
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1990

A Software Design Tool for Predictable Performance in Real-Time, A Software Design Tool for Predictable Performance in Real-Time,

Data Flow Architectures Data Flow Architectures

Brij Mohan V. Mandala
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer and Systems Architecture Commons, Software Engineering Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Mandala, Brij M.. "A Software Design Tool for Predictable Performance in Real-Time, Data Flow
Architectures" (1990). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion
University, DOI: 10.25777/js1c-h114
https://digitalcommons.odu.edu/ece_etds/426

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fece_etds%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fece_etds%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/426?utm_source=digitalcommons.odu.edu%2Fece_etds%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A SOFTWARE DESIGN TOOL FOR PREDICTABLE PERFORMANCE

REAL-TIME, DATA FLOW ARCHITECTURES

by

Brij Mohan V. Mandala
B.Tech. August 1988, V.R.S. Engineering College, Vijayawada, India

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfilment

of the Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
Decetnber, 1990

Roland R. Mielke (Director)

David L. Livingston

John W. Stoughton

Sukhamoy Som

ABSTRACT

A software design tool which aids in the performance evaluation and selection

of operating points for an algorithm implemented in ATAMM defined data flow

architectures is presented in this thesis. ATAMM (Alogorithm To Architecture

Mapping Model) is a new graph theoretic model developed by researchers at Old

Dominion University and the NASA-Langley Research Center. ATAMM is capable

of modeling the execution of large.grained algorithms on distributed data flow

architectures. A software tool is required for predicting the performance,

determining the resource requirements and for selecting suitable operating points for

an ATAMM based system. The ATAMM Design Tool presented in this thesis is

capable of determining the computing speed, throughput, and resource requirements

for an algorithm. Case studies are performed on two real algorithms to demonstrate

the applicability of the ATAMM Design Tool.

To My Mother, Father, and Brothers

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Roland R. Mielke, for his encouragement,

guidance, patient understanding and invaluable advice during the development of this

thesis. I wish to express my deep gratitude to Dr. Sukhamoy Som for many discussions

regarding this research and for several hours of his valuable time. I would also like to

thank Dr. John W. Stoughton, Rod Obando, Rob Jones, and Mahyar Malekpour for their

constructive suggestions during the software development. My special thanks are due to

Dr. David L. Livingston for being on my thesis committee. Finally, I wish to thank my

family and friends for their encouragement in my pursuit for higher studies.

TABLE OF CONTENTS

Page

LIST OF FIGURES

LIST OF SYMBOLS

Chapter

1. Introduction

vl

1.1 Research Problem .

1.2 Overview .

1.3 Research Objective .

1.4 Thesis Organization .

2. ATAMM Performance Model .

2.1 Introduction .

2.2 ATAMM Model .

2.3 Performance Measures . 16

2.4 Graph Play and Resource Requirements ... 17

2.5 ATAMM Performance Plane 24

2.6 An Example Implementation of ATAMM ... 29

3. ATAMM Design Tool 35

3.1 Introduction . 35

3.2 Software Environment 36

3.3 Graph Editor Window

3.4 Data Generation .

37

41

3.5 Bounds and Buffer Windows . 51

3.6 SGP and SRE Windows .

3.7 TGP and TRE Windows

54

61

3.8 Resources and Throughput Windows ...

3,9 Performance Plane Window .

65

66

4. Case Studies 71

4.1 Introduction 71

4.2 Design Procedure 72

4.3 Space Surveillance Algorithm

4.4 Decomposed State Equation .

72

97

5. Conclusion 129

5.1 Summary,

5.2 Topics for Future Research

129

130

REFERENCES

APPENDIX

132

134

LIST OF FIGURES

FIGURE

2.1 Marked Graph

2.2 An AMG Representation

2.3 An Example of NMG .

2.4 An Example CMG

2.5 ATAMM Model Components

2.6 Injection Control .

2.7 AMG Illustrating the definitions of Section 2.4....

2.8 An Example AMG

2.9 SGP Diagram for Figure 2.8...,

2.10 TGP Diagram for Figure 2.8.

2.11 ATAMM Performance Plane

2.12 ATAMM Performance Plane for Figure 2.8.

2.13 Layout of ADM System.

2.14 AMOS State Diagram .

3.1 Graph Editor Window

3.2 Graph Structure

3.3 Graph File Format .

3.4 Partial Graph File for Figure 3.1.

PAGE

12

14

19

20

22

23

25

26

28

30

33

40

42

43

3.5 Organization of Routines

3.6 Example AMG and corresponding Modified AMG ...

3.7 Bounds Window

45

48

52

3.8 Example AMG .

3.9 SGP and TGP Diagrams for the AMG of Figure 3.8....

3,10 Buffer Window

53

56

57

3.11 SGP Window.

3.12 SRE Window .

3.13 TGP Window.

3.14 TRE Window,

59

60

63

64

3.15 Resources Window 67

3.16 Throughput Window .

3.17 Performance Plane Window .

68

70

4.1 Space Surveillance Algorithm .

4.2 Buffer Window for the Graph of Figure 4.1.

4.3 Bounds Window for the Graph of Figure 4.1.

4.4 SGP Display for the Graph of Figure 4.1.

4.5 SGP Display showing Floats .

4,6 Sliced View of the SGP Display showing Test Times,.........,.......

4.7 SRE Display corresponding to the SGP Display of Figure 4.4....

4.8 TGP Display for the Graph of Figure 4.1.

4.9 TGP Display showing Floats .

73

75

75

76

77

78

79

80

81

4.10 Sliced View of the TGP Display showing Test Times

4.11 TRE Display corresponding to the TGP Display of Figure 4.8....

4.12 Resources Window for the Graph of Figure 4.1.

4.13 Performance Plane Display for the Graph of Figure 4.1....

4.14 Throughput Display for the Graph of Figure 4.1

82

83

85

85

86

4.15 Space Surveillance Algorithm with Control Edge from Node 4 to Node 2 87

4.16 Buffer Window for the Graph of Figure 4.15...

4.17 Bounds Window for the Graph of Figure 4.15.

4.18 SGP Display for the Graph of Figure 4.15 showing Floats

4.19 TGP Display for the Graph of Figure 4.15 showing Floats

4.20 TRE Display for the Graph of Figure 4.15 .

4.21 Resources Window corresponding to the Graph of Figure 4.15....

4.22 Performance Plane corresponding to the Graph of Figure 4.15.....

4.23 Throughput Display for the Graph of Figure 4.15....

4.24 Graph with Control Edges from Nodes 4 to 2, 4 to 3, and 3 to 2 ...

4.25 Buffer Window for the Graph of Figure 4.24.

4.26 Bounds Window for the Graph of Figure 4.24.

4.27 SGP Display corresponding to the Graph of Figure 4.24....

4.28 TGP Display corresponding to the Graph of Figure 4.24....

4.29 TRE Display for the Graph of Figure 4.24.

4.30 Performance Plane Display showing Modify Table ...

4.31 Throughput Display for the Graph of Figure 4.24....

88

88

90

92

92

93

94

94

95

96

98

99

100

101

102

4.32 Decomposed State Equation Algorithm .

4.33 Buffer Window for the Graph of Figure 4.32.

4.34 Bounds Window corresponding to the Graph of Figure 4.32....

4.35 SGP Display for the Graph of Figure 4.32...

4.36 SRE Display corresponding to the SGP Display of Figure 4.35..

4.37 TGP Display for the Graph of Figure 4.32....,...

4.38 TRE Display corresponding to the TGP Display of Figure 4.37....

4.39 Resources Window for the Graph of Figure 4.32....

4.40 Performance Plane Display for the Graph of Figure 4.32....

4.41 Throughput Display for the Graph of Figure 4.32....

4.42 Graph with Control Edge from Node 1 to 2

4.43 Buffer Window for the Graph of Figure 4.42

4.44 Bounds Window for the Graph of Figure 4.42.

4.45 SGP Display for the Graph of Figure 4.42..

4.46 TGP Display for the Graph of Figure 4.42.

4.47 TRE Display for the Graph of Figure 4.42...............

4.48 Resources Window for the Graph of Figure 4.42.....

4.49 Performance Plane Display for the Graph of Figure 4.42...................

4.50 Throughput Display corresponding to the Graph of Figure 4.42........

4.51 Graph with Control Edges from Nodes 1 to 2, 7 to 8„and 10 to 8 ...

4.52 Buffer Window for the Graph of Figure 4.51

4.53 Bounds Window corresponding to the Graph of Figure 4.51....

104

105

105

107

108

109

110

112

113

114

114

116

117

118

118

119

120

121

122

122

4.54 SGP Display for the Graph of Figure 4.51 123

4.55 TGP Display for the Graph of Figure 4.51.

4.56 TRE Display for the Graph of Figure 4.51.

124

125

4.57 Resources Window corresponding to the Graph of Figure 4.51.....

4.58 Performance Plane Display showing Modify Table

4.59 Throughput Display for the Graph of Figure 4.51....................„....

125

127

128

LIST OF SYMBOLS

SYMBOL DESCRIPTION

ACT

ADM

AMOS

Algorithm Completion Time

Advanced Development Model

Algorithm Marked Graph

ATAMM Multicomputer Operating System

ATAMM Algorithm To Architecture Mapping Model

C

CMG

D[n]

DR

EF

ES

GVSC

IE

IF

I/O

ith Circuit in the CMG

Computational Marked Graph

Number of data packet associated with node n

Data Read

Earliest Finish

Earliest Start

Fire Data Time

Functional Unit

Algorithm Marked Graph

Generic VHSIC Spaceborne Computer

Input buffer empty

Input buffer full

Input/Output

LF

LS

M(C)

N

NMG

OE

OF

PC

pi

PR

R

R

SGP

TBI

TBIO

TBIO~

TBO

TBOU,

TCE

Latest Finish

Latest Start

Number of tokens in C,

Number of nodes in the AMG

Node Marked Graph

Output buffer empty

Output buffer full

Process Complete

Place of G

Process Ready

Resources

Maximum number of Resources

Minimum nmnber of Resources

Single Graph Play

Sink of Modified AMG

Single Resource Envelope

Time Between Inputs

Time Between Input and Output

Lower bound limit of TBIO

Time Between Outputs

Lower bound limit of TBO

Total Computing Effort

T(C)

TGP

TMR

VHSIC

Sum of transition times in C

Total Graph Play

Transitions

Total Resource Envelope

Triple Modular Redundancy

Very High Speed Integrated Circuit

CHAPTER ONE

Introduction

1.1 Research Problem

This thesis research is concerned with the development of a software design tool

which aids in the performance evaluation of an algorithm implemented in an ATAMM

defined data flow architecture. Algorithm-To-Architecture Mapping Model (ATAMM)

is a new graph theoretic model from which the rules for data and control flow in a

homogeneous, multicomputer, data flow architecture may be defined [I, 2]. The

ATAMM model was developed by researchers at Old Dominion University.

1.2 Overview

Over the past few years, a number of different computer architectures have been

proposed of which several computer systems have been built [3]. A few examples are

the Texas Instruments Distributed Processor (USA), the Cellular Tree Machine of the

University of North Carolina-Chapel Hill (USA), and the Manchester Data Flow

Computer (England) [3]. The motivation for the development of these systems comes

mainly from three objectives [4]. First is the desire to increase computer performance

through the use of concurrency. Second is the desire to more fully exploit very large

scale integration (VLSI) in the design of computers. Third is the interest in new

programming methods which facilitate the mapping of algorithms onto new architectures.

These ideas suggest a decentralized computer architecture in which a number of

independent computers are to work together. Unfortunately, strategies for interconnecting

and programming such architectures based upon von Neumann principles have not

evolved [4].

Strategies for the control of computations on decentralized computer architectures

can be classified broadly as control flow, demand driven, and data driven [4]. In control

flow computers, explicit flows of control cause the execution of instructions. In demand

driven architectures, the execution of operations are triggered by the requirements for

outputs. In data driven architectures (also known as data flow computers), the availability

of operands trigger the execution of operations.

The data flow architecture concept has already attracted the attention of a great

many researchers. Starting with the work on data flow at MIT by Jack Dennis, a number

of data flow computers have been built [5]. The best strategy for executing an algorithm

in these data flow computers is machine dependent [4]. However, only a few researchers

have tried to develop a theoretical model for evaluating computation in a data driven

architecture [6]. These models do not appear to be adequate to address the complex

issues of scheduling, coordination, and communication [4].

The Algorithm-To-Architecture Mapping Model (ATAMM) is a new graph model

developed by researchers at Old Dominion University [7]. The ATAMM model describes

the data and control flow associated with the execution of algorithms in data flow

architectures [2]. The ATAMM model consists of a set of three Petri net marked graphs

[8, 9] which incorporate general specifications of communication and processing

associated with each computational event in a data flow architecture.

The problem domain addressed by the ATAMM data flow architecture consists

of decision-free, large grain, complex algorithms which are assumed to be executed

periodically in a multicomputer environment [4]. The granularity level of the algorithm

decomposition is kept high to avoid communication bottlenecks as observed in many fine

grain data flow architectures [10].

The ATAMM model specifies data and control flow dialog necessary for any data

flow architecture that implements a given algorithm [4]. The ATAMM model also

provides the means to investigate different algorithm decompositions without having to

consider the hardware [4]. A basis for determining analytically the performance bounds

for computing speed and throughput capacity is also provided by the ATAMM model [4].

The ATAMM model is being adapted to a VHSIC (Very High Speed Integrated

Circuit) data flow architecture called the Advanced Development Model (ADM). The

ADM system consists of four identical VHSIC 1750A processors communicating over a

dual PI bus. A 1553B communication module, also connected to the PI bus, serves as

a gateway for input and output data flow from an IBM PC/AT. The 1553B

communication module provides to the AT the information regarding the number of

available functional units. Accordingly, the AT chooses an operating point that matches

the resource requirements and modifies the graph to operate at that particular operating

point. An automated software tool is necessary to determine the modifications to be made

to the graph to operate at various operating points for different values of resources. The

tool must also provide a means to the user to select operating points of his choice in the

performance plane.

1.3 Research Objective

The objective of this thesis research is to develop a supporting software design

tool for the ATAMM model. The tool is capable of predicting the time performance and

resource requirements of an algorithm implemented in an ATAMM defined data flow

architecture and can provide a means to select optimal operating points for the execution

of the algorithm. Prediction of time performance, resource requirements, and specification

of operating points manually for an algorithm are in general very time consuming and

tedious processes. The ATAMM Design Tool is developed as an automated tool to make

these processes simple and less time consuming for the user. Three major aspects

constitute this thesis research. First is the development of required algorithms. Second

is the development of code for the software tool. Third is the evaluation of the tool's

capability through case studies.

Algorithms are developed for the construction of displays representing graph play

and resource envelopes. Included in the displays are the options for adding test times to

functional units and floats to algorithm nodes. Algorithms for generating operating points

in the performance plane are also developed as part of this thesis work. The complete

software tool is coded in C under the Microsoft Windows environment. As a

demonstration of the application capabilities of the ATAMM Design Tool, case studies

are performed on real algorithms. These algorithms include the space surveillance

algorithm and the state equation for linear, time invariant systems.

1.4 Thesis Organization

A brief description of the ATAMM model and the related performance issues are

presented in Chapter Two. A performance model for the ATAMM data flow architecture

is presented in Section 2.2. A detailed description of ATAMM performance measures is

given in Section 2.3. The theory concerning the ATAMM performance plane and the

operating point selection strategies is presented in Section 2.5. In Section 2.6, the

ATAMM based operating system (AMOS) for the ADM is presented as an example

implementation of ATAMM. A state diagram description of AMOS is used as a means

to discuss system operation.

The development of the ATAMM Design Tool software is presented in Chapter

Three. A brief description of system requirements and the programming environment is

is presented in Section 3.2. The development of the Graph Editor window is described

in Section 3.3. The details of data generation for the tool are described in Section 3.4.

The construction of the SGP and SRE windows is related in Section 3.5. The

development details for the TGP and TRE windows are presented in Section 3.6. In

Section 3.7, Bounds and Buffer windows are discussed. Throughput and Resource

requirement windows are presented in Section 3.8. The construction details of

Performance Plane and Modify Table windows is presented in Section 3.9.

The results of the two case studies performed using the ATAMM Design Tool are

presented in Chapter Four. Some real algorithms are chosen for case studies to prove the

practical applicability of the ATAMM Design Tool. The case studies conclude with the

selection of suitable operating points for efficient operation of the system.

A summary of the research performed and topics for future research are presented

in Chapter Five.

CHAPTER TWO

ATAMM Performance Model

2.1 Introduction

In this chapter, a performance model for the ATAMM data flow architecture is

presented. The ATAMM model is briefly discussed in Section 2.2. The performance

measures are introduced in Section 2.3. The concepts of injection control, earliest start,

earliest finish, latest start, latest finish, critical path(s), TCE, graph play, and resource

requirements are discussed in Section 2.4. These concepts are the crucial factors in the

development of the software tool described in Chapter 3. The ATAMM performance

plane and related concepts are described in Section 2.5. In Section 2.6, an example of

an ATAMM implementation is presented and the capabilities of the system are described.

2.2 ATAMM Model

Over the past few years, multiprocessor and distributed-processing systems have

become a subject of intensive research. The development of parallel architectures

composed of identical, special purpose computing elements is of particular interest [11].

The computing elements of a distributed system must share resources and information.

Therefore, there is a need to synchronize and control this sharing in order to obtain

correct overall system operation [12].

The ATAMM model is a result of research by Stoughton and Mielke at ODU, in

conjunction with NASA-Langley Research Center, to develop a multicomputer operating

strategy for implementing large-grained, decomposed algorithms on data flow

architectures. This model is important for at least three reasons, First, it provides a

context in which to investigate algorithm decomposition strategies without the need to

specify a specific computer architecture. Second, the model identifies the data flow and

control dialog required of any data flow architecture which implements the algorithm.

Third, the model provides a basis for analytically calculating performance bounds for

computing speed and throughput capacity [7].

The ATAMM model consists of three Petri net marked graphs called the algorithm

marked graph (AMG), the node marked graph (NMG), and the computational marked

graph (CMG). A Petri net is a special kind of directed graph capable of describing data

and control flow of a system [12]. Petri nets serve as both a graphical and mathematical

tool. Some familiarity with Petri nets [8] and marked graphs [9] is assumed in this

presentation. An example marked graph is shown in Figure 2.1. Circles represent nodes

(transitions) and line segments represent edges (places). The black dots on the edges

represent tokens which indicate availability of data. A node is "enabled" by the presence

of tokens on all incoming edges.

The AMG is a representation of a specific algorithm decomposition. Operations

and operands are represented as nodes and directed edges, respectively. Data availability

is represented by the presence of tokens on incoming edges. Source and sink transitions

for input and output signals are represented as squares. An example illustration of an

Figure 2.1. Marked Graph.

10

AMG is shown in Figure 2.2. The AMG, however, does not display procedures that a

computing structure must manifest in order to perform the computing task. In addition,

the issues of control, time performance, and resource management are not apparent in this

graph.

The NMG is a Petri net graph that represents the performance of an algorithm

operation by a functional unit. Three primary activities, reading of input data from global

memory, processing of input data to compute output data, and writing of output data to

global memory, are represented as transitions in the NMG. Data and control flow paths

are represented as places (edges), and the presence of data is shown by tokens marking

appropriate edges. A read transition can be fired only if a functional unit is available

in a queue of available functional units and a token is present on each incoming edge.

Once assigned, the functional unit is used to implement the read, process, and write

operations before being returned to a queue of available functional units. An NMG

describing these activities is shown in Figure 2.3. The edge labels stand for the

following;

IF Input Buffer Full

IE Input Buffer Empty

DR Data Read

PC Process Complete

PR Process Ready

OE Output Buffer Empty

OF Output Buffer Full

Figure 2.2. An AMG Representation.

12

OE

OF

Figure 2.3. An Example of NMG.

13

The CMG is constructed from the AMG and the NMG by the following rules:

1. Source and sink nodes in the algorithm marked graph are represented

by source and sink nodes respectively in the CMG.

2. Nodes corresponding to algorithm operations in the algorithm marked

graph are represented by NMGs in the CMG.

3. Edges in the algorithm marked graph are represented by edge pairs,

one forward directed edge for data flow and one backward directed

edge for control flow, in the CMG.

The play of the CMG proceeds according to the following graph rules.

l. A node is enabled when all incoming edges are marked with a token.

An enabled node fires by encumbering one token from each incoming

edge, delaying for some specified transition time, and then depositing

one token on each outgoing edge.

2. A source node and a sink node fire when enabled, without regard for

the availability of a functional unit.

3. A node pmcess is initiated when the read node of an NMG is enabled

and a functional unit is available for assignment to the NMG. A FU

(functional unit) remains assigned to an NMG until completion of the

firing of the write node of the NMG.

A CMG representation of the AMG of Figure 2.2 is shown in Figure 2.4. The

complete ATAMM model consists of the AMG, the NMG, and the CMG. A pictorial

display of this model is shown in Figure 2.5.

Figure 2.4. An Example CMG.

Figure 2.5. ATAMM Model Components.

16

The CMG of Figure 2.4 has certain note-worthy characteristics. Execution of the

CMG results in live, reachable, safe, deadlock free, and consistent behavior. Liveness

indicates that every transition of the graph can be fired from the initial marking [7].

Reachability implies that an output will be produced for every input. The CMG is safe

because the backward control edges prevent data from being overwritten. The backward

control edges prevent enablement of a transition until previous output data are picked up.

The CMG is also deadlock free, because once assigned to an transition, a functional unit

always is able to complete execution. Consistency implies that the CMG periodically

produces outputs when inputs are applied periodically [7].

There are two types of concurrency possible during the execution of an algorithm

as specified by the CMG. Transitions belonging to the same data set and which are

independent of each other may be executed simultaneously. This is referred to as parallel

concurrency and has a direct effect on computing speed. It is limited by the number of

transitions that can be performed simultaneously for the given algorithm graph and by the

number of functional units available. Also, transitions belonging to different data sets can

be performed simultaneously in the computing system. This is referred to as pipeline

concurrency [4]. It is limited by the capacity of the graph to accommodate additional

data sets and by the number of functional units available to implement the algorithm

periodically.

23 Performance Measures

In this section, two measures of time performance, TBIO and TBO, are defined.

The performance measure TBIO is the elapsed time between an algorithm input and the

17

corresponding output. TBIO is an indicator of computing speed. The lower bound for

TBIO, denoted as TBIOcs, is given by the sum of transition times for nodes contained in

the longest directed path from input source to the output sink in the AMG. This is shown

in [4]. The performance measure TBO, for the time between outputs, is the elapsed time

between successive algorithm outputs when the AMG is operating periodically at steady-

state. The inverse of TBO is an indicator of output per unit time or throughput. The

algorithm imposed lower bound for TBO is given by the largest time per token of all

directed circuits in the CMG [4]. TBO is also bounded by the number of available

resources. It is shown in [4] that the resource imposed lower bound for TBO is TCE/R

where TCE (total computing effort) is the sum of transition times for all nodes in the

AMG and R is the number of available functional units. The lower bound for TBO,

denoted as TBO„a, is the greater of the algorithm bound and the resource bound.

2.4 Graph Play and Resource Requirements

In this section, a brief description of injection control is presented, Also, the

parameters describing graph play, earliest start, earliest finish, latest start, and latest finish,

are defined. Then, two diagrams which display graph play and are useful for determining

the number of resources needed to achieve specified performance measures are defined.

Injection control is a control procedure which limits the maximum rate at which

new input data packets can be injected. A data packet is an input data set. For control

and signal processing applications, the algorithm is repeated periodically with new input

18

data sets [4]. When presented with continuously available input data packets, the natural

behavior of a data flow architecture results in operation where data packets are accepted

as rapidly as available resources and the input transition permit. This leads to a steady-

state operating point where TBO = TBO~ but TBIO & TBIO~. This occurs because the

pipeline from input to output becomes congested with extra data packets which must wait

for free resources to be processed. Injection control eliminates data packet congestion and

thus preserves operation at TBIOUi. An example implementation of injection control is

shown in Figure 2.6.

Each node in the AMG has four associated time parameters. These parameters are

the earliest start (ES), earliest finish (EF), latest start (LS), and latest finish (LF). ES is

the earliest time at which a node can be fired. EF is the earliest time at which a node

execution can complete, and is equal to the sum of ES and the node time associated with

the node. LS is the latest time at which a node can be fired. This parameter is equal to

or greater than the parameter ES. LF is the latest execution completion time of a node

and is equal to the sum of LS and the node time of that particular node [13].

An example AMG is given in Figure 2.7 along with the values of the parameters

defined above. The difference between latest start and earliest start or latest finish and

earliest finish is called the float of a node. Float is the greatest increment of time by

which a node execution can be delayed without increasing TBIO.

In the AMG, the longest path from the input source to the output sink, measured

in terms of time, is defined as the critical path. There can be more than one critical path

Source Sink

D — Dummy transition of time D

Figure 2.6. Injection Control.

20

ES
LS

EF
LF

ES — earliest stort
LS — latest start

EF — earliest finish
LF — latest finsh

Figure 2.7. AMG Illustrating the definitions of Section 2.4.

21

for a given AMG, In the AMG of Figure 2.7, nodes 1, 3, 4, and 5 form a critical path.

In this graph, there is no other critical path.

The single graph play (SGP) diagram is a diagram which displays the execution

of each node of the AMG as function of time. The diagram is constructed for a single

input data packet under the assumption that unlimited resources are available to play the

graph. Node activity is denoted by a solid line and the symbols (&, &) are used to

indicate the beginning and end of node execution. When several nodes are active at the

same time, lines indicating node activity are stacked vertically so that computing

concurrency is apparent. The SGP diagram for the AMG shown in Figure 2.8 is given

in Figure 2.9. The data packets are numbered in the same sequence in which they are

injected.

The number of resources required to execute a single data packet is obtained by

counting the number of active nodes during each time interval in the SGP diagram. The

peak resource requirement is denoted by R and represents the minimum number of

resources necessary to achieve operation at TBIO = TBIO~.

The total graph play (TGP) diagram displays the execution of each graph node

when the graph is operating periodically in steady-state with period TBO. The TGP

diagram is constructed using information &om the SGP diagram. The SGP diagram is

divided into segments of width TBO, and these segments are overlaid to form the TGP

diagram. Each segment from the SGP diagram represents a new input data packet. Data

packets are numbered sequentially so that the packet numbered i+1 is the data packet

which is input to the graph TBO time units after the packet numbered i. The TGP

diagram for the AMG of Figure 2.8 is shown in Figure 2.10.

22

D — Dummy Transition
cpl, cp2 — Control Places

Figure 2.8, An Example AMG.

23

Data Packets

2

5
I

Time —&

Figure 2.9. SOP Diagram for Figure 2.8,

24

The resource requirements to execute multiple data packets injected with period

TBO are obtained by counting the number of active nodes during each time interval in

the TGP diagram. The peak resource requirement R is determined by finding the

largest resource requirement in all TGP diagrams drawn for injection intervals greater

than or equal to TBO. From Figure 2.10, it is evident that a minimum of 7 resources is

required for TBOra = 2. It can be shown that if the TGP diagram is drawn for values of

TBO & 2, the resource requirement does not exceed 7. Therefore, the peak resource

requirement R is 7.

2.5 ATAMM Performance Plane

The display of all operating points on a graph of TBO versus TBIO with R as a

parameter is called the ATAMM performance plane. An example performance plane is

shown in Figure 2.11.

The system exhibits the best time performance when operated at the lower bounds

of TBO and TBIO. Operation of the algorithm graph at these lower bounds is achieved

using input injection control. The resource requirement at this point is the value R

obtained in the TGP diagram drawn for TBIO~ and TBO~. Under conditions of non-

availability of sufficient resources, the operating point must be shifted so that fewer

resources are required. By using injection control, the operating point can be moved

along the vertical line B-V. This operating strategy preserves TBIO but degrades

throughput performance [14]. The operating points on the vertical line B-V are calculated

) (4)

(3)
~4

u)

6 (2)

(1)

1 p

Time

TBO

Figure 2,10. TGP Diagram for Figure 2.8.

26

TBO

TBIOLe

~ — ATAMM operotinq point

TBIO ~
Figure 2.11. ATAMM Performance Plane.

27

from the TGP diagram by increasing TBO until the number of active nodes in any time

interval decreases by one from the previous operating point. As an example, consider the

AMG of Figure 2.8. By increasing TBO from 2 to 3, the number of required resources

decreases to 5. Increasing TBO to 5 further reduces the resource requirement to 4. These

points are shown in Figure 2.12.

To reduce resource requirements, the operating point also can be moved along the

horizontal line B-H. This operating strategy degrades computing speed but preserves

TBO [15]. This strategy is implemented by adding control edges to the original AMG.

A control edge is an AMG place which imposes a precedence relation among two

transitions, but does not imply data dependency [15]. When such an edge is added to an

AMG, the longest path from input to output increases thus increasing TBIO. The addition

of control edges can create new directed circuits having increased time per token values

so that TBO is also increased. This can be avoided by increasing the number of buffers

on an edge in the AMG. Every edge has an initial buffer size of one which serves as a

storage for the output of a node. By increasing the number of buffers on an edge, the

token count on circuits formed by adding control edges can be increased so that the value

of TBO is preserved. Operating point design using control edges and buffer spaces is

explained in more detail in [4]. As an illustrative example, consider Figure 2.8. Adding

control edges from node 3 to node 4 and node 3 to node 2 requires that buffer size be

increased between nodes 1 and 4 and nodes 1 and 2, respectively. The new operating

point at TBO = 2 and TBIO = 8 for R = 5 is shown in Figure 2.12. Additional operating

points on the TBIO = 8 line are obtained by using injection control.

28

6

O
co 5I-

2
TBOLn——

1

TBIOLa TBIO ~
Figure 2.12. ATAMM Performance Plane for Figure 2.8.

29

The performance plane diagram provides information essential for the selection

and control of the time performance of algorithms executing under ATAMM rules.

Operating points are selected by identifying R points in the performance plane, one point

corresponding to each resource number. The point associated with a specific value of R

identifies the value of TBIO and TBO when the system is operating with R resources.

If the number of resources changes, then a new operating point is identified. Operation

at the new point is realized by modifying the graph with control edges and buffers, and

adjusting the input injection interval.

2.6 An Example Implementation of ATAMM

In this section, an example implementation of the ATAMM is described. The host

architecture is the ADM (Advanced Development Model) system. The operating system

is the AMOS (ATAMM multicomputer operating system).

The ADM system consists of four VHSIC 1750A processors that are identical,

communicating over a dual PI-bus. A 1553B communication module, also connected to

the Pl-bus, serves as a gateway for input and output data flow from an IBM PC/AT. The

single line communication link between the 1553B module and the PC/AT is also used

for fault injection, fault recovery, and modification of the algorithm graph in real-time

[15]. The 1553B is capable of controlling the input injection rate to the 1750A processors

and collecting output from the PI-bus. All the processors also communicate over an

IEEE-488 bus to a Microvax computer used to download application programs and files

for debugging activities.The layout of ADM system is shown in Figure 2.13.

30

DUAL PI — BUS

Figure 2.13. Layout of ADM System.

31

One operation of the AT shown in the ADM system which is important from the

perspective of design tool is the following. If there is any change in the number of

available resources, the information must be passed on to the AT. The reason for passing

the information to the AT is that the AT is responsible for modifying the graph according

to the number of available resources. In addition, all the information specifying the

necessary modifications to be made to the graph, must be initiated by the AT. This

information includes placement of buffers, control edges, and the corresponding injection

interval. The AT is provided with this information by the design tooL The design tool

has been developed to maintain a modify table for resources. The modify table contains

information concerning buffer sizes, control edges, and injection interval necessary to

modify the original algorithm to match the functional unit availability. When an

operating point is selected in the performance plane, the corresponding modify table is

made available to the AT. The modify table information is stored in the AT and is used

for modification of the graph.

The AMOS consists of three logical components, the graph manager, the global

memory, and a set of functional units or resources. The graph manager updates and

monitors the status of the computational marked graph to assign functional units to

enabled nodes (according to priority if more than one node is enabled). The global

memory stores data corresponding to input and output signals for each algorithm

operation of the AMG. The functional unit communicates with the graph manager to

update the CMG status, and with the global memory to read and write data. A functional

unit releases the PI-bus only after the updated graph data structure is broadcast to all

functional units. This is to ensure that all functional units have an identical copy of the

32

graph data structure [15]. The graph manager and global memory are distributed among

all the functional units [15].

The operation of the AMOS is described using the state diagram of Figure 2.14.

Initially, a functional unit is in the Idle state and remains there until its identifier appears

at the top of the resource queue. Then the functional unit enters the Examine Graph state.

Here, it monitors the status of the CMG and when an enabled read node is identified, it

assigns itself to perform the algorithm operation, grabs the Pl-bus, and enters the next

state called Execute. At this time, the functional unit identifier is removed from the top

of the queue and an "F" command is broadcast on the bus to announce that an algorithm

operation has been initiated. The PI-bus is then released but the functional unit remains

in the Execute state until the algorithm operation is complete. At the completion of the

operation, the functional unit again grabs the PI-bus and a "D" command is broadcast,

along with the output data of the operation, to all the other functional units. At this time,

the functional unit enters the Self Test state and releases the PI-bus. After successfully

completing the self test, the functional unit returns to the Idle state. This final state

transition includes broadcasting of the "R" command. The purpose of this broadcast is

to notify all functional units that the particular functional unit identifier has been returned

to the bottom of the resource queue. Also included in the final state transition are the

operations of grabbing and releasing of the PI-bus. The CMG and resource queue in the

global memory of any functional unit can be updated by F, D, or R commands from any

33

SELF NODE

Figure 2.14. AMOS State Diagram.

34

other functional unit while in any state [15]. This information is shown as the fifth state

in the state diagram, and is called Update.

Several operating features of AMOS make the ADM system operation reliable and

efficient. The ADM is capable of implementing one algorithm graph with a single input

source and a single output sink [15]. ADM is also developed with fault tolerant features.

The operating system is capable of correcting a computational error in a functional unit.

The approach used is the TMR (triple modular redundancy) method in which every

algorithm operation is performed by three functional units and the result is selected by

voting [15]. AMOS can recover from a single fault in which a functional unit detects an

error in the self test state [15]. It is also possible to modify graph structure and input

injection period in real-time based upon knowledge of the number of functional units.

These features of fault tolerance and operating point modification can be tested by

injecting faults or changing the number of functional units in real-time.

CHAPTER THREE

ATAMM Design Tool

3.1 Introduction

This chapter describes the development of the ATAMM Design Tool software

This tool aids the user in predicting the performance and resource requirements of an

algorithm implemented in an ATAMM defined data flow architecture. The tool also

provides the ADM system with the Modify Table consisting of injection interval, buffer

size, and control edge information for each selected operating point in the Performance

Plane. The entire tool is developed under the Microsoft Windows environment described

in Section 3.2.

The ATAMM Design Tool consists of several component pieces called windows.

Each window is constructed to solve a particular section of the total design problem. One

such window is the SGP window which displays the single graph play diagram for an

algorithm. There are several other windows which constitute the ATAMM Design Tool.

The TGP window displays the total graph play diagram for an algorithm. The SRE and

the TRE windows construct the single resource envelope diagram and the total resource

envelope diagram respectively, corresponding to the SGP and the TGP displays. The

Buffer window specifies the number of buffers needed on each edge in the graph. The

Bounds window calculates the values of the lower bounds for performance measures, the

earliest start time, the earliest finish time, the latest start time, and the latest finish time

36

resources required for different values of the injection interval. The Thmughput window

displays the throughput performance for different values of resources in the form of a bar

chart. The Performance Plane window shows all operating points for a particular graph

and enables the user to choose a particular set of points for operating the system.

The ATAMM Design Tool obtains the required input information from a graph

drawn using the Graph Editor window. The Graph Editor is presented in Section 3.3.

In Section 3.4, a description of how the data required for all of the application windows

are generated from the graph information is presented. In Section 3.5, the construction

details for the Bounds and Buffer windows are described. The SGP and the SRE

windows are discussed in Section 3.6. The TGP and the TRE windows are presented in

Section 3.7, and the Throughput window is presented in Section 3.8. Lastly, in Section

3.9, a description of the Performance Plane and the Modify Tables windows are

presented.

3.2 Software Environment

The software environment used for the ATAMM Design Tool is the Microsoft

Windows. The complete code is written in Microsoft C. The Software Development Kit

was used to develop the code for compatibility with the Windows environment. The

various built-in functions of the kit greatly reduce the complexity of the program and

provide more user-friendly features.

From the viewpoint of a programmer, Windows programming is relatively easy

because the overhead involved in interfacing with the mouse, the keyboard, and external

37

routines is eliminated. For a user, the environment is extremely friendly because none

of the commands need to be remembered. All options are menu driven and minimum

keyboard interaction is required. Another major advantage of the Windows environment

is the feature which enables parallel execution of more than one program or more than

one copy of the same program. This presents the user an opportunity to run different

graphs at the same time so that comparisons can be made. All windows share global data

and interact with each other dynamically for information transfer. Several dialogue boxes

and message boxes are provided for the convenience of the user when running the tool.

A hard copy of any of the windows can be obtained. If a color printer is not available,

then a black and white printout can be obtained. All colors in the displays are mapped

to different hatch patterns for printing in black and white.

33 Graph Editor Window

An algorithm that runs under the specifications of ATAMM is represented as a

graph as discussed in Chapter 2. The Graph Editor window in the ATAMM Design Tool

allows the user to create and store the graph. The Graph Editor window is one of the

several application windows in the tool and is invoked from the main window.

In the Graph Editor window, several different menu options are provided for creating,

editing, saving, and retrieving a graph. Under the menu called "Nodes", options for

drawing source nodes, sink nodes, and operator nodes are provided. Also, an option for

specifying the source node, sink node, and operator node times is provided. The default

38

times are zero. In order to create an item, the item is selected from the menu. If a

source (sink) node is created, a small rectangle with the number of source (sink) node

displayed inside appears. If an operator node is created, a circle with the node number

displayed inside and the node time displayed outside appears. The numbering of each of

these items increases consecutively, starting with one.

To draw the graph edges, another menu called "Edge" is provided. Under this

menu, different options for creating regular edges, control edges, buffers, and tokens are

available. In order to draw a regular edge or a control edge, the user selects the

appropriate option from the menu. An edge can have as many as three segments. Every

edge contains a small square box, and numbers appear inside and above the box. The

number inside the box indicates the number of tokens and the number above the box

indicates the edge buffer size. The default value for the number of tokens is zero and that

for the buffer size is one. The terminal node of an edge is identified by a small, black

circle. A control edge is distinguished from a regular edge by color. The control edge

appears in red and the regular edge appears in black.

Another menu available in the Graph Editor window is the "Modify" menu. This

menu contains options to delete any item drawn in the Editor. Each item is provided with

an individual delete option.

The final menu available in the Graph Editor window is the "File" menu. This

menu provides an option to save the created graph under a file name with ".gph"

extension. Another option is to exit from the Graph Editor. The ",gph" extension for the

graph file name is the default extension and cannot be changed. In order to load a

39

previously saved graph file, the user selects the "Open" option under the "Graph Items"

menu in the main window of the ATAMM Design Tool. An example Graph Editor

window is shown in Figure 3.1.

Internally, the source node, the sink node and the operator node are defined in a

RECTANGLE structure. When any of these items are created in the Graph Editor

window, the point where the item is intended to appear on the screen is considered the

center of a rectangle. The item appears within the rectangular region. When writing the

graph structure in a file, the two main diagonal points of the rectangle are saved,

corresponding to a particular item number. The associated times are defined as elements

under item structures. The node structure has provision for specifying read, process, and

write times for a node. But in the Graph Editor window, only the total time, which is the

sum of read, process, and write times, appears. The source node structure has provision

for write time and the sink node structure has provision for process and read times. For

an edge, each edge segment is defined in a POINT structure. Both end coordinates of a

segment are stored in an array defined as POINT type. The edge structure has elements

"terminal" and "initial" which store the terminal point and the initial point respectively,

of a particular edge. Both the initial and the terminal points of an edge are written as

elements of a two dimensional array called the "connection matrix". This connection

matrix is used for identifying the connected items in the graph. The size of the matrix

is 20 by 20. The elements of this matrix are zeroes and ones. If an edge connects node

'm'o node 'n', then the element corresponding to row 'm'nd column 'n's a one.

Otherwise, the element is a zero. The square boxes which appear on the edges are stored

Figure 3.1. Graph Editor Window.

41

in rectangular structures. The small, black circle which identifies the terminal end of an

edge is also defined in a rectangular structure. The number of tokens and the number of

buffers associated with a particular edge are stored in arrays, defined under edge structure

as "token" and "dummy", respectively. The default number of tokens is zero and the

default number of buffers is one. A detailed specification for graph structure is shown

in Figure 3.2. The general format in which the graph information is saved in a file is

shown in Figure 3.3. Figure 3.4 shows partial graph information stored in a file for the

graph of Figure 3.1.

If there are any recursions or directed circuits in the AMG, an initial token must

be created on the last edge of each circuit. To achieve operation at a particular operating

point in the performance plane, the initial number of buffers may have to be made greater

than one. The required buffer information is displayed in the "Buffer" window of the

ATAMM Design Tool and the user is directed to run the Buffer window once he is done

with the creation of the graph.

3.4 Data Generation

In order to run the ATAMM Design Tool application windows, the graph

information must be made available to all of the other windows. The generation of data

for all windows is performed by a number of routines. Figure 3.5 shows the organization

of these routines, and the interaction of all windows with the routines. When a graph file

is opened, the graph information is loaded into a routine called "ASSIGN3". The graph

file data is read only one time. Any subsequent changes made to the algorithm graph are

42

Struct nodess

int time,
read,
process,
write.
test;
position;
location;

POINT
RECT

Struct edges
int token,

dummy,
terminal,
leader,
first,
last;
location[3]:

write;
location;

process,
read;
location;RECT

RECT

Struct sources
int
RECT

Struct sinks
int

Figure 3.2. Graph Structure.

43

Nodes
number
time
test
read
location

Sources
number
write
location

Sinks

repeat, for over "n"

repeat over "k*'umber

read
process
location

Token
Edge points
tokens
initial
final

Buffer

repeat over "k"

repeat over "1"

Edge points
Queue size (repeat. over "1"

Edge
Edge points
Star t.x
Start.y
Finish.x
Finish.y
El lips e. x
Ellipse.y
Box.x
Box,y repeat over "1"

Ct.rl. Edge
Edge points
Ctrl. edge f repeat over "1"

Connection Matrix
Edge count.
Leader
Terminal I repeat. over "m"

Performance Plane
op.x
op y
Max — R (repeat over "i"

Figure 3.3. Graph File Format.

44

Nodes

Sources

Sinks

Token

67
0
2
82, 102, 61, 41

1

0
14, 30, 101, 85

1

0
0
304, 320, 101, 85

20
0
0
1

Buffer
20

Edge
20
30
93
82
51
82
51
56
72

Ctrl. Edge
20
0

Connection Matrix
10
0
1

Performance Plane
I 2371

1247
4

Iform edge 0 to 1)

Figure 3.4. Partial Graph File for Figure 3.1.

45

Figure 3.5. Organization of Routines.

46

passed directly to routine ASSIGN3. The routine ASSIGN3 is called by all the other

routines which perform calculations for the application windows. These other routines

are described below.

The routine "RECURSION", which calculates TBO„s, calls the routine ASSIGN3

first. Initially, TBO is assigned the value of the largest node time. The routine consists

of a search process for detecting directed circuits in the graph. This search is initiated

by the presence of an initial token on the last edge in a directed circuit. If no initial

tokens are detected, the routine is not executed further.

Let an initial token be detected on an edge k-m, having an initial node k and a

terminal node m. The search starts at node m. Nodes k and m are stored in an array of

circuit elements. Then, all possible paths from node m are scanned until either node k

or the output sink is encountered. If node k is encountered, the search process is

terminated and the path from k to m and back to k is recorded as a directed circuit. If

the output sink is encountered, then the search process is continued along a different path

until node k is reached again. A flag is set to identify a path that has already been

traversed in the search process.

All nodes and node times encountered in the search process are saved in different

arrays. The number of tokens in the circuit is also saved in an array. Once a directed

circuit is identified, the routine calculates the circuit time for that particular circuit. The

circuit time is the sum of all node times in the circuit. Once the above information is

available, TBO is calculated as

TBO = Max (T(Cg /M(C,) j,

47

where C is the i directed circuit, T(Cg is the sum of the node times of all nodes in C„

and M(C) is the number of tokens contained in C, [4]. Finally, the value of TBO~ is

calculated as the maximum of all TBO values.

The RECURSION routine also generates the Modified AMG from the AMG. The

generation of the Modified AMG is necessary for calculating TBIO, the latest start time,

and the latest finish time.

Let G be an AMG. Let p; be a place of G, directed from transition t, to transition

t„which contains an initial token. The Modified AMG is obtained from the AMG as

follows.

1. Place p, is deleted from G.

2. A new place pii directed from the data input source to transition t„ is added

to G.

3. A new output sink s; different from all other output sinks, and a new place pu,

directed from transition t, to s„are added to G.

4. The above rules are repeated for each place of G containing an initial token.

An example AMG and the corresponding Modified AMG are shown in Figure 3.6.

Only place 5 directed from transition 4 to transition 2 has an initial token in the AMG.

According to the first rule, place 5 is deleted. A new place 5-1 is inserted from the data

input source to transition 2 by the second rule. Also, a new output sink s, and a new

place 5-2 are generated according to the third rule. As there is no additional place with

initial tokens, this completes the procedure to generate the Modified AMG. The

execution of the RECURSION routine completes with the generation of the Modified

48.

5— 1

Figure 3.6. Example AMG and corresponding Modified AMG.

49

Another routine called as "INITIAL" takes care of all the remaining calculations

including determination of TBIO, TCE, earliest start time, earliest finish time, latest start

time, latest finish time, and identification of critical path(s). The INITIAL routine calls

the RECURSION routine to obtain TBO~ and all information pertaining to the Modified

AMG.

As a first step, the INITIAL routine calculates TCE, earliest start time, earliest

finish time, critical path(s), and TBIO. TCE is calculated by adding all node times in the

graph. The earliest start time and earliest finish time of all nodes are calculated through

a search process that identifies different directed paths in the graph starting from the input

source and ending at the output sink.

The search process starts at the input source and identifies a node n, connected to

the input source. Node n, is stored in an array as an element of a possible path from the

input source to the output sink. Then, the next node n connected to node n, is identified

as the next element in a possible path, This process is continued till the output sink is

reached. Once the output sink is encountered, the search process is repeated to identify

a different path. A flag is set to identify each path traversed during the search process.

Once all the paths are detected, all the transition times in each path are added to

obtain the path time. The largest of all the path times is identified as TBIO, and the

corresponding path is labeled as the critical path. If a node has more than one

predecessor node, then the earliest start time of that particular node is the largest of all

the earliest finish times of the predecessor nodes. The earliest finish time of a node is

50

obtained by adding the earliest start time and the node time associated with that particular

node.

As a last step, the INITIAL routine also calculates the latest start and latest finish

times. The procedure involves a search process in which the paths directed from the

input source to the output sink are traversed in a backward direction. The backward

search process is similar to the forward search process except that it starts with the output

sink and ends with the input source. For the output sink, the latest finish time is the same

as the earliest finish time, because the output collected from the output sink must not be

delayed. In the Modified AMG model, the latest finish time of the sink s, is equal to the

sum of earliest start time of node t, and TBO~. Calculating the latest finish time of the

sink s, in this way ensures that the recursion is completed before a new data packet is

injected into the node t,. If a node has more than one successor, then the latest finish

time of that node is equal to the smallest of all the latest start times of the successor

nodes. The INITIAL routine is called only once by the Buffer window when a new graph

is created, an old graph file is opened, or a graph is edited.

Once the INITIAL routine completes all calculations, it calls another routine called

"FINAL ASSIGN". The FINAL ASSIGN routine is assigned all the results of the

calculations performed in the INITIAL routine. Figure 3.5 shows that all application

windows call FINAL ASSIGN when they are run. Calling FINAL ASSIGN avoids

having to repeat all of the calculations, thus reducing execution time and saving memory.

51

3.5 Bounds and Buffer Windows

The Bounds window is another application window similar to the Graph Editor

window and is invoked from the main window menu. The quantities earliest start time,

earliest finish time, latest start time, latest finish time, TCE, TBO~, TBIO„s, and the

critical path(s) are displayed in this window. The window provides the user an

opportunity to actually view the results of several computations performed internally by

the routines in the ATAMM Design Tool. It also computes the start and the end times

of float associated with each node. The Bounds window for the AMG of Figure 3.1 is

presented in Figure 3.7.

The Buffer window is the first window that must be opened when a new graph

is created, an old graph file is opened, or any changes are made to the existing graph.

Initially, every edge is assumed to have a buffer space of one to hold the output data of

a node. If the number of buffers on any edge is required to be greater than the default

value of one, then the Buffer window displays the number of buffers required on that

particular edge. Otherwise, the window displays a message saying "No Extra Buffers

Required". The number of buffers on each edge is determined by the following

procedure.

Consider an edge k-m having hutial node k and terminal node m. Let ES[k] and

ES[m] be the earliest start times of nodes k and m, respectively. Let D[k] be the number

of the data packet associated with node k and D[m] be the number of the data packet

associated with node m. The data packet numbers associated with each node are

determined from the TGP diagram constructed for the lower bound of TBO. Also, the

Figure 3.7. Bounds Window.

53

start times for the predecessor and the successor nodes are determined from the TOP

diagram constructed for the lower bound of TBO. If ES[m] is less than or equal to

ES[k), the number of buffers on the edge directed from node k to node m is equal to the

difference between D[k] and D[m], provided D[k] is not equal to D[m]. Otherwise, the

number of buffers is equal to the default value. On the other hand, if ES[m] is greater

then ES[k], the number of buffers on the edge directed from node k to node m is equal

to one more than the difference between D[k] and D[m].

The algorithm used for determining the number of buffers required on each edge

is derived as follows. All edges must have at least one storage location. The data

packets are numbered in the same order in which they are injected. Therefore, D[k] is

always greater than or equal to D[m]. If node k and node m are processing the same data

packet, then D[k] is equal to D[m]. This means that node k is initiated only one time

D[k]-D[m]+1 before node m consumes a data token from the edge connecting nodes k

and m. Hence only one data packet needs to be stored on the edge between nodes k and

m. If D[k] is greater than D[m], it means that node k is initiated D[k]-D[m]+1 times

before node m consumes a data token from the edge between nodes k and m. If ES[k]

is greater than or equal to ES[m], it means node m has already removed data packet D[m]

from the edge between node k and node m by the time node k begins execution of data

packet D[k]. Hence, if D[k] is greater than D[m], D[k]-D[m] buffers are required on the

edge between nodes k and m to provide storage for D[k]-D[m] number of data packets.

However, if ES[k] is less than ES[m], a storage location is also required on the edge

54

between nodes k and m for the data packet numbered D[m]. Therefore, the number of

buffers needed is equal to D[k]-D[m]+1.

As an example, consider the AMG of Figure 3.8. The corresponding SGP and

TGP diagrams are shown in Figure 3.9. Consider transition 1 and transition 6 in the TGP

diagram. Transition 1 and transition 6 have data packet numbers 4 and 2, respectively,

and have the same start time. Hence, the number of buffers required on the edge from

transition 1 to transition 6 is equal to 4 - 2 = 2. Considering the edge directed from

transition 2 to transition 7, the start time of transition 2 is greater than the start time of

transition 7 for data packet number 3. Hence, the number of buffers is equal to the

default value of one, Similarly, no other edge requires more than one buffer.

The Buffer window for the AMG of Figure 3.1 is presented in Figure 3.10.

3.6 SGP and SRE Windows

The SGP window displays the single graph play diagram for a given graph. The

total window width is defined to be 100 units greater than TBIO, and the total window

height is defined to be 20 units greater than ten times the total number of transitions.

Each transition is drawn on a row as a green rectangular box of height 5 units. The width

of the box represents the transition time. The start time of a transition is identified by

a red bar and the completion time is identified by a blue bar. A transition is drawn

starting at the earliest start time and ending at the earliest finish time. The associated

transition numbers are displayed on the left hand side of the window in consecutive order.

Figure 3.8. Example AMG.

56

]
I

2 3 I 4
I

5

I

I

6 I

I

4 I 3 I 2

Data Packet Numbers

Time

I

(4)

p i3) g(3)

7(3) I

4 (2)

TBO

Figure 3.9. SGP and TGP Diagrams for the AMG of Figure 3.8.

Figure 3.10. Buffer Wiudow.

58

The float time associated with each node is displayed by choosing the float option from

the SGP window menu. The float time is displayed in yeflow. Similarly, the test times

associated with functional units are displayed by choosing the test menu option. Test

time is the time during which a functional unit remains in the self-test mode. The test

times are displayed in light blue. The SGP window display for the AMG of Figure 3.1

is shown in Figure 3.11.

The SRE window displays the single graph play resource envelope for a graph.

The number of resources are plotted vertically and time is plotted horizontally. Blue

rectangular boxes are used to represent the number of resources utilized at any instant in

the selected time interval. The SRE window uses a search procedure between the limits

from zero to ACT (Algorithm completion time) to identify changes in resource

requirements. A step size of ACT/200 units is chosen for the search procedure. The

algorithm used for the search process is described as follows.

1. Initially, the number of resources, RE, is zero at the zero time marker.

2. When the time marker is incremented by the step size, the value of RE is set

equal to the total number of transitions active at that time instant. The value

of RE remains constant until there is a change in the number of resources.

3. A rectangle is plotted with height equal to the value of RE and width equal to

the amount of time over which RE remained at that particular value.

4. The process is repeated over the range from zero to ACT.

The maximum height of the SRE diagram is the minimum resource requirement

Figure 3 11 SGP Window

Figure 3.12. SRE Window.

61

for a graph. An option to include test times in the count of required resources is

provided. The SRE window display for the example AMG of Figure 3.1 is presented in

Figure 3.12.

The SGP and SRE windows are provided with two vertical cursers each. The left

vertical cursor is invoked by clicking the left mouse button. The right vertical cursor is

optional and is operated with the right mouse button. The position of the left cursor is

displayed in time units at the bottom left corner of the window. If the right cursor is

active, the time difference between the two cursor positions is also displayed.

3.7 TGP and TRK Windows

The TGP window displays the total graph play diagram for a graph. The window

is organized similar to the SGP window. Each transition is displayed on a separate row

in a sequential order. The transition numbers appear on the left side of the window. The

window width is defined to be 100 units greater than TBO~. Each transition is displayed

asagreenrectangularbox. Thewidthof theboxrepresentsthetransitiontime. Thestart

time is identified by a red bar and the finish time is identified by a blue bar. The float

times are displayed in yellow and the test times are displayed in light blue color. The

steps involved in plotting the TGP diagram are stated below.

Let ES be the earliest start time and EF be the earliest finish time.

1. If ES &= TBOia for a node, then ES = ES - TBO~ and EF = EF - TBO~.

This step is continued until ES (TBO~.

62

2. The transition is displayed starting at ES and ending at EF. If EF & TBO„s,

then the transition is displayed from ES to TBO„s as one single block. The

remaining block, which extends from TBO„s to EF is wrapped around and

displayed starting from zero.

3. The above two steps are repeated for all the transitions in the graph.

The float times and the test times are displayed optionally as smaller rectangles,

appended to the transition rectangles at the bottom. Float times and test times are also

wrapped around and displayed in one period of TBO„s, in case they extend beyond

TBO„s. An example TGP window for the AMG of Figure 3.1 is given in Figure 3.13.

The TRE window displays the total resource envelope for a graph. The display

techniques used in the TRE window are exactly the same as the display techniques used

in the SRE window, except that the search is carried out over the interval from zero to

TBOL,. The maximum height of the TRE diagram is the maximum resource requirement.

The TRE window display for the AMG of Figure 3.1 is shown in Figure 3.14.

Two vertical cursers are provided in both of the TGP and the TRE windows. In

addition, the TGP window is provided with a third cursor, displayed in red, which

indicates TBOts in the default position. The third cursor is moved by pressing the left

mouse button and the shift-key simultaneously. The current position of the third cursor

defines the value of TBO, and the TGP window display is updated corresponding to that

value.

Figure 3.13. TOP Window.

Figure 3.14. TRE Window.

65

3.8 Resources and Throughput Windows

The Resources window displays the number of resources required as a function

of time for values of TBO ranging from TBO~ to ACT (Algorithm Completion Time).

If there are no recursions, then ACT equals TBIO~. If there are any recursions, ACT

may be more than TBIO~ and is calculated as the largest of all the earliest finish times

of the nodes. The algorithm used is described in the following.

1. The initial value of TBO is set to TBO~. The TGP and the TRE diagrams

corresponding to TBO are constructed.

2. The maximum value of the resource requirement and the corresponding value

of TBO are stored in separate arrays.

3. The value of TBO is then increased by a step size equal to two percent of the

difference between ACT and TBO~ and step one is repeated. If the latest

maximum value of resource requirement is different from the previous value,

step 2 is implemented. Otherwise, the value of TBO is incremented again and

step 1 is repeated.

4. The above three steps are repeated until TBO equals ACT.

The four steps stated above are performed in a routine called "COMMON". The

different TBO values and the corresponding resource numbers are stored in a separate

routine called "ASSIGN4", which is called in the COMMON routine. The Resources

window, the Throughput window and the Performance Plane window call the ASSIGN4

routine and share the information for their respective displays. All three windows have

66

the capability to call the COMMON routine for the first time. COMMON is called again

only when there is a change in the graph.

The Resources window displays the different maximum values of resources and

the corresponding TBO values. Figure 3.15 shows an example Resources window for the

AMG of Figure 3.1.

The Throughput window displays the normalized throughput versus the number

of required resources as a bar chart. The normalized throughput is expressed as a

percentage ratio of TBO~ and different values of TBO obtained over the range from

TBO~ to TBIO. For each value of resource, the throughput is displayed as a bar or a

rectangle. Two additional rectangles for higher values of resources are displayed to show

that the throughput cannot increase above the maximum determined value, even if

resources increase. The bars are displayed in magenta color. The Throughput window

corresponding to the AMG of Figure 3.1 is shown in Figure 3.16.

3.9 Performance Plane Window

The Performance Plane window displays the operating points for different values

of injection intervals. The width of the window is made slightly larger than the TCE

value. The height of the window is variable and depends on the maximum value of the

TBO to be displayed. Menu options are provided to select the operating points and to

view the modify tables. The operating points are displayed as magenta ellipses. A cross-

hair cursor is provided and the coordinates of the cursor position are displayed as TBO

and TBIO.

The Performance Plane window calls the COMMON routine or uses information

available in the ASSIGN4 routine to display the operating points. Also, the Performance

Figure 3.15. Resources %indow.

Figure 3.16. Throughput %indow.

69

Plane calls another routine called "OP SAVE". The OP SAVE routine is dedicated to

the Performance Plane window. If the graph is changed by insertion of a control edge,

then OP SAVE stores the old operating points in an array and appends the new operating

points to them. It also saves the old values of TBO and TBIO. The ASSIGN4 routine

is called only once by the Performance Plane window. After the first call, only the

OP SAVE routine is called.

The operating points are saved in a POINT structure. The point in turn is defined

as the center of a rectangle. The coordinates of the point are the values of TBO and

TBIO. When an operating point is selected, the color of the operating point is changed

to yellow.

The Modify Table window display appears as a child window of the Performance

Plane window display, when selected from the menu. The Modify Table display shows

the values of TBIO, TBO, number of resources, control edge locations and the buffer size

information corresponding to the operating points selected in the Performance Plane

window display.

A display of the Performance Plane for the AMG of Figure 3.1 is presented in

Figure 3. 17,

Figure 3.17. Performance Plane Window.

CHAPTER FOUR

Case Studies

4.1 Introduction

In this chapter, results of two case studies are presented as a demonstration of the

application capabilities of the ATAMM Design Tool. These case studies are conducted

and presented in a manner that typically would take the user of the ATAMM Design Tool

through the procedural steps for generating a Performance Plane with several operating

points and the corresponding Modify Table. The first algorithm chosen for the case study

is the space surveillance algorithm. This algorithm is to be run on the ADM system as

the primary demonstration algorithm to illustrate system capabilities. The second

algorithm is the decomposed state equation for discrete linear systems. The criteria for

choosing this algorithm are it's real world applicability and the presence of recursion

circuits. The capability of the ATAMM Design Tool to handle recursion circuits is tested

through this algorithm.

In Section 4.2, an outline description of the design procedure using the ATAMM

Design Tool is presented. In Section 4.3, the case study results for the space surveillance

algorithm are presented. In Section 4.4, the decomposed state equation algorithm is

discussed. Numerous window display printouts have been included throughout the

presentation of the two case study results.

72

4.2 Design Procedure

The first step in using the ATAMM Design Tool is the creation of the algorithm

graph in the Graph Editor window. Once the graph is created, the initial buffer

requirements are observed by running the Buffer window. The earliest start time, the

earliest finish time, the latest start time, the latest finish time, critical path(s), TCE, and

the lower bounds for TBO and TBIO are obtained from the Bounds window. The graph

play displays show the float times and test times. The minimum and maximum resource

requirements to run the algorithm at the lower bounds of TBO and TBIO are determined

from the SRE and the TRE display windows, respectively. The Resources window

presents the variations in the resource requirements for different values of TBO over the

range of TBOLs to ACT (Algorithm Completion Time). The operating points are selected

in the Performance Plane window. The corresponding Modify Table window presents the

control edge information, the buffer size information and the details of the selected

operating points. The percentage throughput is determined from the Throughput window.

4.3 Space Surveillance Algorithm

The space surveillance algorithm is presented in the Graph Editor window display

of Figure 4.1. Node labels describe algorithm operations, and time units required for each

operation are shown above the nodes. Signals which are transferred from one node to

another node are shown as directed edges. The nodes have a read time of 2 units and a

write time of 5 units. The self test time for functional units has been assigned as 5 units.

The read, process, and write times appear as total node time on the graph.

73

Figure 4.1. Space Surveillance Algorithm.

74

The Buffer window display for the space surveillance algorithm is presented in

Figure 4.2. It shows that two buffers are needed on the edge from node 1 to node 2. The

Bounds window display shown in Figure 4.3 displays the earliest start time, earliest finish

time, latest start time, latest finish time, TCE, lower bounds for TBIO and TBO, and the

critical path. The value of TBOra is 1247 units which corresponds to the node time of

node 4. The critical path is the path containing nodes 1, 4, and 6.

Figure 4.4 shows the SGP display window for the graph of Figure 4.1. Nodes 2,

3, and 5 have float times associated with them. The SGP display window showing these

float times is presented in Figure 4.5. In Figure 4.6, a section of the SGP display window

is expanded to show the test times appended to the node times of nodes 2, 3, 4, and 5.

The time displayed at the bottom indicates the cursor position as shown in the figure.

The SRE window corresponding to the SGP diagram of Figure 4.4 is shown in Figure 4.7.

The peak value of the resource envelope as displayed in this figure is 3. This is the

minimum number of resources required for running the algorithm with TBIO equal to

TBIOLa.

The TGP display window for the graph of Figure 4.1 is presented in Figure 4.8.

The rightmost cursor is the marker for TBO~ which in this case is equal to 1247 units.

Figures 4.9 and 4.10 show respectively the TGP display windows with float times and test

times. From Figure 4.9, it is observed that node 3 of data packet 2 begins execution after

completion of node 1 of data packet 2. Also, after node 4 of data packet 1 is completed,

node 4 of data packet 2 is started. The TRE display window for the TGP display of

Figure 4.8 is displayed in Figure 4.11. From this figure, it is evident that the maximum

Figure 4.2. Buffer Window for the Graph of Figure 4.1.

Figure 4.3. Bounds Window for the Graph of Figure 4.1.

76

Figure 4.4. SGP Display for the Graph of Figure 4.1.

77

Figure 4.5. SGP Display showing Floats.

78

Figure 4.6. Sliced View of the SGP Display showing Test Times,

79

Figure 4.7. SRE Display corresponding to the SGP Display of Figure 4.4.

80

Figure 4.8. TGP Display for the Graph of Figure 4.1.

Figure 4.9. TGP Display showing Floats.

82

Figure 4.10. Sliced View of the TGP Display showing Test Times.

83

Figure 4.11. TRE Display corresponding to the TGP Display of Figure 4.8.

84

value of resources required for running the algorithm of Figure 4.1 is 4 corresponding to

the peak value of the envelope.

The Resources window of Figure 4.12 shows that there are two variations in the

number of resources for different values of TBO over the range of TBO~ to ACL One

value shows R = 4 for TBO = 1247 units. This is the lower bound of TBO. The second

value of R is detected as 3 at a TBO value of 2303 units. These two values of R are the

R and R as observed in the SRE and the TRE display windows, respectively. The

Performance Plane display window presented in Figure 4.13 shows the two operating

points corresponding to the values of TBO and R as determined by the Resources

window. As seen from the figure, these two points are located at TBIO~. The position

of the cross-hair cursor is indicated in time units and is shown at the bottom of the

window. The Throughput display window is shown in Figure 4.14. It is seen from this

figure that the throughput is 100 percent when operating with 4 resources and is about

55 percent of the maximum throughput with 3 resources. There is no variation in

throughput for higher values of resources and this is evident from the two bars drawn for

R = 5 and R = 6.

A control edge is now added to the original space surveillance algorithm between

node 4 and node 2 to lower the resource requirements. The resulting graph is shown in

Figure 4.15. The Buffer window shown in Figure 4.16 indicates that two buffers are

required on the edges directed from node 0 to node 2, node 1 to node 6, node 3 to node

6, and node 4 to node 6. As seen from the Bounds window display shown in Figure 4.17,

85

Figure 4.12. Resources Window for the Graph of Figure 4.1.

Figure 4.13. Performance Plane Display for the Graph of Figure 4.1.

86

Figure 4.14. fhroughput Display for the Graph of Figure 4.1.

87

Figure 4.15, Space Algorithm with Control Edge from Node 4 to Node 2,

88

Figure 4.16. Buffer Window for the Graph of Figure 4.15.

Figure 4,17. Bounds Window for the Graph of Figure 4.15.

89

TBO~ remains the same as it is for the graph of Figure 4.1. However, the TBIO~ has

increased from 2371 to 2795, and the new critical path includes nodes 1, 4, 2, 5, and 6.

From the SGP display window shown in Figure 4.18, it is seen that only node 3

has float time and that node 2 is now executed after node 4 due to the control edge added

from node 4 to node 2. The corresponding TGP display window is shown in Figure 4.19.

This display also shows the float time associated with node 3. Figure 4.20 shows the

TRE display window.

Figure 4.21 shows the Resources window for the graph of Figure 4.15. It is quite

evident from this window that there are three variations in the values of resources. The

three different values of R are 4, 3, and 2 with corresponding values of TBO equal to

1247, 1367, and 2747, respectively. The Performance Plane window is presented in

Figure 4.22. It shows the new set of operating points generated along the TBIO = 2795

time units line due to the control edge added from node 4 to node 2. This window also

displays the two operating points corresponding to the original algorithm graph given in

Figure 4.1. The Throughput window is shown in Figure 4.23. It shows that throughput

is 100 percent for R = 4. It also shows that throughput is about 90 percent of the

maximum value for R = 3, and 45 percent of the maximum value for R = 2.

To further reduce the resource requirement, control edges are added to the graph

of Figure 4.15 directed from node 4 to node 3 and from node 3 to node 2. The resulting

graph is shown in Figure 4.24. According to the Buffer window display of Figure 4.25,

two buffers are needed on each of the edges directed from node 0 to node 2, node 1 to

node 3, node 1 to node 6, from node 4 to node 2, and node 6. The critical path is now

90

Figure 4.18. SGP Display for the Graph of Figure 4.15 showing Floats.

91

Figure 4.19. TGP Display for the Graph of Figure 4.15 showing Floats.

Figure 4.20. TRE Display for the Graph of Figure 4.15.

Figure 4.21 Resources Window corresponding to the Graph of Figure 4.15.

93

Figure 4.22 Performance Plane corresponding to the Graph of Figure 4.15.

Figure 4.23. Throughput Display for the Graph of Figure 4.15.

Figure 4.24. Graph with Control Edges from Nodes 4 to 2, 4 to 3, and 3 to 2.

Figure 4.25. Buffer Window for the Graph of Figure 4.24.

Figure 4.26. Bounds Window for the Graph of Figure 4.24.

observed to include all the nodes in the graph in the order 1, 4, 3, 2, 5, and 6. Hence,

the graph is now reduced to a chain graph. The associated Bounds window is as shown

in Figure 4.26. The corresponding SGP display window is shown in Figure 4.27. There

are no float times associated with the nodes, as is expected. The minimum number of

resources required is 1 as can be seen from the SGP diagram. Figure 4.28 shows the

TGP diagram for the graph of Figure 4.24. Figure 4.29 shows the corresponding TRE

display window. It is evident that the maximum value of resources required is 3 to

operate at the lower bound value of TBIO.

The Performance Plane display window, along with the Modify Table display are

shown in Figure 4.30. Each operating point is selected corresponding to a different value

of resource number. The operating point with R = 4 is the operating point corresponding

to the lower bounds of TBO and TBIO. The operating point with R = 3 maintains the

same value of TBIO at the expense of increasing TBO. Operating at R = 2, the TBIO

is increased considerably though the increase in TBO is not significant. To operate the

system with only one resource, TBIO must equal TCE.

The Throughput display window is shown in Figure 4.31. It can be seen that the

throughput is 100 percent for R = 3. It is about 86 percent of the maximum value with

R = 2 and is about 42 percent of the maximum value with R = 1.

4.4 Decomposed State Equation

Consider the problem of computing the output of a discrete linear system given

a sequence of inputs to the system. Let the system be described by the state equation

Figure 4.27. SGP Display corresponding to the Graph of Figure 4.24.

Figure 4.28. TGP Display corresponding to the Graph of Figure 4.24.

Figure 4.29. TRE Display for the Graph of Figure 4.24.

Figure 4.30, Performance Plane Display showing Modify Table.

Figure 4.31. Throughput Dispiay for the Graph of Figure 4.24.

103

X(K + 1) = A X(K) + B U(K + 1)

and output equation

Y(K+ 1) = C X(K+ 1)

where x is a p-vector, u is an m-vector, and y is an r-vector. The primitive operations

are defined as matrix multiplication and vector addition.

For the purpose of this case study, the state equation is decomposed so that the

node times are reduced and parallel execution of nodes is possible. This decomposition

lowers the value of TBO thus increasing throughput. The decomposition of the state

equation is performed as follows,

[Xi(K+1)
Y(K+1) =

[Ct C2 j
[[X (K+1)

The AMG representing the decomposed state equation is as shown in the Graph

Editor display window of Figure 4.32. The nodes and the edges are labeled in accordance

with the above two equations.

Figure 4,33 shows the Buffer display window. It is evident from this figure that

no extra buffers are needed on any of the edges of the graph of Figure 4.32. From the

Figure 4.32. Decomposed State Equation Algorithm.

105

Figure 4.33. Buffer Window for the Graph of Figure 4.32.

HQOES ES
1 0
2 0
3 500
4 500
5 700
6 700
7 700
8 700
9 1100

10 700
11 700

EF

sao
500
7aa
700

1500
1500
1100
1100
1250
1500
1500

LS
0

0
500
50Q
700
700
700
700

1100
700
70Q

LF
500
500
700
700

1500
1500
1100
1100
125 Q

1500
1sao

TCC TOIO(LO)
5550 1250

TOO(LO)
10QO

CRITICAL PATH(S)

2 4 8 9

1 3 7 9

Figure 4.34. Bounds Window corresponding to the Graph of Figure 4.32.

106

Bounds window of Figure 4.34, it is seen that the value of TBO„s is 1000 units, which

is equal to one-half of the total time of the circuit formed by nodes 4, 10, 3, and 11 since

there are two tokens in the circuit. Also, it is observed that there are two critical paths

in the graph of Figure 4.32, one formed by nodes 2, 4, 8, and 9 and the other formed by

nodes 1, 3, 7, and 9.

The SGP display window is presented in Figure 4.35. As is shown, there are no

float times associated with any of the nodes. The corresponding SRE display window is

shown in Figure 4.36. The peak value of the resource envelope is 6 and hence the

minimum number of resources required to achieve a TBIO = TBIO„s is 6.

Figure 4.37 shows the TGP diagram and the corresponding TRE diagram is shown

in Figure 4.38. The peak value of resources as shown by the TRE display window is 8

and hence the maximum number of resources required to operate at TBIO„s is 8. The

Resources window of Figure 4.39 shows three different values of resources for three

different values of TBO with the minimum resource requirement being 6 and the

maximum being 8. The corresponding Performance Plane window and the Throughput

window are shown in Figure 4,40 and Figure 4.41 respectively. The throughput, as seen

from the figure is 100 percent for R = 8. It is about 90 percent of the maximum value

for R = 7 and is about 80 percent of the maximum value for R = 6.

Figure 4.42 shows the decomposed state equation algorithm with a control edge

added from node 1 to node 2. The addition of the control edge requires no additional

buffers on any of the edges as is displayed by the Buffer window of Figure 4.43. The

Figure 4.35. SGP Display for the Graph of Figure 4.32.

Figure 4.36. SRE Display corresponding to the SGP Display of Figure 4.35.

Figure 4.37. TGP Dispiay for the Graph of Figure 4.32.

Figure 4.38. TRE Display corresponding to the TGP Display of Figure 4.37.

Figure 4.39. Resources Window for the Graph of Figure 4.32.

Figure 4.40. Performance Plane Display for the Graph of Figure 4.32.

Figure 4.41. Throughput Display for the Graph of Figure 4.32.

Figure 4.42. Graph with Control Edge from Node 1 to Node 2.

Figure 4,43. Buffer Window for the Graph of Figure 4.42.

NODES ES
1 0
2 500
0 500
0 1000
5 700
6 1200
7 700
8 1200
9 1600

10 1200
11 700

EF
500

1000
700

1200
1500
2000
1100
16DD
1750
2000
1500

LS
0

500
100D
1000
1200
1200
1200
1200
160D
1200
1200

LF
500

1000
1200
1200
2000
2000
1600
1600
1750
2000
2000

TCE TBIO&LO)
5550 1750

CRITICAL PATH(S)

1 2 0 8 9

TBO(LB)
1 000

Figure 4.44. Bounds Window for the Graph of Figure 4.42.

115

Bounds window is shown in Figure 4.44. It is observed that the number of critical paths

in the graph is now reduced to one, and includes the nodes 1, 2, 4, 8, and 9. The value

of TBIO is increased to 1750 units. However, the addition of the control edge introduces

float times to nodes 3, 5, 7, and 11 as shown in the SGP display window of Figure 4.45.

The corresponding TGP display window is presented in Figure 4.46. Figure 4.47 shows

the TRE display window for the TGP of Figure 4.46. From Figures 4.45 and 4.47, the

minimum and the maximum numbers of resources required to operate at TBIO~ are

calculated as 5 and 7, respectively. The Resources window is presented in Figure 4.48.

Figure 4.49 shows the Performance Plane with two sets of operating points corresponding

to two different values of TBIO. It is seen from the Throughput display window of

Figure 4.50 that the throughput is 100 percent for R = 7. For R = 6, the throughput is

about 90 percent of the maximum value and for R = 5, it is about 68 percent of the

maximum value.

To reduce the resource requirement further, control edges are added to the graph

of Figure 4.42 from node 7 to node 8 and from node 10 to node 8. The resulting graph

is shown in Figure 4.51. It is evident from the Buffer display window of Figure 4.52 that

two buffers are required on each of the edges directed from node 7 to node 8 and from

node 7 to node 9. The critical path now includes nodes 1, 2, 4, 10, 8, and 9 as displayed

in the Bounds display window of Figure 4.53. The SGP display window is presented in

Figure 4.54. It can be seen that the nodes 3, 5, 7, and 11 still have float times. The

corresponding TGP display window is shown in Figure 4.55, and Figure 4.56 is the TRE

display window. The minimum and the maximum values of the resources are 4 and 6,

Figure 4.45. SGP Display for the Graph of Figure 4.42.

Figure 4.46. TGP Display for the Graph of Figurc 4.42.

118

Figure 4.47. TRE Display for the graph of Figure 4.42.

Figure 4.48. Resources Window for the Graph of Figure 4.42.

Figure 4.49. Performance Plane Display for the Graph of Figure 4.42.

Figure 4.50. Throughput Display corresponding to the Graph of Figure 4.42.

Figure 4.51. Graph with Control Edges from Nodes 1 to 2, 7 to 8, and 10 to 8.

122

Figure 4.52. Buffer Window for the Graph of Figure 4.51.

HODES

1

2
3

5
6

7
8
9

10
11

ES
0

500
500

1000
700

1200
700

2000
2400
12 DO

700

EF
500

1000
700

1200
1500
2000
1100
2400
2550
2000
1500

LS
0

500
1000
1000
1600
1200
1600
2000
240D
1200
1200

LF
500

1000
1200
120D
2400
2DOD

2000
2400
2550
2000
2000

TOE TOIO(LO) TOO(LO)
5550 2550 1000

CRITICAL PATH('5)

1 2 410 8 9

Figure 4.53. Bounds Window corresponding to the Graph of Figure 4.51.

Figure 4.54. SGP Display for the Graph of Figure 4.51.

Figure 4.55. TGP Display for the Graph of Figure 4.51.

Figure 4.56. TRE Display for the Graph of Figure 4.51.

Figure 4.57. Resources Window for the Graph of Figure 4.51.

126

respectively, to operate at TBIOU,. The Resources window is shown in Figure 4.57. The

complete Performance Plane display window along with the Modify Table is presented

in Figure 4.58. Each operating point selected in the Performance Plane corresponds to

a different value of resource. The R = 8 point corresponds to the lower bounds of TBO

and TBIO. The R = 7 point is selected to keep the value of TBIO at the lower bound at

the expense of increasing the TBO value. The points corresponding to R = 6 and K = 5

are chosen to keep the value of TBO low, although the value of TBIO is increased. The

point corresponding to R = 4 is chosen for operating with fewer number of resources.

For the selected operating points, the Modify Table window displays the status of the

control edges. If a control edge is active for a selected operating point, then a one is

entered in the table corresponding to that particular control edge for the given value of

R. Otherwise, a zero is entered in the table to show that the control edge is inactive for

the selected operating point.

The throughput is 100 for R = 6. It is about 75 percent of the maximum for R = 5, and

about 51 percent of the maximum value for R = 4. This information is presented in the

Throughput display window of Figure 4.59.

127

Figure 4.58. Performance Plane Display showing Modify Table.

Figure 4.59. Throughput Display for the Graph of Figure 4.51.

CHAPTER FIUE

Condusion

5.1 Summary

ATAMM, a new Petri net based model developed by researchers at Old Dominion

University, is capable of describing the execution of large-grained algorithms on data flow

architectures. The ATAMM model provides the necessary data and control flow dialog

for predictable execution of an algorithm by a data flow architecture. The ATAMM

model also facilitates the investigation of different algorithm decompositions without

having to consider the hardware. For a selected hardware, the model can be used to

match the algorithm requirements with the hardware capability in order to achieve

optimum time performance.

In this thesis, a software design tool is developed to aid the user of ATAMM

based distributed-processing system in the design process of selecting operating strategies.

The ATAMM Design Tool is developed as an automated tool to make the processes of

predicting time performance, resource requirements, and specifying operating points,

simple and fast. Algorithms are developed for construction of displays representing graph

play and resource utilization. Algorithms for automating generation of operating points

in the performance plane are also developed as part of this thesis work. The tool is found

to be very useful in determining the buffer requirements accurately for a given graph.

130

It aided in detecting those extra buffer requirements for the space surveillance algorithm

which were not apparent to manual calculations.

As a demonstration of the application capabilities of the ATAMM Design Tool,

case studies are performed on two real algorithms. One is the space surveillance

algorithm and the other is the decomposed state equation for discrete linear systems. The

results of these two case studies are presented through a set of ATAMM Design Tool

window displays.

5.2. Topics for Future Research

There are several topics which are the subject of continuing and future research.

First, the ATAMM Design Tool could be used to investigate several other real world

algorithms and to evaluate their performance. Second, allowances could be made to

include the non-ideal nature of algorithm play.

Currently, research is being done at ODU to extend the capabilities of the AMOS,

and thus expand the class of problems to which the ATAMM rules can be applied. The

enhanced AMOS is to be implemented in the Generic VHSIC Spaceborne Computer

(GVSC), a spaceborne four processor breadboard which is also based on the VHSIC

1750A instruction set architecture. In this regard, the ATAMM model is being

generalized to permit multiple concurrent instantiations of selected graph nodes. Also,

the simultaneous play of multiple algorithm graphs, each having a distinct source node

and sink node, is being developed. Three separate strategies for implementing multiple

graphs are being considered. These strategies are referred to as the parallel execution

131

strategy, the time multiplexing strategy, and the priority interrupt strategy. The different

strategies are selected to address different classes of problems which arise in real-time

applications. Efforts are also being made to incorporate the features of fault-tolerance and

branching in the ATAMM modeL These enhancements will thus retluire future

modifications to the ATAMM Design TooL In addition, any other enhancements or

refinements to the ATAMM model might provide additional interesting research topics

for future consideration.

132

REFERENCES

J.W. Stoughton and R.R. Mielke, "Petri-Net Model for Concurrent Processing of
Complex Algorithms," Proceedings of Government Microcircuit Applications
Conference, San Diego, CA, November 1986.

R.R. Mielke, J.W. Stoughton, and S. Som, "Modeling and Performance Bounds
for Concurrent Processing," Proceedings of the 8th International Conference on
Distributed Computing Systems, San Jose, CA, June 1988.

J. Tiberghien, "New Com utin Architectures " Academic Press, London, 1984.

S. Som, "Performance Modeling and Enhancement for the ATAMM Data Flow
Architectures," Ph.D. Dissertation, Old Dominion University, Norfolk, Virginia,
May 1989.

T. Agerwala, and Arvind, "Data Flow Systems," Computer, pp. 10-13, February
1982.

T. Murata, "Relevance of Network Theory to Models of Distributed/Parallel
Processing," Journal of Franklin Institute, pp. 41-49, 1980.

R.R. Mielke, J.W. Stoughton, and S. Som, "Modeling and Optimum Time
Performance for Concurrent Processing" NASA Technical Paper 4167, Grant
NAG1-683, August 1988.

J.L. Peterson, "Petri Net Theor and the Modelin of S stems," Englewood Cliffs,
NJ, Prentice Hall, 1981.

T. Murata, "Circuit Theoretic Analysis and Synthesis of Marked Graphs," IEEE
Transactions on Circuits and Systems, vol. 24, pp. 400-405, July 1977.

M. Granski, I. Koren, and G. Silberman, "The Effect of Operation Scheduling on
the Performance of a Data Flow Computer," IEEE Transactions on Computers,
vol. 36, pp. 1019-1029, September 1987.

133

[11] J.W. Stoughton and R.R. Mielke, "Strategies for Concurrent Processing of
Complex Algorithms in Data Driven Architectures," NASA Technical Paper
181657, Grant NAG1-683, February 1988.

[12) R.L. Jones, "Diagnostics Software for Concurrent Processing Computer Systems,"
M.S. Thesis, Old Dominion University, Norfolk, Virginia, April 1990.

[13] K. G. Lockyer, "An Introduction to ritical Path Anal sis " Pitmanc Publishing
Limited, London, 1969.

[14] S. Som, J.W. Stoughton, and R.R. Mielke, "Performance Modeling in the
ATAMM Data Flow Architecture," Technical Paper Presented at the ¹inth IEEE
InternationalPhoenix Conference on Computers and Communications, Scottsdale,
Arizona, March 1990.

[15] R.R. Mielke, J.W. Stoughton, S. Som, R. Obando, M. Malekpour, and B. Mandala,
"ATAMM Multicomputer Operating System Functional Specification" Progress
Report Prepared for NASA for the period February 1990 - August 1990, Grant
NCC1-136, August 1990.

[16] Charles Petzold, "Pro ammin Windows" Redmond, Washington, Microsoft
Press, 1988.

APPENDIX

USER MANUAL FOR THE ATAMM DESIGN TOOL

TABLE OF CONTENTS

A.1 Overview

A.2 System Requirements

A.3 Using the ATAMM Design Tool

A.3.1 Window Management

A.3.2 Creating, Editing, and Saving a Graph

A.3.3 Viewing the Buffer Requirements for a Graph

A.3.4 Viewing the Bounds Window

A.3.5 Viewing the Displays for SGP and TGP

A.3.6 Viewing the SRE and the TRE Displays

A.3.7 Viewing the Resources and the Throughput Windows

A.3.8 Viewing the Performance Plane Display

A.3.9 Controlling the Cursors

A.3.10 Getting Help

A.3.11 Selecting Colors or Patterns

135

A.1 Overview

The ATAMM Design Tool is a software tool that provides an efficient means to

predict the performance and resource requirements of an algorithm implemented in an

ATAMM defined data flow architecture. The tool is capable of generating the Modify

Table information which includes the input injection interval, the control edge settings,

and the buffer size details for selected operating points in the Performance Plane. The

Modify Table is generated for the ADM system to modify the graph for matching the

resource availability. Performance evaluation is made possible by providing displays for

SGP, SRE, TGP, and TRE. Also, displays for throughput, buffer size and resource

variations are provided by the ATAMM Design Tool.

A.2 System Requirements

The ATAMM Design Tool program requires an IBM AT (286/386) or compatible,

the Microsoft Windows 286/386 multitasking environment, and a mouse. The ATAMM

Design Tool is divided into several modules, each occupying its own code segment. The

largest code segments are moveable and discardable. This feature helps in saving

memory. If the code segments are not discardable, then the entire system would require

approximately 120k bytes of memory. But with the discardable feature, the system's code

will manage with much less memory as it discards from the memory those code

fragments which are not being used.

As long as the Microsoft Windows environment has the necessary driver files, any

printer and monitor can be used with the system.

136

A.3 Using the ATAMM Design Tool

When the ATAMM Design Tool is executed, a small window (called as Design

Tool) appears on the screen. This window is the main window for the program. The

main window provides three different menus. These menus have options to open a graph

file, create a new graph, and view various application windows. Also provided in the

main window are the help files for each of the windows. The user can invoke any one

of the options by clicking the left mouse button on that particular option. The user may

exit the program anytime by selecting the "Exit" option from the main window menu or

by closing the ATAMM Design Tool window from the system menu. A more convenient

way of closing any window is to double-click in the system menu area, which is provided

on the top left side corner of the window.

A.3.1 Window Management

The ATAMM Design Tool has several independent display windows. More than

one window can be invoked at any time. These windows can overlap. This allows the

viewing of more than one display simultaneously. More detailed information concerning

the use of windows is available in [16].

A.32 Creating, Editing, and Saving a Graph

The Graph Editor window is invoked by selecting "Graph Editor" option in the

Design Tool window. The Graph Editor window is provided with four menus namely,

"File", "Node", "Edge", and "Modify", The "File" menu has options for saving a graph

137

created in the Graph Editor window and exiting the window. When the "Save" option

is invoked, a message box appears asking the user to type the file name. The program

automatically assigns a ".gph" extension to the file name typed. The program does not

accept any other file with a different extension.

The "Node" menu has the options to create source nodes, sink nodes and operator

nodes. An option to specify the various node times is also provided. In order to create

an item, the user must select the item from the menu. A check mark appears by the side

of the selected item in the menu as soon as the user clicks on the item. After selecting

an item, the user must click the left mouse button to create the item. The "Time" option

in the menu allows the user to specify the times for the items created in the Graph Editor

window. After selecting the "Time" option, the user must click the left mouse button on

the item of interest. A message box appears asking the user to enter the time for that

item. If the mouse button is clicked in an invalid region on the window, the program

gives a message beep,

The "Edge" menu provides the options to draw regular edges and control edges.

Options to create buffers and tokens on the edges are also provided. After selecting the

"Edge" option, the user must click the left mouse button on an item to specify the initial

point for an edge. To specify the terminal point, the right mouse button must be clicked.

A message beep is given if the mouse button is clicked in an invalid region. The

program allows an edge to have as many as three segments. The left mouse button must

be clicked for creating a segment. After creating two segments, the edge must be ended

by clicking the right mouse button. Otherwise, a message beep is given. The user must

138

click the left mouse button on the small square boxes on the edges in order to vary the

number of tokens and the number of buffers. A control edge is drawn like a regular

edge. But, a control edge appears in red color and a regular edge appears in black color.

The last menu in the Graph Editor is the "Modify" menu. This menu consists of

options to delete any item drawn in the Graph Editor. The user must click the left mouse

button on the item selected in order to delete that item. An edge is deleted by clicking

in the small square box on that edge.

A33 Viewing the Buffer Requirements for a Graph

Whenever the Graph Editor window is opened, the user has to execute the Buffer

window before opening any other window. The Design Tool window has an option,

namely "BufferSize", to open the Buffer window. This window displays the number of

initial buffers required on an edge, if that value is more than the default value of one.

Otherwise, the window displays the message "No Extra Buffers Required". There are no

menu options provided in the Buffer window.

A3.4 Viewing the Bounds Window

The Bounds window is invoked from the Design Tool window by selecting the

"Bounds" option. The Bounds window displays the earliest start time (ES), the earliest

finish time (EF), the latest start time (LS), and the latest finish time (LF). The window

also displays values of TCE, TBIO~, and TBO~. In addition, a list of critical paths in

the graph is displayed. The Bounds window has no menu option.

139

A3.5 Viewing at the Displays for SGP and TGP

The "SGP" and "TGP" options in the Design Tool Window allow the user to view

the Single Graph Play and the Total Graph Play displays respectively. Both these

windows are provided with menu options. The option "Float" in the menu enables the

user to look at the float times associated with the nodes. The "Test" option provides a

means to view the node test times. The SGP and the TGP windows are provided with

vertical cursors to note the time. In addition, the TGP window has a cursor displayed in

red color which indicates TBO~ in default position. The red colored cursor is moved by

pressing the left mouse button and the shift-key simultaneously.

A9.6 Viewing the SRE and the TRE Displays

The SRE display window is opened by selecting the "SRE" menu option from the

Design Tool window. The TRE display window is invoked by choosing the "TRE"

option. The SRE and the TRE windows are provided with the option "IncludeTest" to

include test times in the count of required resources. Vertical cursors in both the SRE

and the TRE windows give the user an opportunity to note the time at any selected

position in the respective windows.

A3.7 Viewing the Resources and the Throughput Windows

The Resources window is opened from the Design Tool window by selecting the

"Resources" option. This window performs a considerable amount of computations

internally and hence there is a time delay before the window is displayed if it is invoked

140

the first time and if the Throughput or the Performance Plane windows are not invoked

previously. The reason is that the Resources window, the Throughput window, and the

Performance Plane window make use of the same routine to perform the resource

variation calculations. The routine involves an iterative search process which consumes

a certain amount of time. The time step for the search process is equal to two percent

of the time difference between TBIO and TBOi . But if any one of the Resources, the

Throughput, or the Performance Plane windows calls the common routine once, the results

of the computations are readily made available to the other two windows. The

computations are repeated only if any modifications are made in the Graph Editor

window.

The Resources window has a menu option "IncludeTest", which allows the user

to include the test times in the search for resource variations. The Design Tool window

has an option "Throughput" to open the Throughput window. There are no menu options

in the Throughput window.

A3.8 Viewing the Performance Plane Display

The Performance Plane window displays the operating points in terms of TBO,

TBIO, and R (resources). The user must select the "PerformancePlane" option from the

Design Tool window in order to view the operating points. The Performance Plane

window is provided with cross-hair cursors and a menu called "Select". The user may

select an operating point in the Performance Plane by choosing the "Selectpoint" option

and then clicking the right mouse button on the operating point of interest. The color of

141

the selected operating point changes to yellow. The Modify Table for the selected

operating points may be viewed by selecting the "ModifyTable" option. This displays the

Modify Table as a child window of the Performance Plane display window. The child

window is displayed within the parent window, which in this case is the Performance

Plane display window. The child window can be resized and closed like any other

overlapped window.

A.3.9 Controlling the Cursors

Selecting the "Split" option from the menu creates two time cursors that measure

time differentials. The time difference between the two cursors is displayed in

parentheses at the bottom of the window. Clicking the left mouse button at the point of

interest moves the left most time cursor to this new location. The right most time cursor

is moved by clicking the right mouse button. In order to merge the two cursors, the

"Split" option must be selected again. When the two time cursors are active in a window,

the user is provided with the opportunity to look at an enlarged view of the display

bounded between the cursors by selecting the "Slice" option. Selecting the "Total" option

returns the view of the normal display.

A.3.10 Getting Help

A help window providing general help, help on SGP, TGP, SRE, TRE, Bounds,

Buffersize, Graph Editor, Resources and Performance Plane is available in the ATAMM

Design Tool. Help on any desired window is provided on selecting the related option

from the "Help" menu in the Design Tool window.

142

A3.11 Selecting Colors or Patterns

A printout of all the Design Tool window displays is possible through a screen

capture technique within the windows environment. It is possible to switch from colors

to black and white patterns for the purpose of printing. Selecting the "Pattern" option

from the Design Tool window "paints" the graphic images with patterns instead of colors.

Selecting this option again allows the use of colors once again. The printing procedure

involves capturing the display through the "snap" program provided by the Software

Development Kit and pasting the captured image in the "paint" program. It is a straight

forward procedure to print from the "paint" program.

	A Software Design Tool for Predictable Performance in Real-Time, Data Flow Architectures
	Recommended Citation

	tmp.1723471485.pdf.nkOSw

