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Quasielastic lepton scattering and back-to-back nucleons in the short-time approximation
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Understanding quasielastic electron and neutrino scattering from nuclei has taken on new urgency with current
and planned neutrino oscillation experiments, and with electron scattering experiments measuring specific final
states, such as those involving nucleon pairs in “back-to-back” configurations. Accurate many-body methods are
available for calculating the response of light (A � 12) nuclei to electromagnetic and weak probes, but they are
computationally intensive and only applicable to the inclusive response. In the present work we introduce a novel
approach, based on realistic models of nuclear interactions and currents, to evaluate the short-time (high-energy)
inclusive and exclusive response of nuclei. The approach accounts reliably for crucial two-nucleon dynamics,
including correlations and currents, and provides information on back-to-back nucleons observed in electron
and neutrino scattering experiments. We demonstrate that in the quasielastic regime and at moderate momentum
transfers both initial- and final-state correlations and two-nucleon currents are important for a quantitatively
successful description of the inclusive response and final-state nucleons. Finally, the approach can be extended
to include relativistic—kinematical and dynamical—effects, at least approximately in the two-nucleon sector,
and to describe the response in the resonance-excitation region.

DOI: 10.1103/PhysRevC.101.044612

I. INTRODUCTION

Lately, there has been a resurgence of interest in quasielas-
tic scattering of electrons and neutrinos off nuclei, mostly
driven by the increasing relevance of accelerator neutrino
experiments in determining fundamental properties of these
particles, such as the oscillation parameters and charge-
conjugation and parity violating phase [1–4], and by the
many recent electron scattering experiments finding a signifi-
cant fraction of events with back-to-back nucleons, primarily
neutron-proton pairs, in the final state [5–8].

While seemingly a simple process, inclusive quasielastic
scattering at moderate momentum transfers is in fact more
subtle than originally thought. The cleanest experimental
evidence for this is the Rosenbluth separation of the in-
clusive (e, e′) cross section [9,10], where the longitudinal
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and transverse response functions differ by approximately
30%, after dividing out the relevant electric and magnetic
nucleon form factors. The excess of transverse over longi-
tudinal strength, which exists on both the low- and high-
energy sides of the quasielastic peak for moderate momentum
transfers (2–4 fm−1), is caused predominantly by two-nucleon
processes: both initial- and final-state correlations and two-
body currents. The importance of these two-nucleon processes
has been known for quite some time [10–17] and has most
recently been confirmed by accurate quantum Monte Carlo
(QMC) calculations of electron scattering off 12C [18–20].

In this paper we present simple arguments that show how
the quasielastic response arises primarily from the short-time
response of one and two nucleons, and how this fact leads
to the observed scaling in momentum transfer (y scaling)
and nuclear mass (superscaling) [21]. We also introduce an
approach to calculate the short-time propagation resulting
from two-nucleon dynamics. The approach yields results in
agreement with those of the more accurate Green’s function
Monte Carlo (GFMC) method for inclusive response. It also
provides information on the energy distribution of the inter-
acting pair right after the electroweak interaction has occurred
(i.e., at the vertex), and hence, at least for light nuclei, on
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exclusive channels involving two nucleons in the final state.
In heavier nuclei, the additional interactions between the pair
and spectator nucleons needed for a more reliable treatment
of these exclusive channels can be approximated by semiclas-
sical event generators.

The approach we propose only requires knowledge of the
ground state, and thus can be used to study heavy nuclei
amenable to auxiliary-field diffusion Monte Carlo (AFDMC)
calculations [22]. Further, since it involves only two active nu-
cleons, it can be improved to include relativistic (kinematical
and dynamical) effects and pion production channels.

The paper is structured as follows. In Secs. II and III we
discuss the role of two-body physics—two-nucleon correla-
tions and currents—in electromagnetic longitudinal and trans-
verse response functions, and in Sec. IV the QMC approach,
based on the imaginary-time formalism, is used to calculate
ab initio these response functions. In Sec. V we introduce the
short-time approximation (STA), which in essence accounts
for the full propagation of nucleon pairs in real rather than
imaginary time. Results in the STA for inclusive scattering
and some exclusive channels, specifically those involving
nucleon pairs in back-to-back kinematics, are given in Secs.
VI and VII, respectively. Final remarks and conclusions are
summarized in Sec. VIII. We relegate to the Appendix details
on the two-body dynamics leading to the observed excess of
strength in the transverse response.

II. NUCLEAR RESPONSE FUNCTIONS

The quasielastic inclusive-scattering cross section of elec-
trons and neutrinos by nuclei is written in terms of elec-
troweak response functions; see Refs. [10,23,24] for the com-
plete expressions. For the electromagnetic case of primary
interest in the present work, there are two response functions,
namely a longitudinal and a transverse one, schematically
given by

Rα (q, ω) =
∑
Mi

∑
f

〈�i|O†
α (q)|� f 〉〈� f |Oα (q)|�i〉

× δ(E f − Ei − ω), (1)

where Oα (q) is the electromagnetic charge (α = L) or current
(α = T ) operator. Here, ω and q are the energy and three-
momentum transferred to the nucleus, |�i〉 and |� f 〉 repre-
sent, respectively, the initial ground state and final continuum
state with energies Ei and E f , and an average over the initial
spin projections Mi of the initial state with spin Ji (indicated
by the overline) is implied.

The response can be equivalently written as the matrix
element of a current-current correlator by replacing the sum
over final states with a real-time propagator, namely

Rα (q, ω) =
∫ ∞

−∞

dt

2π
ei(ω+Ei )t

∑
Mi

〈�i|O†
α (q) e−iHt Oα (q)|�i〉.

(2)
In the equation above, the many-body nuclear Hamiltonian is
taken to consist of single-nucleon kinetic energy terms, and

two- and three-nucleon interactions

H =
∑

i

− h̄2

2m
∇2

i +
∑
i< j

vi j +
∑

i< j<k

Vi jk . (3)

The charge and current operators are also written as sums of
one- and two-nucleon terms (and, in principle, many-nucleon
terms, though they are ignored in the present work),

Oα (q) =
∑

i

O(α)
i (q) +

∑
i< j

O(α)
i j (q) + · · · . (4)

The nucleon and nucleon-to-� transition electromagnetic
form factors entering these charge and current operators
O(α)

i (q) and O(α)
i j (q) use standard parametrizations—dipole

for the proton electric and magnetic and the neutron mag-
netic form factors, and the Galster form for the neutron
electric form factor; see, for example, Ref. [24]—and are
evaluated at the four-momentum transfer Q2

qe = q2 − ω2
qe with

ωqe =
√

q2 + m2 − m, where m is the nucleon mass. Other
parametrizations or calculations of the nucleon form factors,
for example the z expansion [25] or calculations from lattice
gauge theory [26–32], can be easily included. Two-nucleon
terms in both the interactions and currents—collectively in-
dicated by “two-body physics”—are dominated by one-pion-
exchange dynamics.

It is also useful to consider sum rules associated with these
response functions, as they provide an indication of the overall
contribution from two-nucleon currents,

G2
α (Q2

qe) Sα (q) =
∫ ∞

ωel

dω Rα (q, ω)

=
∑
Mi

〈�i|O†
α (q) Oα (q)|�i〉, (5)

where ωel =
√

q2 + m2
i − mi is the threshold for elastic scat-

tering (mi is the rest mass of the initial nucleus). Note that we
calculate the sum rule corresponding to the response of point-
like nucleons, hence the factor G2

α (Q2
qe) denoting the square of

the appropriate combination of nucleon electromagnetic form
factors [12,33] is removed from the sum rule. The definition
above includes the elastic contribution; the inelastic sum rule
is obtained as

Sinel
α (q) = Sα (q) −

∑
Mi

∑
Mi′

|〈�i′ |Oα (q)|�i〉|2
G2

α (Q2
el )

, (6)

where the last term in the equation above is the elastic form
factor and the nucleon form factor combination is now eval-
uated at Q2

el = q2 − ω2
el. Note that for (initial) nuclear states

with Jπ = 0+, such as 4He, there is no elastic contribution
associated with magnetic transitions (namely, for α = T ).

It is not surprising that two-nucleon processes of one-pion
range play an important role in quasielastic scattering at
moderate momentum transfers. The central density of atomic
nuclei is ≈0.16 fm−3, corresponding to a Fermi momentum
kF of ≈1.35 fm−1 or 270 MeV/c. A simple cubic solid at
ρ = 0.16 fm−3 would have a nearest-neighbor distance or
lattice spacing of about 1.9 fm. A liquid will have fluctuations
that produce, on average, smaller nearest-neighbor distances.
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FIG. 1. Nearest-neighbor probability density at nuclear matter
density for noninteracting Boltzmann (distinguishable) particles
(black circles) and free nucleons (red squares) and with realistic
interactions (blue diamonds).

In Fig. 1 we plot the distribution of nearest-neighbor distances
for free Boltzman (distinguishable) particles at nuclear matter
density. A simple density response for this system would be
fully incoherent. We also plot the nearest-neighbor distance
distributions for free and interacting nucleons at the same
density. These distributions are obtained by sampling from the
square of the wave function summed over spin-isospin states
to obtain samples of the 3A coordinates, and then for each
nucleon finding the nearest neighboring nucleon.

These distributions all peak at around 1.1 fm, very similar
to the range of the one-pion-exchange (OPE) interaction. The
interacting distribution is smaller at very short distances but
larger near the peak, reflecting the repulsion and attractions at
very short and moderate distances. These considerations also
fit with the picture that has emerged from ab initio studies
of nuclear structure [34], that the two-nucleon probability
density as function of the relative separation ri j peaks at
about 1 fm for nucleon pairs in spin/isospin states S/T = 0/1
(quasibound 1S0 channel) and 1/0 (deuteronlike channel), in
which the OPE interaction plays a major role.

The relevant relative pair momentum corresponding to
these internucleon separations is π/ri j ≈ 500 MeV/c. Only at
momenta much higher than this value, when the correspond-
ing nearest-neighbor probability density is much reduced, can
one hope to regard the scattering as entirely incoherent. Even
when incoherent scattering (no interference between scatter-
ing off different nucleons) dominates, many-body effects can
be important, as evidenced by experimental results in deep
inelastic scattering from nuclei [35,36]. For the time being,
however, it is not clear what is the kinematical threshold for
the onset of these regimes.

III. TWO-NUCLEON CURRENTS AND CORRELATIONS

It is important to understand how two-nucleon processes
enter the quasielastic response, and in particular how they
affect its energy dependence. They have been found to

give 30% contributions to the electromagnetic transverse re-
sponse [10,19] and also to contribute substantially to the
axial transverse response [17,37–39]. The calculations of
Refs. [10,19,37] show that this enhancement comes about
because of constructive interference between the matrix el-
ements of the one-body current and the (leading) two-body
current induced by pion exchange [10,19]. In this connection,
it should be stressed that the contributions of these two-
nucleon currents would be largely suppressed if correlations
in the nuclear wave functions were to be turned off [10].
Thus, this large excess of transverse strength results from the
interplay between two-nucleon correlations and two-nucleon
currents, both induced primarily by OPE dynamics. The dis-
cussion to follow is meant to illustrate these two aspects—the
role of correlations and the constructive interference between
one- and two-body matrix elements—and, in particular, their
complementarity.

The simplest way to elucidate these features is to consider
one- and two-nucleon contributions to the (transverse) sum
rule defined in Eq. (5) (these are in fact the largest contribu-
tions by far [10]),

〈�i|O† O|�i〉
� 〈�i|

∑
i

O†
i Oi +

∑
i 	= j

O†
i O j

+
∑
i< j

[(Oi + Oj )
† Oi j + H.c.] +

∑
i< j

O†
i jOi j |�i〉. (7)

We insert in the expression above complete sets of two-
nucleon states |ψi j〉, which satisfy the Lippmann-Schwinger
equation

|ψi j〉 = |φi j〉 + 1

e − H0
i j + iη

vπ
i j |ψi j〉, (8)

and treat the OPE interaction vπ
i j as a perturbation to the

free two-nucleon Hamiltonian H0
i j . We further assume that the

initial two-nucleon state, which we denote as |0〉, has very
small momenta, so that

|ψi j〉 ≈ |0〉 − vπ
i j

e(k)
|0〉, (9)

where e(k) = k2/m is the overall energy denominator associ-
ated with the final state, as indicated in Fig. 2. The insertion
of these complete sets of two-nucleon states is illustrated
schematically by the second and third diagrams of Fig. 2.
In particular, OPE correlations are represented by a pion
(dashed line) being exchanged between two nucleons (solid

p

p + q

p

Final States

p p

p + qFinal States p + q − k

p p

p + k
k

π

k

FIG. 2. Contributions to the sum rule from single-nucleon cur-
rents in the plane-wave impulse approximation (PWIA) from low-
(left panel) and higher-momentum nucleons (middle panel). The
latter interfere constructively with the two-nucleon current operator
as indicated in the right panel. See text for further explanations.
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lines). The one-body current operators are indicated by the
vertex involving a photon (wavy line) interacting with a single
nucleon, and two-body current operators are indicated by a
photon interacting with a nucleon and producing a pion, which
is then reabsorbed by the other nucleon. This so-called seagull
term is known to be dominant among two-body currents of
OPE range (for instance, contributions associated with pion-
in-flight currents are generally found to be suppressed relative
to those induced by seagull currents [12,13]). In the present
qualitative discussion, we are only accounting for leading
terms in both the two-nucleon correlations and two-nucleon
currents.

We can now analyze the one- and two-nucleon terms of the
sum rules illustrated in Fig. 2 and consider the contribution
of particular intermediate energy states right after the elec-
tromagnetic vertex. At a modestly large momentum transfer
scale q ≈ 500 MeV/c, considerably larger than the Fermi
momentum of nuclear matter at equilibrium, Pauli blocking
is not important, and the ground state can be thought of as
consisting of a large component of low-momentum nucleons,
with a significant fraction of high-momentum nucleons pre-
dominantly produced by OPE correlations. The incoherent
terms in the cross section are then dominated by the left
and middle panels in Fig. 2. The two-body final states are to
be summed over as indicated by the cut (horizontal line) in
the figure. The left diagram describes the contribution of the
low-momentum nucleons. The high-momentum contribution
shown in the middle diagram spreads the response over a
wider region of energy since the initial momentum is uncor-
related (it can be parallel, orthogonal or, antiparallel) with the
momentum transfer q.

In addition, though, the high-momentum final states can
interfere with those produced by two-nucleon currents. This
process is shown in the right diagram. There are two different
orderings in the squared matrix element, only one of which
is shown. (We emphasize that the results presented in later
sections retain all two-body terms, including those associated
with � excitation.) This particular process—also referred
to as the “one- and two-body interference term”—has been
determined to be quite important in quasielastic scattering
[10,12]. The kinematics of the second and third diagrams are
very similar: they lead to fairly high relative-momentum final
states, but the strength of the response in total energy is spread
across the quasielastic peak. Electron scattering experiments
have been performed to understand these high-momentum
nucleons in more detail, finding roughly 20% probability for
nucleons to be above the Fermi momentum kF [7,8,40].

Let us now turn our attention to the mechanism lead-
ing to the excess of strength observed in the transverse
response. The amplitude to produce a high momentum nu-
cleon from OPE (middle and right panels in Fig. 2) is
∝σ i · k σ j · k τ i · τ j ṽπ (k)/e(k), where ṽπ (k) = −g2

A/(k2 +
m2

π )/(4 f 2
π ) (gA is the nucleon axial coupling constant and

fπ is the pion decay amplitude). Alternatively, two low-
momentum nucleons (the dominant part of the ground-state
wave function) can interact with the photon by exchanging a
pion and produce two high-momentum nucleons by sharing
the momentum transfer between the nucleons in the struck
pair (right panel in Fig. 2). These two processes are produced

by the same physics (OPE in either the ground-state wave
function or current), and can yield the same final state, hence
they interfere. As shown in the Appendix, assuming the initial
momenta p and p′ are small compared to the momentum trans-
fer, one finds that the amplitude squared associated with the
diagram in the middle panel is |Mπ |2 � [GV

M (Q2)]2 q2 ṽ 2
π (k),

where GV
M (Q2) is the isovector magnetic form factor. The

amplitude squared associated to the last diagram instead
reads M∗

γ Mπ � GV
E (Q2) GV

M (Q2) q2 ṽ 2
π (k). These findings im-

ply that both the correlation and interference terms are posi-
tive and add up to the leading term obtained under the one-
body prescription.

The contributions of the second and third diagrams have
the same sign and are comparable at moderate momenta in this
simple picture. They also have a similar energy dependence.
The spin-isospin algebra used to obtain this result is detailed
in the Appendix. In later sections, we show that this con-
structive interference between one- and two-body currents in
correlated nucleon pairs persists in the complete calculations
based on the full ground state and including full correlations
along with the full set of one- and two-body currents. We
also examine the contribution in explicit final states with high
momentum back-to-back pairs.

We conclude this section by observing that in the longitudi-
nal response this enhancement is largely absent, since the con-
tributions associated with two-nucleon charge operators are
of relativistic origin, and quite small at moderate momentum
transfer (indeed, they vanish at vanishing momentum transfer
because of charge conservation). In this case, though, the
charge exchange process from OPE (middle panel of Fig. 2)
leads to a smaller “effective mass” for the nucleon and thus
spreads out the response, reducing it near the peak [10,11].

IV. QMC CALCULATIONS OF THE RESPONSE
AND SCALING

Realistic interactions and currents, and the imaginary-time
formalism, have been used to calculate electroweak response
functions and associated electron [10,19,20] and neutrino [37]
scattering. In such an approach, one evaluates the Laplace
transform of the response,

R̃α (q, τ ) =
∫ ∞

ωel

dω e−ωτ Rα (q, ω), (10)

which results in an imaginary-time response of the type

R̃α (q, τ ) =
∑
Mi

〈�i|O†
α (q) e−(H−Ei )τ Oα (q)|�i〉. (11)

Green’s function Monte Carlo (GFMC) methods can then be
used to calculate the relevant matrix elements [22]. Since the
nuclear response in the quasielastic region is fairly smooth as
a function of ω, maximum entropy techniques are successful
in obtaining the real-time response from the imaginary-time
one [19].

This imaginary-time method has a major advantage over
other currently available approaches. Given a set of (local or
minimally nonlocal) realistic interactions and accompanying
electroweak currents, it allows one to calculate ab initio,
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without any additional approximations beyond those inher-
ent to the modeling of these interactions and currents, the
quasielastic response of a nucleus, by treating completely
correlations in the initial state, by accounting consistently
through the imaginary-time propagation for interaction ef-
fects in the final states, and, in particular, by retaining in
full the interference between one- and two-nucleon currents
discussed in the previous section. In this context, it is worth-
while pointing out that the realistic interactions and currents
adopted in the present work—Argonne v18 two-nucleon [41]
and Urbana-IX three-nucleon [42] interactions and associated
currents [24]—provide a quantitatively successful description
of many nuclear electroweak observables [13], such as nu-
clear electromagnetic form factors [43,44] and low-energy
transitions including beta decays [45–51]. They have also
been used in studies of double beta decay matrix elements
[52–55]. The main disadvantages of this approach are that
it is computationally intensive, since it propagates the full
A-nucleon system, and that it provides direct information
only on the inclusive response, summed over all final states.
Furthermore, its implementation is, at least for the time being,
limited to systems with mass number A � 12.

Plane-wave impulse approximation (PWIA) approaches,
based on either the momentum distribution or spectral func-
tion, involve in essence off-diagonal density matrix ele-
ments of single nucleons. Obviously, they cannot preserve
the full (non-energy-weighted) sum rules Sα (q), since two-
nucleon currents are ignored. They also underestimate energy-
weighted sum rules associated with single-nucleon currents
[23], which implies that the corresponding PWIA response
functions (obtained with single-nucleon currents) will not
have the correct ω dependence. More recently, approaches
have appeared based on factorization of the final A-nucleon
state into a two-nucleon plane-wave state and an A − 2 spec-
tral function [56], which include both one- and two-nucleon
currents.

The measured longitudinal and transverse response func-
tions display scaling behavior [21]; see in particular Fig. 3 of
Ref. [10] for an illustration in the case of 3He and 4He. In
the simplest picture this y scaling would arise from scatter-
ing from individual nucleons. Experimentally, though, both

responses scale but the normalization of the two responses
is quite different when compared with incoherent scattering
from individual nucleons. Hence the presence of effects be-
yond single-nucleon currents are required. The GFMC cal-
culations provide an explanation for both the scaling with
momentum transfer q (y scaling) and the scaling with the mass
of the target. Since they reproduce the experimental results for
q = 300–600 MeV/c, they obviously scale with momentum
transfer. We have argued in the previous section that in the
transverse channel the interference between one- and two-
nucleon currents leads to final states very similar to those
of high-momentum nucleons induced by the interaction. This
is observed explicitly in the GFMC calculations, since the
excess strength in the response is spread out across the peak
region in a way similar to how the momentum distribution
broadens the response obtained with single-nucleon currents.
Hence y scaling is preserved, even though it is not a purely
one-body mechanism that produces the cross section. Note
that the scaling in the longitudinal channel is quite different
than in the transverse one, since it does not include any
significant interference.

The GFMC calculations also proceed by evaluating path
integrals that, at high energies E , correspond to short imagi-
nary times. The full sum rule is obtained from the imaginary
time response at τ = 0. The free single-nucleon propaga-
tor is a Gaussian ∝ exp [ − (ri − r′

i )
2/(4τ h̄2/2m)]. At τ =

0.01 MeV−1 the nucleons have only propagated a distance
of approximately � 1.1 fm, and for τ = 0.02 MeV−1 the
equivalent distance d is about 1.6 fm. Thus, the propagation
at short times entirely determines the high energy response at
E � 50 MeV. For these short imaginary times the operator
describing the propagation is nearly local. Over such short
distances all atomic nuclei with N ≈ Z look alike in the
interior region [21]. Hence, the superscaling describing the
scaling with mass number is quite accurate. Allowing slightly
different surface regions for small and large nuclei (allowing
different effective Fermi momenta) improves this agreement
further. These arguments do not depend upon the structure of
the current operator, only that the energies are near or above
the Fermi energy. Hence they should apply equally well to
neutrino and electron scattering.
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FIG. 3. Alpha particle transverse response densities at q = 500 MeV/c. The surface plots show the response densities as functions of
relative energy e and center-of-mass energy Ec.m.. Results prior to (left panel) and after (right panel) the shift (see text).
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In the picture outlined above, scaling is violated in the
resonance region because the simple relationship between
momentum (or distance) with energy is lost. Slow-moving
pions and � resonances can be created, which will require a
lot of energy but not large momentum. Hence, simple scaling
in this region is not expected nor is it observed experimentally.

V. REAL-TIME RESPONSE AT SHORT TIMES

The importance of the short imaginary-time propagation
naturally leads to an approach that incorporates as much
of the quasielastic physics as possible by evaluating path
integrals of one- and two-nucleon currents in real time. Such
an approach, which we will refer to as the short-time approx-
imation (STA), keeps the full sum rules, the physics of the
momentum distribution and PWIA, and the behavior of the
two-nucleon correlations and currents at short times or high
energies, corresponding to the Fermi energy and above. While
keeping consistently two-body physics and ensuing quantum
interference contributions, the STA will not yield the correct
physics for low-lying excitations or collective behavior like
giant resonances.

In the STA we evaluate the real-time matrix element in
Eq. (2) for short times by retaining the full ground state
and current operators, and final-state interactions at the two-
nucleon level—specifically, those final-state interactions af-
fecting only pairs involved at the electromagnetic interac-
tion vertex. This short-time approximation should be valid
at high energy transfer ω and moderate-to-high momentum
transfer q. It naturally incorporates two-nucleon interactions
and currents and their interference, all of which have been
demonstrated to be important in the discussion above and
in many papers previously [10–12]. Since it is based on the
full A-nucleon ground state, it also accounts for the statistical
correlations implied by the Pauli principle (Pauli blocking).
The (non-energy-weighted) sum rules are recovered at t = 0
in the short-time approximation. In principle the STA could
be improved by treating the A − 2 system also as interacting,
requiring a nontrivial calculation of the dynamics of these A −
2 nucleons. However, before illustrating the STA approach
more in detail, it is useful to discuss how the PWIA response
follows from Eq. (2).

A. Plane-wave impulse approximation (PWIA) response

In PWIA the many-nucleon propagator is simply approxi-
mated as

〈R′ α′|e−iHt |R α〉
≈ 〈r′

i|e−i(H0
i +EA−1 )t |ri〉 δα′

i ,αi

∏
k 	=i

δ(r′
k − rk ) δα′

k ,αk , (12)

where nucleon i with kinetic energy H0
i is the struck nu-

cleon, and the remaining A − 1 nucleons are treated as static
spectators. The A-nucleon spatial, spin, and isospin states
are collectively denoted as R′ α′ and R α, where R α =
(r1 α1, . . . , rA αA) and similarly for the primed variables (αi =
σi τi specify the spin and isospin states of nucleon i). The
constant EA−1 shifts the energy of the response, and can be
interpreted as an average removal energy. Thus, the PWIA

is related to the off-diagonal one-body density matrix. In
the naive limit of Eq. (12), the current-current correlator,
schematically denoted as 〈O† O〉, is given by

〈O† O〉|PWIA

=
∑

i

∑
αiαA−1

∫
dr′

i dri dRA−1 〈�i|O†
i (q)|r′

i αi, RA−1 αA−1〉

× 〈r′
i|e−iH0

i t |ri〉〈ri αi, RA−1 αA−1|Oi(q)|�i〉, (13)

where RA−1 αA−1 is a shorthand notation for the spatial and
spin-isospin states of the spectator nucleons. Only the one-
body terms in which the same nucleon i is involved (the
“active nucleon”) are kept, all remaining terms in O(q) are
ignored. The eigenstates of the one-particle system are simple
plane waves, and the expression above yields a response
depending only upon the single-particle momentum distribu-
tion. A more realistic treatment would require keeping the
propagating eigenstates of the A − 1 system, which would
lead to a similar expression as in Eq. (13), except for the
spectral function replacing the momentum distribution and for
the presence of an additional integration over the (removal)
energy [57].

We conclude this brief review of the PWIA by noting that
the corresponding sum rule is obtained as

SPWIA(q) = Tr[O†
i (q) Oi(q)]/G2

(
Q2

qe

)
, (14)

where the trace is over the spin-isospin states of a single
nucleon. For example, in the longitudinal channel, OL

i (q) is
given by (up to relativistic corrections proportional to 1/m2)

OL
i (q) = [

Gp
E

(
Q2

qe

)
Pi,p + Gn

E

(
Q2

qe

)
Pi,n

]
eiq·ri , (15)

where the Gp
E and Gn

E are the proton and neutron electric form
factors, and Pi,p/n is the proton/neutron projector. Thus, we
find SPWIA

L (q) = 1, where we have taken G2
L = Gp 2

E + Gn 2
E .

Pauli blocking terms, particularly in medium- to heavy-weight
nuclei, will reduce this sum rule at low q, while (in the
transverse channel) two-nucleon physics will increase it at
larger q.

B. Short-time approximation (STA) response

The STA includes the two-nucleon contributions that are
ignored in the PWIA and, in particular, accounts for the
interference between one- and two-nucleon currents. It is
explicitly constructed as a function of both the momentum
transfer q and energy transfer ω, and hence must be calculated
separately for different q as a full two-nucleon off-diagonal
matrix in the A-body system. In the STA, the current-current
correlator is approximated as

O† e−iHt O =
⎛⎝∑

i

O†
i +

∑
i< j

O†
i j

⎞⎠e−iHt

⎛⎝∑
i′

Oi′ +
∑
i′< j′

Oi′ j′

⎞⎠
=

∑
i

O†
i e−iHt Oi +

∑
i 	= j

O†
i e−iHt O j

+
∑
i 	= j

(O†
i e−iHt Oi j + O†

i j e−iHt Oi

+ O†
i j e−iHt Oi j ) + · · · , (16)
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dropping terms with three-or more active nucleons (the · · ·
in the above equation). In particular, the Hamiltonian H only
includes two-nucleon interactions. Three-nucleon interaction
effects are ignored in the propagation and therefore in the
final states, although they are included in the ground state.
In nuclear ground states, expectation values of three-nucleon
interactions are typically 5–10% than those of two-nucleon
interactions.

In the STA we assume that only the active pair (say, pair
i j) propagates, and therefore the A-nucleon propagator is
approximated as

〈R′ α′|e−iHt |R α〉
≈ 〈R′

i j |e−iH c.m.
i j t |Ri j〉 〈r′

i j α
′
i α

′
j |e−iH rel

i j t |ri j αi α j〉

×
A∏

k 	=(i, j)

δ(r′
k − rk ) δα′

k ,αk , (17)

where H c.m.
i j = P2

i j/(4m) and H rel
i j = p2

i j/m + vi j are, respec-
tively, the center-of-mass and relative Hamiltonians (hereafter,
unless necessary for clarity, the active pair subscripts will
be understood, for example R′

i j → R′ and so on). For the
purpose of illustration, in the following we only discuss in
detail the terms in Eq. (16) that lead to interference; we treat
the incoherent terms—first sum in this equation—similarly,
but will not discuss them any further below. We proceed as in
the previous section by introducing a complete set of position
and spin-isospin states for the A-nucleon system, which allows
us to express the coherent terms as (the active pair is i j = 12)

〈O†
L OR〉|STA

= A(A − 1)

2

∑
α′

1α
′
2α1α2

∑
αA−2

∫
dR′dr′ dR dr dRA−2

×〈�i|O†
L(q)|R′, r′ α′

1 α′
2, RA−2 αA−2〉 〈R′|e−iH c.m.

12 t |R〉
× 〈r′ α′

1 α′
2|e−iH rel

12 t |r α1 α2〉
× 〈R, r α1 α2, RA−2 αA−2|OR(q)|�i〉. (18)

The possible combinations for coherent contributions in O†
LOR

(operators acting on the left and right wave functions) are
(O†

i O j , O†
i Oi j , O†

j Oi j ) and their adjoints.
We are then left with the evaluation of the two-nucleon

propagator, for which we use the following expression ob-
tained by summing over the bound and continuum eigenstates
of H rel

12 :

〈r′ α′
1 α′

2|e−iH rel
12 t |r α1 α2〉

=
∑

γ

∫ ∞

0
de e−i e t φ

γ

α′
1 α′

2
(r′; e) φγ ∗

α1 α2
(r; e)

+ e−i ed t
∑

Md =0,±1

φ
γd ,Md

α′
1 α′

2
(r′; ed ) φγd ,Md ∗

α1 α2
(r; ed ), (19)

where γ denotes the discrete quantum numbers that specify
the continuum state, namely γ = JMJ , T MT , SLL′, where
JMJ are the total angular momentum and its projection
along the quantization axis, T MT are the pair isospin and
isospin projection, and SLL′ are, respectively, the pair spin

and incoming and outgoing orbital angular momenta, while
γd specifies the quantum numbers of the bound state (the
deuteron), which occurs in channel J, T MT , S = 1, 00, 1 with
ed = −2.225 MeV, and Md are the projections of the total
angular momentum. In a less compact notation, the continuum
state, as an example, reads

φγ (r; e) = wJST
L′L (r; e)

r
Y MJ

L′SJ (r̂) ηT
MT

, (20)

where wJST
L′L (r; e) are solutions of the radial Schrödinger

equation in channel JST with relative energy e, Y MJ
LSJ are

standard spin-angle functions, and ηT
MT

are isospin states
with T MT , and φ

γ
α1α2 denotes the projection of φγ on the

individual spin-isospin states α1α2 of the active pair. In the
present calculations, interaction effects (in the active pair)
are included exactly for all J with J � Jmax = 10. For J >

Jmax the continuum solutions are replaced by spherical Bessel
functions, that is

wJST
L′L (r; e)

r
−→ δLL′ jL(

√
me r) for J > Jmax. (21)

It is convenient to express the STA response, which now in-
cludes also the contribution of the incoherent term in Eq. (16),
as an integral over the center-of-mass and relative energies,

RSTA(q, ω)

=
∫ ∞

0
de

∫ ∞

0
dEc.m. δ(ω + Ei − e − Ec.m.) D(e, Ec.m.),

(22)

and the function D(e, Ec.m.) can be obtained from Eq. (18)
(the resulting expression of course includes the factors arising
from the change of variables P → Ec.m. and the integration
over the solid angle specified by the P direction). It is worth-
while pointing out here that one could easily account for
the dependence on the direction of the relative momentum p
(rather than just its magnitude) by expanding the two-nucleon
propagator in Eq. (19) in terms of continuum states specified
by the relative momentum p and pair spin-isospin states
SMST MT (see Ref. [24]).

The factorization outlined above retains fully interaction
effects at the two-nucleon level, and accounts for the crucial
interference between one- and two-body terms in the electro-
magnetic current operator. Small contributions involving three
or more active nucleons as well as interactions between the
active pair and the remainder of the nucleus are neglected.
As a consequence, the present approach will not produce the
correct threshold behavior for the response, but will reflect
that of the underlying two-body physics. For example, at low
momentum transfer (q � 300 MeV/c) the STA transverse
response for a nucleus will contain a peak in the thresh-
old region associated with the magnetic transition from the
quasideuteron state (a pair of nucleons in spin-isospin S/T =
1/0 in the ground state of the nucleus) to the quasibound
state (a pair of nucleons in relative S wave and spin-isospin
S/T = 0/1). This peak is seen in calculations of the transverse
response of the deuteron [24], but it is an artifact here. Simple
estimates can be parametrized to take care of this issue (see
below). Lastly, up to factors of G2

α in Eq. (5), the (nonenergy
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weighted) sum rule results from integrating the D function
over the relative and center-of-mass energies.

C. STA response densities as function of center-of-mass and
relative energies

The response densities can be obtained as a function of the
pair relative energy e and center-of-mass energy Ec.m. after
the interaction vertex with the virtual photon (see Fig. 3). As
noted in the previous section, in principle more detailed infor-
mation on angles could also be kept. The expected long tail in
relative energy, induced by two-body physics, is apparent in
the figure.

The response function at a given momentum and energy
transfer q and ω is given as an integral over the response
density D(e, Ec.m.) at a given q for ω + Ei = e + Ec.m.. In the
next section we compare results for the response functions
obtained in the short-time approximation to the imaginary-
time calculations.

The STA does not have any knowledge of the correct
threshold behavior or low-energy properties of the system.
Since the sum rules are obtained accurately, we can include
our knowledge of the thresholds by making the replacement

D̃(e′, Ec.m.)

=
∫ ∞

0
de D(e, Ec.m.) N (e) exp

{
−

[
e′ − ω(e)

ωth

]2
}

, (23)

with

ω(e) =
√

e2 + ωth
2 exp(−e/ω),∫ ∞

0
de N (e) exp

{
−

[
e′ − ω(e)

ωth

]2
}

= 1; (24)

the last condition defines N to ensure the (nonenergy) sum
rules are preserved. This transformation shifts the very low
energy response by ωth and distributes it with a Gaussian dis-
tribution. The two parameters controlling its shift and width
are ωth and ω. For 4He we use ωth = 35 MeV and a width
ω = 15 MeV. With these choices there is very little strength
below the physical threshold of ≈20 MeV. The response
densities before and after the shift are illustrated in Fig. 3.
One could also add an extra mean-field potential to the two-
nucleon system to mimic the average impact of interactions
with the spectator nucleons. Finally, the energy-weighted sum

rule W STA(q) is obtained (after the shift) as

G2(Q2
el )W STA(q)

=
∫ ∞

ωel

dω ω RSTA(q, ω)

=
∫ ∞

0
de′

∫ ∞

0
dEc.m. (e′ + Ec.m.) D̃(e′, Ec.m.). (25)

The two-nucleon final states include corrections of order vi j t
to the propagator, which make important contributions to the
energy-weighted sum rule.

VI. RESULTS FOR INCLUSIVE SCATTERING

In this section, we summarize the response calculations for
inclusive electron scattering on 4He, comparing our results to
full GFMC results [10,19] and experimental data. A descrip-
tion of the two-body charge and current operators used in this
work is provided most recently in Refs. [19,24] and references
therein. The STA should work well for momentum transfers
greater than the Fermi momentum and for energy transfers
above the giant resonance and below the excitation energy of
� and higher-lying resonances.

First, we report the numerical values for the longitudinal
and transverse sum rules obtained by (i) integrating the STA
response functions (SSTA

L/T in Table I), (ii) calculating the sum
rules “exactly” within STA (SSTA∗

L ) that is ignoring terms
involving three and four nucleons, and (iii) including all terms
in the sum rule calculation (SL/T ). We compare our results to
the full GFMC calculations of Ref. [10]. The STA preserves
the sum rules. Since we are calculating the response densities
up to finite maximum center-of-mass and relative energies the
agreement between integrating over the response density and
by direct evaluations of the sum rule (in the STA limit) is not
exact. The one-body current sum rules are reproduced within
a few percent, but the full sum rules including two-nucleon
currents are somewhat smaller in the integrated response
density due to the fact that the high relative energy piece of the
response is cut off. As a matter of fact, the STA calculations
are carried out up to relative and center-of-mass energies of
≈800 MeV. Increasing the range of the pair energies would
improve the agreement with the exact estimates.

The total transverse response compared to GFMC is shown
in Fig. 4. At q = 300 MeV/c a direct evaluation of the STA as

TABLE I. 4He Longitudinal and transverse sum rules obtained by integrating the STA response, denoted as SSTA
L/T , and by direct evaluation

of the current-current matrix element in Eq. (5) but ignoring, however, three- and four-nucleon terms, denoted as SSTA∗
L/T . SL/T are the full sum

rules. These results are compared with those reported in Tables I and III of Ref. [10] and referred to as SL/T (Ref. [10]). Values in parentheses
are with one-body currents alone. The longitudinal sum rule is obtained by subtracting the elastic response.

q (MeV/c) SSTA
L SSTA∗

L SL SL Ref. [10] ST SSTA∗
T ST ST Ref. [10]

300 (0.59)0.60 (0.66)0.67 (0.66)0.65 (0.67)0.65 (0.83)1.33 (0.88)1.54 (0.89)1.53 (0.91)1.58
400 (0.80)0.79 (0.83)0.82 (0.83)0.81 (0.86)0.81 (0.93)1.34 (0.95)1.47 (0.97)1.48 (0.98)1.50
500 (0.87)0.86 (0.88)0.87 (0.89)0.88 (0.94)0.88 (0.98)1.34 (1.00)1.43 (1.00)1.43 (1.01)1.44
600 (0.88)0.87 (0.88)0.89 (0.91)0.90 (0.97)0.91 (1.02)1.32 (1.03)1.40 (1.01)1.38 (1.01)1.38
700 (0.87)0.88 (0.88)0.89 (0.92)0.92 (0.99)0.94 (1.00)1.32 (1.07)1.40 (1.01)1.34 (1.01)1.33
800 (0.86)0.88 (0.87)0.89 (0.92)0.94 (1.08)1.33 (1.10)1.41 (1.01)1.31
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FIG. 4. STA results for 4He(e, e′) inclusive scattering. Left panel: Transverse response at q = 300 MeV/c, prior to shift (dashed-dotted
blue line) and including shift (solid red line) compared with the exact GFMC response (solid black line). Right panel: Same but at q = 500
MeV/c. See text for further explanations.

described above puts too much strength at very low energies
below the physical threshold. The dashed line in Fig. 4 shows
the response obtained without any knowledge of the threshold
while the full red line shows the results obtained by enforcing
the correct behavior at threshold, as discussed in previous
section. This response is in pretty good agreement with the
GFMC results. It is unlikely the STA alone would be useful
in heavier nuclei below 300 MeV/c, as giant resonances and
other low-lying states start to dominate. It could perhaps be
extended by combining the imaginary- and real-time response
approaches and by calculating the inverse energy weighted
sum rule (susceptibility). The transverse and longitudinal STA
responses are compared with corresponding GFMC ones in
Figs. 4 and 5. At this higher momentum transfer, the shift has
little impact and the STA response is a faithful reproduction of
the (exact) GFMC response. Both the GFMC and STA results
for the longitudinal response of 4He are also in good agree-
ment with the ab initio LIT calculations by Bacca et al. [58].

We can gauge the impact of the final-state interactions
within the pair by comparing results obtained with the in-
teracting two-nucleon propagator to those obtained with the
free-particle propagator via the replacement in Eq. (21). As
shown in Fig. 6, the final-state interactions within the pair at
q = 300 and 500 MeV/c shift strength to lower energies. At

0 50 100 150 200 250 300 350 400
ω [MeV]
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GFMC w/o elastic

Longitudinal
q=500 MeV/c

FIG. 5. STA results for 4He(e, e′) inclusive scattering. Longitu-
dinal response at q = 500 MeV/c. Notation as in Fig. 4.

low energy, this is especially apparent before the inclusion of
the shift in ω via the inclusion of the threshold ωth.

The response can also be divided into one-body diagonal
or incoherent terms (those where the same single-nucleon
current operator acts at the initial and final times, namely
terms of the type O†

i · · · Oi), off-diagonal one-body terms
(one-body current operators from different particles, that is,
O†

i · · · Oj), terms from the interference of one- and two-body
currents (obtained by keeping terms of the type O†

i j · · · Oi

and O†
i · · · Oi j), and two-body diagonal terms (proportional

to O†
i j · · · Oi j). The contribution of the various terms are

also shown in Fig. 6 for the transverse response at different
kinematics. As stated above, we are ignoring terms involving
currents operating on three or four different nucleon coordi-
nates in the interference and two-body off-diagonal pieces of
the response. These terms have been demonstrated to be small
in the imaginary-time response calculations.

We can further examine the relative contributions of one-
and two-nucleon currents at the vertex for different combina-
tion of e and Ec.m.. In Fig. 7 we again show the transverse
response density at q = 500 MeV/c as a function of e and
Ec.m.. As expected the response is significant out to high
relative energies e because of the two-nucleon currents and
correlations. The figure also shows a contour plot of the frac-
tional component of the response densities which include two-
nucleon currents (either interference or pure two-body terms).
The fraction is small at low relative energies, but increases to
approximately fifty percent at high relative energies in the pair
at the vertex. This is what we expect based upon the analytical
arguments presented in Sec. III, of course the calculation
includes the full set of two-nucleon currents, not only the pion
seagull piece. The average contribution of the two-nucleon
currents is roughly thirty percent, as demonstrated by the sum
rules. It is even higher in the regime of large relative energies,
or back-to-back pairs.

VII. EXPLICIT FINAL STATES AND
BACK-TO-BACK NUCLEONS

The additional information about the states immediately
after the electromagnetic vertex at the two-nucleon level can
be used to gain insight on the cross section for explicit final
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FIG. 6. Comparison of transverse responses without (dashed lines) and with (full lines) interacting two-nucleon final states. Various
contributions are shown, including one-body current diagonal terms, one-body current off-diagonal (i 	= j) terms, interference between one-
and two-body currents, and two-body currents only. See text for further explanations. Results at q = 300 MeV/c (left panel) and q = 500
MeV/c (right panel).

states. In light nuclei the information at the vertex will be
closely correlated with the observed final state. In a larger nu-
cleus, event generators will be required to go from the vertex-
level description provided by the STA to the full final-state in-
teraction. The event generators provide an essentially classical
description of the final-state interactions after the two-nucleon
vertex. As we have discussed, quantum interference between
initial-state interactions and two-nucleon currents is important
to produce the correct vertex environment. However, subse-
quent evolution is expected to be largely classical. Further
tests of this method may be possible using quantum computers
[59], which can at least in principle perform the full quantum
evolution of the final states.

Many experiments have been performed looking at back-
to-back kinematics for proton-neutron versus proton-proton
and neutron-neutron pairs [8,40,60]. Given the experimental
interest in these special kinematical configurations, it is in-
teresting to compare the STA response coming from these
different types of pairs initially at large relative momentum

FIG. 7. Transverse response density at q = 500 MeV/c. The
three-dimensional plot shows the response density as a function of
relative e and center-of-mass Ec.m. energies in units of MeV. The
contour plot below shows the fraction of the response coming from
terms including two-nucleon currents.

and small center-of-mass momentum. These pairs in the back-
to-back kinematics (that is, pairs with initial center-of-mass
momentum equal to zero) can be isolated in the response
densities by choosing a pair with final center-of-mass momen-
tum P close to the momentum transfer q, with large relative
momentum in the final state.

Figures 8 and 9 show the response densities at fixed energy
Ec.m. ≈ P2/(4m) = q2/(4m), which is the final-state center-
of-mass energy for an initial pair with total momentum zero,
as function of the relative energy of the pair. The regime of
large back-to-back momentum is above e = 250 MeV which
corresponds to the final pair relative momentum of ≈2.5 fm−1

and above. On the left panels the longitudinal responses are
shown, including the full response, the one-body diagonal
and one-body total (i.e., diagonal plus off-diagonal one-body
terms) response, and the response from pp pairs. Note there
are essentially no nn pairs because the charge form factor
of the neutron is very small. In the longitudinal channel
almost all the response comes from the one-body currents,
as expected. Nevertheless, there is a large contribution of
back-to-back np pairs because there are four np pairs and
only one pp pair in the alpha particle. We note that the pp
pairs always have a finite contribution because of coherent
interference in the contributions from different nucleons; the
latter fill in the node in the pp contributions arising from the
pp momentum distribution [61] at zero total momentum.

On the right-hand side of the figures the transverse re-
sponse density is shown for the same kinematics. At low rel-
ative energies the two-nucleon currents are not making large
contributions, as shown by comparing the full results (black
line) to the one-body total results (magenta line). However, at
high relative energy the full result (black line) is substantially
larger than the full one-body currents calculations (magenta
line). The back-to-back momentum distributions of np pairs
are known to dominate over pp or nn pairs at high relative
momenta [61]. However, this is not the complete picture. The
np pairs receive a substantial contribution from two-nucleon
currents, as expected based upon the arguments above. These
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FIG. 8. Contributions to response densities at q = 500 MeV/c and final center-of-mass energy Ec.m. = q2/(4m). Contributions of one-body
diagonal terms are shown (cyan solid line), along with the total one-body currents given by diagonal plus off-diagonal contributions (magenta
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two-nucleon currents are almost entirely in the np pairs, and
increase the response by roughly a factor of ≈2 around at
e = 300 MeV.

We note that purely hadronic experiments [62] also show
an enhancement of np versus nn or pp pairs. The relative
momentum distribution is relevant and is much enhanced
in the np channel. Further studies of final-state interaction
effects in these experiments are warranted to make a detailed
comparison with experimental results.

The nn- and pp-pair contributions are almost all from
one-body currents. The responses of nn and pp pairs differ,
since the magnetic moments of the proton and neutron μp and
μn are different; indeed, the pp-to-nn response ratio scales
roughly as (μp/μn)2.

In Fig. 10, we show the percentage of response density in
the back-to-back configuration at q = 500 MeV/c due to scat-
tering from pp and nn pairs. This is the ratio of the response
due to scattering from pp (nn) pairs over the full response. In
the longitudinal response (left panel), relevant to scattering in
the forward direction, at high relative energies e ≈ 300 MeV
and above, the percentage due to pp pairs is of the order

of ≈15%, while neutron pairs contributions are negligible
due to the small electromagnetic nucleonic form factor. In
the transverse response, at e ≈ 300 MeV, we see a ≈10%
contribution from pp pairs versus a ≈5% contribution from nn
pairs, again primarily due to the different proton and neutron
magnetic moments. In the left panel of Fig. 10, we show
for comparison the ratio of the (two-body) pp momentum
distribution over the total two-body momentum distribution
from Ref. [63]. This is given in the figure by the magenta
dotted line. As discussed above, the pair percentage estimated
from the two-body momentum distributions exhibits a deep
which is filled in when interference between one-body and
one- and two-body currents are accounted for (orange dashed
line in the figure).

VIII. SUMMARY

In this work we introduced the short-time approximation
which, when combined with quantum Monte Carlo compu-
tational methods, allows one to evaluate nuclear response
functions and response densities. We showed that calculations
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within the STA accurately reproduce the quasi-elastic re-
sponse of light nuclei at momentum transfers near and above
the Fermi momentum. In this regime the STA- and GFMC-
calculated response functions are in very good agreement with
each other. A comparison of the STA transverse response
functions with those extracted from an analysis of the world
data [10] and shown in Fig. 11 also indicates there is excellent
agreement between STA-theory and experiment for momen-
tum transfers in the range q = 300–600 MeV/c.

The STA incorporates all the important two-nucleon
physics systematically, including ground-state correlations,
two-nucleon currents, and final-state interactions. All of these

elements are quite important, particularly the interference
between OPE correlations and currents. The STA goes beyond
the spectral function approach in explicitly taking into account
the specific electroweak two-nucleon current operators and
Pauli blocking between the struck and spectator nucleons. The
cost is that it must be evaluated explicitly in the ground state
for each momentum transfer q and each transition current
operator.

Additionally, the STA provides information about pairs of
nucleons at the interaction vertex. This can be very valuable
when trying to understand more exclusive processes like back-
to-back nucleons that can be measured experimentally. It is
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FIG. 11. Transverse response functions calculated with the STA at q = 300–600 MeV/c are compared with those obtained from analysis
of the world data [10].
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also important in neutrino physics, where analyses of specific
final states are used to gain information on the initial neutrino
energy, a crucial input in neutrino oscillation analyses. We
have demonstrated that interference between one- and two-
nucleon currents is very important in the response, and also
in determining the state of the system at the lepton-nucleus
vertex. In order to determine the final states in large nuclei
this information about the vertex will have to be augmented
by event generators which take into account (classically)
further final-state interactions of the outgoing nucleons. While
in principle interference can happen at later stages of the
scattering, the system is very delocalized in time and space
(unlike at the vertex), and hence these quantum effects are not
expected to be very large. This is an interesting avenue for
future study.

The STA is amenable to many improvements, particularly
in the higher-energy regime. Since it factorizes the response
into a two-nucleon component and a spectator nucleus, one
can more easily incorporate relativistic kinematics and cur-
rents, pion production, and resonance production. Treating
such effects at the two-nucleon level is vastly easier than
calculating the same processes in a full A-nucleon treatment.
We expect that interference effects, for example from different
processes leading to pion production, may be important there
as well.
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APPENDIX: TWO-NUCLEON CURRENTS AND
CORRELATIONS

In this Appendix, we work out in more detail the algebra
used to support the discussion on the relevance of two-body
physics reported in Sec. III. Throughout the course of this
Appendix we will refer to the diagrams illustrated in the
panels of Fig. 2. The goal is to sketch the derivation of the
current-current amplitudes entering Eq. (5) and show that the
excess in the electromagnetic transverse strength is explained
by accounting for two-body effects in both the nucleonic
correlations and currents of one-pion range. As discussed in
Sec. III, these amplitudes—where we retain up to two-body
terms in the Hamiltonian and currents—are represented by the
diagrams illustrated in Fig. 2.

1. Low-momentum nucleons and one-body currents

We first consider the amplitude associated to the left
diagram in Fig. 2. This corresponds to the low-momentum
nucleons contribution to the sum rules. The isovector com-
ponent of the one-body electromagnetic current operator [12],
represented in the figure by the vertex with a photon connected
to a nucleon line, is given by

O1(q) = i

2 m
GV

M (Q2)
τi,z

2
σ i × q , (A1)

where GV
M (Q2) are the nucleonic isovector form factors (nor-

malized to the nucleon isovector magnetic moment at Q2 =
0). Upon calculating the incoherent current-current term in the
squared matrix element, one obtains an amplitude Ma, given
by

|Ma|2 = 1

16 m2

[
GV

M (Q2)
]2

(σ i × q) · (σ i × q) , (A2)

which reduces to

|Ma|2 = q2

8 m2

[
GV

M (Q2)
]2

, (A3)

With this approximation, the sum rule is given by the quantity
above summed over the nucleons, here including the dominant
isovector terms.

2. High-momentum nucleons and one-body currents

The second diagram in Fig. 2 illustrates the contribution
of high-momentum nucleons—that is, nucleons with higher
momenta induced by the one-pion-exchange correlations—
with one-body currents. In this case, using the notation in-
troduced in Eq. (9), we can schematically write the correlated
two-nucleon state as∣∣ψπ

i j

〉 ≈ − vπ
i j

e(k)
|0〉 = − 1

e(k)
ṽπ (k) σ i · k σ j · k τ i · τ j |0〉,

(A4)

where we defined

ṽπ (k) = − g2
A

4 f 2
π

1

k2 + m2
π

, (A5)

with gA, fπ , and mπ being the nucleon axial coupling constant,
pion decay amplitude, and pion mass, respectively. In the
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equations above, |0〉 is the mean-field ground state which con-
tains low-momentum nucleons. Also, the one-pion exchange
interaction vπ

i j gives momentum k to nucleon j and −k to
nucleon i.

We now consider the incoherent sum over single-nucleon
currents arising from the high-momentum ground state com-
ponents induced by pion exchange. This contribution is given
by

|Mπ |2 = 1

16 m2

[
GV

M (Q2)
]2 〈0|−ṽπ (k)

e(k)
τ i · τ j

× σ i · k σ j · k τi,z (σ i × q) · (σ i × q) τi,z

×σ i · k σ j · k τ i · τ j
−ṽπ (k)

e(k)
|0〉

= q2

8 m2

[
GV

M (Q2)
]2 〈0|

[
k2

e(k)
ṽπ (k)

]2

(3 − 2 τ i · τ j )|0〉.

(A6)

Here we have assumed that the initial momenta in |0〉 are
small and that the momentum transfer q is large, larger than
kF (see middle panel in Fig. 2). If we further assume the
high-momentum pairs are primarily S/T = 1/0 pairs, and
estimate the energy denominator as e(k) ≈ k2/m, we get

|Mπ |2 = 9
8 q2

[
GV

M (Q2)
]2

ṽ 2
π (k). (A7)

Note that these high-momentum nucleons spread the response
out in energy: the initial momentum can be either parallel
or antiparallel to q so the response is broadened. The same
happens with the interference term described below.

3. Interference of one- and two-body currents

The third diagram in Fig. 2 illustrates the interference
between one- and two-body currents acting on correlated
two-nucleon states. We again consider the pion-correlation
contribution to the ground state in first-order perturbation
theory, as outlined in Eq. (9), and assume that the one-pion-
exchange interaction gives momentum k to nucleon j and
−k to nucleon i. Further, in the discussion below we assume
the only important interference is with the current hitting on
nucleon i with the simultaneous exchange of a pion with
nucleon j (see right panel in Fig. 2). This current contribution
of one-pion range is known as the seagull term,

O2(q) = i GV
E (Q2) (τ i × τ j )z ṽπ (k j ) σ i σ j · k j + i � j, (A8)

and the product O†
2 (q) O1(q) is

O†
2 O1 = −i (τ i × τ j )z τi,z GV

E (Q2) GV
M (Q2)

× i

4 m
ṽπ (k) σ j · k σ i · (σ i × q)

= −(τ i · τ j − τi,zτ j,z )GV
E (Q2) GV

M (Q2)

× i

4 m
ṽπ (k) σ j · k σ i · (σ i × q)

= (τ i · τ j − τi,zτ j,z ) GV
E (Q2) GV

M (Q2)

× 1

2 m
ṽπ (k) σ j · k σ i · q. (A9)

Then the state O†
2(q) O1(q) |ψπ

i j 〉 is given by

O†
2O1

∣∣ψπ
i j

〉 = (τ i · τ j − τi,zτ j,z ) GV
E (Q2) GV

M (Q2)

× 1

2 m
ṽπ (k) σ j · k σ i · q

× −ṽπ (k)

e(k)
τ i · τ j σ i · k σ j · k |0〉

= −[(τ i · τ j )
2 − (τ i · τ j ) τi,zτ j,z]G

V
E (Q2) GV

M (Q2)

× 1

2 m

ṽ 2
π (k)

e(k)
k2[k · q + i σ i · (q × k)] |0〉.

(A10)

Only the part of k perpendicular to q enters the last term, and
it will average to zero. The isospin factor is 6 in T = 0 pairs.
If we again put e(k) = k2/m, the matrix element for T = 0
pairs simplifies to

M∗
γ Mπ = 〈0|O†

2O1|ψπ
i j 〉 = −3 GV

E (Q2) GV
M (Q2) ṽ 2

π (k) k · q,

(A11)

and constructive interference with |Mπ |2 will occur for k
antiparallel to q; for k parallel to q the contributions M∗

γ Mπ

and |Mπ |2 will have opposite signs. The full calculations show
a constructive interference indicating a dominance of antipar-
allel kinematics. In this Appendix we have considered only the
seagull term with the combined strong and electromagnetic
vertex at one nucleon, and also one time ordering.

If we assume the dominant contributions come from k in
the opposite direction to q with a “typical” momentum of
magnitude k = q/2 to k = q, we get a ratio of contributions
of the interference term to the high-momentum component of

M∗
γ Mπ

|Mπ |2 ≈ 8

3
(1/2 to 1)

GV
E (Q2)

GV
M (Q2)

≈ 8

3
(1/2 to 1)

1

μV
, (A12)

where μV is the nucleon isovector magnetic moment (μV �
4.7 NM), which says that two-body physics both in the
correlations and current provide corrections of the same order
that add up constructively with the mean-field low-momentum
amplitude of Eq. (A3).

Note that the contribution of the other seagull diagram
gives zero at k = q (just as this diagram gives zero at k = 0),
while at k = q/2 the two contributions are equal. The two
time orderings of these diagrams give equal contribution,
as do the two incoherent high-momentum nucleons arising
from single-nucleon currents. Taking all this into account we
expect the interference between one- and two-nucleon terms
to be similar in magnitude to the incoherent scattering from
high-momentum nucleons.
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