
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 1990

An Artificial Neural Approach to the Decomposition Problem An Artificial Neural Approach to the Decomposition Problem

Chandrashekar L. Masti
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Algebra Commons, Artificial Intelligence and Robotics Commons, Engineering Physics

Commons, Power and Energy Commons, and the Statistical, Nonlinear, and Soft Matter Physics

Commons

Recommended Citation Recommended Citation
Masti, Chandrashekar L.. "An Artificial Neural Approach to the Decomposition Problem" (1990). Master of
Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/ypdd-
ft64
https://digitalcommons.odu.edu/ece_etds/422

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/422?utm_source=digitalcommons.odu.edu%2Fece_etds%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN ARTIFICIAL NEURAL APPROACH TO THE DECOMPOSITION
PROBLEM

by

Chandrashekar L Masti
B. E., June 1987, Birla Institute of Technology, India

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
June, 1990

Approved by:

Mark Pardue

Stephen A. Zahorian

ABSTRACT

AN ARTIFICIAL NEURAL APPROACH TO THE DECOMPOSITION
PROBLEM

Chandrashekar L. Masti

The goal of this thesis is to develop an artificial neural approach toward

addressing the intractability involved with the decomposition problem. The search

for the lattice of substitution property (s. p.) partitions essential to decompositions

is cast into the framework of constraint satisfaction. An artificial neural network is

developed to provide solutions by performing optimization of a mathematically

derived objective function over the problem space. The issue of transitivity is

verified to belong to a class of problems beyond the scope of solvability for

conventional quadratic-order constraint satisfaction neural networks. A theorem is

stated and proved establishing that third-order correlations must be extracted by a

neural network to generate s. p. partitions. A formalized method for the construction

of constraint satisfaction neural networks is presented by exploiting abstract laws

from relational and Boolean algebras. It is shown that a third-order Hopfield

network fails to solve the s. p. partition problem, while impressive results are

obtained by using a Boltzmann machine employing simulated annealing.

Convergence to global solution states in large-sized problem domains have been

obtained at fast rates by manipulation of the degenerate ground state characteristic

of the network objective function.

ACKNOWLEDGEMENTS

I wish to express my gratitude to my advisor Dr. David L. Livingston for all

his persistence, guidance and encouragement throughout this research work. His

valuable contribution through numerous stimulating discussions backed by his

profound insight into the subject matter is gratefully acknowledged. I would also like

to express my sincere thanks to Dr. John W. Stoughton for all his continued and

invaluable support through the course of my graduate study. Particular thanks are

due to Dr. Vishnu K. Lakdawala for his understanding and cooperation towards the

final phase of this work. I value my interaction and discussions with my friend and

colleague Mr. Gursel Serpen as a cherishable and enjoyable experience. Thanks are

due to the members of my thesis committee Dr. Stephen A, Zahorian and Dr. Mark

Pardue, for taking their time to review my thesis. The financial support of this work

by the National Aeronautics and Space Administration under Grant No. NAG-1-962

is sincerely acknowledged.

Finally I would like to take this as an opportunity to thank my parents for

supporting my decision to attend Graduate school and pursue advanced studies.

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER I

INTRODUCTION .

1.1 Objective

1.2 Thesis Structure

CHAPTER II

BACKGROUND .

2.1 Overview

2.2 Constraint Satisfaction Neural Networks

2.3 Algebraic Theory

2.4 Proposed Method

CHAPTER III

18

25

THEORETICAL DEVELOPMENT 26

3.1 Representation

3.2 Derivation of the Energy Function

3.3 Interconnection strengths and Activation rule

26

28

43

CHAPTER IV

SIMULATIONS AND RESULTS 46

4.1 Hopfield network simulations

4.2 Boltzmann Machine with Simulated Annealing

CHAPTER V

47

CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH 73

5.1 Conclusions

5.2 Future Research

73

75

BIBLIOGRAPHY

APPENDIX

77

81

LIST OF TABLES

TABLE PAGE

3.1 Transitivity function truth table

3.2 Substitution property constraint term truth table

4.1 Modulo-six counter state table .

36

..41

..48

4.2 Energies of states at unit Hamming distance from local minimum50

4.3 Results of network compiled for fifteen trial runs

4.4 State table for a nine-state three-input machine

4.5 Performance of the net to fifteen independent trials ...

55

56

.....61

4.6 Eighteen-state three-input state machine table

4.7 Results of the network performance to fifteen trial runs

..64

.......69

LIST OF FIGURES

FIGURE PAGE

3.1 Karnaugh map of transitivity function truth values37

4.1 Third-order Hopfield net trapped in a local minimum

4.2 Third-order Boltzmann machine solving the modulo-six

......49

counter problem ..53

4.3 A random initial starting state of the 9 x 9 net.

4.4 A snap-shot of the net one time step later59

4.5 Solution state approached by the net in time step three ...

4.6 Legend for the s. p. partitions listed in table 4. 5

4.7 A random starting state of the 18 x 18 network...

4.8 State of the network at the second time step

......63

4.9 Time lapse of the network states .67

4.10 Final solution state of the 18 x 18 net68

4.11 Legend for s. p. partitions tr, through rr„ tabulated in table 4.77 1

CHAPTER I

INTRODUCTION

Decomposition techniques are extensively used in a variety of applications.

In design engineering, top-down methods based on decomposition are emphasized

for system synthesis. Humans regularly employ decomposition in problem solving

and task planning. We are proficient in identifying underlying structures and

dependencies within a given task description and are able to extemporaneously

formulate a methodology for decomposing the initial task into sub-tasks of relatively

lesser complexity.

Researchers from fields such as computer science, mathematics, psychology

and engineering are currently examining the mechanics underlying the success of

human intelligence in achieving contextually useful decompositions. Success has

generally been limited to situations where an a-priori description of the problem

space exists and unpredictable changes are known not to occur. The relatively simple

common-sense prowess for decomposition by average human intelligence continues

to remain beyond the reach of the most complex systems in existence today. Current

artificial intelligence technology comprised of symbolic representation and heuristic

search, implemented on serial computers does not appear to hold any sound promise

of closing the gap between human performance and machine intelligence in the near

future [1]. If a method exists for emulating human performance, it is our opinion

that intelligent tasks such as decomposition must be addressed from a perspective

that has a close connection with biological neural systems.

Artificial neural models have been developed and studied to contribute to a

better understanding of biological neural systems and to provide a basis for

engineering systems capable of achieving human-like performance [2]. These

models, called artificial neural networks, are essentially composed of large numbers

of nonlinear computational elements operating in parallel and have a high degree of

connectivity reminiscent of biological neural networks. The interconnections between

the computational elements of these nets are weighted depending on the specifics

involved in their computations. In contrast to performing a program of instructions

sequentially as in the traditional von Neumann computer, artificial neural nets are

capable of verifying competing hypotheses simultaneously using their inherently

massive parallelism. Thus, artificial neural net models are believed to have great

potential in areas where many hypotheses are explored in parallel and high

computation rates are required.

One example of the exploitation of neural networks in conjunction with

decomposition is automatic task planning [3], [4]. High-order neural nets are

used to plan decomposed tasks. In the problem of developing task structures, a

significant portion of the effort involved consists of the combinatorialy explosive

problem of finding the elements of the general structure from which the

decompositions are obtained.

The problem of decomposition has been approached from an algebraic

perspective that essentially relies on partition algebra. Hartmanis and Stearns [5]

pioneered the use of partition algebra for analyzing the structure of sequential

machines. Partitions generated over state machines determine the possibility of

decompositions and provide an understanding of their structure. Currently existing

techniques for obtaining machine decompositions are based on performing an

exhaustive sequential search into the machine's transition characteristics governed by

a given input environment. This process is known to become intractable with growth

in problem size and consequentially imposes intemperate demands on computation

resources.

The recent resurgence of artificial neural nets has drawn keen interest from

groups of researchers who have observed that these models demonstrate capabilities

in addressing computationaly "hard" problems including: the travelling salesperson

problem [6], the graph partitioning problem [7] and the N-queens problem

[8]. This new development offers a clear motivation for furthering a serious

exploration into the potential of a neural approach to addressing the NP-hard

machine decomposition problem.

1.1 Objective

The goal of this thesis is to explore the possibility of a neural approach toward

a solution to the intractability involved in the partition search problem. It is

suspected that a neural solution is a strong candidate for successfully addressing the

machine decomposition problem in an efficient manner through the use of massive

parallelism promised by forthcoming VLSI technology.

We cast the partition search problem into the framework of constraint

satisfaction, our aim being to implement the solution of a constraint satisfaction

problem using artificial neural networks. The technique incorporates the formulation

of an "objective" or "energy" function serving as a measure of the degree of violation

or compliance of plausible solutions to derived constraints. Properties that a

partition is required to satisfy based on the laws of relational and Boolean algebras

are incorporated into respectively required constraint terms in the network energy

function. We also attempt to systematize the derivation procedure for the network

energy function and provide a mathematical basis in an approach that has hitherto

remained generally heuristic.

1.2 Thesis Structure

Chapter I introduces the main problem addressed in this work, states the

objective and outlines the structure of the material presented in this thesis.

Chapter II presents a background view of past approaches to the

decomposition problem and at the same time surveys the basic theoretical

foundations on which the current work in this thesis is developed.

The theoretical framework underlying the formulation of the application of

neural networks to the machine decomposition problem is detailed in chapter III.

The issue of a proper representation scheme for mapping the decomposition problem

into the neural domain is addressed from a perspective that has a mathematical basis

in relational algebras. A theorem which algebraically shows that the interconnections

in the network for solving the decomposition problem must be of third order is stated

and proved.

With the theoretical basis provided for the network from chapter III, the final

model is developed and tested via simulations in chapter IV. The results of

simulations are discussed and necessary modifications to the strategies involved in

the computation mechanism are also presented.

Chapter V summarizes the results and presents the conclusions that are drawn

from this research endeavor. Research topics for further exploration and the scope

for enhancements are also discussed in this chapter.

CHAPTER II

BACKGROUND

2.1 Overview

The predominant strategy behind decomposition techniques in existence today

is exhaustive search executed in a sequential manner. Partition algebra provides the

mathematical basis for addressing the problem of decompositions. Hartmanis and

Stearns [5] exploited the theory of partition algebra and established a formalism for

analyzing the structure of a suitably developed state machine and a computation of

partitions over its state space. Partitions provide an understanding and evaluation

for the feasibility of decompositions.

A basic approach for decomposing a system is comprised of the following

steps. First, an algebraic description of the system is formulated. Using all known

or pre-specified constraints, the complete state space of the system is then generated.

The state space of the problem can be represented by a state table and thus a state

machine with primitive operations serving as inputs. The state machine serves as a

tool to find the elements of the basic structure from which the type of the

decomposition: series, parallel or complex may be determined.

The manner in which a state machine is realized from a set of smaller

component machines as well as the functional dependencies of its state and output

variables defines the structure of the state machine. Performing a constrained

parallel search into the transition properties of the state machine can generate

partitions on the machine's states. The decomposability of the state machine is then

determined by the properties exhibited by these partitions.

Constraint satisfaction neural networks naturally lend themselves to addressing

problems of this kind due to their inherently parallel computation strategies for

performing relaxation searches in a multiple constraint problem domain. Thus, a

brief insight into the class of neural nets capable of addressing constraint satisfaction

problems is now presented.

2.2 Constraint Satisfaction Neural Networks

General Concepts

Artificial neural nets have been investigated for a variety of applications.

NP-complete optimization problems such as the Travelling Salesperson Problem

[9], signal decision, Analog to Digital conversion and linear programming circuit

problems [10], and others have been addressed using constraint satisfaction

neural nets. Phonemic feature extraction for speech-synthesis [11] and

classification problems requiring arbitrarily complex decision regions [12] have

been explored using neural nets. Vision, speech, language and motor control

[13], difficult learning control problems like the balancing of a pole hinged to a

movable cart [14] and bibliographic retrieval from large United States national

information databases [15] have found good acceptance for neural net

approaches. One of the motivations for these investigations stems from the fact that

existing systems fall short of matching human performance in effecting high-speed

searches in large-sized information databases. A simple example is the relative ease

with which humans can generate vivid recapitulations of objects and images in

response to weak, externally supplied stimuli. Our capabilities for locating isolated

and specific, context-sensitive detail from an increasing reserve of knowledge within

our brains continues to remain beyond the match of current best systems.

Artificial neural net models are also known as parallel distributed processing

(PDP) or connectionist models [16]. The fundamental assumption for these

models is that the information processing takes place through interactions between

a large number of simple processing elements called units or neurons, where each

can send either excitatory or inhibitory signals to other units in the system. In the

application of neural nets to constraint satisfaction the individual neurons are

10

themselves used to represent hypotheses. The activations of the neurons are

analogous to the validity associated with the different possible hypotheses. The

constraints known to exist between the different hypotheses are represented by

weighted interconnections between the neurons. When neural net models are used

in this fashion they demonstrate the capability for performing optimization.

The computation of solutions to constraint satisfaction problems by

connectionist networks is performed by an iterative relaxation search which starts

with a randomly chosen initial state. This state can be interpreted as a proposed

solution which the network progressively improves by reducing a well defined

"objective" or "energy" function. The eventual low-energy (minimal) states to which

the network converges represent the required "good" or valid solutions. The energy

function defined for the network measures the extent to which the current

interpretation violates the stipulated constraints. Each possible state of activity of

the network has an associated energy. The activation rule used for updating activity

levels of the neurons is so chosen that this global network energy shows a general

decline with every iteration.

Optimization problems belonging to the category of constraint satisfaction may

be addressed using traditional techniques such as linear programming. When the

variables in the problem formulation are constrained as to take on only the values

0 or 1, the linear programming approach is called zero-one programming. It is

11

reported to have been shown by Hinton [17] that certain zero-one programming

problems can be implemented as relaxation searches in parallel networks. This

means that connectionist networks can find "good" solutions to problems in which

there are discrete hypotheses that are either "true only" or "false only". Each

constraint is encoded by an interconnection weight that enables measurement of the

extent of violation or adherence to the constraint by the current values of activation.

The network attempts to alter the activation values of the neurons to progressively

reduce this violation. The network thereby achieves the ultimately desired

low-energy (high-goodness) stable states representative of the desired solution points

to the problem.

The opinion that connectionist networks effectively perform optimization of

well defined objective functions basically stems from the investigations of Hummel

and Zucker [18]. They have shown that the final state to which a parallel

connectionist network converges using relaxation schemes is actually one of the local

minima of it's associated energy function.

A variety of problem domains have been explored using constraint satisfaction

neural networks [19], [20], [21]. For some simple cases, it can be

guaranteed that these networks will settle to the best final state regardless of their

initial starting values. However, for more difficult problems and especially the ones

involving discrete decisions, a neural net with dense interconnections and multiple

12

nonlinear decision elements is known to be generally not well behaved. Constraint

satisfaction neural nets show a tendency to oscillate or get trapped in uninteresting

states known as "local minima" of the objective function that do not represent the

actually required global solutions to the problem.

Hopfield Networks

Hopfield [22] identified a global objective function for networks with

symmetrically connected units at approximately the same time as Hummel and

Zucker [18] published the results of their investigations on parallel connectionist

networks. Hopfield's neural net models use deterministic update rules for neuron

activity levels and progressively iterate to minimize the global network objective

function. The term "energy" in reference to the objective function was coined by him

when he noticed that symmetrically connected networks of neurons exhibit similar

behavior to thermodynamic systems seeking minimum energy states. These states are

called attractor states in physical systems. Establishing such an analogy with physical

systems has been instrumental in providing an important conceptual tool for analysis

of connectionist networks.

The interpretation of a Hopfield net used for constraint satisfaction is as

follows: A positively weighted connection between units i and j represents a pair of

mutually supportive hypotheses. This means that if one of these units is on, the other

13

one is constrained to be on also. A negative connection weight implies that if one

of the units is on, the other is required not to be. The weight magnitude itself

corresponds to the penalty to be applied if the constraint is violated. The energy of

any state in the case of a second order network is given by

E (V) P P VtVjWg + P V,.b,, i s j,

where W- is the weight or strength of the connection between neurons i and j, V; is
Ii

1 if neuron i is "on" and 0 if "off" and b; is a bias for neuron i.

The number of weighted neurons that occur in the product term reflect the

order of the dependencies involved in the incorporation of constraints into the

network energy function. A quadratic term for example, reflects second-order

dependencies of constraints on the neuron activation states. When the dependencies

involved are identified to be higher than two; triple, quad or even larger groups of

neurons could participate in determining the activations.

Given Hopfield's quadratic definition of energy, each neuron i can locally

determine the difference between the global energy of the network when it is in the

"off'tate and the global energy when it is in the "on" state, knowing the current

states of all other units in the network. The energy gap is therefore given by

14

E,. — E,. - jsE,. - p IVJVJ — b,, j ~i .

y

This yields the following rule for determining the activation state at the neuronal

level in the network: If the energy gap 4E is positive, the unit should turn on (or

stay on) to minimize the global energy; otherwise it should turn off (or stay off).

Optimization of the network energy function is effected by progressively

achieving a reduction in the value of the discrete energy difference term hE,. and

thereby performing a gradient descent in the discrete energy landscape. A

deterministic update rule such as above, provides for a very fast gradient descent but,

it can be expected to work well only for those few problems having an exceptionally

smooth and continuously decreasing energy terrain. For any slightly hard problem

having a complex or unknown energy landscape, an inevitable consequence of

allowing purely downhill moves is to get trapped in local minima that do not

represent the required global solution points. This is a serious drawback.

Interestingly enough, the dynamics governing the energy minimization

mechanism by a parallel connectionist net are analogous to the bonding of atoms in

a crystalline structure [23]. If an atom in a crystal is oriented in a particular

direction, it will tend to influence the orientation of nearby atoms in the same

direction to achieve an overall, optimal fit. This phenomenon occurs over the entire

crystal so that some atoms in one part of the crystal can form a structure in one

orientation while atoms in another part of the crystal can form a structure in another

15

orientation. The points where these opposing orientations meet constitute flaws in

the crystal that are analogous to the local minima in connectionist networks.

Identification of such an analogy with crystals provides an important basis for an

answer to the issue of local minima in connectionist networks.

Boltzmann Machine Networks and Simulated Annealing

Once the problem of constraint satisfaction has been cast as an energy

minimization problem and the analogy of connectionist networks with crystals has

been established, it is logical to expect that the solution to the problem of local

minima can be solved in essentially the same way that the problem of flaws during

crystal formation are dealt with. A standard method used in physical systems

involves annealing. A plausible solution therefore is to add an annealing-like process

to the networks and have them employ a kind of simulated annealing [19].

The Boltzmann machine architecture [24], [25] is essentially a Hopfield

network that uses a simulated annealing search to escape from local minima. With

some differences of emphasis, this same idea was also independently proposed by

other contemporary research groups [26], [27].

Simulated annealing is a search technique that has been applied to a number

of optimization problems [19]. The idea is to attempt to escape from local minima

16

by the addition of a random element to the decision making process of each neuron.

In most cases, the unit still takes downhill steps, but occasionally it is allowed to take

a step uphill in the energy landscape. Mathematically stated, each unit i computes

the energy difference d E; exactly as given earlier, then assumes the "on" or "1" state

with probability p; given by

p,. (unit,. - I)
ae,

1+e

The term T is a parameter that determines the amount of randomness, or

noise and is analogous to a temperature. For large T, p,- is about 0.5 and the system

assumes states at random, essentially ignoring the constraints in the network; for

T = 0, the random element is totally eliminated and the system behaves as in the

pure Hopfield network, moving strictly downhill to the nearest local minimum. This

local decision rule has been shown to ensure that in thermal equilibrium the relative

probability of two global states is determined solely by their energy difference, and

follows a Boltzmann distribution:

P5 re
Ps

where P, is the probability of being in the u-th global state, and E, is the energy

associated with that state [25]. In other words, for a given temperature, the

probability of convergence to a final state is inversely proportional to the associated

17

energy of that state. The bias towards low-energy states is higher at lower

temperatures, but the time required to get there, i.e., to reach thermal equilibrium,

is much longer than what it takes at a higher temperature. The most widely used

method for reaching equilibrium is therefore to employ simulated annealing. The

technique is to start with a high temperature and gradually reduce it. Geman and

Geman [26] have derived bounds that establish limits on the allowable speed of the

annealing schedule.

The preceding discussion examined the details of the use of neural nets to

solve constraint satisfaction problems. The technique of obtaining decompositions

relies on concepts from relational and Boolean algebras. In order to attempt a

neural solution to the decomposition problem, the issue of a proper representation

merits significant attention since it is important to achieve a proper mapping of the

problem into the neural domain. In addition, an understanding of the algebra of

relations, partitions and the theory of state machines is essential before developing

a network to address the problem of decomposition. We thus present an overview

of some of the important and relevant concepts in the following section. Further

information may be obtained from references [5], [28], [29], [30], [31],

18

2.3 Algebraic Theory

Relations

An ordered pair (a, b) is a pair of elements with a specific order associated

with them. A binary relation R is a set of ordered pairs. If R is a binary relation

and the pair (a, b) e R, we write a R b to indicate that a is related to b by R. A

binary relation from a set S to itself is called a relation in S, and is a subset of the

cartesian product of the set S with itself, i.e., R ~ S x S.

A relation R in a set S is said to be reflexive if it contains (a, a) V a e S. It

is symmetric if the existence of an ordered pair (a, b) in R implies the existence of

(b, a) in R V a, b e R. R is transitive if and only if the existence of ordered pairs

(a, b) and (b, c) implies the existence of (a, c) also in R V a, b, c e S. A binary

relation R in a set S is called an equivalence relation if it is reflexive, symmetric and

transitive. Elements related by an equivalence relation are said to be equivalent.

An equivalence relation E partitions the elements s, of a set S into disjoint

subsets S; called equivalence classes, such that all members of a subset are equivalent

and members of different subsets are not equivalent. When a family of unary

operations (6) is defined on the set S, if the equivalence relation E demonstrates the

characteristic of implying image equivalence in every situation where it can establish

19

element equivalence, then E is said to satisfy the substitution property (s. p.) and is

therefore called a congruence relation. Mathematically stated, consider an algebraic

system 0 = &V; (6n 6z, ..., 6l) &, where all the 6; are unary operations; that is,

6;: V V, (i = 1,2, ..., I) andassumeEtobeanequivalencerelationonV. We say

that E satisfies the substitution property with respect to 6; if, V vn v& e V,

vt E v& 6;(v&) E 6;(vz). When E satisfies the substitution property with respect to

6; V i e [I, I], then E is called a congruence relation on 0.

Partitions

A partition tr on a set S is a division of S into disjoint subsets

S& a S;n S. = e, V is j and S = US&. Each Skis called a block oftr. It is usual to

represent a partition by writing overlines atop the disjoint subsets and separating

them by semicolons so that the subsets appear as blocks of set members. An

example of a partition is:

x - (0,2,4; 1,3,5)

The theory of finite state machine structure is based on laws derived from

partition algebra. Mathematically defined, a finite state machine M is characterized

by a three-tuple M =' S, I; (6) &, where S is the state set of the machine M, I is its

input set and (6) is a set of state transition functions (or "next-state" mappings).

20

State machines may be decomposed as determined by certain special properties

exhibited by the partitions generated over their state spaces, the most significant

among them being the substitution property. With respect to a state machine

characterized by a three-tuple as defined above, we present a formal definition of the

property of substitution as satisfied by a partition over the state set of a finite state

machine.

Definition

A partition on a state set S of a state machine M is said to satisfy the

substitution property (s. p.) and is denoted byrr if, V s;, s e S which are in the same

block ofrr and any input ik s I, the states b(ik, s;) ands(ik, s) are also ina common
J

block of rr.

For any n-state set S = (sn s&, ..., s } of a machine M, there always exist two

trivial s. p. partitions denoted by ii(0) and ir (I), where

ii(0) (st,'~, s; ...; s„) and rt(1) - (s, sz, s, ..., s)

Decomposition theory guarantees that if the product of any two s.p. partitions

for a state machine M equals the trivial s.p. partition rr(0), then M can be directly

decomposed into two independent machines Mt and M& operating in parallel.

21

Classical method of generating s.p. partitions

S. p. partitions are currently obtained by performing a sequential exhaustive

search into a given state machine's state transition characteristics that are determined

by a specified input environment. This is the classical method, known to become

intractable with growth in machine size [33]. An example is given below to

illustrate the technique.

~E*a I 2.1

Consider the state machine M whose state table is given below.

22

The machine has four states and is subjected to two inputs. The s. p. partitions for

this machine are computed in several hierarchical levels. At the first level,

s. p. partitions are generated by sequentially comparing two states of the machine at

a time and applying the transitivity law at each step to merge implied pairs,

eventually exhausting all the states. The partitions so obtained are then summed in

accordance with the laws for addition of partitions, to obtain the second level of

partitions. The second level partitions are then summed again to obtain a higher

(third) level set of partitions. This process is continued until eventually no new

partitions are generated. The procedure is illustrated below:

1,2

1,3

1,4

2,3

2,4

3,4

3, 4; 1, 2

2, 3; 1, 3

1,3; 1,3

2,4;2,3

1, 4 ; 2, 3

1,2'3

1,2;3,4

1,2,3;4

1, 3, 4 ; 2

2, 3, 4 ; 1

1, 2, 3, 4

1, 2; 3, 4.

The complete set of non-trivial first level s.p. partitions is therefore:

23

- (I, 2; 3, 4 I,

(I, 2, 3; 4 I,

n, - (I,3,4;Z},

n - (2, 3, 4; I },

and finally rr 5
= tr (I) and tr6 —— tr (0) are the two trivial s. p. partitions. Since no new

partitions are generated for this machine by summing any of its first level partitions,

we infer that the given machine M has four non-trivial s. p. partitions that may now

be used to study its decomposability into smaller component machines in parallel,

serial or complex interconnection schemes as applicable with the procedures of

machine decomposition theory.

Representation

From the preceding discussion it is evident that there exists a one-to-one

correspondence between partitions and relations. Relational algebra provides a well

defined representation scheme for examining the characteristics of relations implied

by given partitions. This representation is called a relation matrix and is used in the

study of relational algebra [30].

24

Definition

Let X = (xt, xz, ..., x } and Y = (yt, yz, ..., y,}. Suppose R is a binary

relation from X to Y. Then for a given order of the elements of X and Y the

relation matrix of R denoted by Mtt is defined as follows:

m;. = l,ifx;Ry

= O,ifx;Ry.,

where m- e M& and xj E X and y e Y.
1J

If the number of elements of X is equal to that of Y, i.e., n = m then M& is

a square matrix. As an example, letting R, denote an equivalence relation given by

R = ((1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (1, 3), (2, 1), (3, 2), (3, 1)},

the relation matrix M& of Re may be written from its definition as follows:

MR

11 10
11 10
1110
0001

where the row and column indices stand for the elements of the set upon which R

is defined. The matrix M& is interpreted as follows. All diagonal elements of M&

are 1's, indicating that R is reflexive. M& is symmetric about its diagonal, which is

indicative of the symmetry in R . Further, M& reflects the transitivity in R because

V (a, b), (b, c) e R and represented in M&, the ordered pair (a, c) e R is also

25

represented in MR with a 1 entry in the appropriate row-column position. Thus,

information about the characteristics of R is contained entirely in the relation matrix

Mtt.

2.4 Proposed Method

We now propose to cast the partition search problem into a framework of

constraint satisfaction and develop a neural network capable of providing the desired

solutions. A systematic and mathematical approach will be formulated for the

derivation of the required network objective function. A detailed theoretical account

of the proposed method is presented in the next chapter.

CHAPTER III

THEORETICAL DEVELOPMENT

An overview of the basic theoretical foundations underlying the work

presented in this thesis was given in the last chapter. A method was proposed which

is comprised of suitably casting the partition search problem into a framework of

constraint-satisfaction and then developing a neural network to perform the

optimization of a mathematically derived objective function over the problem space.

This chapter discusses the theoretical aspects involved in realizing the proposed

method.

3.1 Representation

In developing a neural approach to any problem, the issue of a proper

representation merits primary attention. Partitions have a one-to-one

correspondence with relations. We therefore use the relation matrix defined in

chapter II to serve as the representation for partitions proposed by the network. The

network is organized into a system of N x N neurons for a problem space of state

dimension N. This means that a neuron in the "on" state at row-i, column-j is

27

suggesting an equivalence between states i and j of the state machine subject to the

incorporated constraints. As an illustration, consider the following final, stable state

of activity for an N x N network of neurons with dimension N = 3:

Here the neurons in the "on" state are represented by solid circles. This

representation, in the current state of the network corresponds to an equivalence

between states 1 and 3, which is the s.p. partition

28

3.2 Derivation of the Energy Function

After addressing the issue of representation, the next step is to establish the

interconnections between the neurons of the network. This is done by deriving the

network energy function and then establishing a one-on-one correspondence of terms

with those in the classical expression for the energy function of appropriate order.

The derivation of the network energy function and a determination of its order are

based on the identification of the constraint terms involved for the problem.

Constraints

Partitions satisfying the substitution property have been shown in chapter II

to define uniquely corresponding congruence relations. By definition, congruence

relations are implicitly equivalence relations with the added requirement that they

imply image equivalence whenever states are established as equivalent. Thus, s. p.

partitions must possess the equivalence relation properties: reflexivity, symmetry and

transitivity as well as the (implication) properties of image equivalence.

The reflexive and symmetric relations can be implicitly encoded in the N x N

representation scheme, by employing the following method:

1. Diagonal neurons in the N x N neuronal grid are clamped to remain in

the "ON" state. Since this is representative of the equivalence of a state with

29

itself, the reflexive relation is satisfied before the network starts the

computation process.

2. Symmetry can be incorporated by ensuring that the states of off-diagonal

neurons in the in the upper triangular portion of the N x N grid maintain

exact correspondence with the neuron states in the lower triangular portion.

With the above method the search space for solution points in given problem

domains becomes noticeably reduced since the two constraint terms which would

have been necessary to enforce the reflexive and symmetry properties have been

obviated.

The remaining properties are therefore transitivity and the substitution

property. Thus, the network energy function may be interpreted to consist of

essentially two parts. The first part encodes the transitivity constraint. The second

part encodes the state-image congruence constraint, i.e., the substitution property.

The second part of the network energy function must essentially map the

complete state transition behavior of the state machine under its stimulus (input) set

to the network dynamics. Thus, if we denote the energy function of the network by

E, we may write

E = krE~ + kg~,

30

where E& is the energy term due to the transitivity constraint and E2 is the energy

term due to the state-image congruence (s. p. property or next state function)

constraint. The parameters k& and k2 are known as gain terms for the respective

constraints. They determine the relative importance or weight that is assigned to

each constraint.

Algebraic Basis of the Derivation

The neurons in the N x N network have only one of two possible states to

which they can eventually converge: the "ON" state or the "OFF" state. This means

that the ultimately stable solution states of the neural net are binary. We therefore

use techniques from Boolean algebra to derive the required functional dependencies

of the constraint terms on the neuron activation states, which we may regard as

binary variables for our purpose of derivation. This is the basis that provides for a

systematic and algebraic method of derivation for the network energy function.

The Transitivity Constraint

As defined inchapterII, arelationRistransitiveiff a R b andb R c a R c,

V a, b, c e (state) set S over which R is defined. In other words, this means that if

state "a" -=state "b" and state "b" =— state "c", then state "a" must also be = to state "c".

Therefore, the third neuron responsible for representing equivalence between the

31

states "a" and "c" in the N x K topological representation scheme for the network

must be constrained to be "ON" whenever the pair of neurons representing

equivalence between states "ab" and 'bc" are in their "ON" states. This is a

third-order functional dependence of the transitivity constraint term on the activation

states of neurons in the network.

The above discussion leads to the conclusion that the transitivity constraint

cannot be enforced into the network by a function that is of the more conventionally

used quadratic order. We thus state a theorem which mathematically establishes that

the transitivity constraint must be a third-order function of the neuron activation

states.

Theorem

Third-order interconnections are required for an N x N topological neural net

to verify the relation of transitivity in proposed partitions.

Proof

Defining Boolean matrix multiplications over n-th order square matrices A

and B [30] by

32

where the V and A represent bit-ORing and bit-ANDing operations respectively, we

see that the matrix C = AB contains a "1" in the row-column position indexed ij

whenever a "1" exists in row-i, column-k in matrix A and row-k, column-j in matrix

B V k e [1, n]. For a relation that is reflexive and symmetric, its relation matrix M&

will encode transitivity in R [34] iff:

M =- MxM -=Ma (2)

The matrix M& is a Boolean matrix because its elements are only 1's or 0's. Thus,

using equation (1)

m e M -=MxM
a (3)

can be written

m„.. - Vma Am&k-1
(4)

Equation (2) essentially means that V k e [1, n] with m; e MR,

33

m,,6m~) ='

(m,. A m,',) V (m,'.. A mfJ) 0
(5)

Since the variables involved are binary, we have the following three results that can

map Boolean logic operations V x, y e (0, 1), into the domain of integer arithmetic

operations: The logical complement of a Boolean (binary) variable is

x = (1 — x)

The expression

xAy - xxy -=xy

equates the logical "AND" operation to the operation of multiplication in the

integer-number domain. Finally, the equivalent expression for the logical "OR"

operation is derived using the above two results (i) and (ii) with the second theorem

of De-Morgan [29]:

(x'Ay')' (xVy) „

yielding

34

xVy =
(x'Ay')'(1

— x) A(1 — y))'(1

— x) x (1 — y))'1

— y — x + xxy)'1

— 1 + x + y — xy)

(x + y — xy)

Thus, equation (5) may be rewritten as

m,,(1 — m,,) V (1 — m,,)m,, = 0

which when simplified using the results (i), (ii) and (iii) transforms to

(mr — m,.m„..)V(m, — m,,m,,)

m.. + m.. — 2m..m..
I/ 4/ IJ lj

(7)

Thus, based on all the above results developed, equation (4) may be written in the

form

m,, - g m,.„m@
R-I

which upon substituting in equation (7), we finally obtain

This is an equation of third order in m e M.

We now derive the transitivity constraint term using the result established by

the above theorem and the laws of Boolean algebra. Since the activation states of

the neurons in the system are binary variables, we enumerate all possible

combinations of activation values considering triplets of neurons (V;, V &, V&) in the

form of a classical truth table. This is shown in table 3. 1. The transitivity constraint

term (E&) assigns a penalty of (positive) unity to the network energy function (E) in

situations where the required neuron combinations violate the definition of

transitivity. Conformation to the definition of the relation of transitivity obviates the

penalty.

To derive the functional dependency of the constraint term Ez on the neuron

triple (V;, V &, V&), we draw the Karnaugh-map [35] as shown in figure 3. 1.

Using the rules of Boolean algebra to obtain the classical sum-of-products

form [36], [37], [38] for the constraint E&, we may write V i, j, k:

Table 3. 1. Transitivity function truth table V V;, V k, V;k e N x N neuron grid.

37

Figure 3. 1. Karnaugh Map of Transitivity Truth values.

38

- (v,,Av,,Avg V (v„..Av,.',Av„.) V (v„,'.Av,,Av,.),

which upon using the results

x' (1 — x),
xAy & xy,
x Vy = (x+ y — xy),

may be written in the form

Since the representation used is the N)(N network topology, the indices

i, j, k span only the upper triangular portion of the square grid of N x N neurons in

the system (reference index starting at 0). Thus, the last equation may be compacted

to the following overall form:

(n-3) (n-2) (n-1)

The equation for the transitivity constraint term E& is of third order as

required. We note that the equation sums only for indices spanning the upper

triangular portion of the N)(N topology of neurons. This is useful for achieving a

reduction in computation overheads. The equation ensures that E& generates a +1

39

contribution to the network energy V triples of neurons (V;, V.&, V&) in the upper

triangular portion of the N x N grid that violate transitivity. E& evaluates to a value

of zero energy for every triple that does not violate transitivity.

The Substitution Property Constraint

This constraint is responsible for motivating the network towards finding

partitions satisfying the substitution property. To enforce this property into the

generated partitions, the family of next-state functions determining the state

transition behavior of the state machine must be incorporated into the constraint

term. The state-transition function is defined for each present state by a

pre-specified set of inputs. As a result, the constraint mapping this information into

the neural net will need to scan the input set and determine the extent to which

current solutions proposed by the net violate the requirement of preserving

state-image congruence.

We interpret the neuron activation states as binary variables again, and

generate a truth table enumerating all combinations for pairs of neurons (V," and its

image neuron for a specific input "k" denoted V~ I,«& &&&)).
The subscript "s-k(i)"

denotes the next-state determined by input "k", for the current (present) state "i".

40

A truth table generated by considering pairs of neurons in general terms is

shown in table 3. 2. The s. p. constraint term (Ez), assigns a penalty of negative unity

to the network energy for all cases where the required neuron combinations violate

the definition of the substitution property. Conformation to the property of

substitution obviates the penalty.

The entries in the truth table for constraint term E& show that its functional

dependency on the states of the neurons V,— and Vk &&,.& &&.j
has the same form ask- (ijr-k(J)

the classical "0110" combination corresponding to a two-variable logical

"EXCLUSIVE-OR (XOR)" function. Thus, the sum-of-products form for the E& term

'(j ij,k may be written from the truth values and the previously employed results as

2 Vij 6-k(ad-k(o ij d-k(ok-kw

'j b -k(ad-k(o 'j k -k(nb-k(g

As in the case of the transitivity constraint, since the indices span only the

upper triangular half of the N x N neuron grid, the above equation may be

compacted to the concise form:

41

Table 3. 2. Substitution Property constraint term E& truth table.

42

E2

b-kb O7b-kb O7

EZ Z E,
i 0 j (i+n b k(i7b kQ) b kso7b klo7

The above equation is quadratic; it is computationaly efficient to the extent

of offering the benefit of scanning only a total of fN(N-I)]-:2 neurons from the

N x N grid.

Combining the two constraint terms E& and E2 derived so far into one

expression, the overall equation for the network energy function may now be written

as

E = klEt + k2E2

The gain parameters k& and k2 are set relatively equal to each other so that

the constraint enforcing transitivity shares equal importance with the one influencing

the substitution property. This is not only beneficial in eliminating "tuning" of the

gains, but is also necessary due to the characteristic of s. p. partitions.

Ground State Characteristic of the Energy Function

The energy function (E) for the network has degenerate ground states. In

other words, the solution points for the s. p. partition problem represent a value of

zero to the network energy function. Neural net solutions to constraint

43

satisfaction/optimization problems of the class of the TSP [6], graph partitioning

problem [7] and others, have always been compared for merit with solutions

generated by classical techniques before accepting their "optimality". The degenerate

ground-state characteristic of the network we have developed obviates the

comparison exercise due to the fact that solution states are now uniquely identified

by their associated zero-energy values. A further use of this characteristic is the easy

detection of local minima since unlike global minima, these states will not have zero

energies associated with them. Thus, the energy function more tangibly reflects the

merit of suggested solutions by the network: If the partition energy is zero, the

proposed solution by the network in its current state of activity is the required global

solution, else the computation needs to be continued and the present interpretation

of the net needs to be improved.

3.3 Interconnection strengths and Activation rule

The classical form of the energy function (E) for a third-order network is

written as [39]

E(V) - — — P g g W „..»V,.V.V» — — PP W,,V,.V. — — g W'~,,
i+i'»i~»'i »'J+t

' 2;,~ »„' I

44

where Vv;j& is the weight matrix storing the interconnection strengths betweenv"j-

triples of neurons (V&VVI,) Vv jjcontains the strengths between pairs of neuronsj2)

(V,.V) and N), represents the bias for each neuron.

Comparing this expression with the derived equation (E) for the network

energy function and equating the coefficients of like terms, we obtain the entries to

the three weight matrices.

The rule for activation of neurons in the net is based on the classical

Hopfield-like constraint satisfaction neural net mechanism. Each neuron takes turns

in evaluating the difference in the global energy of the network when it is in the

"ON" state and when it is in the "OFF" state. The state of activity of the neuron that

lowers the global energy of the network is then assumed by the neuron. This

decision is made locally by each neuron and iterated enough number of times till

further changes cease to affect the network globally. The network is thereupon

understood to have performed the intended gradient descent in a 2 () j dimension

landscape and effected an optimization of the energy function. The final, stable state

of the neurons in the network then reflect the solution computed by the net.

This chapter discussed the theoretical aspects involved in the formulation of

the neural net developed for addressing the s. p. partitioning problem for machine

45

decomposition. The next chapter discusses the results obtained by implementation

of the method via software simulations on a serial computer.

CHAPTER IV

SIMULATIONS AND RESULTS

The theoretical basis for a neural approach to the decomposition problem was

developed in the previous chapter. Issues of network architecture and topology were

addressed from a mathematical perspective. This is a relatively new approach which

has hitherto been generally heuristic. A formal algebraic method of derivation for

the network energy function was developed. This chapter discusses the actual

implementation of the network via software simulation and the presents the ensuing

results.

Network simulations were performed on an IBM-compatible personal

computer (PC) equipped with a math-coprocessor and running at a 20 Mhz clock

rate. The detailed code is written in the "C" programming language, a copy of which

is provided in the appendix. Initial network simulations were performed by

employing the Hopfield architecture. This was later changed to a Boltzmann

machine net implementation after observing that the inherent performance

limitations of the Hopfield net yielded unsatisfactory results for our problem.

46

47

4.1 Hopfield network simulations

Hopfield networks employ a deterministic update rule to deduce the neuron

activation states. In terms of performing optimization of the objective function

derived over a given problem space, this amounts to taking strictly downhill moves

in a complex, unknown terrain. A natural and inevitable consequence of such a

technique is to get trapped in local minima, an example of which is shown in

figure 4. 1. A third-order Hopfield network was simulated in this example to search

for s. p. partitions over the state space of a 'modulo-six counter'. The state table of

this machine is given in table 4. 1. Since the dimension of the energy landscape for

an N-state machine is given by the expression 2 I l~, no convenient graphical

representation exists to clearly show that the state the network is currently trapped

in is indeed a local minimum. The problem addressed here has no more than six

states (N = 6), but the dimension of its energy landscape is 2 = 32768. Table 4. 2

therefore shows the energies of all states at a unit Hamming distance [40] from

the local minimum into which the modulo-six counter neural net settles. The table

shows that the energy associated with the current state of the net is less than or at

most equal to the energy of every other state at a unit Hamming distance from this

point in the landscape of the function. By definition, this by itself means that the net

is currently trapped in a local minimum. A further assertion is provided by observing

that the value displayed for the partition energy is non-zero. Since Hopfield nets

always update states in the direction of decreasing gradient in the energy space, it

48

Table 4. 1. Modulo-six counter state table.

Figure 4. 1. Third-order Hopfield net trapped in a local minimum.

50

Partition Associated Energy Remarks

r local 20 local minimum

40 unit Hamming distance away

r2 25 unit Hamming distance away

r3 45 unit Hamming distance away

r 4 25 unit Hamming distance away

r 5 70 unit Hamming distance away

30 unit Hamming distance away

r7 45 unit Hamming distance away

8 20 unit Hamming distance away

55 unit Hamming distance away

r 10 30 unit Hamming distance away

50 unit Hamming distance away

12 50 unit Hamming distance away

20 unit Hamming distance away

14 45 unit Hamming distance away

Table 4. 2. Energies of states at unit Hamming distance from local minimum.

51

cannot be expected that the network will escape from the state it is trapped in,

implying that the net will stay in the local minimum for infinite time. The current

interpretation by the net cannot be improved.

The Boltzmann machine architecture was the next logical choice for

exploration. Simulated annealing was used with the Boltzmann machine, with a view

to addressing the problem of local minima. A stochastic machine with a Boltzmann

net architecture employing simulated annealing is known to asymptotically converge

to global solution points of problem domains generally without regard to the

complexity involved with the energy terran [1].

4.2 Boltzmann Machine with Simulated Annealing

A third-order Boltzmann machine network employing simulated annealing was

developed and simulated to solve for s. p. partitions. Amongst several algorithms

that exist for incorporating the technique of simulated annealing into parallel

connectionist nets, the logarithmic rule derived by Geman and Geman [26]

mathematically guarantees asymptotic convergence to global minima. Their rule is

called classical simulated annealing (CSA). We used this technique in our

simulations for Boltzmann machines. Three example problems are illustrated here

that provide information for performance evaluation over a spectrum of problem

sizes.

52

~E* I I

The modulo-six counter that trapped the Hopfield network into a local

minimum was addressed again, using a third-order Boltzmann machine architecture.

The state table for the problem is the same as the one given earlier in table 4.1 used

for analyzing the Hopfield net. The performance of the network is impressive. A

snap-shot of the network in simulation illustrated in figure 4. 2 shows a case where

the problem has been solved in one discrete-time step. The network generated the

partition

over the state space of the counter. The above solution is decoded by noticing that

in the upper triangular portion of the square N x N grid, neurons are in the "on"

states in the first row, fourth column, i.e., row-0, column-3, and second row, fifth

column, i.e., row-1, column-4 and third row, sixth column, i.e., row-2, column-5

positions. Only one other non-trivial s. p. partition exists for this machine:

ttq - {0,2,4; 1,3,5)

53

Figure 4. 2. Third-order Boltzmann machine solving the modulo-six counter problem.

54

In order to obtain a more general idea of the overall performance of the net

over an ensemble of random starting points in the 32768 integer-point discrete energy

landscape, fifteen mutually independent trials were made and results examined for

the possible success rate of the net in finding valid solutions. Table 4. 3 lists the

results obtained. It is evident from the table that the net always converged to a valid

solution state. The initial network temperature was set to seven, a number that was

determined upon ensuring that the probabilities of updating the activation states of

the neurons in the net displayed initial values in the neighborhood of 0.5. Every

neuron in the net is randomly chosen and visited for stochastically updating its

activation state. Two iterations were arbitrarily determined to be satisfactory for

allowing the net to reach thermal equilibrium before updating the network

temperature. A new discrete time step is regarded to have started each time the

network temperature is updated. The simulation is written to provide an audio-visual

indication to the user when a solution state is approached by the net. A zero value

displayed for the partition energy as illustrated in the snap-shot figure visually

indicates solution; a soft four-tone chime is also incorporated.

~E* I 2.

In this example a larger state space was examined. A state machine with nine

states in its state set and three inputs in its input set was presented to the network.

The state table describing the machine is shown in table 4. 4. Since the dimension

55

Table 4. 3. Results of the network compiled for fifteen trial runs.

56

Table 4. 4. State table for a nine-state three-input machine.

57

of the state space being addressed is nine (N=9), the network is organized into a

square grid of 9 x 9 neurons. Amongst several valid solutions, one s. p. partition

(0, 2, 4, 5; 1, 7; 3, 6, 8 }

was generated by the net in three discrete-time steps. The computation process of

the net as it generated the above solution is illustrated in sequence via snap-shot

figures 4. 3 - 4. 5. A random initial starting state of the network is shown in

figure 4. 3 where the value of the current partition energy is displayed as 115 units

and the starting temperature is five units. It is evident from the figure that neither

the relation of transitivity nor the substitution property is satisfied by the net in its

current state of activity. Since an s. p. partition must have zero energy, it is inferred

that the present partition as proposed by the net at this time step is not a solution.

Figure 4. 4 shows the state of the network one discrete-time step later. The

displayed value of 50 units for the current partition energy again indicates that the

present state of the net does not represent a solution, a fact which is easily verifiable

by a manual examination for either the transitive relation or the substitution property

as governed by the next-state function determined by the machine's given input set.

The network converged to the state shown in figure 4. 5 in the third time step. The

fact that the partition energy is zero asserts that the net in its current state now

represents solution. With a view to obtaining an overall picture of the network's

performance to a state space of the current size, fifteen mutually independent trials

were once again performed, the results of which are presented in table 4. 5. It is

58

Figure 4. 3. A random initial starting state of the 9 x 9 net.

59

NEURON ACTIVATIONS
tag !Off On: ~

NETWORK STATUS
Tanparaturai

Partition Energy: 50
Iterations to eouilibriun'.2
T tnewtepsi 2 Tnsx:5 Tntn:O.Ol
Onwtata Probability I 1.53a-05

 "-4""~": vO (~(~""")
q~&&i ftgsfibISlg~&

Q+

';:-:-:)(D t".'-&O 4)(4&~6
 ~ftsggts'iLg ~to,

 r'." O~) "'-:30~3

5;$ «:,"::bs c.,!nq~,":.;".,iq r,";h b",",,)y
Press Space bsr to exit

Finding S.P. Partitions
for a

9 -State- 3-input Hschine
This is exanple gi 2 in thesis.

Figure 4. 4. A snap-shot of the net one time-step later.

60

NELIRON ACTIVATIGNS
i:P: 0 ff

NETWORK STATUS
Tanparaturai

Part it ion Energu! 0
I terat ions to eau i I ibriun: 2

%40
~SO~~I

. 8
T Inem teps I 3 Tnax:3 T n in I 0 . 0 1

Onwtata Probabi1itu: 0.992

Finding S.P. Partitions
for a

9 —State- 3-input Machine
This is exanple Si 2 in thesis.

Figure 4. 5. Solution state approached by the net in time-step three.

61

Table 4. 5. Performance of the net to 15 independent trials.

62

apparent that the net always found a valid solution. The logarithmic annealing

schedule (CSA) used earlier was employed for updating the network's temperature.

It was determined that no more than two steps were needed for allowing the net to

reach thermal equilibrium at each temperature. The legend for the various s. p.

partitions generated by the net and tabulated in table 4. 5 is provided in figure 4. 6.

~E*e le 3.

A state space of twice the dimension examined in the previous problem was

addressed in this example. A state machine with 18 states and three inputs was

presented to the network. The state table for this machine is given in table 4. 6.

Figures 4. 7 - 4. 10 provide an illustration of the network as it generated a valid

solution

(0, 2, 4; 1, 9, 17; 3, 5; 6, 8, 10; 7, 15; 11; 12, 13, 14, 16)

Figure 4. 7 shows a snap-shot of the 18 x 18 net in a random initial starting state.

Two intermediate states of the net as it evolved ultimately to the final solution

configuration are illustrated by figures 4. 8 and 4. 9. The valid global (required)

solution state to which the network converged in four discrete time-steps is shown in

figure 4. 10. The performance of the network to fifteen independent runs was

observed and is tabulated in table 4. 7. The success rate of the net is impressive.

A valid solution was always obtained - the fastest in as little as two time steps.

63

Figure 4. 6. Legend for the s. p. partitions listed in table 4. 5.

64

Table 4. 6. 18-state 3-input state machine table.

65

NETWORK STATUS
Tenperaturei

Partition Enerey: 110
iterations to eeuilibriue:2
TineMteps' Tnax:5 Tninl0.01
Onwtate Probability: 5.05e-05

Press Space bar to exit

NEURON AGTIVATIONSQ:Off 0 l ~
0808088888$$80$0888080$$88808888$8800$00088088$888888880818108888G'88888$
0$080n888686$$$8$88COe80(e0908888$8$0888$808$088GOSSSSSSQ88$880808888$8$00$88808$$8080$8$8$00$080$8$$$0$888888088$88$080808$8$808$88881688Q~:$0$8808888888$8$8888011$08888$$8888$88010018
$$$88r9988888000808
SCCrai680$088808880$$88880$888889111800$08$888$C90080$8880

Find icy S ~ P Partitions
for an

15-State 3-input Hachine
This is exanple S: 3 in thesis.

Figure 4. 7. A random starting state of the 18 x 18 network.

66

NETWORK STATUS
Tenperaturei

Partition Enereui 10
Iterations to eouilibriuxi2
T inc~tees I 2 Tnax:5 Tain:0.01
Outstate Probabi lite: 3 ~ 81e-06

NELIRON ACTIVATIDNS0:off 0 iO
08080888i QSSS888888
SOSGIDiGSGSOGGSQ~SSSO 80808$$0888$$8$88888 SSSSQSQSQSSQSS $ 808888888880088$88880008$80$88088
SIDSSSCTII08080$8888$$88$0808088$$$$80$$8888$$08000$8$$888$0$88$8$80$$8$88$0$$$8880$0808888888SOI 880$8888080$088
OOOOOOOOOOOO 0 0000000000000 0 000000 0 000 000 OO0000000000 0 0
$088888880$$$$8880Press Space bar to exit

Findine S.P ~ Partitions
for an

18-State- 3-input tlachine
This is exanple Si 3 in thesis.

Figure 4. 8. State of the network at the second time-step.

67

NETWORK STATUS
Tenperature:

Partition Eneroy: 5
Ital at iona to euui 1 ibl ion '2
T ines tees i 3 Tnax:5 Tnin:8.01

Press Space bar to exit

Costate Probability: 1.28e-05

NEURON ACTIVATIONS
IQ iOf f Oni Q

+8Q0 $0$00i0$$$8r OSQ~iQOS~$
$
0O EG$

$
$$$0$$$$$80$0$0$8 $$$$ $$$$8$0$0$$$$$0S$88$$$$080$0$$8$88$$0$$$$8$ 0$$8$$$$0$$$$880$080$$$$$8$8$$$80$$$$$0$8$$88088888$$$8$$000$08$$$$ $ 888$$000$0$$$$8$$$$8$$$000$!0$$$$$$$$0$$$$$$$0$$$8$$8$$88$88000$0$$0$$$$88$0$$$$8$$0

Pindine S.P. Partitions
for an

18 —State- 3-input iiachine
This is exanple 8: 3 in thesis.

Figure 4. 9. Time lapse of the network states.

68

NETWORK STATUS
Tenperaturei

Partition Enereui 0
Iterations to enuilibriun:2
T inewteps: 4 Tnax'.5 Tnin:0.01
Onmtate Probabi I i tel 3.57e-06

Press Space bar to exit

NELIRQN ACTIN'ATIONS
te ioff oni 1

~$080$8$888$$88888$0$8$$$$$0SSQSSSSO
~80$0$8$$$8$8$$$$$$$$0$00$$$8$$$$88$
~$0$0$88$$$$$8$88$88$0$08$$$$$$8$$88
SSSGQQ0$0$0$$$8$08$$8$ $$0$8$$8$80808$$$$$0$0$08$8$$8$et06868QOI80$$$$8$$0
Ot: OIQCOI80$06086$$$QO
QQQQQQSQQSQ088$$$8
GOIGQOQSSQSQet000$06
$ $$$8880$6F$ $00$0$$$0$$$80$ $$$6$0$$
QQQQAQQG$$8$000$08$0$$$$$8$0$$SSSSQO

Findine S ~ P ~ Partitions
for an

1$ -State- 3-input Machine
This is axanpla sl 3 in thesis.

Figure 4. 10. Final solution state of the 18 x 18 net.

69

Table 4. 7. Results of the network performance to 15 trial runs.

70

Figure 4. 11 is the legend for the various s. p. partitions listed in table 4. 7. The

annealing schedule used was the same as the one employed in previous examples.

Other relevant statistics are illustrated within the figures.

This chapter presented the results of the simulations performed on a

third-order neural network developed for addressing the s. p. partition problem in

machine decomposition. The conclusions drawn from this research endeavor and the

scope for future enhancements are discussed in the next chapter.

(0, 2, 4; 1, 9, 13, 17; 3, 7; 5; 6, 8, 10; 11; 12, 14, 15, 16 },

m~ - (0, 2, 4; 1, 9, 13, 17; 3, 11; 5; 6, 8, 10; 7; 12, 14, 15, 16 },

xs — (0, 2, 4, 15; 1, 9, 17; 3, 6, 7, 8, 10; 5; 11; 12, 13, 14, 16 },

x4 - (0, 2, 4; 1, 7, 9, 15, 17; 3, 5, 11; 6, 8, 10; 12, 14, 16; 13 },

xs — (0, 2, 4; 1, 9, 17; 3, 5, 15; 6, 8, 10; 7, 11; 12, 14, 16; 13 },

its (0& 2» 4& 1& 9& 17& 3» 6& 8& 10& 13» 15& 5 7& 1 1» 12& 14& 16 }

wq - (0, 1, 2, 4, 6, 7, 8, 10, 13, 17; 3, 5, 11; 12, 14, 16; 15 },

~s 0& 2'& 1'& 13» 17& 3& 5& 11» 6 8& 10 7* 12» 14 16 15

(0, 2, 4; 1, 9, 12, 14, 16, 17; 3, 15; 5, 13; 6, 8, 10; 7; 11 },

ta(0&2&4&15&1&9&13&17&3&5&11&6&7&8&10»12&14&16}

Figure 4. 11. Legend for s. p. partitions wt through w to tabulated in table 4. 7.

(Contd.)

Figure 4. 11. (Contd.) Legend for s. p. partitions m» through rr» in table 4. 7.

CHAPTER V

CONCLUSIONS AND SCOPE FOR F~ RESEARCH

5.1. Conclusions

Present approaches to the machine decomposition problem have relied on a

sequential and exhaustive search technique for generating partitions satisfying the

substitution property. This is known to become intractable with growth in problem

size and therefore imposes intemperate demands on computation resources. We

have developed an intrinsically parallel approach to addressing the intractability

involved in the partition search problem by the use of an artificial neural network

model that has potential for offering a viable alternative to existing sequential search

methods.

The problem of decompositions was cast into the framework of constraint

satisfaction and a neural net model was developed to solve constraint satisfaction

problems through optimization of a mathematically derived objective function over

the problem space. The formulation strategies governing the derivation of objective

functions for constraint satisfaction neural nets have so far been based on heuristics.

73

74

We have presented a formalized method for the construction of constraint

satisfaction networks by exploiting useful theories from Boolean and relational

algebras.

We have verified that the issue of decompositions belongs to a class of

problems that are beyond the scope of solvability for second-order networks. A

theorem was stated and proved establishing that third-order correlations must be

extracted by a neural net to generate substitution property partitions. A third-order

deterministic network such as a Hopfield net has been shown to fail in solving the

s. p. partition search problem due to the lack of an adequate technique for escaping

from any local minima of its associated objective function. Impressive results were

obtained by using a third-order Boltzmann machine with simulated annealing.

A spectrum of problem sizes was addressed using a third-order Boltzmann

machine network. In many cases, solutions were obtained in under five discrete

time-steps. Due to the excellent convergence properties of the higher-order scheme

in connection with the ground state characteristic of the derived energy function, it

was possible to introduce intelligent engineering methods in identifying global

solution states in arbitrary problem domains at fast rates. The network performance

scales favorably with the state dimension of the problem space. However, the

network as simulated currently does degrade in performance with respect to the input

dimension. Intrinsic limitations behind the technique of a software simulation of an

75

essentially parallel (neural) approach on a serial computing machine have precluded

any substantial immediate improvements.

5.Z Future Research

Real world problems in decomposition can be expected to have large-sized

state as well as input dimensions. As a result, a possible strategy for addressing the

issue of scaling network performance in adequate proportion to the input dimension

is to exploit the theory of the intersection of lattices of sub-groupoids [28], [29]. A

suggested technique is to develop a separate network for each dimension in the input

set of the problem space being addressed and incorporate a parallel communication

link (a constraint) between the individual nets as they descend toward their

respective global minima [41]. Common intersection points of individual global

minima that reflect a valid, globally acceptable solution as determined overall by the

complete dimension of the input space would then represent the required solution.

A little insight suggests that such an approach has its potential in essentially a

hardware implementation, since the larger the communication bandwidth simulated,

the greater the number of iterative loops a single-CPU von Neumann-machine would

be required to execute, rendering it an increasingly inadequate choice for the

purpose. Our attempts at software simulations based on such a "decomposed

approach to the decomposition problem" has provided corroborative results favoring

our conviction toward emphasizing a future attempt on VLSI based hardware.

76

The majority of optimization/constraint satisfaction problems addressed to this

date use neural nets with the order of interconnections between the neurons in the

network being no higher than quadratic. The potential of higher order neural nets

has been known for some time, but hardware limitations have so far constrained their

use [42]. With the advent of high-speed, multi-level VLSI devices specially designed

for parallel computation algorithms such as neural networks, we speculate that the

foundations we have laid for a neural approach to the decomposition problem will

one day obviate sequential methods altogether.

REFERENCES

Fahlman, S. E., and Hinton, G. E., "Connectionist Architectures for Artificial
Intelligence," IEEE Computer, January 1987, 100-109, IEEE Press, Piscataway,
New Jersey.

Feldman, J. A., "Connectionist Models and their Applications: Introduction,"
Cognitive Science, 9, 1-2, 1985.

Livingston, D. L. and Serpen, G. S., "Evaluation of Lattice Theoretic
Techniques for Task Decomposition Formalism," Proceedings of IEEE
SouthEastCon'89, Vol. III, 1989.

Serpen, G. S. and Livingston D. L., "A High Order Boltzmann Machine for
Transfer Sequence Searches in Decomposed State Machines," Proceedings of
IJCNN-89 Washington D. C., Vol. II, 598, 1989.

Hartmanis, J. and Stearns, R. E., Algebraic Structure Theory of Sequential
Machines. New Jersey: Prentice-Hall Inc., Englewood Cliffs, 1966.

Hopfield, J. J. and Tank, D. W., '"Neural'omputation of Decisions in
Optimization Problems," Biological Cybernetics, 52, 141-152, Springer-Verlag,
1985.

Ramanujam, J. and Sadayappan, P., "Optimization by Neural Networks,"
Proceedings of IJCNN-88 SanDiego, Vol. II, 325-332, IEEE-INNS Press, June
1988.

Tagliarini, G. A. and Page, E. W., "Solving Constraint Satisfaction Problems
with Neural Networks," IEEE First International Conference on Neural
Networks, SanDiego, CA, Vol. III, 741-747, IEEE-INNS Press, June 21-24,
1987.

Hopfield, J. J. and Tank, D. W., "Computing with Neural Circuits; A Model,"
Science, Vol. 233, 625-633, August 1986.

Tank, D. W. and Hopfield, J. J., "Simple 'Neural'ptimization Networks: An
A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit,"
IEEE Transactions on Circuits and Systems, CAS-33, 533-541, 1986.

77

78

Sejnowski, T and Rosenberg, C. R., "NETtalk: A Parallel Network that Learns
to Read Aloud," Johns Hopkins University Technical Report, JHU/EECS-86/01,
1986.

[12] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., "Learning Internal
Representations by Error Propagation," in D. E. Rumelhart and J. L.
McClelland (Eds.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. 1: Foundations. MIT Press, 1986.

[13] Grossberg, S., The Adaptive Brain I: Cognition, Learning, Reinforcement, and
Rhythm, and The Adaptive Brain II: Vision, Speech, Language and Motor
ControL Amsterdam: Elsevier/North-Holland, 1986.

[14]

[15]

Barto, A. G., Sutton, R. S. and Anderson, C. W., "Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems," IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC-I3, No. 5,
September/October, 1983.

Lippmann, R. P., Gold, B. and Malpass, M. L., "A Comparison of Hamming
and Hopfield Neural Nets for Pattern Classification," MIT Lincoln Laboratory
Technical Report, TR-769, Cambridge: Massachusetts, MIT Press, 1988.

[16] Rumelhart, D. E. and McClelland, J. L., Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press, 1986.

[17] Hinton, G. E. and Sejnowski, T. J., "Learning and Relearning in Boltzmann
Machines," in D. E. Rumelhart and J. L. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Vol. I:
Foundations. MIT Press, 1986.

[18] Hummel, R. A. and Zucker, S. W., "On the Foundations of Relaxation
Labelling Processes," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-5, 267-287, 1983.

[191 Feldman, J. A. and Ballard, D. H., "Connectionist models and their proper-
ties," Cognitive Science, Vol. 6, No.3, 205-254, 1982.

[20] Rosenfield, A., Hummel, R. A. and Zucker, S. W., "Scene Labelling by
Relaxation Operations," IEEE Transactions on Systems, Man and Cybernetic,
Vol. SMC-6, 420-433, 1976.

[21] Hopfield, J. J., "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities," Proceedings of the National Academy of
Sciences, USA, 79, 2554-2558, 1982.

79

[22]

[23]

Hopfield, J. J., "Neurons with Graded Response Have Collective
Computational Properties Like Those of Two State Neurons," Proceedings of
the National Academy of Sciences USA, VoL 8I, 3088-3092, May 1984.

Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P., "Optimization by
Simulated Annealing," Science, 220, 671-680, 1983.

[24] Fahlman, S. E., Hinton, G. E. and Sejnowski, T. J.,"Massively Parallel
Architecture for AI: NETL, Thistle,and Boltzmann Machines," Proceedings of
the National Conference on Artificial Intelligence, AAA-83, William Kaufman
Inc., 1983.

[25] Ackley, D. H., Hinton, G. E. and Sejnowski, T. J., "A Learning Algorithm for
Boltzmann Machines," Cognitive Science, Vol. 9, No.l, 147-169, 1985.

[261 Geman, S. and Geman, D., "Stochastic Relaxation, Gibbs Distributions and
the Bayesian Restoration of Images," IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6, No.6, 721-741, Nov 1984.

[27] Smolensky, P., "Schema Selection and Stochastic Inference in Modular
Environments," Proceedings of the National Conference on Artifi'cial Intelligence,
AAAI-83, 109-113, William Kaufman Inc., 1983.

[28]

[29]

Birkhotf, G., Lattice Theory, American Mathematical Society Colloquium
Publications, Vol. XXV, Providence, Rhode Island: American Mathematical
Society, 1967.

Birkhoff, G. and Bartee, T. C.,Modern Applied Algebra New York: McGraw-
Hill Book Company, 1970.

[30] Gill, A., Applied Algebra for the Computer Sciences. Prentice-Hall Series in
Automatic Computation, New Jersey: Prentice-Hall Inc., Englewood Cliffs,
1976.

Kohavi, Z., Switching and Finite Automata Theory. New York: McGraw-Hill
Inc., 1970.

[32] Trembley, J. P. and Monahar, R., Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

[33] Aigner, M., Combinatorial Theory. New York: Springer-Verlag New York
Inc., 1979.

[34] Ginzburg, A., Algebraic Theory of Automata, ACM Monograph series, New
York: Academic Press, 1968.

80

[35] Karnaugh, M., "The Map Method for Synthesis of Combinational Logic
Circuits," Trans. AIEE, pt. I, Vol. 72, no. 9, 593-599, 1953.

[36] Shannon, C. E., "A Symbolic Analysis of Relay and Switching Circuits," Tans.
AIEE, Vol. 57, 713-723, 1938.

[37] Shannon, C. E., "The Synthesis of Two-Terminal Switching Circuits," Bell
System Technical Journal, VoL 28, 59-98, 1949,

[38] Keister, W., Ritchie, S. A. and Washburn, S., The Design of Switching Circuits.
New York: D. Van Nostrand Company, 1951.

[39] Sejnowski, T. J., "Higher Order Boltzmann Machines," AIP Conference
Proceedings 151, Snowbird: Utah, 1986.

[40] Hamming, R. W., "Error Detecting and Error Correcting Codes," Bell System
Technical Journa, Vol. 29, 147-160, April, 1950.

[41] Masti, C. L. and Livingston, D. L., "Neural Networks for Addressing the
Decomposition Problem in Task Planning," Expert Systems and Other Real
World Applications Track of the Proceedings of the International Joint
Conference on Neural Networks, IJCNN-90-WASH-DC, Washington, D. C., Jan.
15-19, IEEE-INNS Press, 1990.

[42] Lee, Y. C., Doolen, G., Chen, H. H., Sun, G. Z., Maxwell, T., Lee, H. Y. and
Giles, L. C., "Machine Learning a Higher Order Correlation Network," Physica
22D, 276-306, North-Holland, Amsterdam, 1986.

APPENDIX

PROGRAM LISTING

tttttttttt
void
void
void
void
void
void
void
void
vo1d/ttttttttt

FUNCTION PROTOTYPES FOR EXAMPLE3.LIB FILE.
Ik t \ t t t t t lk t t t t t t t t Ik Ik t t t t Ik t t t t

Ikey

t t t Al t t t t t t k t At t k t t k k t t tt t t t t t t /
setup for graphics display(void);
frame the screen(void);
main menu in first quadrant(void);
setup activations(void);
setup status below menu(void);
setup exiting info below status(void);
update activations(void);
update status(int);
display~robability(float);

k t Ik t At t t Ik t t t t 't t t k t t t t t t t t 't t t t lk k t lk t t t t t t
BOLTZMANN MACHINE

Graphics Display Routines file
t/
kinclude & graphics.h &

Pinclude & dos.h&
1ltinclude AEXAMPLE3.IIA
struct videoconfig

(
int GraphicDriver;
int GraphMode;
int MaxX, MaxY;
int Maxcolors;
double AspectRatio;
struct palettetype palette;

struct videoconfig config;
/ t t t t Ik t t t t t lk t t t t t A t t t t t k t tl At t k t t t t t t t t t t t t t t t t t Ik lk t t t t t t t
void setup for graphics display()

extern struct videoconfig config;
int ErrorCode, xasp, yasp;
config.GraphicDriver = DETECT;
initgraph(&config.GraphicDriverk&config.GraphMode,tk);

81

ErrorCode = graphresult();
if(ErrorCode ! = grOk)

printf("Graphics Initialization Error: %s~n",grapherrormsg(ErrorCode));
exit(1);

config.MaxX = getmaxx();
config.MaxY = getmaxy();
config.Maxcolors = getmaxcolor() + 1;
getpalette(&config.palette);
getaspectratio(&xasp, &yasp);
config.AspectRatio = (double)xasp/(double)yasp;

return;

82

~ t C 4 k 0 4 4 '0 4 4 4 4'4 4 4 4 4 4 4 4 0 4 4 4 4 0 4 4 IC 4 4 0 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 '4 4 4 0 4 '4 4 4 Ik 4 4 Q 4 g 4 4 g g g//
void frame the screen()

void box(int, int, int, int, int);
setbkcolor(BLACK);

clearviewport();
box(0,0,config.MaxX,config.MaxY,WHITE);
return;

0 t 0 0 Ik 4 t 0 0 lt Ik 5 0 t t '4 4 0 0 t IC 0 0 lt lk 0 t t IC 4 4 t 0 Ik 4 0 t t t 4 4 Ik 0 0 t 4 4 0 4 I 0 0 0 '4 0 0 k 0 0 4 4 0 '0 0 0 A 0 0 0//
void main menu in first quadrant()

struct viewporttype viewinfo;
int w,h;
void box(int,int,int,int,int);
void changetextstyle(int,int,int);
int gprintf(int 'w,int *h,char *fmt,int);
getviewsettings(&viewinfo);
box(0,0,viewinfo.right/2,viewinfo.bottom/3-30,GREEN);
box(3,3,(viewinfo.right/2)-3,(viewinfo.bottom/3)-30-3,WHITE);
setfillstyle(INTERLEAVE FILL,DARKGRAY);
floodfill(4,4,WHITE);
changetextstyle(TRIPLEX FONT,HORIZ DIR,2);
settextjustify(CENTER TEXT,TOP TEXT);
w = (viewinfo.right-viewinfo.left)/2 - 170;
h=3;
gprintf(&w,&h,"DISPLAY LAYOUT',WHITE);
h = textheight("x")+20;
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
settextjustify(LEFT TEXT,TOP TEXT);

83

w = viewinfo.left +10;
gprintf(&w,&h,"Activations in right window",WHITE);
h = textheight("x")+50;
gprintf(&w,&h,"Status in lower window",WHITE);
h = textheight("x")+55;
w+= 110;
h = textheight("x")+85;
gprintf(&w,&h,"Third order network by",CYAN);
w = viewinfo.left +100;
h = textheight("x")+95;
changetextstyle(GOTHIC FONT,HORIZ DIR,1);
gprintf(&w,&h," Chandrashekar L. Masti.",CYAN);
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
return;

C 0 4 t t 0 4 f 0 Al t t t lk C 4 0 4 0 0 0 0 4 t 4 0 tent 4 0 0 t t 4 4 4 1 t tW 0 f t 0 0 f f 4 0 0 At t 0 0 0 0 4 4 0 0 4 4 0 0 4 '4 0 t t 0 0//
void box(int startx, int starty, int endx, int endy, int color)

setcolor(color);
line(startx,starty,startx,endy);
line(startx,endy,endx,endy);
line(endx,endy,endx,starty);
line(endx,starty,startx,starty);

)
/ 4 4 4 lk 0 4 4 4 4 Ik 4 0 4 0 t 4 4 0 lg 4 0 4 4 IC 4 t t 4 4 0 t t 4 4 4 4 4 4 4 4 4 4 0 Ik k 0 0 0 4 4 4 4 t 4 4 4 0 k 4 4 0 4 0 t t 4 4 5 4 4 g g/
void changetextstyle(font,direction,charsize)
int font,direction,charsize;

int ErrorCode;
graphresult();
settextstyle(font,direction,charsize);
ErrorCode = graphresult();
if(ErrorCode ! = grOk)

closegraph();
printf("Graphic font loading error: %s(n",grapherrormsg(ErrorCode));

exit(1);

return;

0 4 4 4 4 4 4 4 4 4 t 4 4 4 4 4 4 4 g 4 t Q Q Q 4 4 4 4 4 4 4 4 4 4 g 4 4 4 4 4 4 4 Al 4 4 4 lk 4 4 W 4 4 4 '4 4 4 4 4 4 4 g//
int gprintf(int *xloc,int *yloc,char *fmt,int color)

char str[200];

setcolor(color);
strcpy(str,fmt);
outtextxy(*xloc, *yloc,str);
*yloc = textheight("x")+1;
return;

84

k ft 0 0 0 IC 0 t 0 Ik 0 0 0 0 0 0 t t t 0 t t t 0 1 4 0 4 IC 0 0 W4 C 0 At 0 0 0 4 4 0 C 0 0 0 5 0 0 C 0 0 0 0 0 ik 0 0 0 f 0 Ik g g//
void setup activations{)

struct viewporttype viewinfo;
int w,h;
int xl,y1,x2;
void box(int,int,int,int,int);
void changetextstyle(int,int,int);
int gprintf(int *w,int *h,char *fmt,int);
int gulprintf(int *w,int *h,unsigned long fmt,int);
getviewsettings(&viewinfo);

box((viewinfo.right/2) + 2,0,viewinfo.right,viewinfo.bottom-25,MAGENTA);
setfillstyle(SOLID FILL,LIGHTGRAY);
floodfill((viewinfo.right/2)+ 4,1,MAGENTA);
changetextstyle(SANS SERIF FONT,HORIZ DIR,1);
settextjustify(CENTER TEXT,TOP TEXT);
w = (viewinfo.right/2)+ 155;
h =0+1;
gprintf(&w,&h,"NEURON ACTIVATIONS",YELLOW);
setcolor(BLUE);
circle(w-135,textheight("X") + 8,5);
setfillstyle(SOLID FILL,LIGHTBLUE);
floodfill(w-135+ 2,textheight("X") + 8+ 2,BLUE);
w-= 110;
h = textheight("X") + 5;
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
gprintf{&w,&h,":Off",BLACK);
w = viewinfo.right-70;
h+= 15;
gprintf(kw,kh,"On:",BLACK);
setcolor(RED);
circle{w+ 22,h+ 18,5);
setfillstyle(SOLID FILI LIGHTMAGENTA);
floodfill(w+ 22+ 2,h+ 18+ 2,RED);
w = (viewinfo.right/2)+160; h = viewinfo.bottom-100;
settextjustify(CENTER TEXT,BOTTOM TEXT);
gprintf(kw,kh,"Finding S.P. Partitions",BLACK);

w = (viewinfo.right/2)+160; h = viewinfo.bottom-85;
settextjustify(CENTER TEXT,BOTI'OM TEXT);
gprintf(&w,&h,"for an",BLACK);
w = (viewinfo.right/2)+160; h = viewinfo.bottom-70;
settextjustify(CENTER TEXT,BOTTOM TEXT);
gprintf(&w,&h," -State- -input Machine",BLACK);
w = (viewinfo.right/2) + 67; h = viewinfo.bottom-70;
gulprtntf(&w,&h,n,BLACK);
w + = 77; h = viewinfo.bottom-70;
gulprintf(&w,&h,no of inputs,BLACK);
w = (viewinfo.right/2)+160; h = viewinfo.bottom-55;
settextjustify(CENTER TEXT,BOTI'OM TEXT);
gprintf(&w,&h,"This is example k: in thesis.",BLACK);
w = (viewinfo.right/2)+192; h = viewinfo.bottom-55;
gulprintf(&w,&h,example number,BLACK);
xl = (viewinfo.right/2)+85; yl = viewinfo.bottom-50;
x2 =x1+ 170;
line(xl,y1p2,y1);
return;

85

t 0 0 0 t t 0 t t t 0 0 0 t 0 '0 1l 0 0 C 0 0 4 0 '0 0 4 4 '0 t 0*0 0 0 0 0 t 0 0 IC 0 1 Nt 0 0 0 0 Ik Ik t t 0 0 0 0 0 0 0 0 0 t 0 0 t 0 0 0 0 //
void setup status below menu()

struct viewporttype viewinfo;
int w,h;
extern float Tmax, Tmin;
void box(int,int,int,int,int);
void changetextstyle(int, int, int);
int gprintf(int *w,int *h,char *fmt,int);
int ggprintf(int *w,int *h,float fmt,int,int);
int gulprintf(int *w,int *h,unsigned long fmt,int);
getviewsettings(&viewinfo);

box(0,viewinfo.bottom/3-28,viewinfo.right/2,viewinfo.bottom/3 + 100,GREEN);
changetextstyle(TRIPLEX FONT,HORIZ DIR,1);
settextjustify(CENTER TEXT,TOP TEXT);
w = viewinfo.left+155;
h = viewinfo.bottom/3 - 27;
gprintf(&w,&h,"NETWORK STATUS",LIGHTGREEN);
w = viewinfo.left +4;
h+= 145;
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
settextjustify(LEFT TEXT,TOP TEXT);
gprintf(&w,&h,"Temperature:",LIGHTGREEN);
h = viewinfo.bottom/3 + 31;

86

gprintf(&w,&h,"Partition Energy:",LIGHTGREEN);
h = viewinfo.bottom/3 + 48;
gprintf(&w,&h,"Iterations to equilibrium:",LIGHTGREEN);
w = 213; h = viewinfo.bottom/3 +48;

gulprintf(&w,&h,(unsigned long)Max Equilibrium steps,LIGHTGREEN);
w = viewinfo.left +4;
h = viewinfo.bottom/3 + 66;
gprintf(&w,&h,"Time steps:",LIGHTGREEN);
w = 150; h = viewinfo.bottom/3 + 66;
gprintf(&w,&h,"Tmax:",LIGHTGREEN);
w + = 40; h = viewinfo.bottom/3 + 66;
ggprintf(&w,&h,Tmax,3,LIGHTGREEN);
w + = 40; h = viewinfo.bottom/3 + 66;
gprintf(&w,&h,"Tmin:",LIGHTGREEN);
w + = 40; h = viewinfo.bottom/3 +66;
ggprintf(&w,&h,Tmin,3,LIGHTGREEN);
w = viewinfo.left +4; h = viewinfo.bottom/3 + 84;
gprintf(&w,&h,"On state Probability:",LIGHTGREEN);
return;

0 0 0 4 0 4 4 IC 4 4 4 t Ik IC lk k t 4 IC 4 4 Ik 4 4 4 4 4 4 4 4 4 4 t4 0 4 0 4 4 4 4 4 4 4 k 4 t 4 4 0 4 At lk K lk IC t 4 //
void setup exiting info below status()

struct viewporttype viewinfo;
int w,h;
void box(int,int,int,int,int);
void changetextstyle(int,int,int);
int gprintf(int *w,int *h,char *fmt,int);
getviewsettings(&viewinfo);

box(0,viewinfo.bottom/2 + 100,viewinfo.right/2,viewinfo.bottom-lOO,GREEN);
box(2,viewinfo.bottom/2 + 102,viewinfo.right/2 -2,viewinfo.bottom-102,WHITE);

setfillstyle(INTERLEAVE FILL,DARKGRAY);
floodfill(4,viewinfo.bottom/2 + 104,WHITE);
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
settextjustify(CENTER TEXT,BOTTOM TEXT);
w = (viewinfo.right-viewinfo.left)/2 - 165;
h = viewinfo.bottom/2 +125;
gprintf(&w,&h,"Press Space bar to exit",LIGHTGRAY);
return;

void update activations()

struct viewporttype viewinfo;

87

int i,j;
int x center,y center,radius;
getviewsettings(kviewinfo);
x center = (viewinfo.right/2)+12; y center = 50; radius = 7;
for(i = 0;i & n;i+ +)

for(j = 0;j & n;j+ +)

if(V[i][j] = =0)

setcolor(BLUE);
circle(x center+j'17.5,y center+i*17.5,radius);
setfillstyle(SOLID FILL,LIGHTBLUE);

floodfill(x center+j*17.5-2,y center+i*17.5-2,BLUE);

else if(V[i][j] = =1)
(
setcolor(RED);
circle(x center+j*17.5,y center+i*17.5,radius);
setfillstyle(SOLID FILI LIGHTMAGENTA);

floodfill(x center+ j*17.5-2,y center+ i*17.5-2,RED);

return;

gggggggwgggeeeeeeeee44eee44eeeeeeegeeeeeeeeeeeeeg84eeaeeeeew.Aeesaaaeeeea//
void update status(int incomming Energy)

int w,h,yl,y2;
double xl,x2,x2 box;
int gulprintf(int *w,int *h,unsigned long fmt,int);
void changetextstyle(int,int,int);
changetextstyle(DEFAULT FONT,HORIZ DIR,1);
settextjustify(LEFT TEXT,TOP TEXT);
x1 = 110; y1 = 163;
x2 box = 5*Tmax/log(1+1);
x2 = 110 + x2 box-1; y2 = 168;
setfillstyle(SOLID FILI BLACK);
setcolor(BLACK);

bar (xl,yl,x2,y2);

setcolor(RED);
x2 box = 109 + x2 box; y1 = 163;
xl = 109; y2 = 168;

88

rectangle(xl,yl~ box,y2);
xl = 109; y1 = 164;
x2 = 109 + 5*Temperature; y2 = 167;
setfillstyle(SOLID FILI LIGHTRED);
setcolor(LIGHTRED);
bar(x1,y1~,y2);
xl = 144;; yl = 190;
x2 = 169; y2 = 200;
setfillstyle(SOLID FILI BLACK);
setcolor(BLACK);
bar(xl,y1p2,y2);
w = 144; h = 190;
gulprintf(&w,&h,(unsigned long)incomming Energy,LIGHTGRAY);
w = 94;
h = 225;
gulprintf(&w,&h,step number-l,BLACK);
w = 94;
h = 225;
gulprintf(&w,&h,step number,LIGHTGRAY);
return;

4ttttt444t4444t kWWtt4444ttt4444ttt44ttt5f ttt44f ttt Cttl C k4444ttlk44tl Ct444//
int gulprintf(int *xloc,int *yloc,unsigned long fmt,int color)

char str[1000];
setcolor(color);
ultoa(fmt,str,10);
outtextxy(*xloc, *yloc,str);
*yloc = textheight("x")+1;
return;

k 4 4 4 At 4 4 4 4 4 4 4 4 '0 4 4 4 4 '0 4 4 4 4 4 C 4 4 4 4 f 4 4 4 lk g 4 4 4 Q 4 lk '4 4 '4 4 IC 4 Ik 4 '4//
int ggprintf(int *xloc,int *yloc,float fmt,int ndec,int color)

char str[1000];
setcolor(color);
gcvt(fmt,ndec,str);
outtextxy(*xloc,*yloc,str);
*yloc = textheight("x")+ 1;
return;

4 + 4 4 4 4 4 lk 4 4 4 4 4 4 '4 4 4 4 IC 4 4 4 C 4 4 Q 4 t 4 4 4 4 4 4 4 III 4 4 0 4 4 4 4 4 4 4 C 4 4 4 4 4 4 4 4 4 4 Ik 4 4 4 4 4 4 4 Q g Q g 4 4//
void display~robability(float Probability)

89

int w,h;
int x1p2,yl,y2;
int ggprintf(int 'w,int *h,float fmt,int,int);
x1 = 175; y1 = 243;
x2 = 245; y2 = 258;
setfillstyle(SOLID FILI„BLACK);
setcolor(BLACK);
bar(x1,yl,x2,y2);
w = 175; h = 243;
ggprintf(&w,&h,Probability,3,LIGHTGRAY);
return;

t t t Ik Ik t Ik t t t t t lk t k t t t t t t t t t t At t t t t k Ik t t t t t t lk Ik t t t t t t tt t t t t t t t t Al At t k t t t t t t t t t t tl
THIRD-ORDER BOLTZMANN MACHINE

Using CSA schedule
For demonstrating solvability of Example 3 discussed in thesis......

NOTE 1:

NOTE 2:

NOTE 3:

NOTE 4:

NOTE 5:

NOTE 6:

NOTE 7:

Reflexivity and Symmetry merit terms are unnecessary due to implicit
benefits of current representation scheme being based on the relation
matrix.
Trivial partitions can be avoided by using the right value for
equal size blocks enforcer and setting k trivial not equal to zero.
This is currently removed from the program to reduce the associated
computation overhead.
Ensure that Tmax = 5.0 in the input file netpmts3.txt, to provide
enough randomness during first few iterations.
Following include files are needed for displaying the graphics involved-
EXAMPLE3.LIB and EXAMPLE3.H
Input files are-
NETPMTS3.txt and
STATES3.txt
This is an example drawn from the first 3 colums of Towers of Hanoi
second level decomposition state table.
For this example, ensure that n = ¹ states in the state machine = 18;
no of inputs = 3 and finally, example number = 3. These are the
first three '¹.define'tatements in this program.

t t t t t t t t t Al t t t Ik Ik t lk t t Ik 't t 't Ik t t Ik t t t t Ik t Ik Ik t t At t t t t Ik t t 't t t A t t t t t 'k t t Ik t t t 'k k k A

¹include &stdio.h&
¹include & stdlib.h&
¹include &time.h&
¹include &conio.h&
¹include &math.h&
¹include & string.h&
¹include & values.h &

90

/* To display this on the run-time screen*/
/* no of states in state m/c */

¹define example number 3¹define n 18
¹define no of inputs 3
¹define Max shuffle no 10
¹define Max Equilibrium steps 2
¹define k trnstvty 1*5 /* Transitivity scaling factor */
¹define k NS 1*5 /* NSMPM scaling factor
¹deflne shuffle mat max dim n*(n-1)/2
int shuffle matrix[shuffle mat max dim];
int V[n][n];
int edge matrix[no of inputs][n];
float Tmax;
float Tmin;
long step number;
float Temperature;
¹include "EXAMPLE3.LIB"

/ g g g '0 4 '4 'll '4 '4 4 4 4 '0 '4 k 4 lg '4 4 4 '4 4 '4 4 k '4 4 '0 4 0 '4 '4 4 lk 4 4 4 '4 '4 '4 '4 4 4 '4 4 4 4 4 4 '0 '0 '4 4 Q g 4 4

void main(void)

int ii,j;
int Energy;
int Equilibrium steps;
int shuffle matrix index;
int diff;
int net input V iiJj;
int Energy~ass accounter[2];
div t x;
void get network temperature specs(void);
void get state table information(void);
void randomly initialize neurons(void);
void initialize shuffle matrix(void);
void shuffle neuron indices for visit(void);
void Evaluate Energy(int *Energy);
void Decide on updating the neuron(int *ii,int *j,int);
void check for user termination(void);
void Audio signal zero energy to user(int);
get network temperature specs();
get state table information();
randomly initialize neurons();
initialize shuffle matrix();
setup for graphics display();
frame the screen();
main menu in first quadrant();
setup exiting info below status();

91

setup activations();
setup status below menu();
step number = 0;
do

step number++;
Temperature = Tmax/log(1+ step number);

for(Equilibrium steps =0;Equilibrium steps & Max Equilibrium steps;Equilibrium
steps+ +)

shuffle neuron indices for visit();
shuffle matrix index=0;
while(shuffle matrix index&shuffle mat max dim)

x = div(shuffle matrix[shuffle matrix index],n);
jj = x.rem;ii = x.quot;
V[lll[iil = V[»l[ll] = 1;
for(diff= 0;diff & 2;diff+ +)

Evaluate Energy(&Energy);
Energy~ass accounter[diff] = Energy;
V[ll][ii] = V[ii]fjj] = 0;
check for user termination();
)

/* for loop for E@ "ON" state - E@ "OFF" state */
net input V iiJj = (Energy~ass accounter[0]-Energy~ass accounter[1]);

Decide on updating the neuron(&ii,&jj,net input V iigj);
shuffle matrix index++;

/* loop for reading shuffle matrix '/
/* loop for doing equilibrium steps */
Evaluate Energy(&Energy);
update status(Energy);
update activations();
Audio signal zero energy to user(Energy);
) while(Temperature & =Tmin);

k4W4444444tt4 kt5W C444444tlC44 Ct4444t F44 k4444tlk44lk Kt4444lkt kdllktt444ttt//
void get network temperature specs()
(

FILE *input filel = NULL;
if(NULL l= (input filel = fopen("netpmts3.txt","r")))

92

else

fscanf(input file1,"%A,n",&Tmax);
fscanf(input filel,"%A,n",&Tmin);
)

(
puts(" Error opening input file1");
puts(" Press any key to continue");
getche();
exit(0);

if (fclose(input filel)! = NULL)

puts(" Error closing input file1");
puts(" Press any key to continue");
getche();
exit(0);

return;

/ Ik Ik g g g 0 t 0 0 0 0 0 0 0 0 0 t 0 '0 0 IC k 0 0 '4 0 0 tt 0 0 0 0 '0 t t lk III 0 0 0 t 0 t t 0 0 0 0 0 Ik Ik 0 lg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ik t 4'4/

void get state table information()

FILE *input file2 = NULL;
int i,j;
int dummy;
char comma;

if (NULL! = (input file2 = fopen("states3.txt",'r")))

for (i=0;i&(no of inputs);i++)
(
for (j =0;j & n;j+ +)

fscanf(input file2,"%d%c",&dummy,&comma);
edge matrix[ij[j] = dummy;
)

fscanf(input file2,"$n");

)
else (

puts(" Error opening input file2");
puts(" Press any key to continue");
getche();
exit(0);
)

if (fclose(input file2)! = NULL)

puts(" Error closing input file2");
puts(" Press any key to continue");
getcheO;
exit(0);
)

return;

4 4 4 4 4 IC 4 4 Ik 0 4 At 4 4 Al 4 4 4 III 4 4 4 4 4 4 4 4 t 4 IC '0 4 4 4 4 4 4'C 4 lk 4 4 IC 4 'C 4 k 0 4 4 0 4 4 4 4 k 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4//
void randomly initialize neurons()

int i,j;
srand((int)time(NULL));
for(i = 0;i & (n-1);i+ +)

for(j = (i+ 1);j & n;j+ +)

V[j][i] = V[i][j] = (int)rand()%2;
)

for(i = 0;i & n;i+ +) V[i] [i] = 1;
return;

eeeeeseeeeseeeeseeeeeeeeeseee0eeweeeeeWeeeeeeeeeteeeeWeeeeAteeeeeeeeeeeee//
void initialize shuffle matrix()

int shuffle mat index;
int row,col;
for(row=0,shuffle mat index=0;row&(n-1);row++)

for(col=(row+1);col&n;col++,shuffle mat index++)

shuffle matrix[shuffle mat index] = (row*n + col);

return;

eeef eeeseeeeeeeeeeeggeegggeesgeagggkkeee44'eeesWeWaeWeeeeee//
void shuffle neuron indices for visit()

int shuffle matrix index one,shuffle matrix index two,temporary;
int shuffle no;
for(shuffle no=0;shuffle no&Max shuffle no;shuffle no++)

94

shuffle matrix index one = ((int)rand()%shuffle mat max dim);
shuffle matrix index two = ((int)rand0%shuffle mat max dim);
temporary = shuffle matrix[shuffle matrix index one];
shuffle matrix[shuffle matrix index one] = shuffle matrix[shuffle matrix index two];
shuffle matrix[shuffle matrix index two] = temporary;

return;

k At f f f Ik f f f At Al f f f f 'f f At f f f f f f f f f f Ik At f AI Ik lk Ik f Al At f f f f Ik Ik f k f f k f f k f f 'f f ltt f f ltt f f ff f f f f//
void Evaluate Energy(int *Result)

int term3;
int NSM term;
void Evaluate NS map merits(int fNSM term);
void Evaluate transitivity merit(int f term3);

Evaluate NS map merits(&NSM term);
Evaluate transitivity merit(&term3);
'Result = (k trnstvtyfterm3)+(k NSfNSM term);
return;

f f f f f f k f f f f f f f f f f f f f f f f t f 'f 'f 'f f f f Al f f f f lk Ik f f f f lk f f f f f lk k k f f f k f f f f k k f k f f f f f f f lk lk//
void Evaluate NS map merits(int ANSM term total)

int i,j;
int input;
int isum, jsum;
int indexl, index2;
ANSM term total = 0;
for(input = 0;input & no of inputs;input+ +)

isum = 0;
for(i =0;i & (n-1);i+ +)

jsum = 0;
index1 = edge matrix[input][i];
for(j = (i+ 1);j & n;j+ +)

(
index2 = edge matrix[input][j];

jsum + = (V[i][j] + V[indexl][index2] -(2*V[i][j]fV[indexl][index2]));
)

isum + = jsum;

fNSM term total + = isum;

95

return;

0 4 4 0 0 0 4 4 1 t 0 '0 '4 '0 5 0 4 '0 '0 t 4 t I '0 '0 '4 $ '0 '0 0 0 '4 t 1 4 0 4 0 0 0 t t 0 0 4 4 t t 4 4 t 0 Al 0 0 0 0 t t 0 t 0 0 0 f 0 t lg 0 t At 0//
void Evaluate transitivity merit(int *Total)

int i,j,k;
int tempterm3jsum,tempterm3ksum;

'Total = 0; /* transitivity merit */
for(i = 0;i & (n-2);i+ +)

(
tempterm3jsum = 0;
for(j = (i+ 1)j & (n-1);j+ +)

tempterm3ksum = 0;
for(k=(j+1);k&n;k++)

tempterm3ksum t = (V[i][j]*V[i][k]+ V[j][k]*V[i][k] t V[i][j]*V[j][k]
3*V[i][j]*V[i][k]*VfJ][k]);

tempterm3jsum + = tempterm3ksum;
)

*Total + = tempterm3jsum;
)

return;

g g Q lg g g 4 4 0 t 0 4 IC 4 Al 0 4 4 4 0 0 4 t t 0 4 4 Al 4 4 0 t 4 4 4 t 0 0 4 t 0 4 Q Q 4 4 Q g 4 4 0 4 t 4 4 4 4 1t Ik 4 4 Ik 0 0 4 4 4 4 4 lk 0 0//
voidDecide on updating the neuron(int*row index,int*col index,intnet input V)

float parameter;
float Probability,Some random decision number;

parameter = ((float)net input V/(float)Temperature);
if(parameter & = 709)

Probability = 1/(1+ MAXDOUBLE);
)

else (Probability = 1/(1+ exp(parameter));)
display~rob ability(Probability);
Some random decision number = (rand()/(float)RAND MAX);
if(Probability&Some random decision number)

V[*col index][*row index] = V[*row index][*col index] = 1;
else V[*col index][*row index] = V[*row index][*col index] = 0;
return;

4 0 4 4 4 III 4 4 4 t \ 4 4 \ 0 t IC4t Ik t 0 4445444 gttttttttllllllAt4lk W4 0 t L444tAt W4 k 0 444 WW4 Al 4AIAtg CW 0 g//
void check for user termination()

if(kbhit())

closegraph();
restorecrtmode();
clrscr();
puts("Abnormal termination through keystroke!!!..........");
puts('Type 'example3'gain at the DOS prompt to re-run;");
puts("Press a key now to exit to DOS.");
getche(); getche();
exit(0);
)

return;
)
/ 0 4 t 4 4 0 0 llf 0 '0 III 0 4 4 t 4 IC 4 CILIA fl '0 t'0 '0 '0 '0 4'0 '0 4'll '4 4 4 4 4 III III 4 4 llt t t 4 4 4 0 4 4 lk 4 4 4 Ik 4 k g g 0 0 0 g 4 g g g g/
void Audio signal zero energy to user(int Energy)

if(Energy= =0)

sound(2000); delay(70); nosound(); delay(70);
sound(2000); delay(70); nosound(); delay(70);
sound(2000); delay(70); nosound(); delay(70);
sound(2000); delay(70); nosound(); delay(70);

return;
)/tstteewttteeteteettettstesseaeeeeeeeateeseesgwweeeesseeettweteteeeeeetes/

DATE DUE

	An Artificial Neural Approach to the Decomposition Problem
	Recommended Citation

	tmp.1723485275.pdf.2sZSq

