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ABSTRACT

BIOMARKER IDENTIFICATION FOR PROSTATE CANCER USING AN
EFFICIENT FEATURE SELECTION ALGORITHM

Vamsi Krishnam Raju Mantena
Old Dominion University, December 2008

Director: Dr. Jiang Li

In recent years, there has been an increased interest in using protein mass spectrometry to

identify biomarkers that discriminate diseased from healthy individuals. A biomarker is a

characteristic that is objectively measured and evaluated as an indicator of normal

biological processes, pathological processes, or pharmacological responses to a

therapeutic intervention. Identifying biomarkers will be an important step towards disease

characterization and patient management. One challenge of biomarker identification is

how to handle the high dimensional mass spectral data. In this thesis, we applied an

efficient feature selection algorithm to mass spectrometry data obtained from prostate

tissue samples to identify prostate specific cancer biomarkers. Experiments showed that

the proposed method achieved high sensitivities and specificities and outperformed many

other currently used feature selection algorithms.
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CHAPTER I

INTRODUCTION

1.1 Background

Early detection of various cancers is very important because many cancers are

treatable if they are diagnosed in the early stages. For example, prostate cancer diagnosed

while still localized to the prostate can be cured by a number of local therapies. Prostate

cancer is a disease in which cancer develops in the prostate, a gland in the male

reproductive system. It occurs when cells of the prostate mutate and begin to multiply out

of control. Rates of prostate cancer vary widely across the world. Although the rates vary

widely between countries, it is least common in South and East Asia, more common in

Europe, and most common in the United States [I]. Prostate cancer develops most

frequently in men over fifty in the United States. It is responsible for more male deaths

than any other cancer except lung cancer. In the UK it is also the second most common

cause of cancer death after lung cancer. Around 35,000 men in the UK are diagnosed per

year and around 10,000 die of it.

Prostate-specific antigen (PSA) in serum is currently the most popular approach

for its early detection. A high PSA concentration implies a possible high risk of prostate

cancer. However, because PSA is prostate specific rather than prostate cancer specific,

increased concentrations of PSA are also found in benign prostatic hyperplasia [2], acute

and chronic prostatitis, and prostatic intraepithelial neoplasia [3]. On the other hand,

previous studies reported that 15% of men will have prostate cancer even when their PSA

concentrations are low [4-5]. Several approaches have been undertaken to improve the

'I he reference m()dsl lnr thi« ilaw'I. i~ II;i:li 7'~««««vt««~ ~»r I««hei Pt«r r~u«.



PSA test such as measuring PSA velocity, PSA density, and assessing ratios between

free, complexed, and total PSA serum values with various degrees of success.

Combinations of markers such as free PSA, IGF-I, and IGF-binding protein 3 have

resulted in improved diagnostic discrimination between benign prostatic hyperplasia

(BPH) and prostate cancer [6]. Suspected prostate cancer is typically confirmed by taking

a biopsy of the prostate and examining it under a microscope. Further tests, such as CT

scans and bone scans, may be performed to determine whether prostate cancer has

spread. It is becoming increasingly clear that because of the inherent molecular

heterogeneity and multifocal nature of prostate cancer, additional improvement in early

detection, diagnosis, and prognosis will likely require the measurement of a panel of

biomarkers [6].

1.2 Blomarkers

Biomarkers, in the context of cancer diagnosis, usually ref'er to specific genes and

their products, which are indicators of disease states and can be detected in clinical

settings [7]. The discovered biomarker should possess key characteristics and qualities

that will depend upon its intended use. A biomarker must be accurate, sensitive and

specific [8]. It should be able to discriminate between diseased and controlled

populations [9-10], quantified reliably and reproducibly.

1.3 Mass Spectrometry

In recent years, technological developments have sputred interests in using

protein mass spectrometry to identify molecular markers for disctiminating between



phenotypic groups [I I]. The diagnostic categories often consist of tumor versus normal

tissues, different types of malignancies, and subtypes of a specific cancer. There are often

hundreds of peaks (protein biomarkers) detected from a set of mass spectra. Using all of

the detected peaks for the classification can have side effects including the curse of

dimensionality, convergence difficulties and large validation errors. In order to avoid

these problems, feature selection [12] is normally utilized to generate a compact subset of

peaks that leads to accurate models for the available data. Microatvays and mass

spectrometry, a pair of complementary tools for studying genome activity and proteome

activity respectively, have emerged to bring hopes for discovering biomarkers and

building diagnosis models.

Mass spectrometers share at least three common features: an ionization source, a

mass analyzer, and a detector. For analysis of proteins, particularly from clinical samples,

the two most commonly used mass spectrometers involve surface-enhanced laser

desorption/ionization (SELDI) and matrix-assisted laser desotption/Ionization (MALDI)

sources with a time-of-flight (TOF) mass analyzer [13]. The MALDI-TOF approach is

more amenable to the higher throughput analysis of many clinical specimens, as the laser

desorption process results in ptdmarily single ion species, allowing for a profiling

approach of multiple species.

A mass spectrum can be represented by a vector whose dimensionality is equal to

the number of distinct m/z values recorded by the spectrometer, and the value of each

dimension is the intensity of the corresponding m/z value. Mass spectra are difficult to

interpret; a considerable amount of time and effort should be spent in spectra

preprocessing and peak feature selection in order to improve their quality and reduce



their dimensionality. The goal of the analysis is often to identify peaks related to specific

outcomes, such as different malignancies or clinical responses such as cancer. Recent

progress in mass spectrometry has shown the promising potential of biomarker discovery

in the diagnosis of diseases especially in the early stages.

1.4 Early Detection Research Network (EDRN)

In 2000, the National Cancer Institute organized The Early Detection Research

Network (EDRN) to bring together institutions to help accelerate biomarker research. A

biomarker is defined as "A characteristic that is objectively measured and evaluated as an

indicator of normal biological processes, pathological processes, or pharmacological

responses to a therapeutic intervention [14]." Though biomarker research progressed

considerably in recent years, the practical impact of this research on screening, diagnosis

and prognosis remains limited, partially due to the large number of biomarkers available.

None gets approved by regulatory bodies, and none seems to be capable to point the way

to specific therapies [15].

Recent projects initialized by EDRN for validating the previously identified

biomarkers showed that few of the serum biomarkers do not reliably detect prostate

cancer [16-17]. The projects consist of 3 stages that were targeted at evaluation of the

previously published EDRN study for the detection of prostate cancer. In stage 1, a group

of institutions reported that SELDI-TOF mass spectrometry instruments at separate sites

could be accurately standardized over a 3-month period and could be used to accurately

classify previously studied prostate cancer patient and control sera using known spectral

features [18]. In stage 2, the aim was to develop the original algorithm and to test the



developed algorithm on a set of independent patients. In this stage, the validation failed

and bias was identified in the patient samples [16]. The experiment was then redesigned

and patient*s sample bias was eliminated. It was found that the redesigned classifier again

failed to separate patients with prostate cancer from biopsy-negative controls, nor did it

separate patients with prostate cancer with Gleason scores & 7 from those with Gleason

scores &7 [17]. Stage 3 is a prospective study that was not performed because the

validation failed in stage 2. In stage 2, classification performance given by the

constructed classifier were highly unbalanced for many cases, i.e., sensitivities were

much higher than specificities or vice versa. The overall accuracy was close to what it

would be if all samples were classified as prostate cancer.

There are four possible reasons for the failure. First, SELDI-TOF MS whole

serum proteomic profiling might not be powerful enough to reliably detect prostate

cancer as stated in [17]. Second, classifiers used in the experiment were a forward

stepwise logistic regression and a boosted logistic regression. Those two particular

classifiers may not be the best for this task. Different applications require particularly

tailored algorithms to deal with specific challenges faced by the problem [19]. Third,

only the area under the ROC curve method was utilized for biomarker identification

(peak selection) before classifier construction, peaks were further selected in the classifier

design. These peak selection algorithms may not be powerful enough to identify the best

peak combination for the classification. Finally, the peak lists detected by different

institutions may not be well calibrated. The aim of this thesis is to test whether one of the

feature selection algorithms [20] developed by our team can improve prostate cancer

detection accuracy.



1.5 Challenges faced by the Existing Feature Selection Algorithms for Biomarker

IdentiTicatlon

Several feature selection algorithms have been applied to biomarker

identification. Nadedge Dossat et al. (2007) utilized the Wilcoxons test to preselect a se[

of peaks detected from surface enhanced laser desorption/ionization time-of-flight

(SELDI-TOF) spectra before applying various classifiers for cancer diagnosis [21]. James

Lyons-Weilera et al. (2005) [14] reviewed more feature selection algorithms that have

been used for biomarker identification, including Area under ROC curve, Fisher score, JS

test, simple separability criterion, r-test score and weighted separability criterton. After

biomarker selection, they applied a de-correlation step to delete the selected but

correlated peaks. The de-correlation step will improve subsequent classification with

those redundant peaks being removed. However, those peak selection algorithms mainly

perform the selection on each individual peak, and important interactions among peaks

may be missed.

Yinsheng Qu et al. (2003) [22] proposed a wavelet based algorithm to reduce the

number of peaks. After the wavelet transformation, less than 10 wavelet coefficients have

been utilized in classification. Using wavelet transformation to reduce the dimensionality

might be useful for classification but has less importance for biomarker identification. A

wavelet coefficient is a linear combination of all available peaks, and the most

discriminative wavelet coefficient is not a biomarker but a particular combination of all

peaks. Principle component analysis falls into the same category. A genetic algorithm

[23] is a good candidate for biomarker identification and is embedded in some mass

spectrometry software (For example, CLINPROT). However, a genetic algorithm needs



many user defined parameters including the number of peaks you want to select, which is

hard to detetmine beforehand.

1.6 Proposed Work

The proposed method starts by applying the data preprocessing techniques to the

raw mass spectrum data. Data preprocessing techniques [24] such as baseline adjustment,

smoothing, normalization, peak detection and clustering [25] improve the performance of

mass spectrometric data analysis methods for biomarker discovery. The reason for this

includes the substantial amount of noise and systematic variations between spectra

caused by sample degradation over time, ionization suppression and other parameters that

can be reduced.

Baseline adjustment is important because it reduces background noise, and a

drifting baseline introduces serious distottion of ion intensities. Normalization is used to

remove effects from systematic variations among spectra due to vatdations in amounts of

protein or variation in the detector sensitivity. By smoothing the raw spectra, we can

reduce the effect of some mass-per-charge (m/z) values that appear as peaks but which

are hard to verify by independent experiments. When cells become cancerous they can

release unique proteins and other molecules into the blood and other body fluids, and

these molecules may serve as early biomarkers or indicators of cancer. Peak detection

deals with the selection of m/z values that display a reasonable intensity compared with

those that display noise. Clustering is performed by using a clustering algorithm that

aligns a peak with slightly different m/z values caused by noise.



The preprocessed data is then passed through an efficient feature selection

algorithm [26-27j for biomarker identification. In this thesis, the main focus is on tuning

an advanced feature selection algorithm [26-27] for biomarker identification. The central

hypothesis is that the proposed feature selection algorithm can identify a compact set of

robust biomarkers, and can provide some advantages over existing techniques. The

proposed algorithm evaluates peak combinations by considering their interactions.

Correlated peaks will be eliminated automatically. The algorithm produces a list of near-

optimal combinations for all possible number of peaks with sensitivity and specificity

calculated for each of the combinations. Users can then choose a combination based on

its sensitivity and specificity.

1.7 Motivation

Building computational models for biomarker identification is important because

the output of high-resolution mass spectrometry is a large dataset, and the analysis

strategy must face a number of technical challenges. Based on recent projects by EDRN,

an efficient feature selection algorithm is proposed and applied to mass spectrometry data

from a prostate cancer tissue sample to see if it can improve the performance in

identifying the cancer specific biomarkers.

1.8 Goal

The goal of this thesis is to show that computational methods can be useful in

narrowing the protein biomarker candidates. In this thesis, biomarker identification is

achieved by applying the proposed three-step pipeline to the high dimensional raw mass



spectrometry data: (l) data preprocessing to preprocess and reduce the dimensionality of

each spectrum, (2) feature selection to select the discriminating pattern, and (3)

classification to classify each specttum as cancer or non-cancer based on the identified

pattern (biomarker).

1.9 Thesis Outline

Chapter 2 reviews various other feature selection algorithms implemented for

comparison with the proposed algorithm.

Chapter 3 presents the proposed pipeline for detection of cancer specific

biomarkers, including three steps: (i) data preprocessing, (ii) the feature selection

algorithm, and (iii) classification. Various comparison metrics are also discussed.

Chapter 4 presents experimental results.

Chapter 5 provides conclusions and directions for future work.
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CHAPTER 2

RELATED WORK

Feature selection has been an active research area in pattern recognition, statistics,

and data mining communities. The main idea of feature selection is to choose a subset of

input variables by eliminating features with little or no predictive information. All the

feature selection algorithms used for the comparison with the proposed feature selection

algorithm are described in this section.

2.1 AUC Score

The receiver operating characteristic curve (ROC) is commonly used to measure

the petf'ormance of a diagnostic system in terms of its "hit-or-miss'* behavior. By

computing the ROC curve for each feature individually, one can determine the ability of

that feature to separate samples into correct groups. Measuring the area under the ROC

curve (AUC) [28] then gives an indication of the feature's probability of being a

successful biomarker. The AUC score for a given feature is then obtained by integrating

over the ROC curve for that feature. Higher AUC scores signify better feature candidates.

2.2 J5 Test

The J5 test [29] is a gene-specific ratio between the mean difference in expression

intensity between two groups, A and B, to the average mean group difference of all m

genes.

A,— B,

m !=I

(2-1)
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The J5 test is likely to be useful in pilot studies where, due to high vatiance, t-

tests are likely to exhibit unacceptably low specificity (high false discovery rates).

2.3 minimum-Redundancy-Maximum-Relevance (mRMR)

Selecting features that correlate the strongest to a target variable has been called

the "maximum relevance selection." On the other hand, features can be selected to be

different from each other, while they still have high correlation to the target variable. This

scheme, called "minimum-Redundancy-Maximum-Relevance" selection, has been found

to be more powerful than the maximum relevance selection [30].

As a special case, statistical dependence between variables can be used instead of

correlation. Mutual information can be used to quantify the dependency. In this case, it

can be shown that minimum-Redundancy-Maximum-Relevance (mRMR) is an

approximation to maximize the dependency between joint disttibution of the selected

features and the target variable.

2.4 Random Search

Feature selection can also be reinforced by a learning algorithm; this approach is

usually referred to as a wrapper selection method. A randomized search for feature

selection generates random subsets of features and assesses their quality independently

with the learning algorithm. Later, it selects a pool of the most frequent good features. Li

er al. in [31] applied this concept to the analysis of protein expression patterns.
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2.5 Genetic Algorithm Search

Genetic algorithms optimize search results for problems with large data sets.

Genetic algotithms have been applied to phylogenetic tree building, gene expression and

mass spectrometry data analysis, and many other areas of Bioinformatics that have large

and computationally expensive problems [23].

A genetic algorithm requires an objective function, also known as the fitness

function that describes the performance of a feature or a feature subset. The genetic

algorithm tests candidate features using the fitness function and then determines which

one gets passed on to or removed from each subsequent generation. The fitness function

is usually optimized by several steps, including crossover, mutation, reproduction and

fitness evaluation.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

In this thesis, MALDI-MS tissue imaging data from prostate cancer tissue

collected at Eastern Virginia Medical School (EVMS) is used. Protein profiles of a tumor

and surrounding tissue will be used as inputs to the feature selection algorithm. There are

974 spectra, 27 of which belong to cancer, and the rest belong to normal spectra in the

tissue sample. The dimension of each spectrum is 82,756. Three of the spectra were

illustrated in Figure 3.1.

Normal Spectrum

Cancer Spectrum

Normal Spectrum

Figure 3.1: Individual spectra plots.
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3.2 Methods

3.2.1 Preprocessing Techniques

The data preprocessing techniques [20] that are applied to the raw mass spectrum

data are explained as follows.

3.2.1.1 Baseline Adjustment

This step is required to remove the ion overload and chemical noise that are

usually higher at smaller m/z values. There is no general solution to this problem because

baseline characteristics vary from one experiment to another and each spectrum has to be

assessed individually. For the mass specttxtm data considered, the MATLAB function

Yout = msbackadj (MZ, Y) is used, which estimates the baseline within multiple shifted

windows of width 200 m/z. It regresses the varying baseline to the window points using a

spline approximation and adjusts the baseline of the spectrum Y to Yout. The result of

baseline adjustment is shown in Figure 3.2 and its zoom-in is shown in Figure 3.3. The

blue lines show the original spectra, and the regressed baseline is shown in red. The black

cross marks are the estimated baseline points.

3.2.1.2 Smoothing

Smoothing is done to denoise and thus enhance the signal-to-noise ratio by using

wavelets [32]. The m/z values lower than 3,000 due to large noise and m/z values greater

than 10,000 due to low intensities are discarded,
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3.2.1.3 Normalization

When dealing with multiple spectra it is a good practice to remove effects from

systematic variation among spectra due to varying amounts of protein or variation in

detector sensitivity. A global normalization procedure [33] where mass intensities for the

same peak from different spectra are scaled (divided) by a common factor is used. For a

given peak the area under the peak is computed, i.e., the sum of all intensities for this

peak from all spectra. The common factor for each peak is then defined as the ratio of the

area under this peak to the median of areas of all the other peaks in a single spectrum.

3.2.1.4 Peak Detection

A crucial step for the identification and quantification of proteins in mass spectra

is to find nu'z values that correspond to high peak intensities [34]. Peak detection deals

with the selection of mass points with reasonable intensity and S/N ratio. The peak

detection method satisfies the criteria; the intensity should exceed a specified threshold

value of 10, below which all intensity values in the spectrum are zeroed. After smoothing

and peak detection are perfotmed, a total of 75,719 peaks from the available 974 spectra

are obtained. Each spectrum represents the protein profile ol'ne spot (cells) in the

prostate tissue sample. The result after smoothing, normalization and peak detection for

one spectrum is shown in Figure 3.4 and its zoom-in is shown in Figure 3.5. The original

spectrum in blue is unclear because of noise. The denoised spectrum is shown in green,

and the detected peaks are shown in red cross marks. The steps mentioned above greatly

reduce the unnecessary peaks and make the task of biomarker identification relatively

simple.
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Figure 3.4: Result after smoothing, normalization and peak detection.
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3.2.1.5 Clustering

This is the crucial step in the identification of cancer specific biomarkers. The

first step in this process is to align or 'cluster'he same protein from different spectra,

that is, to assign a cluster number to every protein found in all spectra even if they have

slightly different m/z values due to noise. All peaks detected from the available 974

spectra are projected onto a single axis and clustered [25]. The result of projection onto a

single axis is shown in Figure 3.6, and its zoom-in is shown in Figure 3.7.

Many of the peaks represent the same protein and are not aligned due to the

fact that the mass spectra exhibit shifts along the horizontal axis between multiple spectra

and the instruments have a small error on the m/z scale. Thus, detected peaks that have

masses within the percentage range are considered identical. We merged peaks that have

m/z measurements within 0.13% of each other and assigned the new peak the average of

m/z values. The 0.13% threshold is selected because in this range there is no more than

one peak from the individual spectra that contributes to a different protein. It also yielded

better results when compared to different threshold values.

After this step we got a total of 820 clusters which represented different

proteins. The 820 protein clusters are shown in Figure 3.8, and their zoom-in is shown in

Figure 3.9. The next step is to back project these peaks onto individual spectra and use

them to identify biomarkers. In the process of back projection if there is a peak in one

individual spectrum corresponding to a cluster, the intensity of the peak is kept as is. If

there is no peak then the cluster point is replaced by zero. The result of back projection is

shown in Figure 3.10, and its zoom-in is shown in Figure 3.11. The top and the bottom

spectra belong to normal spots, and the middle spectrum belongs to a cancer spot.
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After the preprocessing step, the peaks obtained are denoted as (x„, i„)„,, where

x c R and i c R, x is a vector containing all peaks detected from p'" spectrum and
P '

i is a class ID (1: normal, 2: cancer) associated with this spectrum. N (820) is the total
e

number of peaks detected from all spectra, and W,(974) is the total number of spectra.

The class ID is obtained from the pathological analysis results and is considered to be

ground tmth. Those peaks then go through the feature selection algorithm described in

the next section.

3.2.2 Biomarker Identification

The puipose of this analysis is to identify optimal m/z values or candidate

biomarkers from the preprocessed mass spectral data that can discriminate normal from

cancer spots. Methods are usually tailored towards classifying spectra into nominal

categories based on a set of peaks detected from the spectra. There are usually hundreds

of peaks detected from a set of mass spectra. Using all of the detected peaks for the

classification can have side effects including the curse of dimensionality, convergence

difficulties and large validation errors. In order to avoid these problems, feature selection

is usually utilized to generate a compact subset of peaks that leads to accurate models

for the available data.
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The feature selection algorithm for identification of cancer specilic biomarkers

proposed in this thesis is discussed in detail in this section. The algorithm consists of

three important components: a piecewise linear classifier, an output reset algorithm and a

floating search algorithm,

3.2.2.1 Piecewise Linear Classifier

Neural classifiers including the piecewise linear classifier (PLC) are usually

designed by minimizing the standard training error given by the formula [35],

E = g E(i) =— ~ g[r„(i) — y„(i)['=t

Nv &=1 y=l

(3-l)

where N„„„ is the number of classes andE(i) is the mean-squared error for the i"

output. Here, r (i) denotes the i" desired output for the p" pattern, y„(i) denotes thei"'bserved
output for the p'" input pattern, and N, denotes the total number of data

patterns. In the PLC, y„(i) is the output from the piecewise linear network,

N+1

y„(i) = g w"'(i, j)x„"'( j) (3-2)

where N is the number of features, w'"(i, j) denotes the model weight to the i" output

from the j'" feature in the q'" cluster, x,'"'(j) is the j'" feature in the q"'luster, and

x„"'(N+ I) is the bias term that equals one.

The PLC approximates the general Bayes discriminant [35j. The available data is

divided into a set of clusters where a local linear model is obtained for each cluster, by

solving sets of linear equations. We assume that t„(i„) =I and r„(i„) = — I where i,



denotes the correct class number and i, any incorrect class number for the cunent data

pattern. If

i, =argmax, y,(i),

we say that PLC classified the cunent pattern correctly. Otherwise, a classification etror

is counted.

Note that the error function E in equation (3-1) is too restrictive in at least two

ways. First, if each individual output vector has a different constant bias added to it,

E could be increased or decreased, with no effect on the classification error. Second, if an

output has the correct sign but a magnitude larger than 1, E will increase while the

classification error will be unaffected or decrease. In order to take advantage of these

effects, an Output Reset (OR) algorithm is developed to relax the restrictions.

3.2.2.2 The OR Algorithm

In the OR algorithm [36] a number a, is first added to each desired output vector,

which compensates for unwanted bias in the actual output vector y„. Second, a function

d,(i) is added to the desired output vector to compensate E for errors calculated when

the output has the correct sign but is larger than 1 in magnitude. The error function E in

equation (3-1) becomes,
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where

(3-5)

and where d„(i) is a function of p and i to be defined later. The goal is to find

a,, d,(i) and y„(i) that minimize E, under the following two conditions:

1. The difference ~t„(i,) — t,(i„)~ must be larger than or equal to 2. Without this

condition, E can be minimized by setting the network weights and the difference

~t„(i„) — t„(i„)~ to zero.

2. Each change made to a,,d,(i) and t,(i) (through changes in the network

weights) must reduce E or keep it unchanged.

Using these two conditions the following methods can be used for computing a„

and d,(i).

Method 1. Determination of a: In order to minimize E with respect to a„, it is
P

sufficient that the first derivative of E with respect to a„be zero, yielding

Method Z. Determination of d„(i): Ignore condition (I), d„(i) can be found such

2
that the term [t„(i)+ as +dp(i) — y,(i)] is zero, yielding d (i) = y,(i) — t,(i) — a„, which

satisfies condition 2. However, in order to satisfy condition I, d, (i) is modified such that

d„(i,) & 0,d,(ia) & 0. In summary,

a. If y„(i,)&t„(i,)+a, then choose d„(i,) = y„(i„) — t„(i,,) — a„



b. If y„(i„) &t„(i„)+a„ then choose d (i„) = y„(i„) — t„(i„) — a„

c. Otherwise, choose d (i,) =0 and d„(ia) =0

Method I is used initially to find a with d„(i) set to zero. Method I and Method

2 are alternatively performed for three iterations, and t,(i) is replaced by t„(i) . It is

found that three iterations are sufficient for a„and d„(i) to converge. Note that both

conditions are satisfied in the two methods. In summary, traditional mean square error

(MSE)-type training attempts to force all training patterns to be support vectors. This is

remedied by using OR. The OR algorithm is extremely useful for peak selection because

the detected peaks are highly unbalanced, i.e., there are many more notmal spectra than

cancel spectra. The OR algorithm does not consider the spectra that is far away from the

decision boundary. Hence, there are only portions of the spectra utilized in the peak

selection process.

3.2.2.3 Floating Search Algorithm

The floating search method [27) is designed through the Piecewise Linear

Orthonormal Least Square (PLOLS) procedure in this section. The PLOLS procedure

utilizes the modified Schmidt procedure to make each feature in each cluster

orthonormal. This procedure passes through the data set once, and all information needed

for searching a good combination of features is stored in the auto-correlation and cross-

correlation matrices. Therefore, this feature selection algorithm is very efficient as only

one data pass is required.

Based on equations (3-1) and (3-2), the modified desired output may be

represented in matrix form as,
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X(n&W(r&) + "('& (3-7)

where each row in matrix x"'epresents one feature vector that was assigned to the q'"

cluster, w"'enotes weight matrix in the q'" cluster, and:-"'re residual errors in the

q"'luster. The modified Schmidt procedure is applied to each cluster, yielding the

piecewise linear orthogonal (PLO) system as,

p(r&) g(n) W(r&) + -(r&) p(r&) W(r&) + (r»
n (3-8)

Based on the following four definitions, our proposed feature selection algo)ithm

is described as follows. Let X(d) =(x(i):1&i &d,x(i)e Z) be a subset of d features

from the set Z=(z(i):1&i &N) of N available features and M outputs. Suppose the

feature space is partitioned into N„clusters and obtained the PLO system as equation (3-

8).

Definition I: The individual fitness of one feature, x(i), is

$0(x(i)) = gg(w,',"(k,i))',
k=l r&=)

(3-9)

which is the total variance explained for all outputs due to the i" feature.

Definition 2: The fitness of a set of d features X (d), is measured as

rl kl

J(X(d)) = ggg(w,',"(k,i))',
r=l k=l r»=

(3-10)

which is the total variance explained for all outputs due to all features in the set X(d) .

Definition 3: The fitness $„,(x(i)) of the feature x(i),1 & i & d, in the set X(d) is

defined by

$„, (x(i)) = gg ( w," (k, i)),
k=1 k=(

(3-11)
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where x(i) is the last feature in the set X(d) that is made orthonormal to the other bases

in the modified Schmidt procedure.

Definition 4: The fitness S„„(x(i)) of the feature x(i) with respect to X(d),

where x(i)e Z — X(d), is

M N,

Sd l (x(i)) = gg (w,"'k,i ))',
k=1 tk=l

where x(i) is made orthonormal toX(d), to get w„(k,i),k=1,2,...M. These four

definitions are fitness measures for one feature or feature combinations that will guide the

feature selection process.

3.2.2.4 Algorithm Description

The proposed feature selection algorithm for selecting N,, features from N

available features is described as follows.

1. Using the trail and error method, an appropriate number of clusters,N,, is

determined, which will be used in the PLC.

2. Design a N„cluster PLC for the data by solving a set of linear equations for each

cluster.

3. Change desired output using the OR algorithm.

4. Based on the above four definitions, search a list of good feature combinations

using the floating search algorithm [27].



3.2.2.5 Advantages of Proposed Algorithm

Advantages of the proposed algorithm are as follows:

l. It selects features rather than a combination of all the features such as those

selected by transformation based methods (PCA, Wavelet).

2. It considers interactions among features and measures the correlations via the

amount of explained variance by features.

3. It is computationally efficient.

4. It automatically handles the extremely unbalanced data sets where the number of

instances in some classes is significantly more than those in other classes.

5. The algorithm produces a list of best combinations that contain different numbers

of features; users then have the flexibility to choose one based on peiformance.

3.2.3 Classification

In this thesis, the multi layer perceptron (MLP) classifier is used for the

classification task. After the compact sets of features are selected from the previous step,

an MLP classifier is used to classify the spectra to one of the two classes (normal or

cancer) [36-37]. Since the class label of each training sample is provided, this step is also

known as supervised learning (i.e., the learning of the model is 'supervised'n that it is

told to which class each training sample belongs) [38].

The classifier utilized a new objective function that had more free parameters

than the classical objective functions and used an iterative minimization technique to

solve multiple sets of numerically ill-conditioned linear equations. An enhanced

feedforward network training algorithm was also used to reduce a separate error function
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with respect to hidden layer weights. The MLP classifier is explained in detail in the

following sections.

3.2.3.1 OR Enhanced MLP Training

In this section, the integration of OR into more advanced MLP training algorithms

is discussed; all the weights are subjected to optimization. There are many well-

developed training algorithms, including the Back Propagation (BP), Conjugate Gradient

(CG) and Levenberg-Marquardt (LM) algorithms. Training error can be further decreased

when OR is used in most algorithms.

In this thesis an algorithm called Output Weight Optimization-Hidden Weight

Optimization (OWO-HWO) [39] is utilized, which can be used in the training of feed-

forward neural networks such as the MLP. In OWO-HWO, output weights and hidden

unit weights are alternately modified to reduce the training error. Since the output units

have linear activation functions, in this method the OWO procedure is used to obtain

output weights by solving linear equations, whereas the HWO is utilized to calculate the

hidden weight changes by minimizing a mean-square error between the desired and the

actual net function.

3.2.3.2 Review of Output Weight Optimization

Applying OWO to the three layer, fully connected MLP, basis functions are

defined as

X,(k) =
x„(k) l&k&N

1 for k=N+1
O„(k — N — 1) N + 2 & k & N + N„+ 1
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where 0„( j) is the j" hidden unit output activation for the p"'attern. Op(N +1) = 1 to

handle the hidden unit and output unit biases. Substituting equation (3-2) into E(i) ol'quation

(3-1), the mean-squared error for the i'" output can be rewritten as

N, N„

E(i) = —g t„(i) — gw.(i,k)X„(k)
N„,, k=1

(3-14)

where N„= N+ N, +1. Taking the gradient E(i) with respect to the output weights gives

g(m) = = —2 c(i,m) — gw,(i,k) r(k,m)
aE()

d,(;, )
(3-15)

where 1&m& N, . The cross-correlation c(i,m) and auto-correlation r(k,m) are defined

as

c(i,m) =gt„(i) X,(m)
p=1

(3-16)

r(k, m) = g X (k) X„(m) (3-17)

Setting g(m) to zero, we get

gw,(i,k) r(k,m)=c(i,m) 1&m&N„ (3-18)

Each value of i has a set of N„equations in N„unknowns. Since those linear equations

generally are ill-conditioned, the conjugate gradient approach can be utilized to get the

output weights that minimize E(i) .

OWO is only adequate for generating a useful initial network after the hidden

weights have been initialized. Note that the hidden weights are not updated in OWO

training.
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3.2.3.3 Review of OWO-HWO

In OWO-HWO [39] initially a set of N, training patterns (x„,t„) where the p'"

input vector x„and p'" desired output vector t„having a dimension N and N,,„

respectively, are given. A three layer, fully connected MLP network with sigmoid

activation function for the hidden layer is used. For the p" pattern, the j" hidden unit

net and activation functions are

N+I

net„(j ) = g w( j, k) x„(k) (3-19)

0„( j) = f (net„(J')) = I

I+ exp(— net,(j ))
(3-20)

the i" observed output is

y (i) = g w„(i, k) x (k) + g w„l, (i,j ) O„(j )
k=1

where w„(i,k) and w,„(i, j) are weights connecting to the i" output unit from thek"'nput
and j'" hidden unit, respectively. The output weighs w.,(i,k) and w„„(i, j) can be

found using the OWO method. In the HWO procedure, the hidden weights w(j,k) are

updated by minimizing a separate error function for each hidden unit. For the j" hidden

unit and p'" pattern, the desired net function net„„(j ) is constructed as [47]

net~(j) = net„(j)+Z b'„(j) (3-22)

Z is the learning rate, and 8,(j) is the delta function of the j" hidden unit and is

defined as
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d'~(j) = f (net (j))g6.(i)w.(i, j) (3-23)

where 8„„(i) is the delta function of the i"'utput layer,

8p,(i) =t,(i)- yp(i) (3-24)

The hidden weights are updated as

w(j,k) k— w(j,k)+Z e(j,k) (3-25)

where e( j,k) is the hidden weight change. With the basic operations and equations (3-

22) to (3-24), the following equation is used to solve for changes in thc hidden weights,

N tl

net „(j)+Z ti (j ) re g[w(j,k)+Z e(j,k)].x (k)
k=1

(3-26)

and obtained

N+I

8p(j)=pe(j,k)x,(k)
k=l

(3-27)

Before solving equation (3-27) in the least square sense, an objective function [48] for the

j'" hidden unit is defined as

N,, N+I 2

Ep(j) = g 8'j) -ge(j,k)x,(k) f (net (j))
p=l k=l

(3-28)

which is minimized with respect to e(j,i) using the conjugate gradient method, and the

hidden weights change e( j,k) is obtained; the hidden weights is updated by performing

equation (3-25).
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3.2.3.4 Algorithm Description for OR Combined MLP Training

Using both OR and OWO-HWO, the following algorithm is constructed,

1. Initialize all the weights and thresholds as small random numbers in the usual

manner. Pick a value for the maximum number of iterations, N„. Set the iteration

number to 0.

2. Increment i, by 1. Stop if i, & N„.

3. For each input vector, calculate the hidden unit outputs 0„( j) . If i, =1, i.e., in the

first iteration, accumulate the cross- and auto-correlation matrices c(i,m) and

r(k,m) as in equation (3-16) and (3-17). Otherwise, if i, &1, use the OR

algorithm to change the desired output t„(i) to r„(i) for each pattern and

accumulate the cross-correlation c(i,m) as in equation (3-16) with r„(i) replaced

by t,(i).

4. Using OWO, solve linear equations for the output weights w„(i,k) and w, (j,k),

and calculate E.

5. If E decreases, go to Step 8. If E increases, modify Z as Z = 0.5 Z, reload the

previous best hidden weights and go to Step 8.

6. Make a second pass through the training data. Calculate the hidden weight

changes using HWO with r„(i) in place of r„(i) .

7. Calculate the learning factor 2 using the method described by Magoulas [40].

8. Update the hidden unit weights as in equation (3-25).

9. Go to Step 2.
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3.2.4 Comparison Metrics

For the comparison of different feature selection algorithms, the below mentioned

techniques and metrics are employed.

3.2.4.1 Cross Validation (CV)

In this thesis 5-fold cross validation is used. The data set is divided into 5 subsets,

and each time one of the 5 subsets is used as the test set the other 4 subsets are put

together to form a training set. The process is repeated 5 times so that each subset is used

for testing once. After the 5-fold CV the 5 test results are pooled together to compute

sensitivity and specificity.

3.2.4.2 Sensitivity and Specificity

Sensitivity and specificity are statistical measures of the performance of a binary

classification problem. The sensitivity or the recall rate measures the proportion ol'ctual

positives that are correctly identified as such (i.e. the percentage of cancer spots that are

identified as having the condition); the specificity measures the proportion of negatives

that are correctly identified (i.e. the percentage of non-cancer spots that are identified as

not having the condition).

A sensitivity of 100% means that the test recognizes all cancer spots. Sensitivity

alone does not tell us how well the test predicts other classes (that is, about the negative

cases). In the binary classification, as illustrated above, this is the corresponding

specificity test or, equivalently, the sensitivity for the other classes.
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numberofTruePositivessensitivity-
numberofTruePositives + num berofFalseNeg ati ves

(3-29)

A specificity of 100% means that the test recognizes all normal spots as normal.

The maximum is trivially achieved by a test that claims every spot as normal regardless

of the true condition. Therefore, the specificity alone does not tell us how well the test

recognizes positive cases. We also need to know the sensitivity of the test to the class or,

equivalently, the specificities to the other classes.

numberofTrueNegatives
specificity-

numberofTruelVegati ves+ num berofFalsePosti ves
(3-30)

3.2.4.3 ROC curve

A ROC curve is a graphical representation of the trade off between the false

negative and false positive rates. Equivalently, the ROC curve [35j is the representation

of the tradeoffs between sensitivity and specificity. By tradition, the plot shows the false

positive rate on the X axis and I - the false negative rate on the Y axis. You could also

describe this as a plot with I-specificity on the X axis and sensitivity on the Y axis. You

can quantify how quickly the ROC curve rises to the upper left hand corner by measuring

the area under the curve. The larger the area, the better the diagnostic test is. If the area is

1.0, you have an ideal test because it achieves both 100% sensitivity and 100%

specificity. If the area is 0.5, then you have a test that has effectively 50% sensitivity and

50% specificity. This is a test that is no better than flipping a coin. In practice, a

diagnostic test is going to have an area somewhere between these two extremes. The

closer the area is to 1.0, the better the test is, and the closer the area is to 0.5, the worse

the test is.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the experimental results obtained using the proposed feature

selection algorithm are shown, and the performance of the algorithm is assessed by

comparing with other algorithms.

4.1 Results of the Proposed Algorithm

Baseline adjustment is done by using a MATLAB function, which is a baseline

signal that has to be subtracted and is generated because sometimes the detector

overestimates the number of ions arriving at its surface. Smoothing reduces the noise in

the spectra and peak detection picks the peaks with intensity values of 10 or more. After

these steps the total number of peaks are reduced to a great extent, thereby decreasing the

final number of features to be considered in the next step. The biomarker needed to be

selected from the preprocessed mass spectrum data i.e., from the back projected

individual spectra we should be able to distinguish between cancer spots and normal

spots.

From the above preprocessing steps, 820 peaks are obtained for each spectrum.

There are a total of 974 spectra, out of which 27 belong to cancer spots, and the rest of

them are normal. The proposed feature selection algorithm is applied to the preprocessed

prostate cancer data to select the most discriminating peaks. Note that before applying the

feature selection algotithm, Fisher score [41] is used to preselect 30 out of the 820 peaks.
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The Fisher score is intended to be a measure of the difference between

distributions of a single variable. A particular feature's Fisher score is computed by the

following formula:

(4-1)

where p,'s the mean value for the i'" feature in the positive or negative profiles, anda,'s
the standard deviation. Features with high Fisher scores possess the desirable quality of

having a large difference between means of case versus control groups, while

maintaining low overall variability. These features are more likely to be consistently

expressed differently between case and control samples and therefore indicate good

candidates for feature selection.

Table 4.1 shows the sensitivity and specificity obtained by using the selected

peaks by our algorithm. This is the training result. The indices for peaks shown in Table

4.1 are ranks based on the Fisher score.

Table 4.1: Feature selection results of the proposed algorithm.

Predicted Acc Sensitivity % Specificity % Subset Size Subset Members

99.383984
99.486653
99.794661
99. 897331
99.897331
99.691992
99.794661

85.185185
88.888889
100.000000
100.000000
100.000000
92.592593
92.592593

99.788807
99.788807
99.788807
99. 894403
99. 894403
99.894403
100.000000

{1,7,}

{ 1,6,4,}
4 { 1,6,4,29,}
5 { 1,6,4,29,8,}
6 { 1,6,4,29,8,5,}
7 { 1,6,4,29,8,5,3,}

Most of the selected peaks correspond to the m/z values around 4000. As seen from Table

4.1, selection of 3 or 4 peaks is the best combination for the prediction task as they



achieved high sensitivity and specificity, so one of the combinations can be used as a

biomarker. Inclusion of more peaks is not helpful based on Table 4.1.

To find the exact combination from Table 4.1, a graph is plotted between the

number of features included in the classifier and the sensitivity of 5-fold cross validation

and is shown in Figure 4.1. Sensitivity is only used for final combination selection

because the proposed feature selection algorithm achieved almost 100% specificity for all

the combinations.

By the result shown in Figure 4.1 the combination of 3 features is used since it

achieved the highest sensitivity. The zoom-in result of Figure 4.1 is shown in Figure 4.2.

To show the effectiveness of the feature selection algorithm the distribution of two

proteins that are selected by the proposed algorithm are plotted in Figure 4.3 and Figure

4.4. The effectiveness of the algorithm is also shown by visualizing the cancer tissue by

using BioMap software. For comparison, the original tissue is shown in Figure 4.5. The

cancer affected region in Figure 4.5 is shown in a black circle, and its zoom-in is shown

in Figure 4.6. The distribution of the two proteins is also shown in Figure 4.7 and Figure

4.8 using BioMap software. The dark orange color suggests that the detected proteins are

present in large quantities in the cancer affected region.
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Figure 4.1: Effect of feature numbers.

Figure 4.2: Zoom-in of Figure 4.1.



Figure 4.3: Distribution of protein with m/z value around 4000 selected by the

proposed algorithm.

Figure 4.4: Distribution of another protein with nu'z value around 4000 selected by the

proposed algorithm.
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Figure 4.5: Prostate cancer tissue sample.

Figure 4.6: Cancer affected area.
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Figure 4.7: Distribution of protein in Figure 4.3 shown by BioMap.

Figure 4.8: Distribution of protein in Figure 4.4 shown by BioMap.
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To show the perfotmance of our methodology, the ROC curve is plotted by using 3

features in the classifier and 5-fold CV. This is shown in Figure 4.9. The top plot is the

original, and the bottom plot is its zoom-in. The area under the curve close to 1.0

suggests that the proposed feature selection algorithm performed well in identifying the

discriminating pattern.

Figure 4.9: ROC curve using 3 peaks.

4.2 Comparison with Other Algorithms

For the purpose of comparison, other famous feature selection algorithms like

AUC score, J5test, minimum-Redundancy-Maximum-Relevance, Random Search and

Genetic Algorithm are implemented. After the data is preprocessed these algorithms are

applied to it to select the compact set of features.
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Figure 4.10 shows that the proposed feature selection algorithm is able to detect

the minimum number of features with maximum sensitivity when compared to other

algorithms implemented. The genetic algorithm gave the highest sensitivity if 4 features

are selected for the classification, which is equal to that of the proposed algorithm only

using 3 features. In data modeling, we always prefer to use fewer features if similar

results can be achieved. There are some redundant features that cannot be helped in

improving the classification that were selected by the genetic algorithm. The second

advantage of the proposed algorithm is that it can select different combinations in a single

run while the genetic algorithm selects only one combination per run, i.e., in order to

produce the best combination of 3 features and 4 features, we need to run the genetic

algorithm twice. Hence, the proposed algorithm is the best for the identification of the

biomarker for the prostate dataset in terms of compactness and computational efficiency.

ROC plots for all the other algorithms are plotted based on the top 3 features

selected by the respective algotithms using 5-fold cross validation and are shown in

Figure 4.11. The zoom-in is shown in Figure 4.12. These plots show that the proposed

algorithm is best not only in selecting the minimum number of features but also in

discriminating between the cancer samples from normal samples with high sensitivity

and specificity as the area under the ROC curve is highest for the proposed algorithm.

Table 4.2 shows the computational times of all the feature selection algorithms in

selecting different combinations of features. The table proves the computational

efficiency of the proposed algorithm.
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Figure 4.10: Effect of increasing peaks for all the algorithms.

Figure 4.11; ROC plots for all the algorithms.
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Figure 4.12: Zoom-in of Figure 4.11.

Table 4.2: Time of execution of all the feature selection algotithms.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis proposed a three-step pipeline for biomarker identification: (1) Data

Preprocessing, (2) Feature selection and (3) Classification. Data preprocessing techniques

were applied to the raw mass spectromettic prostate cancer data. Routine functions

provided by MATLAB for preprocessing, including baseline correction, noise removal by

wavelet methods, peak normalization, peak alignment and peak detection were utilized.

The proposed feature selection algorithm was then applied to the preprocessed data for

peak selection.

The proposed method is efficient because only one data pass is sufficient for the

peak selection. It evaluates peak combinations by considering their interactions, and the

correlated peaks will be eliminated automatically. A special procedure, the OR algorithm,

was used for unbalanced data handling. The selected compact set of highly discriminative

protein peaks was then used by an MLP classifier to classify MS spectra as cancer or

normal.

After the preprocessing techniques, we reduced the dimension of raw data from

82,756 to 820. The feature selection algorithm reduced the dimensionality futther from

820 to 3. Five-fold cross validation results showed that the developed pipeline achieved a

sensitivity of 96.29% and specificity of 99.68% using three peaks selected by the

proposed method. The proposed method outperformed many other currently used feature

selection algorithms for the identification of the prostate cancer biomarker.
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5.2 Future Work

Future work includes validating the proposed method using more MALDI-MSI

data sets. Statistical analysis will also be performed.
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