Eq. (20) we have also introduced G, a
double-pole finite-volume function given explicitly by

GðE0; E; LÞ ¼ lim
Λ→∞

"XZΛ

k

#
1

2ωk

1

E0ðE0 − 2ωk þ iϵÞ

×
1

EðE − 2ωk þ iϵÞ : ð21Þ

The final ingredient in the definition of WL;df is the first
term on the right-hand side of Eq. (20), the infinite-volume
divergence free transition amplitude, Wdf . Here “diver-
gence free” refers to the subtraction of diagrams where the
current probes one of the external legs. (See Refs. [76,77]
for a detailed discussion of the relation between Wdf and
infinite-volume matrix elements.) Though the long-
distance poles have been removed, Wdf does still contain
two other types of kinematic singularities: (i) threshold
singularities arising from the two-particle initial and final
state interactions, analogous to those in the standard 2 → 2
scattering amplitude, and (ii) anomalous triangle singular-
ities, which occur at the boundaries of the kinematic region
where all intermediate states of the triangle topology can go
on shell.
For the remainder of this article, we focus on the special

case where E0 ¼ E, i.e., we evaluate the matrix element at
zero momentum transfer. One of the many simplifying
features of this limit is that the anomalous triangle
singularities, type (ii) above, then only arise at threshold
and are completely given by the imaginary part of the
integral defining GðE;E; LÞ. Since the sum in G is pure
real, this is equal (up to a minus) to

ImGðE;E; LÞ ¼ Im lim
Λ→∞

"XZΛ

k

#
1

2ωk

1

E2ðE − 2ωk þ iϵÞ2 ;

¼ −
1

32πEq
; ð22Þ

where the final equality is proven in Appendix. It will prove
convenient in the following to also introduce notation for
the real part of G. We define

GpvðE;LÞ≡ ReGðE;E; LÞ;

≡ lim
Λ→∞

�XZΛ

k

�
1

2ωk

1

E2ðE − 2ωk þ iϵÞ2 þ
i

32πEq
:

ð23Þ

One can remove both the usual threshold singularities
(∝q) and the threshold triangle singularities (∝1=q) by
introducing a zero-momentum-transfer two-hadron form
factor, F ðEÞ, related to WdfðE;EÞ via

WdfðE; EÞ ¼ MðEÞ
�
F ðEÞ þ i

g
32πEq

�
MðEÞ: ð24Þ

Here the S-wave scattering amplitude, M, removes the
initial- and final-state two-particle interactions so that F
does not contain the threshold cusp appearing in M and
Wdf . The second term, taken directly from Eq. (22), then
removes the remaining singular behavior.
This completes our general discussion of the building

blocks entering Eq. (17). Substituting the finite- and
infinite-volume functions at zero momentum transfer into
the general result, we deduce an all-orders expression for
the finite-volume matrix element in the S-wave only
approximation

L3hEn; LjJ jEn; Li ¼
F ðEnÞ þ gGpvðEn; LÞ

− ∂
∂E ðFpvðE;LÞ þ 1

16πE q cot δÞ
���
E¼En

:

ð25Þ

Given finite-volume energies and matrix elements, e.g.,
computed from lattice QCD, Eq. (25) can be used to solve
for the unknown F . Together with the scattering amplitude,
M, and the single-particle charge, g, this yields a prediction
for the full 2þ J → 2 transition amplitude in the kin-
ematic region around the zero-momentum-transfer point.
In the present article, however, our aim is to analytically

study the L dependence of the threshold matrix element,
hE0; LjJ jE0; Li, by expanding the right-hand side of
Eq. (25) in powers of 1=L. Specifically, we expand
L3hE0; LjJ jE0; Li through OðL−5Þ, corresponding to four
nontrivial orders in the matrix element’s large volume
behavior. To set up the calculation we introduce an
expression analogous to Eq. (13) above

L3hE0; LjJ jE0; Li ¼
g
m

X∞
j¼0

βj

�
a
πL

�
j
; ð26Þ

where, as before, we have removed various factors to
simplify the expressions of βj that arise in our final result.
We next expand all quantities entering Eq. (25) about

E2 ¼ 4m2, equivalently about q2 ¼ 0, beginning with
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F ðEÞ≡ F 0 þOðq2Þ: ð27Þ

We will see below that F 0 first contributes to
L3hE0; LjJ jE0; Li at Oð1=L3Þ, i.e., to β3, implying that
the Oðq2Þ corrections first enter at Oð1=L6Þ (β6) and are
beyond the order we work. Next, the finite-volume G
function has a similar expansion to that given in Eq. (14),
but with the leading L scaling enhanced by the
ðE − 2mÞ2 ∼ q4 pole in the summand. Using Eq. (A2) in
the appendix, one can readily recover the full expansion
through a derivative relation to Fpv:

GpvðE;LÞ ¼ −
1

E
∂
∂q2 ½EFpvðE; LÞ�; ð28Þ

¼ 1

4Eq4L3

�
1þ

X∞
j¼1

ðj − 1Þ
�
qL
2π

�
2j
I j

�
: ð29Þ

Note that, when evaluated at the finite-volume ground state
energy, q2 ¼ Oð1=L3Þ implying Gpv ¼ OðL3Þ. In Eq. (25)
this leads to an OðL3Þ scaling of the numerator, which is,
however, canceled by the same scaling in the denominator
so that L3hE0; LjJ jE0; Li is finite as L → ∞.
To conclude the exercise we rewrite the denominator of

Eq. (25) as a derivative with respect to q2 and expand the
remaining functions to reach

L3hE0;LjJ jE0;Li

¼
F 0 þ g

4Eq4L3 ½1þ
P∞

j¼1ðj− 1ÞðqL
2πÞ2jI j�

− 1
32π

∂
∂q2 ð 4π

q2L3 ½1−
P∞

j¼1 ðqL2πÞ2jI j� þ 1
2
rq2Þ þOð1=L6Þ;

ð30Þ

where it is understood that q2 is set to q20 ≡ E0ðLÞ2=4 −m2

everywhere on the right-hand side. In the denominator we
have also substituted the threshold expansion of q cot δ,
through the order we require, and used the fact that the q2

derivative annihilates the constant term. Expanding this
expression and matching to Eq. (26) yields the main result
of this work: β0 ¼ 1, β1 ¼ β2 ¼ 0,

β3 ¼ −
2π4

m2a2
þ 2π4

ma
T ; ð31Þ

β4 ¼
�
2π4

m2a2
−
4π4

ma
T
�
I ; ð32Þ

β5 ¼
�
−

2π4

m2a2
þ 6π4

ma
T
�
ðI2 − J Þ; ð33Þ

where T is a combination of F 0 and the effective range, r,
defined in Eq. (4) above. The leading order term, β0,
represents a pure single-hadron contribution which arises

from the G function, while the two-hadron form-factor F 0

is sub-leading, along with relativistic corrections from the
single-hadron term.
We close the subsection with a simple argument that

explains the absence of 1=L and 1=L2 terms, and also gives
insight into the pattern of geometric constants entering β3,
β4 and β5. If we work in a generic scalar field theory with
the field φðxÞ creating a single particle state, one possibility
is to choose J ðxÞ ∝ φðxÞ2 for the scalar current. Then, by
the Feynman-Hellman theorem, the finite-volume matrix
element is proportional to a mass derivative of the ground-
state energy. Given the result E0ðLÞ ¼ 2mþOð1=L3Þ, this
immediately implies that L3hE0; LjJ ð0ÞjE0; Li ¼ g=mþ
Oð1=L3Þ, i.e., the absence of 1=L and 1=L2 terms in the
energy implies the same must hold for the matrix element.
Here the factor of L3, multiplying the matrix element, is
required because the contribution appearing in the
Hamiltonian is not directly J ðxÞ but rather RL3 d3xJ ðxÞ.
Indeed, the full result can be derived from the Feynman-

Hellman theorem via the relation

L3hE0; LjJ ð0ÞjE0; Li ¼ g
dE0ðLÞ
dm2

: ð34Þ

The derivative corresponds to varying the physical mass by
varying the bare mass in the Lagrangian, while keeping all
other bare parameters fixed. As a result, all other physical
quantities predicted by the Lagrangian inherit an m
dependence, while L remains constant. Through the order
we work one only requires an expression for the m2

derivative of the scattering length. Deriving this explicitly
goes beyond the scope of this article. We only note that
the result

da
dm2

¼ 1

2
a2rþ 32πma2

g
F 0 ¼

a2

2m
T ; ð35Þ

leads to a perfect correspondence between the 1=L expan-
sions of E0ðLÞ and L3hE0; LjJ ð0ÞjE0; Li, as can be readily
seen from Eqs. (1) and (3).

C. Numerical confirmation

To verify our strategy for expanding the general formal-
ism in powers of 1=L, here we numerically study the
difference

MJ ðLÞ≡mL3

g
hE0; LjJ jE0; Li − β0; ð36Þ

as a function of mL, using Eq. (25) to evaluate the finite-
volume matrix element. By choosing various values of ma,
mr, g=m and mF 0, we are able to confirm numerically that
our analytic 1=L expansion is consistent with the general
formalism.
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In Fig. 1 we show the behavior of ðmLÞ2 ×MJ ðLÞ (top
row) and ðmLÞ3 ×MJ ðLÞ (bottom row) vs mL, with
ma ¼ 0.1, g=m ¼ 1, and various choices of mr and
mF 0. In the first column we take mr ¼ 0 and mF 0 ¼ 0,
in the second mr ¼ 0.25 and mF 0 ¼ 0, and in the third
mr ¼ 0.25 and mF 0 ¼ 0.5. The plots of the top row
indicate that, as mL → ∞, ðmLÞ2 ×MJ ðLÞ asymptotes
to zero, confirming the result β2 ¼ 0. This behavior is
unchanged by varying the values of mr and mF 0, as
shown. The plots of the bottom row show that ðmLÞ3 ×
MJ ðLÞ asymptotes to a nonzero value corresponding to
β3ðma=πÞ3 in the expansion. For the numerical values
considered, β3ðma=πÞ3 ¼ −0.63;−0.62, 5.7, for the first,
second, and third columns, respectively. The numerical
results again confirm that there is no contribution atOðL−2Þ
and that the first nontrivial correction, at OðL−3Þ, is in
agreement with the analytic expression for the threshold
expansion. We have also checked that the large L numerical
result for the OðL−4Þ coincides with our expansion.

D. Comparison with Ref. [89]

In this section we compare our result, summarized in
Eq. (3), to that of Ref. [89], and find clear discrepancies.
The earlier work uses a nonrelativistic effective field theory
to calculate the 1=L expansion for nþ J → n ground state
finite-volume matrix elements, where n is any number of

identical scalar particles. For n ¼ 2 the result of Ref. [89]
becomes

L3hE0; LjJ jE0; LiðRef: ½89�Þ

¼ 2α1 þ
2α1a2

π2L2
J þ α2

L3
þ 4α1a3

π3L3
ðK − IJ Þ

−
2α2a
πL4

I þ 2α1a4

π4L4
C þOð1=L5Þ; ð37Þ

where α1 and α2 are couplings relating the scalar current to
creation and annihilation operators and C is another geo-
metric constant, related to those specifically defined in
Ref. [89] via C ¼ 3I2J − 6IK − J 2 þ 3L. The discrep-
ancy of this result with Eq. (3) is immediately clear, in
particular due to the 1=L2 term. As already described at the
end of Sec. II B, the Feynman-Hellmann theorem implies
that a 1=L2 correction to the matrix element requires the
same for the finite-volume ground state energy. Since the
latter is well-known to be absent, we are confident that this
term cannot arise.
To give a more detailed comparison, we must next relate

the effective-field-theory-independent parameters of our
calculation, g and T , to the couplings that enter the earlier
work. First, note that the relation between g and α1 is given
unambiguously by matching the L → ∞ results of the two
calculations:

FIG. 1. Plots of ðmLÞ2 ×MJ ðLÞ (top row) and ðmLÞ3 ×MJ ðLÞ (bottom row) vsmL, withMJ ðLÞ as defined in Eqs. (25) and (36). In
each panel the solid line shows ðmLÞn ×MJ ðLÞ and the horizontal dashed line shows the expected asymptote, predicted by the analytic
1=L expansion. All plots are evaluated at fixed g=m ¼ 1.0 and ma ¼ 0.1, with mr and mF 0 varied, as indicated in the labels and in the
main text.

CONSISTENCY CHECKS FOR …. II. PERTURBATIVE SYSTEMS PHYS. REV. D 101, 094508 (2020)

094508-7



2α1ðRef: ½89�Þ ¼
g
m
: ð38Þ

By contrast, the expression for α2 is less clear. We can
derive a partial relation by matching the 1=L3 coefficients,
but it is unclear whether we should only match the F 0 term
within T or if we should also absorb other infinite-volume
terms, e.g., those depending on the scalar charge g and
scattering parameters. We take the relation

α2ðRef: ½89�Þ ¼ g
2πa
m3

ðmaT − 1Þ − ζ; ð39Þ

where ζ parametrizes our ignorance of the full relation and
can be used to remove the −1 in parenthesis as well as the
r-dependent term within T . Here we do not allow the
geometric constants I ;J and K to enter the relation, as
these are only defined via the cubic geometry of the finite-
volume, and it must be possible to relate the scattering
parameters and the couplings with no reference to this.
We deduce

L3hE0; LjJ jE0; Liðthis workÞ

¼ 2α1 þ
α2 þ ζ

L3
−
2ðα2 þ ζÞa

πL4
I −

4α1a2

m2L4
I þOð1=L5Þ;

ð40Þ

Comparing to Eq. (37) we first note that the 2α1 and α2=L3

terms now agree by construction. Thus, the only nontrivial
agreement is in the α2=L4 term, which exactly corresponds
between the two expressions. Otherwise the results are
inconsistent due to (i) the 1=L2 term of Ref. [89] and
(ii) geometric-constant-dependent discrepancies at both
Oð1=L3Þ and Oð1=L4Þ.
In the next section we provide a final cross-check of our

result by performing an explicit perturbative calculation of
the finite-volume matrix element, similar in spirit to that of
Ref. [89] but based here in a relativistic effective field
theory. The results of this exercise verify our general
expression and also shed light on the source of the incorrect
1=L scaling found in Ref. [89].

III. PERTURBATIVE EXPANSION
OF MATRIX ELEMENT

In this section, we provide an alternative derivation of the
matrix element near threshold using perturbation theory.
This requires deriving expansions of the finite-volume
two- and three-point correlation functions, using the
time-dependence to isolate the ground state, and then
forming a ratio to identify L3hE0; LjJ ð0ÞjE0; Li. We work
with a generalized effective field theory of a scalar field
with mass m.
As we are interested in the two-particle threshold state, it

is convenient to use an interpolator defined as the product

of two scalar fields, each projected to zero spatial momen-
tum. The two-point function is thus defined as

C2ptðtÞ ¼
ð2mÞ2
2L6

e2imthφ̃2
0ðtÞφ̃†2

0 ð0Þi; ð41Þ

where φ̃pðtÞ defines our notation for a single scalar field of
momentum p at time t. This is related to the position-
space and momentum-space field operators by Fourier
transforms,

φ̃pðtÞ ¼
Z
L
d3xe−ip·xφðt;xÞ ¼

Z
dp0

2π
e−ip0tφ̃ðpÞ: ð42Þ

We restrict attention to t > 0 so that we do not have to
worry about time ordering, and the resultant dependence on
jtj, for the correlation function. The normalization of
Eq. (41) is chosen such that the correlator is unity for
noninteracting limit, coinciding with the conventions
chosen in Ref. [86], with the difference that we use
Minkowski time here.
The two-point correlator can be written using the usual

spectral representation,

C2ptðtÞ ¼
X
n

Zne−iΔEnt; ð43Þ

where ΔEn ¼ En − 2m. Since we are only interested in the
threshold state, we will explicitly isolate the n ¼ 0 term
within C2ptðtÞ, defining

C2pt;thðtÞ ¼ Z0e−iΔE0t: ð44Þ

As discussed in Ref. [86], one can do this systematically by
using the fact that excited state corrections always lead to a time
dependence of the form:exp½−2ið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þð2π=LÞ2n

p
−mÞt�,

with n > 0. In this workwe are only interested in the overlap
factor Z0. Following Ref. [86], this can be determined via

Z0 ¼ C2pt;thð0Þ ¼
ð2mÞ2
2L6

jh0jφ̃2
0ð0ÞjE0; Lij2: ð45Þ

In a similar manner, we define the 3-point correlation
function

C3ptðt0; tÞ ¼
ð2mÞ2
2L6

e2imðt0−tÞhφ̃2
0ðt0ÞJ ð0Þφ̃†2

0 ðtÞi; ð46Þ

where J is a scalar, two-field current

J ðxÞ ¼ gφðxÞφ†ðxÞ; ð47Þ

and g is the scalar charge. In defining C3ptðt0; tÞ we have
required t0 > 0 > t and have set the prefactor to match that
used in the 2-point correlator. The current is renormalized
in the same way as the mass-term within the Lagrangian,
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equivalently by requiring that g is the single-hadron scalar
charge to all orders.
We note here that our general result holds for any scalar

current, whereas in this section we restrict attention to the
single term of Eq. (47). This is sufficient for the cross
check, since the J ðxÞ induces all g and F 0 terms and
therefore allows one to check all terms in the general
expansion. The generality is lost in this case only in that the
perturbative result obscures the fact that the 1=L expansion,
when expressed in terms of g andF 0 is universal, i.e., holds
for all scalar currents. This universality is a direct conse-
quence of the general formalism derived in Refs. [76,77].
Following the procedure for the 2-point correlator, we

isolate the threshold term from the spectral decomposition,
giving

C3pt;thðt0; tÞ ¼
ð2mÞ2
2L6

e−iΔE0ðt0−tÞh0jφ̃2
0ð0ÞjE0;Li

× hE0;LjJ ð0ÞjE0;LihE0;Ljφ̃†2
0 ð0Þj0i; ð48Þ

¼ Z0e−iΔE0ðt0−tÞhE0; LjJ ð0ÞjE0; Li: ð49Þ
As with the 2-point correlator, one can unambiguously
separate exponentials contributing to excited states, so that
this threshold correlator is straightforward to calculate,
order by order in perturbation theory. The matrix element
we are after is then given by the ratio

hE0; LjJ ð0ÞjE0; Li ¼
1

Z0

C3pt;thð0; 0Þ: ð50Þ

In the following subsections, we calculate Z0 ¼ C2pt;thð0Þ
and L3C3pt;thð0; 0Þ [and thus L3hE0; LjJ ð0ÞjE0; Li]
through Oða3; 1=L3Þ in a generic, effective-field-theory
expansion.
We remark that the perturbative check of this section

differs from the derivation of Refs. [76,77], even though
both are based in the generic properties of relativistic field
theory. The key distinction is that the ground state matrix
element is identified here through terms with time depend-
ence of the form e−i2mt, corresponding in momentum space
to the lowest lying noninteracting finite-volume pole. Of
course, the full correlator has a time dependence dictated by
the interacting spectrum. This corresponds to the interact-
ing pole positions (and the cancellation of noninteracting
poles) that was identified after the all orders summation in
Refs. [76,77].
The distinction leads to important technical differences

in the calculation. In particular, in Refs. [76,77] we found
that diagrams in which the current couples to a final single-
particle [see Figs. 3(b1–c2)] did not contribute to the
residue of interacting poles that defined the matrix element
of interest. In the present calculation, by contrast, these
diagrams appear at the fixed-order being considered, and
turn out to be necessary in recovering Eq. (3).

A. Two-point correlator

The order-by-order calculation of Z0 [through Oða3;
1=L6Þ] is one of the central ingredients in perturbative
determinations of the ground state two-particle energy,
described in detail in Refs. [86,88]. As illustrated in detail
in Ref. [88], one of the central complications in the fixed-
order calculation is that numerous contribution arise that
either cancel in the final result or else are absorbed in the
relation between the bare coupling and the scattering length.
To avoid these complications, herewe present a newmethod,
inwhichZ0 is derived through the expansion of finite-volume
correlator expressed via standard identities that arise in the
context of finite-volume quantization conditions.
We begin with

C2ptðtÞ ¼
ð2mÞ2
2L6

e2imt

Z
dE0

2π

Z
dE
2π

Z
dk00
2π

Z
dk0
2π

× e−iE
0tGLðE0; E; k00; k0Þ; ð51Þ

where

GLðE0; E; k00; k0Þ

≡
Z
L
d4xeik

0x
Z
L
d4y eiðP0−k0Þy

Z
L
d4z e−ikz

×
Z
L
d4w e−iðP−kÞwhφðxÞφðyÞφ†ðzÞφ†ðwÞiL; ð52Þ

with kμ ¼ ðk0; 0Þ, k0μ¼ ðk00; 0Þ, Pμ ¼ ðE; 0Þ, P0μ ¼
ðE0; 0Þ. We stress here that the four-point function also
includes the disconnected contractions. In addition, we note
that GL is proportional to an energy conserving Delta
function, δðE − E0Þ.
We next note that, following the Lehmann-Symanzik-

Zimmermann reduction formula, the connected part of GL

will contain a quadruple pole of the form ½ðk2 −m2Þðk02 −
m2ÞððP − kÞ2 −m2ÞððP0 − k0Þ2 −m2Þ�−1 and, after projec-
ting to zero spatial momentum, this leads to poles at
k0; k00 ¼ �m ∓ iϵ. Evaluating the k0 and k00 integrals by
encircling these, we find

C2pt;thðtÞ ¼ 1 −
1

2L3
e2imt∳

2m

dE
2π

e−iEt
1

E2

iMLðEÞ
ðE − 2mþ iϵÞ2 ;

ð53Þ
wherewe have also used the Dirac delta function to evaluate
the E0 integral. We define iMLðEÞ as the connected and
amputated part of GL, evaluated at k00 ¼ k0 ¼ m. Two
additional comments are in order here: First, the leading
1 arises from the disconnected pieces which exactly cancel
the prefactor, by construction. Second, we have neglected
higher singularities in the k0 and k00 dependence, as these
ultimately lead to excited state exponentials. For this reason
the “th” subscript has also been added at this stage, together
with the labels on the integral that indicate only pole near
E ¼ 2m is to be included.
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The next step is to substitute the relation

MLðEÞ ¼
�
q cot δðqÞ
16πE

þ FpvðE;LÞ
�
−1
; ð54Þ

together with the definitions

KðEÞ≡ 16πE
q cot δðqÞ ; FpvðE;LÞ≡ 1

4mL3

1

EðE − 2mþ iϵÞ þ F0ðE;LÞ; ð55Þ

to reach

C2pt;thðtÞ ¼ 1 − i
1

2L3
e2imt∳

2m

dE
2π

e−iEt
1

E2

1

ðE − 2mþ iϵÞ2
�
KðEÞ−1 þ 1

4mL3

1

EðE − 2mþ iϵÞ þ F0ðE; LÞ
�
−1
: ð56Þ

The introduction of F0ðE;LÞ is motivated by the fact that this object is analytic near E ¼ 2mwhereas FpvðE;LÞ contains the
simple pole that we are displaying explicitly.
Expanding the square-bracketed function in powers of 1=ðE − 2mþ iϵÞ and evaluating the contour integral leads to the

elegant result

C2pt;thðtÞ ¼ 1 −
1

2L3
e2imt

X∞
n¼0

�
−1

4mL3

�
n 1

ðnþ 1Þ!
∂nþ1

∂Enþ1

�
e−iEt

E2þn

1

KðEÞ−1 þ F0ðE;LÞ
�
E¼2m

: ð57Þ

This provides a powerful tool for identifying terms in the expansion of Z0 as well as the corresponding energy. Since we are
only interested in the latter here, we set t ¼ 0 to reach the general result

Z0 ¼ 1 −
1

2L3

X∞
n¼0

�
−1

4mL3

�
n 1

ðnþ 1Þ!
∂nþ1

∂Enþ1

�
1

E2þn

1

KðEÞ−1 þ F0ðE;LÞ
�
E¼2m

: ð58Þ

The final step is to substitute the effective range
expansion as well as the large L expansions of F0:

F0ð2m;LÞ ¼ −
1

32π2mL
I þOð1=L3Þ; ð59Þ

∂
∂EF0ðE;LÞ

���
E¼2m

¼ −
L

128π4
J þOð1=LÞ; ð60Þ

∂2

∂E2
F0ðE;LÞ

���
E¼2m

¼ −
mL3

256π6
KþOðLÞ: ð61Þ

Substituting in Eq. (58) and then re-expanding in 1=L, we
conclude

Z0 ¼ 1 −
�

a
πL

�
2

J −
2π4

m2a2
ð1 −m2arÞ

�
a
πL

�
3

− 2ðK − IJ Þ
�

a
πL

�
3

þOðL−4Þ: ð62Þ

The first sub-leading correction at OðL−3Þ is due to the
leading-order amplitude Fig. 2(b), whereas the correction at
OðL−2Þ arises from volume enhancements in the one-loop
diagram, Fig. 2(c).

B. Three-point correlator

We now turn to the three-point correlator, which can be
written as

FIG. 2. Expansion of the momentum-space finite-volume two-point correlator, Eq. (52), in terms of the infinite-volume scattering
amplitude M (gray circle) and finite-volume cuts F (dotted line). The geometric series in M and F yields ML, given in Eq. (54).
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C3ptðt0; tÞ ¼
ð2mÞ2
2L6

e2imðt0−tÞ
Z

dE0

2π

Z
dE
2π

Z
dk00
2π

Z
dk0
2π

e−iE
0t0þiEthφ̃ðP0 − k0Þφ̃ðk0ÞJ ð0Þφ̃ðP − kÞφ̃ðkÞi; ð63Þ

where all four-momenta have a vanishing spatial component. As in the preceding section, we express the momentum-space
correlator on the right-hand side of Eq. (63) order by order in Feynman diagrams, and then calculate the contribution of each
to C3pt;thð0; 0Þ, defined in Eq. (48).
The LO contribution arises from diagrams (a1) and (a2) of Fig. 3, with each diagram having a multiplicity ×2 to account

for the current coupling to either particle. This leads to

Cð0Þ
3pt;thð0; 0Þ ¼

ð2mÞ2
2L6

�
4 ×

g
2m

L3

�∳
2m

dE0

2π
∳
2m

dE
2π

i
E0ðE0 − 2mþ iϵÞ

i
EðE − 2mþ iϵÞ ; ð64Þ

¼ g
mL3

; ð65Þ

where the upstairs factor of L3 comes from the momentum-conserving delta function associated with the disconnected
propagator. Alternatively, this same result is reached using propagators in the time-momentum representation

Cð0Þ
3pt;thðt0; tÞ ¼

ð2mÞ2
2L6

e2imðt0−tÞ
�
4

�
L3

e−imt0

2m

�
g
L6

�
L3

eimt

2m

��
L3

e−imðt0−tÞ

2m

��
¼ g

mL3
; ð66Þ

where in this case the current is rewritten as J ð0Þ ¼ ½g=L6�Pk;p φ̃ð0;kÞφ̃†ð0;pÞ, leading to the volume factor as shown.
The complete leading-order calculation also includes a term in which the current is disconnected from both propagators.
However this term, like every other contribution with the current fully disconnected, is cancelled by a counterterm, chosen
to enforce g as the physical value of the scalar charge. For this reason we omit current-disconnected diagrams throughout.
The contribution at NLO is given by the diagrams in Figs. 3 (b1) and (b2), where the current couples to a single hadron in

the final state. As mentioned above, these do not contribute to the all orders derivation of Ref. [76,77] but must be included
in this fixed-order calculation. The two diagrams give the same contribution to the threshold matrix element and we find

Cð1Þ
3pt;thðt0; tÞ ¼ −4igM2;th

ð2mÞ2
2L6

e2imðt0−tÞ 1

ð2mÞ2 ∳ 2m dE0

2π
∳
2m

dE
2π

ie−iE
0t0þiEt

E2ðE − 2mþ iϵÞ2E0ðE0 − 2mþ iϵÞ ; ð67Þ

¼ −4igM2;th
ð2mÞ2
2L6

e−2imt 1

ð2mÞ3 ∳ 2m dE
2π

eiEt

E2ðE − 2mþ iϵÞ2 ; ð68Þ

¼ 4gM2;th
ð2mÞ2
2L6

e−2imt 1

ð2mÞ3
∂
∂E

eiEt

E2

����
E¼2m

; ð69Þ

FIG. 3. Expansion of the momentum-space finite-volume three-point correlator in terms of the infinite-volume scattering amplitude
M, finite-volume cuts F, and the G function (double dotted line). Since the particles are identical, diagrams (a-c), and (e) contain a
multiplicity ×2 to account for the current probing both the upper and lower legs. Triangle diagrams in (d) and (f) do not include a
multiplicity as there is only a single contribution for identical particles.
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where M2;th ¼ −32πma is the threshold scattering ampli-
tude. Setting t ¼ t0 ¼ 0 then yields

Cð1Þ
3pt;thð0; 0Þ ¼ −

g
mL3

4π4

m2a2

�
a
πL

�
3

: ð70Þ

As with the leading-order result, this can also be repro-
duced using time-momentum perturbation theory.
It is instructive to already collect the results for

C3pt;thð0; 0Þ and Z0, through OðaÞ. We find

hE0; LjJ ð0ÞjE0; Li ¼
C3pt;thð0; 0Þ

Z0

;

¼ g
mL3

1 − 2 × 2π4

m2a2 ð a
πLÞ3

1 − 2π4

m2a2 ð a
πLÞ3

þOða2Þ:

ð71Þ

Note that the factor of 2 in the numerator spoils the
cancellation, so that an Oða=L3Þ term does contribute to
the final result. This may seem surprising since all con-
tributions considered so far involve the current coming to

one of the external legs. Thus for each term in C3pt;thð0; 0Þ
one expects a closely related contribution to Z0. The key
point is that the relative combinatoric factors differ between
the LO and NLO terms and this leads to an NLO term
surviving in the matrix element.
We now turn to contributions scaling as a2=L2. As with

the NLO contributions, here the contribution to C3pt;thð0; 0Þ
with the current on the external leg does not cancel the
analogous contribution to Z0. However, an additional term
with the current on an internal leg, does cancel against the
remainder so that no 1=L2 behavior enters the final matrix
element. The relevant expressions arise from evaluating
the next-to-next-to-leading-order (N2LO) diagrams of
Figs. 3(c1), (c2) and (d). The first two of these give

Cð2;cÞ
3pt;thð0; 0Þ ¼ −2

g
mL3

�
a
πL

�
2

J þOð1=L3Þ; ð72Þ

and thus follow the pattern of the NLO diagram, including
the factor of 2 that spoils the complete cancellation.
The diagram of Fig. 3(d) contributes a similar term as can

be seen from rewriting the expression as

Cð2;dÞ
3pt;thð0; 0Þ ¼ −

ð2mÞ2
2L6

g
ð2mÞ2

Z
dE0

2π

Z
dE
2π

MðE0ÞGðE0; E; LÞMðEÞ
E0ðE0 − 2mþ iϵÞEðE − 2mþ iϵÞ þOð1=L3Þ: ð73Þ

Here we have introduced GðE0; E; LÞ in the perturbative
expansion by rewriting the summed loop as an integral plus
a sum-integral difference. The latter contributes at 1=L3 and
is thus dropped to illustrate the leading behavior first. We
can further simplify this by dividing GðE0; E; LÞ into real
and imaginary parts and splitting the real part into the
double pole at threshold (∼1=½ðE − 2mÞðE0 − 2mÞ�), to-
gether with the sum over k ≠ 0, denoted by G0ðE0; E; LÞ.
As with F0ðE;LÞ, this term is regular near E ¼ E0 ¼ 2m
and the resulting contribution comes from encircling the
poles shown explicitly in Eq. (73). Substituting

G0ð2m; 2m;LÞ ¼ L
128π4m

J þOð1=LÞ; ð74Þ

together with the threshold scattering amplitude then gives

Cð2;dÞ
3pt;thð0; 0Þ ¼

g
mL3

�
a
πL

�
2

J þOð1=L3Þ: ð75Þ

Alternatively, this same result can be derived in time-
momentum perturbation theory. In this case one finds
that the relevant time-dependence arises only for k ≠ 0.
This gives

Cð2;dÞ
3pt;thð0; 0Þ

¼ gM2
2;th

ð2mÞ2
2L6

1

L3

X
k≠0

1

ð2mÞ4ð2ωkÞ3ð2ωk − 2mÞ2 ;

ð76Þ

which is equivalent to Eq. (75) above. Combining
Cð2;cÞ
3pt;thð0; 0Þ and Cð2;dÞ

3pt;thð0; 0Þ gives the same 1=L2 depend-
ence as in Z0, such that these terms perfectly cancel in the
ratio. This is our final confirmation that 1=L2 scaling is
absent from the matrix element: L3hE0; LjJ ð0ÞjE0; Li.
To conclude the perturbative check, we have evaluated

C3pt;thð0; 0Þ to one higher order in both a and 1=L. This
follows the same pattern of the calculation so far, but
induces F 0 and r dependent contributions as well as
various geometric constants. One finds

mL3

g
C3pt;thð0; 0Þ

¼ 1 −
�

a
πL

�
2

J −
4π4

m2a2
ð1 −maT Þ

�
a
πL

�
3

− 2ðK − IJ Þ
�

a
πL

�
3

þOðL−4Þ: ð77Þ
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Combining this with Eq. (62) gives an expansion through
1=L3 that is completely consistent with the result of Eq. (3).
Figure 4 shows the leading 1=L scaling for each diagram
contributing to the matrix element.
We speculate that the disagreement with Ref. [89] arises

from the earlier work omitting the 1=L corrections to Z0 and
also dropping contributions to C3pt;thð0; 0Þ with the current
attached to an external leg. Equivalently, the earlier work
may have been based in the assumption that the two sets of
terms cancel, as they would if it were not for the leading-
order discrepancy, summarized in Eq. (71). Indeed, we find
that if we drop diagrams where the current probes the
external legs [(b), (c), and (e) of Fig. 3], and also drop Z0,
then we exactly recover the 1=L expansion of Ref. [89]. We
stress however that there is no theory nor limiting casewhere
this result holds and, in particular, the absence of the 1=L2 is
a universal result inherited from the ground-state energy.

IV. SUMMARY

Understanding the structure of strongly interacting
resonances and bound states requires knowledge of two-
hadron electroweak transition amplitudes. With this in
mind, a framework was presented in Refs. [76,77] to relate
finite-volume matrix elements, which can be computed
using lattice QCD, to infinite-volume 2þ J → 2 transition
amplitudes. To gain confidence in this formalism, we have
performed a series of consistency checks, presented in
Ref. [79] together with the present article. While Ref. [79]
is concerned with the volume-independence of the charge
and the finite-volume effects on bound-state matrix ele-
ments, this work is dedicated to the 1=L expansion of the
lowest-lying two-hadron scattering state.
Specifically, in Sec. II B we have derived the 1=L

expansion of L3hE0; LjJ ð0ÞjE0; Li throughOð1=L5Þ, with
themain result is summarized in Eq. (3).We have confirmed
that the expressionmatches expectations from the Feynman-
Hellmann theorem, which can be used to draw a correspon-
dence to the 1=L expansion of E0ðLÞ, and also agrees with

an independent perturbative check. We have also compared
to Ref. [89], in which the authors consider the 1=L
expansion of nþ J → n finite-volume matrix elements,
throughOð1=L4Þ, in the context of nonrelativistic quantum
mechanics. For n ¼ 2, the results are expected to agree,
since relativistic effects first appear at Oð1=L6Þ. However,
we find clear disagreement with the earlier publication, both
in the scaling of the leading 1=L correction (1=L2 in
Ref. [89] and 1=L3 in this study) and the coefficients for
the subleading terms. In the perturbative calculation pre-
sented in Sec. III, we have identified classes of corrections
that, if omitted, lead to the expressions found in Ref. [89].
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APPENDIX: IMAGINARY PART
OF TRIANGLE DIAGRAM

In this appendix we demonstrate that GðE; E; LÞ has a
simple imaginary part, given by Eq. (22) of the main text.
The imaginary part arises only from the integral part of
GðE;E; LÞ, and thus, the quantity we are after is given by

ImGðE;E; LÞ ¼ −Im
Z

Λ d3k
ð2πÞ3

1

2ωk

1

E2ðE − 2ωk þ iϵÞ2 :

ðA1Þ

Here we have included the hard cutoff, Λ, since the real part
of the integral has an ultraviolet divergence that cancels
with that of the sum in GðE;E; LÞ. As we will see, the
imaginary part is ultraviolet-finite and therefore also
universal.

FIG. 4. Leading finite-volume scaling for diagrams contributing to the matrix element from the three-point correlator. Diagrams on the
left have identical scaling to those of the corresponding two-point correlator of the same topology, i.e., with the external current
removed.
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Next it is convenient to expand the integrand about the double pole at q2 ¼ k2, where q2 ¼ E2=4 −m2 and k2 ¼ k2,

1

2ωk

1

E2ðE − 2ωk þ iϵÞ2 ¼
1

2ωk

ðEþ 2ωkÞ2
ð4EÞ2ðq2 − k2 þ iϵÞ2 ¼

1

4E
1

ðq2 − k2 þ iϵÞ2 þO½ðk2 − q2Þ0�: ðA2Þ

This is useful because the subleading terms only contribute to the real part of the integral. We reach

ImGðE;E; LÞ ¼ −
1

8π2E

Z
∞

0

dk
k2

ðq2 − k2 þ iϵÞ2 ; ðA3Þ

where we have also used that the singular piece gives a convergent integral so that we can send Λ → ∞. To identify the
imaginary part, we rewrite Eq. (A3) as a contour integral,

Z
∞

0

dk
k2

ðq2 − k2 þ iϵÞ2 ¼
1

2

Z
∞

−∞
dk

k2

ðq2 − k2 þ iϵÞ2 ¼
1

2

I
dk

k2

ðk − q − iϵÞ2ðkþ qþ iϵÞ2 ; ðA4Þ

where, for concreteness, we envision closing the contour in the upper-half plane. Evaluating the integral, we pick up the
residue at the pole, k ¼ qþ iϵ,

I
dk

k2

ðk − q − iϵÞ2ðkþ qþ iϵÞ2 ¼ 2πi
d
dk

k2

ðkþ qÞ2
����
k¼q

¼ i
π

2q
; ðA5Þ

and thereby conclude the desired result

ImGðE;E; LÞ ¼ −
1

32πEq
: ðA6Þ
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