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Abstract
Formal power series products appear in nonlinear control theory when systems mod-
eled by Chen–Fliess series are interconnected to form new systems. In fields like
adaptive control and learning systems, the coefficients of these formal power series
are estimated sequentially with real-time data. The main goal is to prove the conti-
nuity and analyticity of such products with respect to several natural (locally convex)
topologies on spaces of locally convergent formal power series in order to estab-
lish foundational properties behind these technologies. In addition, it is shown that a
transformation group central to describing the output feedback connection is in fact
an analytic Lie group in this setting with certain regularity properties.
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1 Introduction

The interconnection of simple input-output systems to form more complex and use-
ful systems is commonplace in science and engineering. When each component is a
nonlinear dynamical system, a weighted infinite sum of iterated integrals known as a
Chen–Fliess series, Fc, provides a convenient way to represent its local behavior [15–
17, 35, 43]. When this series converges on some set of admissible inputs, Fc defines a
so calledFliess operator. It is uniquely specified by a formal power series c inK〈〈X〉〉,
known as its generating series, where X is a finite set of indeterminates, and K is a
suitable field. An interconnection of two Chen–Fliess series Fc and Fd , represented by
Fc�Fd , induces a corresponding algebra (K〈〈X〉〉,�′) so that Fc�Fd = Fc�′d [13–
15, 25, 29]. Algebras defined in this manner provide computational frameworks for
explicitly computing the generating series of interconnected systems for the purposes
of analysis and design, especially in the field of nonlinear control theory. Historically,
the coefficients of c have been determined by direct calculations using state spacemod-
els derived from physical laws and other first principles [33, 38]. But with the growth
of adaptive control and new types of learning based technologies, there is increasing
interest in estimating these coefficients using real-time data and numerical methods
from the field of system identification [23, 39]. Assuming that a given sequence of esti-
mates asymptotically approaches its true value as more data are collected, a difficult
problem in its own right, there is a fundamental question regarding continuity.

Consider a sequence of generating series ci , i ≥ 1 known to produce a sequence
of corresponding Fliess operators Fci , i ≥ 1. If ci → c in some manner, is it also true
that Fci , i ≥ 1 converges to a well-defined Fliess operator Fc, i.e., does the limit point
c ensure a convergent Chen–Fliess series? The answer, of course, depends directly
on the ambient sets and the assumed topologies. For example, in [9, 44] the claim
is shown to be false on the subset of locally convergent series in K〈〈X〉〉, (i.e., a set
of generating series under which their corresponding Fliess operators are known to
converge for sufficiently small arguments in an L p norm sense.) endowed with the
ultrametric topology and where the operator space has an L p type topology. As the
ultrametric topology mirrors the algebra but provides almost no information on the
analytic behavior of the series, this outcome is not surprising. On the other hand, in [9]
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the claim is shown to be true when the ultrametric topology is replaced with a certain
Banach topology on a subspace. Ultimately, the question boils down to identifying
topological vectors spaces contained in K〈〈X〉〉 which ensure that every limit point is
a generating series with a well-defined Fliess operator in some sense.

The main goal of this paper is to address a natural follow-up question: Suppose
ci , di ∈ K〈〈X〉〉, i ≥ 1 are two sequences of generating series converging to c and d,
respectively, such that Fci and Fdi , i ≥ 1 are well defined Fliess operators as are their
limits. Assuming that c�′d has the same convergence properties as c and d (this theory
is well understood, see [30, 42, 44]), under which conditions does ci�′di 	→ c�′d?
Is it even possible to identify infinite-dimensional spaces with respect to which the
products are smooth or even analytic?

Three formal power series products will be considered: the shuffle product, which
models a type of parallel connection [15]; a composition product modeling series
connections [13, 14, 29]; and a group product for a transformation group known to
model dynamic output feedback, a central object of study in control theory [25]. In
addition, the continuity of the shuffle inverse will be addressed. (A preliminary version
of this analysis was presented in [40].) The shuffle group appears in the context of
feedback linearization [26, 27]. In each case continuity will be considered in both
the Fréchet and Silva topologies. In addition, analyticity of these products will be
characterized. It should be noted that the Fréchet topology was used in [44] to show
that the shuffle and composition products preserve a type of global convergence.
Continuity issues in this setting are beyond the scope of the present paper. However,
the Fréchet topology is employed as a natural (locally convex) topology on the space
of all power series. Convergence in this topology does not preserve growth bounds.
Thus, it is necessary to endow the space of locally convergent series with the finer
Silva topology.

Next it will be shown that the output feedback transformation group is a locally
convex Lie group (see [37] for a survey on (infinite-dimensional) Lie theory). This
result builds on the development of a pre-Lie algebra presented in [12, 18]. Lie groups
have a long history in feedback control theory originating with the work of Brockett
in [7]. More recent applications in this context have appeared in [27, 28], albeit only
in the formal case where an explicit differential structure is not specified. The present
work will provide a means to fill this gap. Finally, the regularity of these Lie groups
is investigated. Roughly speaking, regularity of a Lie group asks for the existence
and smooth parameter dependence of certain ordinary differential equations on the
Lie group. Note that since the Lie groups at hand are not modeled on Banach spaces,
the usual theory for existence and uniqueness of ordinary differential equations does
not apply. However, it is shown that the Fréchet Lie groups are regular. While some
progress on the regularity problem is made for the Silva Lie groups, their regularity
largely remains an open problem that the authors plan to pursue in future work.

2 Preliminaries

Throughout this paper let K ∈ {R,C}, namely either the field of real numbers R or
the field of complex numbers C. It will be essential to admit complex coefficients
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in order to discuss analyticity of mappings on infinite-dimensional spaces. Note that
the continuity results are unaffected by this choice. Refer to Appendix A for more
information regarding calculus on infinite-dimensional spaces and “Appendix B” for
a summary of the primary notation used in this paper.

2.1 Chen–Fliess Series

An alphabet X = {x0, x1, . . . , xm} is any non-empty and finite set of symbols referred
to as letters. A word η = xi1 · · · xik is a finite sequence of letters from X . The number
of letters in a word η, written as |η|, is called its length. The empty word, ∅, is taken
to have length zero. The number of times the letter xi appears in a word η is written
as |η|xi

. The collection of all words having length k is denoted by Xk . Define the set
of all words X∗ = ⋃

k≥0 Xk , which constitutes a non-commutative monoid under the
concatenation product. Let � be a natural number. Anymapping c : X∗ → K

� is called
a formal power series. Often c is written as the formal sum c = ∑

η∈X∗(c, η)η, where
the coefficient (c, η) is the image of η ∈ X∗ under c. The support of c, supp(c), is
the set of all words having nonzero coefficients. A series c is said to be proper when
∅/∈supp(c). The set of all non-commutative formal power series over the alphabet X
is denoted by K

�〈〈X〉〉. The subset of series with finite support, i.e., polynomials, is
represented by K

�〈X〉. If multiplication on K
� is defined componentwise, then each

set is an associativeK-algebra under the concatenation product and an associative and
commutativeK-algebra under the shuffle product, that is, the bilinear product uniquely
specified by the shuffle product of two words

(xiη) �� (x jξ) = xi (η �� (x jξ)) + x j ((xiη) �� ξ),

where xi , x j ∈ X , η, ξ ∈ X∗ and with η �� ∅ = ∅ �� η = η [15].
K

�〈〈X〉〉 can also be viewed as a locally convex space whose topology is briefly
described next. First note that identifying a formal power series with the sequence
of its coefficients defines an isomorphism of vector spaces K�〈〈X〉〉 ∼= ∏

η∈X∗ K�.
The space on the right-hand side is a countable product of Banach spaces, hence a
complete metrizable locally convex vector space (i.e., a Fréchet space). Thus,K�〈〈X〉〉
inherits a canonical Fréchet space structure. By construction the evaluation function-
als aη : K�〈〈X〉〉 → K

�, c 	→ (c, η) are continuous. Therefore, convergence in this
topology is equivalent to separate convergence of all coefficients of a series toward
the corresponding coefficients of the limit series. Moreover, the Fréchet topology is
initial with respect to the point evaluations, i.e., a map f to K

�〈〈X〉〉 is continuous if
and only if aη ◦ f is continuous for every word η ∈ X∗.

Given any c ∈ K
�〈〈X〉〉 one can associate a causal m-input, �-output operator, Fc,

in the following manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue measurable
function u : [t0, t1] → K

m , define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p
is the usual Lp-norm for a measurable K-valued function, ui , defined on [t0, t1]. Let
Lm
p [t0, t1] denote the set of all measurable functions defined on [t0, t1] having a finite

‖·‖p norm. The closed ball of radius R > 0 is Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] :
‖u‖p ≤ R}. Assume C[t0, t1] is the subset of continuous functions in Lm

1 [t0, t1].
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Define inductively for each η ∈ X∗ the map Eη : Lm
1 [t0, t1] → C[t0, t1] by setting

E∅[u] = 1 and letting

Exi η̄[u](t, t0) =
∫ t

t0
ui (τ )Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen–Fliess series corresponding to c is

y(t) = Fc[u](t) =
∑

η∈X∗
(c, η) Eη[u](t, t0) (1)

[15, 16]. It can be shown that if there exists real numbers K , M ≥ 0 such that

|(c, η)| ≤ K M |η| |η|!, ∀η ∈ X∗ (2)

(|z| := maxi |zi | when z ∈ K
�), then the series defining Fc converges absolutely and

uniformly for sufficiently small R, T > 0 and constitutes a well-defined mapping
from Bm

1 (R)[t0, t0 + T ] into B�∞(S)[t0, t0 + T ] for some S > 0. Any such mapping is
called a locally convergent Fliess operator. Here, K�

LC 〈〈X〉〉 will denote the set of all
such locally convergent generating series, i.e., those series satisfying growth condition
(2). Given any smooth state space realization of y = Fc[u],

ż = g0(z) +
m∑

i=1

gi (z)ui , z(0) = z0, y = h(z),

it is known that the generating series c is determined by

(c j , η) = Lgi1
· · · Lgik

h j (z0), η = xik · · · xi1 ∈ X∗, j = 1, 2, . . . , � (3)

where Lgi h j is the Lie derivative of h j with respect to gi .

2.2 Formal Power Series Products Induced by System Interconnection

Given Fliess operators Fc and Fd , where c, d ∈ K
�
LC 〈〈X〉〉, the parallel and product

connections satisfy Fc + Fd = Fc+d and Fc Fd = Fc �� d , respectively [15]. When
Fliess operators Fc and Fd with c ∈ K

�
LC 〈〈X〉〉 and d ∈ K

m
LC 〈〈X〉〉 are interconnected

in a cascade fashion, the composite system Fc◦Fd has theFliess operator representation
Fc◦d , where the composition product of c and d is given by

c ◦ d =
∑

η∈X∗
(c, η) ψd(η)(1) (4)

[13, 14]. Here, 1 denotes the monomial 1∅, andψd is the continuous (in the ultrametric
sense) algebra homomorphism from K〈〈X〉〉 to the set End(K〈〈X〉〉) of vector space
endomorphisms on K〈〈X〉〉 uniquely specified by ψd(xiη) = ψd(xi ) ◦ ψd(η) with
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is smooth,G is called aCr -regular Lie group(or justCr -regular).1 A C� -regular Lie
groupG is calledregular (in the sense of Milnor).

Every Banach Lie group isC0-regular (cf. [37]). Several important results in in�nite-
dimensional Lie theory are only available for regular Lie groups. For example, the
interplay between Lie algebra and Lie group hinges on regularity as this property
guarantees existence of a smooth Lie group exponential function. Moreover, if one
wants to lift morphisms of Lie algebras to the Lie group by integration, this requires
the group to be regular, cf. [34].

Proposition 4.2The group((K�� X�� )× , �� ) with the Fréchet topology and the group
((K LC�� X�� )× , �� ) with the Silva topology are C0-regular analytic Lie groups.

Proof It was established that the groups are unit groups of continuous inverse alge-
bras; hence, they are in�nite-dimensional analytic Lie groups by [19, Theorem 5.6].
Moreover, since the shuf�e product is abelian, andK�� X�� andK LC�� X�� are both
complete locally convex spaces, an application of [22, p. 3 Corollary and Proposition
3.4 (a)] shows that the Lie groupsK�� X�� andK LC�� X�� areC0-regular (even with
analytic evolution map evol).

Remark 4.1In [22, Lemma 2.2] it was proved that the solution to the initial value
problem for regularity in the unit group of a CIA is given by the Volterra series

� ( t) = 1 +
��

n= 1

� t

0

� tnŠ1

0
· · ·

� t2

0
�( t1) · · · �( tn)dt1 . . . dtn. (7)

Hence, the Volterra series describes both the solution of the initial value problem in
K�� X�� and the subgroup� + K LC�� X�� .

Proposition 4.3The composition product onK�� X�� and onK LC�� X�� is analytic.

Proof In light of the previous observations regarding the complexi�cations, it suf�ces
to prove the statement for the caseK = C. Fix � � X� . By de�nition of the composition
product, an induction argument shows thata� (c � d) is a polynomial in �nitely many
a� (c) and a� (d) for words such that|� |, |� | � | � | (for a detailed proof see [40,
Lemma 83]). As the coordinate functions are continuous linear (thus holomorphic)
in the Fréchet topology onK�� X�� and in the Silva topology onK LC�� X�� , one can
deduce the following:

(1) the composition product� : K �� X�� 2 � K �� X�� is continuous with respect to the
Fréchet topology (which is initial with respect to thea� );

(2) for every� � X� the map(c, d) 	� a� (c � d) is holomorphic both onK�� X�� 2

and onK LC�� X�� 2.

1 The function spaceCr ([0, 1], L(G)) is endowed with the compact openCr -topology (controlling a
function and its derivatives on compact subsets). With this topology and pointwise addition and scalar
multiplicationCr ([0, 1], L(G)) is a locally convex space. Thus, it makes sense to de�ne smooth mappings
on this space, cf. Appendix A.
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Furthermore, the coordinate functions aη, η ∈ X∗ separate the points on C〈〈X〉〉 and
on CLC 〈〈X〉〉. Now apply Lemma A.1. Since the composition product is continuous
on C〈〈X〉〉 and analytic after composition with aη, η ∈ X∗, the composition product
is analytic as a mapping on C〈〈X〉〉. A similar argument holds for the composition
product on CLC 〈〈X〉〉 as continuity for this product was established in Theorem 3.2.

5 The Lie Group (ı + K
m
LC〈〈X〉〉, ◦,ı)

A Lie group structure on the group (δ + K
m
LC 〈〈X〉〉, ◦, δ) is presented in this sec-

tion. This group is known to have an associated graded and connected Hopf algebra
(H , μ,	) as described in Sect. 2.2 and more completely in [25, Section 3]. This
structure will play an important role in the proof of the Lie group property. Note,
however, that (δ +K

m〈〈X〉〉, ◦, δ) is not the character group of said Hopf algebra, and
thus the Lie theory for such groups from [5, 10] is not directly applicable. The main
claim, as stated below, is established from first principles.

Theorem 5.1 The group (δ +K
m
LC 〈〈X〉〉, ◦, δ) is an analytic Lie group under the Silva

topology.

Proof The proof is carried out in four main steps.
Step 1: The group product is continuous in the Silva topology. Fix M ≥ 0 and let

Mε = M(1+ε). If c, d ∈ �∞,M (X∗,Km), then the proof of Theorem 3.2 can be easily
modified to show that c ◦̃ dδ is continuous in the Silva topology. Specifically, the only
change is in the definition of d̄ and d̄ j . For example, d̄ = M(

∑m
k=0 xk + x0d[k]), in

which case, it follows directly that cδ ◦ dδ = δ + d + c ◦̃ dδ is continuous in both its
left and right arguments in the Banach space �∞,Mε (X∗,Km). Joint continuity follows
then verbatim as in the proof of Theorem 3.2.

Step 2: The group inverse is degreewise a polynomial. Assume without loss of
generality that m = 1. Let c j → c in �∞,M (X∗,K). It was shown in [25] that the
composition inverse preserves local convergence. Thus, there exists an M1 > 0 such
that c◦−1

δ ∈ δ + �∞,M1(X∗,K) and (cδ, j )
◦−1 ∈ δ + �∞,M1(X∗,K) for every j ≥ 1.

Set M2 = max(M, M1). Since H is graded and connected with respect to the degree
grading, it follows from Lemma 2.1 (cf. [36]) that

(c◦−1
δ , η) =S(aη)(c) = −aη(c) −

∑
S(a′

(η1)
)(c)a′

(η2)
(c)

= − aη(c) +
deg(aη)∑

k=1

(−1)k+1μk ◦ 	′
k(aη)(c), (8)

where 	′a = 	a − a ⊗ 1δ − 1δ ⊗ a = ∑
a′
(η1)

⊗ a′
(η2)

is the reduced coproduct

in the notation of Sweedler2, 	′
k = 	′

k−1 ⊗ id is defined inductively, and μk is the
k-fold multiplication in the target algebra. In particular, a′

(η1)
∈ Vn1 and a′

(η2)
∈ Hn2

with n1, n2 < n. As the summation in (8) is always finite, the η component of c◦−1
δ is

a polynomial in the variables {aξ (c) : deg(aξ ) ≤ deg(aη)}. This implies immediately

2 Given the bijection between δ + K〈〈X〉〉 and K〈〈X〉〉, for brevity aη(cδ) will be written as aη(c).
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that inversion is continuous (and analytic) in theFréchet space δ+K
m
LC 〈〈X〉〉. However,

this does not yet yield continuity with respect to the Silva space topology on δ +
K

m
LC 〈〈X〉〉.
Step 3: Continuity of the group inverse in the Silva topology. It is first proved that

inversion is continuous at the unit δ. It is again assumed without loss of generality
that m = 1. Recalling that cδ := δ + c, the series cδ, j = δ + c j , j ∈ N converges
to δ in the Silva topology if and only if the series c j converges to 0 in �∞,M (X∗,K)

for some M > 0. Fix c ∈ �∞,M (X∗,K) and define c̄ = ∑
η∈X∗ K M |η| |η|! η with

K = ‖c‖�∞,M so that |(c, η)| ≤ (c̄, η), ∀η ∈ X∗. It can be verified directly that
y = Fc̄δ [u] = u + Fc̄[u] has the state space realization

ż = M

K
(1 + u), z(0) = K , y = z + u.

Therefore, y = Fc̄◦−1
δ

[u] = u + Fc̄◦−1[u] has the realization

ż = M

K
(z2 − z3) + z2u, z(0) = K , y = −z + u. (9)

It is shown in [25, Theorem 6] that c◦−1 = (−c)@δ, where the right-hand side denotes
the generating series for the unity feedback system v 	→ y defined by y = F−c[u] and
u = v + y. Combining this fact with a minor extension of [42, Lemma 10], it follows
that the condition |(c, η)| ≤ (c̄, η) implies

∣
∣(c◦−1, η)

∣
∣ ≤ ∣

∣(c̄◦−1, η)
∣
∣, ∀η ∈ X∗. The

fastest growing coefficients of c̄◦−1 have been shown to be the sequence (c̄◦−1, xk
0 ),

k ≥ 0 [42, Lemma 7]. Therefore, for any word η ∈ X∗ of length k

∣
∣
∣(c◦−1, η)

∣
∣
∣ ≤

∣
∣
∣(c̄◦−1, η)

∣
∣
∣ ≤

∣
∣
∣(c̄◦−1, xk

0 )

∣
∣
∣ =

∣
∣
∣Lk

g0h(z0)
∣
∣
∣ ,

where the right-most inequality follows from (3) with g0(z) = (M/K )(z2 − z3),
h(z) = −z, and z0 = K as derived in (9). A direct calculation gives

(c̄◦−1, xk
0 ) = bk(K )K Mk, k ≥ 0, (10)

where the first few polynomials bk(K ) are:

b0(K ) = −1

b1(K ) = −1 + K

b2(K ) = −2 + 5K − 3K 2

b3(K ) = −6 + 26K − 35K 2 + 15K 3

b4(K ) = −24 + 154K − 340K 2 + 315K 3 − 105K 4

b5(K ) = −120 + 1044K − 3304K 2 + 4900K 3 − 3465K 4 + 945K 5

b6(K ) = −720 + 8028K − 33740K 2 + 70532K 3 − 78750K 4 + 45045K 5 − 10395K 6

b7(K ) = −5040 + 69264K − 367884K 2 + 1008980K 3 − 1571570K 4 + 1406790K 5
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− 675675K 6 + 135135K 7

.

.

.

As c j , j ∈ N converges to 0 ∈ �∞,M (X∗,K), one can discard finitely many initial
terms and thus assume without loss of generality that ‖c j‖�∞,M ≤ K ≤ 1. However,
when K ≤ 1 it is known that bk(K ) ≤ b̄k , where b̄k , k ≥ 0 is the integer sequence
A112487 in [41], namely 1, 2, 10, 82, 938, 13778, 247210, …. Its exponential gener-
ating function is the real analytic function

G(x) = −1

1 + W (−2 exp(x − 2))
,

where W is the Lambert W-function (see [42, Example 5]), in which case, there exists
growth constants K̄ , M̄ > 0 such that b̄k ≤ K̄ M̄kk!, k ≥ 0. Combining this inequality
with (10) gives

∣
∣
∣(c◦−1, η)

∣
∣
∣ ≤ ‖c‖�∞,M K̄ (M M̄)|η| |η|!, ∀η ∈ X∗.

Hence, if cδ, j → δ inK×�∞,M (X∗,K), then c◦−1
δ, j → δ in �∞,M M (X∗,K). Therefore,

inversion is continuous at the unit with respect to the Silva topology. Exploiting the
fact that inversion is a group antimorphism, this implies that inversion is continuous
everywhere on δ + K

m
LC 〈〈X〉〉 in the Silva topology.3

Step 4: Group product and inverse are analytic. Since the complexification of
δ + R

m
LC 〈〈X〉〉 is δ + C

m
LC 〈〈X〉〉, it suffices to consider the complex case. In view

of Lemma A.1 and Step 1, all one needs to prove is that for every η ∈ X∗ the
mappings (cδ, dδ) 	→ aη(cδ ◦ dδ) and cδ 	→ aη(c

◦−1
δ ) are holomorphic. Regarding the

composition product recall that (δ + c) ◦ (δ + d) = δ + d + c◦̃dδ . Now for the mixed
composition ◦̃ it was shown in the proof of Proposition 4.3 that aη(c◦̃dδ) is given by
a polynomial in finitely many of the variables aξ (c) and aν(d). Hence, this part of the
product is analytic on δ+C

m
LC 〈〈X〉〉, and therefore the composition product is analytic.

Similarly, for the inversion ι, Step 2 shows that aη ◦ ι(c) is given as a polynomial in
finitely many evaluations of c. As before, the coordinate functions are holomorphic,
and this implies that aη ◦ ι is holomorphic on δ + C

m
LC 〈〈X〉〉. Hence, the inversion is

also holomorphic.

The argument for the Lie group structure on subsets of locally convergent series can
be adapted almost verbatim to the case where no convergence of the series is assumed.

Corollary 5.1 The group (δ + K
m〈〈X〉〉, ◦, δ) is an analytic Lie group.

Proof Again it suffices to prove the case where K = C. In Step 2 of the proof for
Theorem 5.1 it was shown that after composition with a coordinate function aη both
the composition and the inversion in the group are given by a polynomial in finitely
many coordinate functions applied to the arguments. Since the Fréchet topology

3 Alternatively, continuity can be deduced from a more general criterion, see [1, Lemma 1.3].

123



Foundations of Computational Mathematics (2023) 23:803–832 823

is initial with respect to the coordinate functions, it follows directly that the group
operations are continuous. Applying Lemma A.1 gives immediately that the group
operations are also analytic.

While the Fréchet Lie group δ+K
m〈〈X〉〉 is much simpler (topologically speaking)

than the Silva group δ +K
m
LC 〈〈X〉〉, it supplies a useful template for the Lie theoretic

arguments considered next, namely identifying the Lie algebra and proving that a Lie
group is regular in the sense ofMilnor. The first goal is to establish these properties for
the simpler FréchetLie group. Subsequently, it is shown that these results then imply
corresponding properties for the Silva Lie group. However, it is first necessary to
introduce a new structure which will yield a convenient description of the Lie bracket.
This structure is the so called pre-Lie product, which was developed in [18] for the
case where m = 1 and generalized in [12, Section 3.2] for the case where m ≥ 1.

Definition 5.1 Let X = {x0, x1, . . . , xm} and denote by d[i] the i-th component of
a series d ∈ K

m〈〈X〉〉. The pre-Lie product is the bilinear product on K
m〈〈X〉〉 ×

K
m〈〈X〉〉

c � d =
∑

η∈X∗
(c, η) η � d,

where η � d is defined inductively by

(x0η) � d = x0(η � d)

(x jη) � d = x j (η � d) + x0(η �� d[ j]), j = 1, 2, . . . , m

and ∅ � d = 0.

This product can be viewed as the linear part of the group product, that is,

cδ ◦ dδ = δ + d + c ◦̃ dδ = δ + c + d + c � d + O(c, d2), (11)

where O(c, d2) denotes all terms depending linearly on c and on higher powers of d.
One can show that the pre-Lie product preserves the length of words in the sense that
(η � ξ, ν) = 0 when |η| + |ξ | �= |ν|. Therefore, the product is well defined as it is
locally finite. Moreover, defining d[0] = 0, the recursive formulas reduce to a single
expression

(x jη) � d = x j (η � d) + x0(η �� d[ j]), j ∈ {0, 1, . . . , m}. (12)

Example 5.1 Consider the computation of the pre-Lie product for a few words of short
length. For example, if c = xn

0 , n ∈ N and d ∈ K
m〈〈X〉〉, then xn

0 �d = xn
0 (∅�d) = 0.

For any xk ∈ X with k �= 0,

xk � d = xk(∅ � d) + x0(∅ �� d[k]) = x0d[k], k ∈ {1, . . . , m}. (13)
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Observe axk (xk � d) = 0 as every word in the support of xk � d must have the prefix
x0. Furthermore, it is clear from (13) that the length of the words in supp(xk � d)

coincide with the length of those in supp(d) except incremented by one. On the other
hand, if d = ekη (where ek ∈ R

m is the k-th unit vector), then

deg(axk�d) = 2 + deg(aη) ≥ deg(axk ) + deg(aη), k ∈ {1, 2, . . . , m}.

Indeed, one always obtains |η � d| + |η � d|x0 ≥ |η| + |η|x0 + |d| + |d|x0 (where
the length of a sum of words is defined as the maximum of the length of the words).
Consider next c = x j xk where both j and k are not zero. Applying the definition gives

x j xk � d = x j (xk � d) + x0(xk �� d[ j])
= x j (xk(∅ � d) + x0d[k]) + x0(xk �� d[ j])
= x j x0d[k] + x0(xk �� d[ j]). (14)

For comparison, it follows from (5) that

x j xk ◦̃ dδ = φd(x j xk)(1)

= φd(x j ) ◦ φ(xk)(1)

= φd(x j )(xk + x0d[k])
= x j (xk + x0d[k]) + x0(d[ j] �� (xk + x0d[k]))
= x j xk + x j x0d[k] + x0(d[ j] �� xk) + x0(d[ j] �� (x0d[k]))
= x j xk + x j xk � d + x0(d[ j] �� (x0d[k])),

which is consistent with (11). Applying now the coordinate function ax j xk to (14)
gives ax j xk (x j xk � d) = 0 for any series d. A trivial induction shows that

aη(η � d) = 0, ∀η ∈ X∗, d ∈ K
m〈〈X〉〉.

Finally, consider a word η with |η|x0 = 0. Observe aη(ρ �d) = 0 because every word
in the support of ρ � d must contain at least one x0 and |η|x0 = 0.

Proposition 5.1 The Lie algebra of δ + K
m〈〈X〉〉 is the space K

m〈〈X〉〉 with the Lie
bracket given by the formula

[c, d ] = c � d − d � c. (15)

Proof The Lie bracket of the Lie algebra associated with the Lie group δ + K
m〈〈X〉〉

is given by evaluating the Lie bracket of left invariant vector fields on δ +K
m〈〈X〉〉 at

the identity δ. Note that since δ + K
m〈〈X〉〉 is an affine subspace of δ + K

m〈〈X〉〉, it
is easy to see that the left-invariant vector field associated with c ∈ K

m〈〈X〉〉 is given
by the formula Xc(δ + e) = c + e � c, hence

[c, d ] = [ Xc, Xd ](δ)
= (d Xd ◦ Xc − d Xc ◦ Xd)(δ)
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= lim
t→0

t−1 (Xd(δ + tc) − Xc(δ) − Xc(δ + td) + Xd(δ))

= lim
t→0

t−1 (d + tc � d − d − c − td � c + c)

= lim
t→0

t−1 t (c � d − d � c) = c � d − d � c.

Corollary 5.2 The Lie algebra of (δ+K
m
LC 〈〈X〉〉, ◦, δ) is Km

LC 〈〈X〉〉 with bracket (15).

Proof The canonical inclusion ι : δ +K
m
LC 〈〈X〉〉 → δ +K〈〈X〉〉 is the restriction of a

continuous linear map to a closed (affine linear) subset, whence smooth. Obviously it
is a Lie group morphism. Derivating the morphism at the identity δ yields a Lie group
morphism

L(ι) := Tδι : Tδ(δ + K
m
LC 〈〈X〉〉) → Tδ(δ + K〈〈X〉〉), v 	→ ι(v)(= v).

Observe that the Lie bracket on L(δ +K
m
LC 〈〈X〉〉) = Tδ(δ +K

m
LC 〈〈X〉〉) ∼= K

m
LC 〈〈X〉〉

coincides (pointwise) with one on L(δ + K〈〈X〉〉), and the latter is (15).

Regularity of the Fréchet Lie group δ + K〈〈X〉〉 is investigated next. For a curve
γδ(t) = (δ + γ (t)) ∈ δ + K〈〈X〉〉 consider the Lie type differential equation

{
γ̇δ(t) = γδ(t).c(t) = c(t) + γ (t) � c(t)

γδ(0) = δ,
(16)

where c : [0, 1] → K〈〈X〉〉 is a continuous curve. For every η ∈ X∗ observe that
(γδ(t), η) = (γ (t), η). Now since the coordinate functions are continuous and linear,
a differential equation is obtained for every word η ∈ X∗:

(γ̇δ(t), η) = (c(t), η) + (γ (t) � c(t), η)

= (c(t), η) +
∑

ρ∈X∗
(γ (t), ρ)(ρ � c(t), η)

= (c(t), η) +
∑

1≤|ρ|≤|η|
(γ (t), ρ)(ρ � c(t), η). (17)

The computations in Example 5.1 have been used above, and the products of elements
in K

m are taken as componentwise products. Note now that the sum in (17) only
appears if |η|x0 �= 0.Hence, if aword does not contain the letter x0, then the differential
equation (17) reduces to

(γ (t), η) =
∫ t

0
(c(s), η)ds, ∀η ∈ X∗, |η|x0 = 0. (18)

Since (c(t), η) is a continuousKm-valued curve, one can solve the above equation for
all t ∈ [0, 1]. Now if η is a word with |η|x0 �= 0, observe that all elements in (17)
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appearing as coefficients of evaluations of γ are continuous Km-valued curves of the
form (c(t), η) or

Cρ,η : [0, 1] → K
m, t 	→ Cρ,η(t) := (ρ � c(t), η). (19)

It is now proved via induction on the length of the words that equation (17) admits a
solution on [0, 1] for every word. Note first that for any word without an x0 (such as
the empty word, which is the only length zero element), the statement follows directly
from the integral equation (18). If |η| = n > 1 assume that the statement is true for
all words of lower length. If |η|x0 = 0, the statement follows again from (18). To
obtain solutions for the words of length n containing x0, pick an enumeration (ηi )i∈In

of words of length n. Using the enumeration and (19), define

vn(t) :=

⎡

⎢
⎢
⎢
⎣

(γ (t), η1)
(γ (t), η2)

.

.

.

(γ (t), η|In |)

⎤

⎥
⎥
⎥
⎦

, Cn(t) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Cη1,η2 (t) · · · Cη1,η|In | (t)

Cη2,η1 (t) 0
. . .

.

.

.

.

.

.
. . .

. . . Cη|In |−1,η|In | (t)
Cη|In |,η1 (t) · · · Cη|In |,η|In |−1 (t) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

bn(t) :=
∑

|ρ|<n

⎡

⎢
⎢
⎢
⎣

(γ (t), ρ)(ρ � c(t), η1)
(γ (t), ρ)(ρ � c(t), η2)

.

.

.

(γ (t), ρ)(ρ � c(t), η|In |)

⎤

⎥
⎥
⎥
⎦

Then, (17) together with the observation that (η � c, η) = 0 give rise to the following
inhomogeneous system of linear differential equations on (Km)|In |:

v̇n(t) = Cn(t)vn(t) + bn(t), t ∈ [0, 1], (20)

Now by the induction hypothesis the inhomogeneity bn in (20) is already completely
determined by the previous computations. Furthermore, the coefficient matrix Cn is
determined by c and thus continuous in t . Hence, one can solve the system (20)
and obtain a solution on [0, 1] (via the usual solution theory for linear differential
equations on finite-dimensional spaces). This completes the induction, and thus, one
can iteratively solve the inhomogeneous linear system (20) for every n ∈ N0 with a
unique solution on [0, 1]. Following [11, §6] (cf. also [2]), the solution to the Lie type
equation (16) is the solution to the infinite system of differential equations (18) and

v̇n(t) = Cn(t)vn(t) + bn(t), n ∈ N0.

The earlier discussion has shown that this system is lower diagonal, i.e., the right-hand
side of the equation in degree n depends only on the solutions up to degree n. One
can now solve the differential equation on the Fréchet space by adapting the argument
in [11, p. 79-80]: Lower diagonal systems can be solved iteratively component-by-
component, if each solution exists on a time interval [0, ε] for some fixed ε > 0.
Choosing ε = 1, observe that the Lie type equation (16) admits a unique global
solution which can be computed iteratively. Thus, the following result is evident.
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Proposition 5.2 The Lie group δ + K
m〈〈X〉〉 is C0-regular.

Proof It was seen in the discussion above that the Fréchet Lie group δ + K
m〈〈X〉〉 is

C0-semiregular, i.e., for every continuous curve η : [0, 1] → K〈〈X〉〉, the differential
equation

{
γ̇ (t) = η(t).γ (t)

γ (0) = δ

admits a unique solution γ : [0, 1] → δ +K〈〈X〉〉. However, due to [31, Corollary D],
every C0-semiregular Lie group modeled on a Fréchet space is already C0-regular.

Observe that one can leverage the regularity of the Fréchet Lie group in the
investigation of the regularity for the Silva Lie group δ + K

m
LC 〈〈X〉〉. The inclusion

ι : δ+K
m
LC 〈〈X〉〉 → δ+K

m〈〈X〉〉 is a Lie group morphismwhich relates the solutions
of the evolution equation on the Silva and the Fréchet Lie groups. Indeed, [21, 1.16]
shows that for a continuous curve c : [0, 1] → L(δ + K

m
LC 〈〈X〉〉) = K

m
LC 〈〈X〉〉 a

solution to the evolution equation (16) in δ + K
m
LC 〈〈X〉〉 must satisfy

ι ◦ Evolδ+K
m
LC 〈〈X〉〉(c) = Evolδ+Km 〈〈X〉〉(L(ι) ◦ c) = Evolδ+Km 〈〈X〉〉(c),

where c is interpreted canonically as a curve into L(δ + K
m〈〈X〉〉) = K

m〈〈X〉〉 via
the natural inclusion. Hence, the Silva Lie group will be C0-semiregular if and only if
it can be proved that the solutions to the evolution equation on the Fréchet Lie group
are bounded when the curve c is bounded. Unfortunately, at present it is not obvious
how to bound these solutions to the evolution equation, which leads to the following.

Open problem: Is the Silva Lie group δ + K
m
LC 〈〈X〉〉 C0-semiregular?

Remark 5.1 (1) Note that words which do not contain the letter x0 already obey the
necessary bound for the solution of the evolution equation as the differential equa-
tion reduces to the integral equation (18) for these words.

(2) For words which contain the letter x0, the linear system (20) governs the evolution
equation. A natural Ansatz for the problem would thus be to apply a Gronwall-
type argument. Looking closer at the pre-Lie product, one easily sees that the
top-level words (i.e., of length n when dealing with length n-words) only yield an
exponential bound in the Gronwall argument. Unfortunately, there seems to be no
clear way to bound the norm of the inhomogeneity bn in (20).

(3) Observe that regularity of the SilvaLie group δ+K
m
LC 〈〈X〉〉 follows almost directly

onceC0-semiregularity is known:Having the semiregularity in place, it is assumed
that the estimates will directly yield that for every curve c taking values in

L(δ + K
m〈〈X〉〉) ∩ B‖·‖M

1 (0) = {x ∈ K
m〈〈X〉〉 | ‖x‖M ≤ 1}, M > 0,

the evolution Evol(c) is contained in B‖·‖N
K (0), N , K > 0 fixed (but depending

on M). If this is true, C1-regularity of δ +K
m
LC 〈〈X〉〉 follows from the arguments

presented in the proof of [6, Theorem 4.3].
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Appendix A. Infinite-dimensional Calculus

In this appendix, some basic definitions are recalled concerning the infinite-
dimensional calculus used throughout the article. For more information, the reader
is referred to the presentations in [20, 37].

Definition A.1 Let r ∈ N0 ∪ {∞} and E , F locally convex K-vector spaces and
U ⊆ E open. A map f : U → F is called a Cr

K
-map if it is continuous and the

iterated directional derivatives

dk f (x, y1, . . . , yk) := (Dyk · · · Dy1 f )(x)

exist for all k ∈ N0 with k ≤ r and y1, . . . , yk ∈ E and x ∈ U , and the mappings
dk f : U × Ek → F so obtained are continuous. If f is C∞

R
, it is called smooth. If f

is C∞
C
, it is said to be complex analytic or holomorphic and that f is of class Cω

C
.4

Definition A.2 (Complexification of a locally convex space) Let E be a real locally
convex topological vector space. Endow the locally convex product EC := E × E
with the following operation

(x, y).(u, v) := (xu − yv, xv + yu), ∀x, y ∈ R, u, v ∈ E .

The complex vector space EC is called the complexification of E . Identify E with the
closed real subspace E × {0} of EC.

Definition A.3 Let E , F be real locally convex spaces and f : U → F defined on an
open subsetU . f is called real analytic (orCω

R
) if f extends to aC∞

C
-map f̃ : Ũ → FC

on an open neighborhood Ũ of U in the complexification EC.

For r ∈ N0 ∪ {∞, ω}, being of class Cr
K
is a local condition, i.e., if f |Uα is Cr

K

for every member of an open cover (Uα)α of its domain, then f is Cr
K
. (See [20, pp.

51–52] for the case of Cω
R
. The other cases are clear by definition.) In addition, the

composition of Cr
K
-maps (if possible) is again a Cr

K
-map (cf. [20, Propositions 2.7

and 2.9]).

4 Recall from [8, Proposition 1.1.16] that C∞
C

functions are locally given by series of continuous homo-
geneous polynomials (cf. [3, 4]). This justifies the abuse of notation.
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Definition A.4 (Cr
K
-manifolds andCr

K
-mappings between them) For r ∈ N0∪{∞, ω},

manifolds modeled on a fixed locally convex space can be defined as usual. Direct
products of locally convex manifolds, tangent spaces and tangent bundles as well as
Cr
K
-maps between manifolds may be defined as in the finite-dimensional setting.
For Cr

K
-manifolds M, N the notation Cr

K
(M, N ) denotes the set of all Cr

K
-maps

from M to N . Furthermore, for s ∈ {∞, ω} define the locally convex Cs
K
-Lie groups

as groups with a Cs
K
-manifold structure turning the group operations into Cs

K
-maps.

The following lemma seems to be part of the mathematical folklore, a proof can be
found in [6, Lemma A.3].

Lemma A.1 Let U be an open subset of a complex locally convex space E and F
be a complex locally convex space which is sequentially complete. Consider a set
� ⊆ L(F,C) of complex linear functionals which separates the points on F.5 If a
map f : U → F is continuous and

λ ◦ f : U → C

is complex analytic for each λ ∈ �, then f is complex analytic.

Appendix B. Table of Notation

See Table 1.

Table 1 Table of primary notation and symbols

Object Definition / Explanation

Symbols

X∗ set of all words over the alphabet X = {x0, x1, . . . , xm }
Fc causal m-input, �-output operator associated with c ∈ K

�〈〈X〉〉
δ fictitious generating series for the identity operator

cδ = δ + c

(c, η) coefficient of the series c for the word η ∈ X∗
aη evaluation map sending a series c to its coefficient (c, η)

ψd , φd algebra homomorphisms, see composition products

Spaces and groups

K
�〈〈X〉〉 vector space of all non-commutative formal power series over the alphabet

X with coefficients in K
�

K
�〈X〉 all series in K�〈〈X〉〉 with finite support, i.e., polynomials

5 That is, for each x ∈ F there is a λ ∈ � with λ(x) �= 0.
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Table 1 continued

Object Definition / Explanation

K
�
LC 〈〈X〉〉 space of locally convergent series, i.e., all series satisfying |(c, η)| ≤

K M |η||η|! for all η ∈ X∗ and K , M ∈ ]0,∞[. Coincides with the locally
convex inductive limit

⋃
M>0 �∞,M (X∗,K�)

(�∞,M (X∗,K�), ‖·‖�∞,M ) Banach space of generating series bounded with respect to M with norm

‖c‖�∞,M = supη∈X∗ |(c,η)|
M |η||η|! , this space is isomorphic as a Banach space

to �∞
Lm
p [t0, t1] Banach space of Km -valued Lp-functions on the interval [t0, t1]

Bm
p (R)[t0, t1] closed ball {u ∈ Lm

p [t0, t1] : ‖u‖p ≤ R}
K

m 〈〈X〉〉×,Km
LC 〈〈X〉〉× unit group of the algebra (Km 〈〈X〉〉, �� ) (resp. (Km

LC 〈〈X〉〉, �� )

(δ + K
m 〈〈X〉〉, ◦, δ) Lie group of power series consisting of K�〈〈X〉〉 together with δ (similar

notation for (δ + K
m
LC 〈〈X〉〉, ◦, δ))

Products

�� shuffle product

c ◦ d composition product, (4):
∑

η∈X∗ (c, η)ψd (η)(1)

c ◦̃ dδ mixed composition product, (5):
∑

η∈X∗ (c, η)φd (η)(1)

c@d feedback product

� pre-Lie product, see Definition 5.1
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