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control the jetting response: (1) a stereotyped giant axon system
driven by a single giant axon spike, and (2) a more graded non-giant
system whereby an escape jet is produced by the recruitment of both
non-giant and giant axons (Otis and Gilly, 1990; Gilly et al., 1991).
These two systems, in addition to mantle contraction/funnel aperture
dynamics, could account for the variation observed in escape jet I and
escape jet II. Irrespective of the underlying mechanism(s), our results
show that different types of escape jets are possible, as opposed to one
stereotyped pattern, throughout ontogeny.

Although paralarvae, juveniles, and adults exhibited similar escape
jet flow patterns, differences in propulsive efficiency and kinematics

throughout ontogeny were observed, likely originating from
morphological and ecological differences, as well as physical
constraints associated with their Re environment. Older squid Re
ranged from 8000–17,000 (Rejet 700–6000) while paralarvae ranged
from 70–150 (Rejet 20–50) in this study. The measurements of
propulsive efficiency derived from properties of the jet wake (e.g.
impulse, kinetic energy) indicate that paralarvae exhibit higher
propulsive efficiency during jet ejection than adult squid for escape
jets, which is surprising given swimming at intermediate Re is
generally considered more difficult than at higher Re. The efficiency
advantage of paralarvae is likely a product of several factors.
Paralarvae produced a jet that had a significantly higher funnel angle
relative to the horizon (76.34±13.64°) than juveniles (14.86±2.72°)
and adults (20.84±8.09°) (ANOVA:F2,59=146.79,P<0.001), which
was more aligned with their direction of motion. These results are
consistent with Bartol et al. (2008, 2009a,b), who found similar angle
differences. Paralarvae also have relatively larger funnel apertures
(Boletzky, 1974; Packard, 1969; Thompson and Kier, 2002), faster
contraction frequencies (8.6 mantle circumference lengths per second
in paralarvae, versus 3.6 mantle circumference lengths per second in
adults) (Thompson and Kier, 2001) and hold proportionally greater
volumes of water in their mantle cavities (Gilly et al., 1991; Preuss
et al., 1997; Thompson and Kier, 2001), which allow for the
expulsion of large volumes of water at relatively low speeds but at
high frequencies, all of which can improve propulsive efficiency
(Bartol et al., 2009a).

Historically, jet propulsion at high velocities has been considered
to have low efficiency compared to caudal fin propulsion typically
found in fish (Alexander, 1968). However, our findings indicate
that jet propulsion is a high-velocity, propulsively efficient escape
mechanism throughout ontogeny in squid. The use of jet propulsion
throughout ontogeny is also found in jellyfish, whereSarsia tubulosa
has been shown to modify its swimming kinematics to maintain
high propulsive efficiency (approximately 60–75%), which were
calculated using similar techniques to this paper (Katija et al., 2015).
Estimates for efficiency in carangiform fish are reported between

Fig. 4. The two hydrodynamic jet modes observed in juvenile and adults. A 2D velocity vector field (A) (swimming velocity=2.87 DML sŠ1), velocity
magnitude isosurface (B) and vorticity magnitude isosurface (C) of escape jet I (L� /D� =2.81) (DML=5.5 cm). A 2D velocity vector field (D) (swimming
velocity=7.95 DML sŠ1), velocity magnitude isosurface (E), and vorticity magnitude isosurface (F) of escape jet II (L� /D� =7.53) (DML=5.30 cm).

Fig. 5. Swimming velocity, mantle diameter, funnel diameter, and fin
displacement throughout the escape response for examples of a
pulsed vortex ring escape jet (escape jet I) (A) and a long escape jet
(escape jet II) (B). Adult/juvenile brief squid L. brevis are depicted. Mantle
contraction period is highlighted.
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74–97% (Drucker and Lauder, 2001; Muller et al., 2001; Nauen and
Lauder, 2002a,b). The propulsive efficiencies reported in our study
compare with previous studies conducted on squid. Bartol et al.
(2009a) found that paralarval D. pealeii have mean propulsive
efficiencies of approximately 75% for speeds of 0.7–3.1 cm s−1

(Bartol et al., 2009a). The paralarval escape jet efficiency recorded
here was higher (94.7%), but this is likely due to the consideration of
higher swimming speeds (1.88–12.1 cm s−1), as propulsive
efficiency tends to increase with speed in squid (Bartol et al.,
2009b, 2016). Indeed Bartol et al. (2009a) found that paralarvae have
deconvolved propulsive efficiencies as high as 87.5% for speeds of
∼2.5 cm s−1. Using models and whole-cycle efficiency calculations,
Staaf et al. (2014) reported efficiencies for ommastrephid paralarvae
of ∼20%. However, these results are difficult to compare directly to
our results because they do not derive from direct measurements of
the wake and include a refill period penalty.

As was the case here for escape jetting, Bartol et al. (2008, 2009a)
found that paralarvae have higher propulsive efficiency than
juveniles and adults during steady swimming. In newer 3D
analyses that include both jet and fin contributions to steady
swimming in Lolliguncula brevis, overall propulsive efficiency was
62–66% (Bartol et al., 2016, 2018). Our juvenile and adult escape
jet mean propulsive efficiencies of 93.8% and 88.2%, respectively,
are higher than the efficiencies above. However, when similar
high-speed propulsive efficiencies are considered, the values are
comparable, with 91–96% being reported in Bartol et al. (2009b,
2016). While not based on direct measures of the jet impulse and
kinetic energy, propulsive efficiencies up to 93% were reported in
adult D. pealeii when swimming at speeds >1.6 DML s−1

(Anderson and Grosenbaugh, 2005), which is similar to our
highest recorded adult efficiency of 97%. Overall, the observed high
propulsive efficiencies of high velocity squid escape jets challenge
previous reports that jets are inherently inefficient (Alexander,
1968; Lighthill, 1975; Vogel, 2003).

Estimating propulsive efficiency in squids throughout ontogeny
is challenging given the different Re regimes and behaviors
involved. To remove the influence of gravity on propulsive
efficiency in paralarvae, we considered only the exhalant phase of
the jet across our ontogenetic comparisons. Although juveniles and
adults generally swim along a more horizontal axis where losing
ground and gravity effects are not as significant, it was important to
consider propulsive efficiencies for only the propulsive phase for
these life stages as well, so that fair comparisons could be made.
Because the refill period involves no thrust component, it is feasible
that our propulsive efficiencies are slightly overestimated. However,
the relative differences among the life stages are still accurate, as the
same propulsive efficiency metric was used for all comparisons.

The majority of escape sequences for all life stages included one
fin flap during the beginning of mantle contraction followed by a
wrapping of the fins around the mantle for the remainder of the jet
cycle, a pattern commonly observed in squid during high-speed
jetting (Anderson and DeMont, 2000; Bartol et al., 2018). Thrust
production associated with these synchronized flaps was very low
relative to the jet, particularly for paralarvae where the fin flows
were barely perceivable (Bartol et al., 2008). Based on DPIV
measurements of the fin wake, Stewart et al. (2010) found that the
fins of L. brevis function as stabilizers while generating lift at low
speeds and then shift to propulsors as speed increases during tail-
first swimming. During arms-first swimming, the fins primarily
provide lift, playing a lesser role in creating thrust (Stewart et al.,
2010). Based on 3D velocimetry measurements, Bartol et al. (2016)
also found that the fins of L. brevis sometimes act as stabilizers,
producing negative thrust (drag), while consistently providing lift at
low/intermediate speeds (<2.0 DML s−1) to counteract negative
buoyancy. The lack of complex fin activity and appreciable thrust
production during escape jets may be attributed to the constraints of
the fin musculature and its inability to produce high forces at the

Fig. 6. Kinematic swimming variables throughout ontogeny. Significant
differences were found among kinematic swimming variables throughout
ontogeny (MANOVA: F6,86=11.42, P<0.001, Wilk’s Δ=0.31, η2=0.112).
Average velocity (A), peak velocity (B), and peak acceleration (C) for
paralarval (N=29), juvenile (N=12), and adult squid (N=18). DML=dorsal
mantle length, s=seconds, error bars=+1 standard deviation. Lines above
bars depict significant differences.

Fig. 7. Propulsive efficiency for paralarval (N=29), juvenile (N=12), and
adult squid (N=18) (ANOVA: F2,59=3.94, P=0.025). Error bars=+1 standard
deviation. Lines above bars depict significant differences.
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high shortening velocities required for an escape jet (Kier, 1989;
O’Dor andWebber, 1991). Nonetheless, every component of thrust,
even limited thrust from the fins, adds to total thrust and ultimately
to escape.
The paralarvae in this study showed higher average escape jet

swimming velocities (33.5±13.8 DML s−1) than juveniles
(8.8±2.9 DML s−1) and adults (4.2±1.8 DML s−1) when normalized
by dorsal mantle length. The same pattern was seen in peak velocity
among the three size classes, where paralarvae reached five times the
peak velocity of juveniles and adults. Paralarvae also exhibited
significantly greater peak acceleration than juveniles and adults. These
results are consistent with the findings of Packard (1969), who found
that Loligo vulgaris paralarvae exhibit maximum linear accelerations
of 817 DML s−2, while juveniles reached accelerations of
316 DML s−2, and adults only reached 162 DML s−2. The ability of
paralarvae to reach such high velocity and acceleration is a great
advantage given the high rate of predation at this early life history stage
(Boyle and Rodhouse, 2008). The average and peak velocities of the
juveniles and adults reported here are lower than those reported in
other kinematic studies of squid, where flow imagingwas not involved
(Staaf et al., 2014; York and Bartol, 2016). These differences reflect
some of the challenges of collecting DDPTV data, whereby the squid
are imaged in more confined experimental tanks.
While the performance metrics documented in this study are

similar to those reported in fish, there are major differences found
throughout ontogeny. The average peak velocity reported here in
paralarvae (53 DML s−1) is similar to those reported in larval
zebrafish when performing a C-start escape [50–65 body lengths
(BL) s−1] (Muller et al., 2008). Juvenile and adult squid accelerations
are also comparable to those found in adult fish, with numbers
ranging between approximately 2–520 BL s−2 depending on the
species and specific swimming behavior (linear acceleration, burst
and coast, fast start) (Domenici and Blake, 1997; Wen et al., 2018).
However, in contrast to squid, fish escape response performance
improves during early development, and as larval fish grow their
length-specific maximum velocity increases (Gibb et al., 2006). Both
larval fish and paralarval squid experience higher Re numbers as they
progress through early stages of ontogeny, but paralarval squid have
morphological features (rounded mantle, proportionately larger
funnels and mantle cavities, shorter thick filaments in mantle, etc.)
that allow them to reach higher normalized accelerations than
juveniles and adults at this early stage of development, as reported in
this study. Many larval fish do not have such specific adaptations to
overcome a hydrodynamic regime dominated by viscous forces, and
therefore do not reach the high accelerations of adult stages, which are
operating in an inertial based regime (Hale, 1996). Ecological
differences may also play a role in the observed ontogenetic
discrepancies between fish and squid, as many fish species (such as
salmonids) are protected in nests early in development (Hale, 1999),
and have a strong photonegative response during early post-hatching
development, which keeps them buried and less accessible to
predators (Carey and Noakes, 1981). Paralarval squid, on the other
hand, generally hatch from unprotected egg mops and are

immediately susceptible to predation (Boyle and Rodhouse, 2008),
requiring highly effective escape systems post-hatching.
Additionally, the pulsatile jet of a paralarval squid is a more
‘asymmetric’ form of propulsion than the oscillatory mechanisms of
larval fish, and it may simply be more efficient at the Re
experienced by animals at these early life stages (Bartol et al.,
2009a). Squid are not susceptible to the scallop theorem (i.e. that
time reversible motion such as oscillatory motion produces no net
locomotion as Re becomes smaller; Purcell, 1977) because their
anatomy includes check valves. Flapping, however, is time-
reversible motion and so fish will not be able to propel themselves
if they are too small. From this perspective, small squid might be
expected to be relatively better swimmers than small fish (Bartol
et al., 2009a; Lauga and Bartolo, 2008).

In this study, we determined that squid have flexibility in escape
responses, which was evident by the observation of two different
escape jet modes throughout ontogeny. Escape jet I is more efficient
in juveniles and adults and may be the mode used when a threat is not
eminent. Escape jet II is less efficient than escape jet I and may be
used when a predatory attack is unavoidable, making a rapid escape
integral for survival. Having high propulsive efficiency and the ability
to swim quickly are key advantages for squid as they escape
oncoming predators. Throughout all life history stages, squids are
prey targets for many marine predators, including fish, marine
mammals, sea birds and even other cephalopods, making them an
integral component of marine food webs (Clarke, 1996; Mather,
2010; Piatkowski et al., 2001;Wood et al., 2008). Therefore, it is vital
that they have an effective response to predation. When faced with an
oncoming predator, the escape response often consists of several
sequential escape jets tomove away from the predator. Thus, there is a
benefit to having high efficiency for each escape jet within a long
chain of responses, as it reduces overall energy expenditure.
Considering that carangiform fish range in swimming efficiencies
from 74–97% (Drucker and Lauder, 2001; Muller et al., 2001; Nauen
and Lauder, 2002a,b), having high propulsive efficiencies (89–95%)
may confer advantages to squid and improve their success in avoiding
predator attacks. Indeed, squid not only perform sequential escape
jets for each interaction but also have lots of daily interactions with
predators, making a highly efficient response essential for survival.
The results of this study indicate that squid show locomotive
flexibility and are extremely good at producing high velocity and
highly efficient escape jets even in the earliest phases of life. With the
fossil record of cephalopods dating back 500 million years, the
evolution of this predator evasion strategy has allowed these animals
to thrive and become a crucial component of our marine ecosystems
(Hanlon and Messenger, 1996).

MATERIALS AND METHODS
Animals and maintenance
Paralarval D. pealeii Lesueur [dorsal mantle length (DML)=0.18 cm] and
juvenile (DML=3.0–5.0 cm) and adult L. brevis Blainville (DML=5.1–
7.0 cm) were used for this research. Paralarval D. pealeii are comparable to
paralarval L. brevis, which are extremely difficult to obtain, because both

Table 1. Descriptive measurements of escape jet I and II

Escape jet I Escape jet II

Size group
Lω/Dω

mean
Swimming
velocity (DML s−1)

Swimming
velocity (m s−1)

Propulsive
efficiency (%)

Lω/Dω

mean
Swimming
velocity (DML s−1)

Swimming
velocity (m s−1)

Propulsive
efficiency (%)

Paralarvae (N=29) 2.3±0.5 31.9±9.9 0.06±0.02 94.7±5.3 6.8±4.2 34.1±15.1 0.06±0.03 94.4±5.6
Juveniles (N=12) 2.1±0.6 9.3±3.3 0.37±0.12 94.6±2.7 7.7±5.4 8.3±3.2 0.34±0.11 92.2±3.7
Adults (N=18) 2.1±0.8 1.80±0.02 0.12±0.08 89.0±11.0 6.4±4.9 4.2±1.6 0.27±0.12 86.32±16.96
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species have similar body size, fin size and shape, and ecological niches
during early ontogenetic stages (Bartol et al., 2008). Doryteuthis pealeii
eggs were obtained from the Marine Biological Laboratory, Woods Hole,
MA, USA, and maintained in floating buckets with mesh openings within a
recirculating seawater system at a salinity of 30–32‰ and at temperatures of
19–24°C until hatching. Once the eggs hatched, the paralarvae were
separated so that their ages could be tracked. A total of 170 paralarvae were
used in experimental trials. Lolliguncula brevis used in this project were
captured by otter trawl in Wachapreague, VA, USA. Trawls were conducted
in August, September and October as the catch probabilities are highest in
these months (Bartol et al., 2002). After capture, squid were transferred to a
114 l, circular holding tank (Angler Livewells, Aquatic Eco-Systems, Inc.,
Apopka, FL, USA) fitted with a portable battery powered aerator (Model
B-3, Marine Metal Products Co., Inc., Clearwater, FL, USA) for transport to
the lab. Squid were maintained in 450-gallon seawater systems with several
forms of filtration (e.g. BioBalls, protein skimmers, ozone filtration, etc.).
Seawater was maintained at temperatures and salinities equivalent to those
of the capture sites (19–22°C; 30–35‰). A moderate current flow was
maintained to promote active swimming and squid were fed a diet of live
Palaemonetes pugio and Fundulus heteroclitos as suggested by Hanlon
et al. (Hanlon, 1990; Hanlon et al., 1983). Squid were allowed to acclimate
for at least 24 h prior to experimental trials. Only animals that appeared
healthy and that exhibited normal behaviors were used, for a total of 22
juveniles and 26 adults.

DPIV experiments
Digital particle image velocimetry (DPIV) was used to collect 2D
hydrodynamic data from paralarval squid. We provide a general
description of the approaches below, and refer the reader to Bartol et al.
(2009a) for more detailed information. For paralarval experiments, three to
five squid were added to a 4.0×6.0×2.5 cm chamber filled with seawater
(19–24°C; 30–32‰) seeded with neutrally buoyant silver-coated glass
spheres (mean diameter=14 µm, Potters Industries, Valley Forge, PA,
USA), which were illuminated within a 1 mm thick laser sheet using a ND:
YAG dual pulsed laser (wavelength=532 nm, intensity=350 mJ pulse−1;
LABest Optronics, Beijing, China). A UNIQ UP-1830CL video camera
(1024×1024 pixel resolution; paired images collected at 15 Hz; Uniq
Vision, Inc., Santa Clara, CA, USA) outfitted with a VZM 450i zoom lens
(Edmund Optics, Barrington, NJ, USA) and an optical filter allowing only
532 nm wavelengths was synchronized with laser pulses and used for data
collection (time separation between paired images, ΔT, was 1–4 ms). For
analysis of the DPIV data, each image was subdivided into a matrix of
32×32 pixel interrogation windows. Using a 16 pixel offset, cross-
correlation was used to determine the particle displacement within
interrogation windows comprising the paired images. These cross
correlations were performed using Pixelflow™ (FG Group LLC, San
Marino, CA, USA) (Willert and Gharib, 1991) and INSIGHT 4G v. 11 (TSI,
Inc., Shoreview, MN, USA) software. Particle shifts that were three pixels
greater than their neighbors (Pixelflow™) or local median velocity
(INSIGHT) were removed as outliers and the data were smoothed to
remove high frequency fluctuations. Using the software above, velocity
vector (flow speed and direction) and vorticity (local rotation of the fluid)
fields were determined. Deconvolution of all paralarval velocity fields was
employed to account for depth averaging within the laser sheet, as the funnel
of the squid was similar in size to the laser sheet thickness. Details of the
deconvolution approach may be found in Bartol et al. (2009a). The
magnitude of the jet impulse (I) and the excess kinetic energy of the jet (E)
were computed from:

I=r ¼ p

ð

Jet

vur
2drdz; ð1Þ

E=r ¼ p

ð

Jet

vucdrdz; ð2Þ

whereωθ is the azimuthal component of vorticity, r is the radial coordinate, z is
the longitudinal coordinate along the jet axis, ψ is the Stokes stream function,
and ρ is the fluid density. The area integrals were computed using a 2D version

of the trapezoidal rule. Only motion produced during jet ejection was
considered because paralarvae tend to sink rapidly during refilling and work
done by the propulsive system, not work done by gravity, was of interest.
Therefore, propulsive efficiency (ηp) was calculated using the equation:

hp ¼
~FTx

~FTxþ E
, ð3Þ

where ~FT is the jet thrust time-averaged over themantle contraction and x is the
animal displacement during mantle contraction. ~FTwas determined by
dividing the impulse component in the direction of animal displacement by
the mantle-contraction period. The impulse and excess kinetic energy were
computed for the frame within the sequence that captured the most complete
jet. The length of the jet (Lω) was computed based on the extent over which the
jet vorticity field was ≥20% of maximum vorticity, and jet diameter (Dω) was
the distance (perpendicular to the jet centerline) between vorticity cores,
regions where vorticity was ≥90% of peak jet vorticity. The Lω/Dω ratio is an
important metric for jet performance as it linked to the physical limit of vortex
ring formation, propulsive performance, and thrust augmentation (Gharib
et al., 1998; Krueger and Gharib, 2003; Bartol et al., 2009b).

DDPTV experiments
Defocusing digital particle tracking velocimetry (DDPTV) data were
collected for juvenile/adult size classes. Again, we provide a short
description of the approach below and refer the reader to Bartol et al.
(2016) for more detailed information. Experiments were conducted in a
water tunnel [Model 502(s), Engineering Laboratory Design, Lake City,
MN, USA] filled with seawater containing light-reflective particles
(polyamide, 50 μm, Dantec Dynamics, Skovlunde, Denmark). The squid
were allowed to acclimate for at least 5 min in the water tunnel under low
flow conditions (<3 cm s−1), after which they were exposed to a range of
flow velocities until they swam steadily against oncoming flow. The seeding
particles were illuminated with the pulsed laser described above with the
beam expanded to illuminate the volume of the water tunnel test section, and
a V3V-8000 probe and INSIGHT 4G V3V software (TSI, Inc., Shoreview,
MN, USA) were used to collect paired DDPTV images of flows around the
squid at 7 Hz with ΔT=2 ms. Optical filters allowing only 532 nm
wavelengths were used with the probe. In many sequences, firing the dual
lasers following extended periods of steady swimming served as the trigger
for escape jetting. However, in some sequences, the squid did not respond to
the initial laser pulses, but did exhibit an escape responsewithin an extended
laser firing sequence. All of the juvenile/adult escape jets presented in this
study occurred while the squid swam against free-stream flow, i.e. no escape
jet was initiated from a resting start.

Approximately 75,000–125,000 particles were identified in each DDPTV
image with triplet yields (matches of particles among the three cameras in
the probe) of ∼50–60%. A relaxation method for particle tracking (Pereira
et al., 2006) was used to obtain 18,000–25,000 particle vectors in the
imaging volume. For interpolating the velocity vectors onto a regular grid,
Gaussian weighted interpolation was used with a voxel size of 16 mm on
each side, percentage overlap of 75%, and smoothing factor of 1.5. Impulse
(I) associated with the vortical 3D flow was computed from:

I=r ¼ 1

2

ð

V

x�vdV ; ð4Þ

where x is the position vector,v is the vorticity vector (v ¼ r� u, where u
is the velocity vector), ρ is the fluid density, and the integral is computed
over the volume of the vortex (Saffman, 1992). Excess kinetic energy (E)
was computed from:

E=r ¼ 1

2

ð
juj2dV ; ð5Þ

where juj is the velocity magnitude. Bartol et al. (2016) provides further
detail for these calculations. Lω, Dω, and ~FT were computed similarly to the
approaches described for paralarvae, and ηp was computed using Eqn. (3)
above.
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Kinematic measurements
Video of the squid was collected simultaneously with the DPIV and
DDPTV data using two high-speed DALSA Falcon video cameras
(1400×1200 pixels, 100 fps, Teledyne Dalsa, Inc., Waterloo, Ontario,
Canada). To prevent overexposure of frames from the laser, each high-speed
camera was fitted with a filter to block 532±5 nm wavelengths. For DPIV
experiments, the cameras collected images from dorsal and lateral
perspectives; for DDPTV experiments the cameras collected images from
ventral and lateral perspectives. A series of two to four, 500-watt halogen
lights, equipped with optical filters having low transmission at 532 nm,
provided illumination.

Frame-by-frame position tracking of the squid body features was
accomplished using DLTdv digitizing software (Hedrick, 2008). Video
was calibrated using rulers placed in the viewing chambers, allowing
conversion of pixels to centimeters. Only those sequences in which the
squid swam orthogonally to the longitudinal axis of the laterally positioned
camerawere considered, with the animal position in the z-coordinate (depth)
being determined using footage from the dorsal and ventral cameras for
DPIV and DDPTV applications, respectively. Moreover, animal rotation
was minimal in the selected sequences, allowing for frame-by-frame
tracking of landmarks on the squid. Six points were continuously tracked on
the squid: (1) one eye, (2) the most anterior point of the funnel opening, (3)
the most posterior point of the funnel opening, (4) dorsal edge of the thickest
point of the mantle, (5) ventral edge of the thickest point of the mantle, and
(6) the tip of the fin at maximum span. The tracked points were used to
determine the following kinematic variables: (1) mantle diameter changes,
(2) contraction and refill periods, (3) funnel angle, (4) mean velocity, (5)
peak velocity, (6) peak acceleration, (7) displacement of the fins, and (8)
diameter of the funnel. Due to low image resolution, kinematic variable 8
(funnel diameter) could not be determined reliably for paralarvae and thus
was not considered. Swimming velocities of juveniles and adults were
determined by measuring net displacement along the x-axis over complete
jet cycles divided by the cycle period and adding this to the background
water tunnel speed. Swimming velocities of paralarvae were determined by
dividing net displacement along the path of travel over complete jet cycles
by the jet cycle period. It was not necessary to correct for background flow in
paralarvae trials because these experiments were performed in stationary
water as opposed to a water tunnel. Using a MATLAB routine developed in-
house, squid acceleration, velocity, and mantle diameter were calculated and
smoothed with a fourth order Butterworth filter using a cutoff frequency of
4 Hz, which worked well for the current dataset, providing an optimal
balance between excess noise and over-smoothing.

Statistical analysis
Statistical analysis was performed in SPSS (v.18 SPSS Inc., Chicago, IL,
USA). All data were tested for normality using Shapiro-Wilk tests.
Multivariate analysis of variance (MANOVA) was performed to compare
kinematic swimming variables in paralarvae, juveniles and adult squid.
Follow-up ANOVAs for significant variables were performed, with Tukey
post hoc tests used for multiple comparisons (SPSS). Two-tailed t-tests were
used to compare kinematic variables between escape jets I and II. ANOVAS
were used to compare propulsive efficiency among the ontogenetic stages,
with subsequent Tukey post hoc tests for comparisons. Logarithmic
regressions were performed to analyze propulsive efficiency and
swimming speed. All means are presented with standard deviation, unless
otherwise noted.
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