Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Theses &

Dissertations Electrical & Computer Engineering

Fall 2002

Object-Oriented Architecture for Concurrent Processes in a Port
Simulation

Reejo Mathew
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

6‘ Part of the Computational Engineering Commons, Computer Engineering Commons, Computer

Sciences Commons, Operational Research Commons, and the Transportation Commons

Recommended Citation

Mathew, Reejo. "Object-Oriented Architecture for Concurrent Processes in a Port Simulation” (2002).
Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI:
10.25777/crwb-h067

https://digitalcommons.odu.edu/ece_etds/421

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.


https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/421?utm_source=digitalcommons.odu.edu%2Fece_etds%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

OBJECT-ORIENTED ARCHITECTURE FOR CONCURRENT

PROCESSES IN A PORT SIMULATION
by
Reejo Mathew

Bachelor of Engineering, June 2000
Sardar Patel College of Engineering, Mumbai University

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE
COMPUTER ENGINEERING
OLD DOMINION UNIVERSITY

December 2002

Approved by:

e <
Jameg F-Leathrum, Jr. (Director)

s e , .
Roland R. Mielke (Member)

P s - - - ——-

2

£ ] T
Frederic Mckenzie (Member)




ABSTRACT

OBJECT-ORIENTED ARCHITECTURE FOR CONCURRENT PROCESSES
IN A PORT SIMULATION

Reejo Mathew
0Old Dominion University, 2002
Director: Dr. James F. Leathrum

An architectural model to represent the resources and infrastructure within a cargo
terminal, as well as to support the concurrent but opposite flow of cargo within the
terminal, is presented in this thesis. The model supports the configuration of an individual
cargo terminal according to its characteristics, as well as the processing involved in the
simultaneous flow of cargo in opposite directions through the terminal. This is useful in
the analysis of the flow of military cargo and aids the decision-making process to
increase the efficiency and throughput of any military operation. This model has been
developed with the aim of supporting the simulation and analysis of the flow of at least
200,000 pieces of cargo with the cargo being modeled as individual pieces. It is also
envisioned that the model be used to connect multiple cargo terminals to represent an
end-to-end concurrent cargo flow from a cargo depot within the Continental United

States to a Theater of War.

Co-Directors of Advisory Committee: Dr.Roland R. Mielke

Dr. Frederic Mckenzie



This thesis is dedicated to all the people
who made a difference in my life.

iti



ACKNOWLEDGMENTS

I would like to extend special thanks to my thesis advisor, Dr. James Leathrum,
Jr. for the knowledge and guidance that he has given me during the two years that [ have
worked with him. T would also like to thank the co-directors of my advisory committee,

Dr. Roland Mielke and Dr. Rick Mckenzie, for all their help and support.

I would like to thank Mr. Joseph Joines at the Military Traffic Management
Command Transportation Engineering Agency (MTMCTEA) for data and clarifications
during the mode] development process. [ would also like to thank my colleagues at the
Virginia Modeling, Analysis, and Simulation Center (VMASC) and, in particular, Mr.
Taylor Frith for his input during the model development as well as its documentation in

Microsoft VISIO.

Last but not least, I would like to thank my family and friends for being there for

me all my life.



TABLE OF CONTENTS

Page

LIST OF TABLES L e et e vii

LIST OF FIGURES ... e e e aaees viil

LIST OF GRAPHS ..o e e e Xii

ABBREVIATIONS AND ACRONYMS ... e, Xiil
Chapter

L INTRODUCTION. ottt et e e e e it re e 1

LLLLOVEIVIEW . ooieiiit it e et et et et et e e e r e e e nens I

1.2 Problem Statement ...........ooiiviiiiiiii i I

1.3.Benefits of Simmudation ...........ooviiiiiiiiiiii e 2

LA REQUITEIMENTS L...itiiiiitir it re e e neereaeaeaaaaens 3

1.5.Architectural Approach ...........ccoviniiiiiii 4

L.6.Chapter OVETVIEW ....viriiii i e et e nae e 5

I. BACKGROUND .ottt e e ee e e 6

2.1 OVETVIEW Lottt et e et et e et e e et e e et aataaeeans 6

2.2 Existing Port Models ... 6

AT B (0 ) 236 b O 9

HI. MODEL DESCRIPTION ... 13

J T OVEIVIEW . e e 13

32 Problem Statement ..o 13

3.3 Model Requirements ... ....ooviriiiiiiiiiiiii e 14

3.4 Architectural Model Description .........coooviiiiiiiiiiiiiiiiin, 16

3.4.1 TransitInterface .......cooooiiiviiiiiiiiiiiii, P 17

342 CargoTerminals......cooooiiiiiiiiniiiiees 18

343 Cargo Terminal AT€as ........oovveiviiiiiiiniiiiiiiiiieiennnnes 23

3.5 Interconnection between components ...........coeevviiiiiiinininnn. 29

3.6 Resource Handling for Concurrent Operations .................oo.ee. 31

IV. CONCURRENT RAIL OPERATIONS ... ierannnns 33

A1 OVIVIEW . ettt et et ettt vt eetes e e ran s rananennanananneans 33

4.2 Description of Rail Operations ...........ccoovviiiiiiiiiiniiieenn, 33

4.2.1 Operational Infrastructure. .........coooeiiiiiiiiiiiiiinaans 33

4.2.2 Port of Debarkation (POD) Operations................oov.n... 34

4.2.3 Port of Embarkation (POE) Operations ...................... 37

4.2.4 Resource and Infrastructure Contention
Between POD and POE operations .............ccoccvevin e 37



4.3 Simulation of Concurrent Rail Operations ...........c..coviviinnn... 42

4.3.1 Concurrent Rail Operations ...............cooeiiiiiiiiinn., 42

4.3.2 Resolving Resource and Infrastructure Contention ......... 45

4.4 Analysis and Results ........c.cooiiiiiiininiiiii e 47

V. CONCLUSION Lo e e e e e e e 54

5.1 Achievements... ...t 34

S2Enhancements ... 55

REFERENCES. .. i e e 57
APPENDICES

A. POD Rail Processes .. .o.ooviuiiiiiii i 59

A.1 Selecting cargo to fill a single train ...........coooviiiiiiiiiiiinnan, 59

A2 Triggering a train to enter the port ......ooviviviviiiiiiniieaens 65

A.3 Loading a train with it €argo .......ccoovvvevinininiiiin e 70

A.4 Train leaving the port with its cargo .........cocovveiviiiniiiinin. 74

B. POE Rail ProCesSes ..ouviiiuiiiiiiiiiiii it avan e 76

B.1 Train with cargo arriving at the port .....oovviviniiiiiiiiiiinnn, 77

B.2 Train entering the port ...ooivuvriirriririei e ieeeiaaas 78

B.3 Unloading the train .......ooovviiiiiiiiii e v eer e aes 78

B.4 Empty train leaving the port ..........ccooviiiiiiniiiiinee 79

vi



vii

LIST OF TABLES

Table Page

1. Execution times for the simulation ..o ve i e, 53



LIST OF FIGURES

Figure Page
1. Architecture and Cargo Processing Models ... 5
2. CPORTS POD Macro Cargo FIoW ......coooiiiiiiiiii i, 11
3. Cargo Flow from Installation to Theatre of War ............cccoivvieiiiiinnnn.o. 14
4. Mover, Resource and Transport Classes .........oovivviiiiviiiiiiiiiiieianens 16
5. Transitlnterface Class ......ccoiiiiiiiiniiiiiiiiiieie e et e 17
6. Network of Cargo Terminals .........c.cooiiiiiiiiiii e, 18
7. CargoTerminal Class ..........ocoiiiiiiiiiiiiiiiiii e 19
8. POrt Class oot it e 20
9. A Complete POt ...t e 21
10. Port and External Transportation Interface ..., 21
11. Port Entry and ExIt ..o e 22
12. Port Level Architecture ......c.ooovviiiiiiiiii i 23
13. CargoTerminaldrea Class .........c.ovviiiiiiiii i 24
14, PortArea Class ........ouoeii i e 25
IS POIT ATEAS Lo iniiiiiii e e 26
16. A Complete Port Area ........oooiviiiiiiiiiiiiiii i 27
17. Port Area Entry and BEXit ......o.oiiiiiiiii e e 27
18. Port Area Level Architecture .........cocoiiiiiiniiiiiiiiiiien e 28
19. Complete Architecture for Concurrent

POD / POE OPErations .....ouveeviieneiiaennie s creeiaaaereeaaernnaneeneanaaens 30
20. Interconnection between Components ...........ooveviieiiiniiirieneniennn 29
21. Flow of POD Rail Cargo througha Port .............cocooiiiiiiiiiii 35

viii



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

POD Rail Cargo ProCesses ....ovvvuiiiiiie it 36
Flow of POE Rail Cargo throughaPort ............ocoviiiiiiiiniie 38
POE Rail Cargo Processes .......cooiviiviiiiiiiininiiiiiii e v eree e 39
Micro-Level Interconnection between Port Areas for

Concurrent POD/POE Rail Operations ............ooooviiiiiiiiiii i, 43
Macro-Level Interconnection for

Concurrent POD/POE Rail Operations ........o.vevvvereininininrinnereiienanannnns 44
POD Scenario File Routes

for Port Ad Dammaim .........oviiiiiiiiii et 48
POE Scenario File Routes

for Port Ad Dammam ........ccoiviuiiinieriinter et eae e e 49
Model Flow Diagram for POD TransportArriveRail process

INAaPOrt OBJEC ..o 59
TrainStatus ObJect ..o 60
Model Flow Diagram for POD InitTrainCargo process

in a StagingAreaSet Object ........coiiiiiiiiir 61
Model Flow Diagram for POD FillRailCargo process

ina StagingAreaSet ObJect ...t s 62
Model Flow Diagram for POD PutCargoOnTrain process

in a StagingAreaSet ObJect .....oooii i 63
Model Flow Diagram for POD ProcessRailCargo process

in a StagingAreaSet ODJECt ...t 64
Model Flow Diagram for POD GetTrain process

in a InterchangeYardAreaSet Object ..........c.coiiiiiiiiiiiiiiii 65
Model Flow Diagram for POD SelectIYA process

in a InterchangeYardAreaSet Object ........c.ooiiiiiiiiiiiiiii e, 66
InterchangeYardArea ObJect .......cccoiiiiiiiiiiiiiiiie e 66
Model Flow Diagram for POD ResourceArrive process

in a InterchangeYardArea Object ...........ooiiiiiiiiiiiiiiiiiii e, 67



39.

40.

4].

42.

43,

44,

45.

46.

47.

48.

49,

50.

51

52.

53.

54

Model Flow Diagram for POD SendTrain process
in a InterchangeYardArea Object .........coi i

Moedel Flow Diagram for POD SelectRSA process
m a RailSpurdreaSet Object ... e

Model Flow Diagram for POD ResourceLeave process
in a InterchangeYardArea Object ..........ocoviiiiiiiiiiiiii e

Medel Flow Diagram for POD GetRailCargo process
in a StagingAreaSet ODJect .. ....coviii i

Model Flow Diagram for POD SendRailCargo process
inaStagingAreaSet Object .. ...ocoiii s

RailSpurArea Object. ... et

Model Flow Diagram for POD CargoArrive process
ma RailSpurdrea ObJect ..o,

Model Flow Diagram for POD ResourceArrive process
ina RailSpurdArea ODJEct ...

Model Flow Diagram for POD LoadCargo process
ina RailSpurArea ODJEct ...

Model Flow Diagram for POD CargoLeave process
in a RailSpurdrea ObJect ... ..ottt

Model Flow Diagram for POD Cargodrrive process
in a InterchangeYardArea Object ......ccooiiiiiiiiiiiiiii i,

Model Flow Diagram for POD CargoLeave process
in a InterchangeYardArea Object ......coooiiiiiiiiiiiiiiii i,

. Model Flow Diagram for POD TransportLeaveRail process

I aPOFTODIECT ..o

Model Flow Diagram for POE TransportArriveRail process
M AaPOFTODBJECE ..vviniiit it v e a e

Model Flow Diagram for POE Cargodrrive process
in a InterchangeYardArea Object ........coooiiiiiiiiiiiiiiiie i,

. Model Flow Diagram for POE CargoLeave process

1in a InterchangeYardArea Object ...t s



55.

56.

57.

58.

59.

60.

Model Flow Diagram for POE CargoArrive process

ina RailSpurdrea Object .......cooovviiiiiiii

Model Flow Diagram for POE CargoLeave process

i a RailSpurArea ObJect ..ot

Model Flow Diagram for POE ResourcelLeave process

ina RailSpurdrea Object ...t

Model Flow Diagram for POE ResourceArrive process

in a InterchangeYardArea Object ..........oooiiiii i

Model Flow Diagram for POE ResourcelLeave process

in a InterchangeYarddrea Object .......ooooeiiiiiiiiiiiiiiii s

Model Flow Diagram for POE TransportLeaveRail process

ma PortObject .. ..o e

Xi



LIST OF GRAPHS

Graph Page

1.

Closure Times for Port Ad Dammam
for various cargo flows .......ocoiiiiiiiii 50

Closure Times for various cargo flows with
varying number of Interchange Yard Areas ..........coceoviiiiiiiiiiinenin, 51

Closure Times for various cargo flows with
varying number of Rail Spur Areas ..........ooooiiiiiiiiiiii 52

Xii



ANL

CCA

CONUS

CPORTS

IYA

MTMCTEA

OCONUS

POD

POE

POPS

PORTSIM

RHCT

RSA

SA

STON

VMASC

Xiii

ABBREVIATIONS AND ACRONYMS

Argonne National Laboratory
Convoy Construction Area
Continental United States
Configurable Port Simulation
Interchange Yard Area

Military Traffic Management Command Transportation
Engineering Agency

Outside Continental United States

Port of Debarkation

Port of Embarkation

Port Operational Performance Simulator
Port Simulation

Riga Harbour Container Terminal

Rail Spur Area

Staging Area

Short Ton

Virginia Modeling, Analysis, and Simulation Center



Chapter 1

INTRODUCTION

1.1  Overview

'An architectural model to represent the resources and infrastructure within a
cargo terminal, as well as to support the concurrent but opposite flow of cargo within the
terminal, is presented in this thesis. The model supports the configuration of an individual
cargo terminal according to its characteristics, as well as the processing involved in the
simultaneous flow of cargo in opposite directions through the terminal. This is useful in
the analysis of the cargo flow and aids the decision-making process to increase the

efficiency and throughput of any military operation.

1.2 Problem Statement

Transportation Logistics Planning is used extensively to prepare for the
movement of military cargo, i.e., troops, equipment, and supplies, from a military
installation to the Theater of War. The initial input of troops into a Theater of War is
usually by air. After this initial input, the movement of military cargo, both for offensive
purposes as well as for sustainment of the existing force, is by sea, usually through a
commercial seaport. For a variety of reasons, both political and economic, only a portion
of the entire seaport is available for military operations. For any military operation, it is
possible that the flow of cargo from the Theatre of War back to the installation will begin

before the flow in the opposite direction has ended, with some military units starting to

' The reference model for this work is “4 Reconfigurable Object Model for Port Operations” from the
Proceedings of the Summer Computer Simulation Conference, SCSC 2000:603~608.



return to the installation while other units are still being deployed. Moreover, after the
initial surge of military equipment and personne! into the Theater of War, cargo supplies
meant to sustain the existing force constitute a major portion of the cargo flow. This
results in a bi-directional flow of cargo and resources, with cargo moving in both
directions competing for limited resources and infrastructure within a cargo terminal,
Proper resource and infrastructure allocation is important in any transportation logistics
operation. It is important to ensure that the flow of cargo in one direction does not
unnecessarily delay, or worse, stall the flow of cargo in the opposite direction. Therefore,
resource and infrastructure allocation between the concurrent flows of cargo, as well as

the resolution of any contention that might arise, is vital.

It is impractical and expensive to conduct actual military exercises to study the
effects that various ship arrival profiles and the availability of port infrastructure and
resources for the concurrent cargo flow have on the efficiency of the entire operation.
Simulation provides a viable alternative to capture the concurrent flow of cargo within a
model. It also enables an analysis of the simulation results for maximum efficiency and

throughput within the confines of resources and infrastructure availability.

1.3  Benefits of Simulation

Simulation is a cost-effective and simplistic method for modeling a complex
physical system with a level of detail just enough to adequately represent a real-world
system under consideration. The processing involved in the system needs to be modeled

with appropriate detail so that the developed model provides an accurate representation of



the system for a detailed analysis. An analysis of the simulation results can then be used

to aid in the decision-making to improve the performance and efficiency of the system.

1.4 Requirements

Most of the architectural models that have been developed previously have been
devoted to modeling the flow of cargo in a single direction within a particular cargo
terminal. In order to perform a thorough analysis of extended cargo and transportation
logistics within the terminal, an architectural model for the cargo terminal should be able
to handle the simulation of concurrent cargo flow in opposite directions. The model
represents the resources and infrastructure within a cargo terminal and supports the
concurrent but opposite flow of cargo within the terminal. The model is intended to be
reconfigurable as well as generic; the same model can be used to represent an airport, a
cargo depot, or an intermediate staging area in the Theater of War. It is also envisioned
that the model be used to connect multiple cargo terminals to represent an end-to-end

concurrent cargo flow from a cargo depot to the Theater of War.

Previous models usually took 60 minutes to simulate 8000-10000 pieces of cargo
with a similar level of detail. This model has been developed with the aim of supporting
the simulation and analysis of the flow of at least 200,000 pieces of cargo with the cargo
being modeled as individual pieces. Additionally, the model has been developed to
execute within an execution time that would make the model useful in a real-world

situation, i.e., crisis management.



1.5  Architectural Approach

Object-oriented programming was developed with the basic intention of
supporting the simulation of real-world systems. In object-oriented methodology, a
simulation program is written to simulate the states and activities of real-world objects.
An attribute represents the physical properties of the system. A method is an operation
that can modify the behavior of the object by manipulating its attributes. A real-world
system involves multiple entities interacting with each other through the lifetime of the
system. Object-oriented methodology aids in simulating this process by instantiating

multiple objects and observing the interaction of the objects.

Hence, the model for concurrent process in a port simulation has been developed
using an object-oriented, top-down approach because of the following properties:
= Encapsulation: The properties and behavior of a physical object is concentrated
within a single simulation object.
»  Modularity: An object is independent of any other object.
= Inheritance: This property is vital for a hierarchical structure with multiple
objects inheriting the properties of a single object and then personalizing their

attributes and behavior.

The architectural model is intended to be a shell around the cargo processing
model, which is unique to each cargo terminal as well as to each area within the terminal.
The model acts as an interface for the cargo processing model with the outside world.

This structure is shown in Figure 1.1.



4 )

Architectural Model

—— Cargo Processing —
Model

\. /

Figure 1.1 Architectural and Cargo Processing Models

1.6  Chapter Overview
Chapter 2 briefly mentions the related research in the field of port simulations.
The chapter then describes the CPORTS project. The simulation model, which is the

focus of this thesis, has been developed mainly in support of the CPORTS project.

Chapter 3 lists the requirements of the model for concurrent processes in a port

simulation. The chapter then provides a complete description of the simulation model.

Chapter 4 briefly describes the various rail operations that occur in a port. The
Port of Debarkation (POD) and Port of Embarkation (POE) operations are described
separately. A more detailed description is available in Appendices A and B. The chapter
then provides a detailed description and analysis of the manner in which the simulation
medel described in Chapter 3 is used to adequately represent the concurrent POD / POE

rail operations in the port.

Chapter 5 concludes the thesis and offers suggestions on improvements and

additions to the model.



Chapter I1

BACKGROUND

2.1 Overview
This chapter gives a brief description of the research that has been done by
various research groups in developing port simuiations for the purpose of transportation

logistics planning and analysis, both for military as well as commercial cargo.

2.2 Existing Port Models

Port simulation models that currently exist in literature differ widely in their
objectives, model complexity, level of detail and the factors taken into consideration
within the model. This difference is mainly due to the variation in the questions that the

particular model attempts to answer as well as the model fidelity.

A port model developed at Haifa University, Israel, is described in [3]. It models
different types of cargo arriving on ships and resources used untii ships dock at the berth
and cargo is unloaded from the ships. The model addresses multiple port functions, ship
arrival profiles, cargo composition on ships and availability, allocation, and utilization of
resources, as well as the co-ordination between terminals in more than one port. The

focus of the model, however, is the idle times for ships waiting to dock at the port.

A model aimed at improving logistic processes at the Riga Harbour Container

Terminal (RHCT) is discussed in [4]. It models the RHCT in detail with the arrival of



ships, unloading of containers, and crane capabilities. It also models the storage of
containers at import yards and their transfer to export yards to be loaded onto trains to be
carried out of the cargo terminal. The model is basically a queuing network model with

the explicit intent of modeling the RHCT, which leads to a rigid structure for the model.

A decision support system for an intermodal container terminal at La Spezia
Cargo Terminal in Italy is studied in [S]. The simulation of the terminal is a discrete-
event simulation based on the process-oriented paradigm. The model captures an import
flow, i.e., containers arriving by ships to be transported to their destination by trucks and
trains, as well as an export flow, i.e., containers arriving by trucks and trains and leaving
the terminal on ships. It also captures the storage of containers, resource allocation, and
scheduling for loading and unloading operations. The model is at a high level of
abstraction focusing mainly on resource allocation between both flows of cargo, import

and export.

A more generic model for a cargo terminal is proposed in [6], [7], with the focus
being on resource allocation for container operations within the terminal. The logistics
planning involved in the transport of containers and modeling of operations until ships
dock at the port for unloading are discussed in [6]. The medel aims to reduce the ship
turnaround time (time a ship has to spend at a terminal) by optimally utilizing the
terminal resources. Genetic algorithms are used in [7] to create ship arrival profiles that

improve the ship turnaround time as well as to aid in the decision-making about resource



allocation and terminal organization (container layout within the terminal). Neither

model, however, models cargo handling.

All the cases mentioned above are limited by the fact that they model commercial
operations at a specific cargo terminal with a varying level of detail about the operational
behavior of the terminal. Most of the above research put forward the argument that the

model can be extended to include an improved level of detail.

Transportation logistics planning for military operations has also been previously
modeled. PORTSIM (Port Simulation) [8], [9], developed by Argonne National
Laboratory (ANL), addresses two modes of military cargo operations: Port of
Embarkation (POE) and the Port of Debarkation (POD). The POE mode deals with the
arrival of cargo at the port via trains and highway transports, staging the cargo, and
loading a ship with cargo. The POD mode focuses on the activities of unloading cargo
from a ship, staging, parking, and inspection of the cargo, and clearing the cargo from the
port using trains and highway transports. PORTSIM has a fully functional POE model;
however, the POD model has not been correctly and fully developed. Moreover,
PORTSIM suffers from the following problems: mutually exclusive POE and POD
processes, fixed cargo flow, unmanageable code, slow execution times, and single-run

capability only.

POPS (Port Operational Performance Simulator) [11], developed by the Military

Traffic Management Command Transportation Engineering Agency (MTMCTEA),



estimates the capability of a seaport to handle military cargo. POPS analyzes cargo at the
aggregate (Short Ton (STON)) level rather than at the entity level. It is a statistical

analysis of the ability of the port rather than a true port model.

23  CPORTS

CPORTS (Configurable Port Simulation) [1], [2] is a discrete-event simulation
developed by Dr. James F. Leathrum, Jr. and his research group at Virginia Modeling,
Analysis, and Simulation Center (VMASC) for MTMCTEA. CPORTS is used to analyze

the movement of military cargo through a seaport.

The seaports (henceforth referred to as ports) under consideration are commercial
ports, and therefore, complete access to all port facilities is generally not available.
CPORTS is useful for comparing and selecting ports as well as in determining port
throughput capability, and allocation and utilization of critical resources. The architecture
for concurrent POD / POE processes in a port simulation, the focus of this thesis, has
been developed mainly in support of the CPORTS project as well as to support the

networking of cargo terminals for a complete intra-theater analysis.

CPORTS is designed to obtain the following data:
s Port Closure Time.
= Port Throughput Capability.
» Cargo Data (during its flow through the port) for detailed analysis.

»  Ship Data.



» Stranded Cargo Data.

CPORTS is also used to identify the following:
v Potential bottlenecks within the port.
= Port resources limiting movement of cargo.
» Implications if certain port infrastructure or resources are constrained or
unavailable.

» Impact of various ship arrival profiles.

CPORTS is designed with the intent of configuring a port according to its specific
characteristics rather than designing a generic port with a rigid structure. The general
processes in a port are modeled and then access is available to the port expert to specify
the process times as well as available infrastructure and resources in the port. CPORTS
process modeling addresses the POD mode of operation within a port and has been

developed entirely at VMASC.

Figure 2.1 shows the typical flow of POD cargo through a port [12], [16]. Cargo
is brought into the port by ships, which are processed through the Anchorage Area for an
available space at the set of Berth Areas. Cargo is then unloaded from a ship and is
transported by berth side resources to the Staging Areas (SAs). In the SAs, cargo is
processed differently based on the mode of transport by which the cargo is scheduled to
leave the port. Cargo scheduled to leave by highway transports is processed through a

Loading Area and leaves through a gate. Cargo scheduled to leave by convoy is



Helo Re-pasy
Area

Helos

Aviation Staging
Area

Helos

Helo Take-Off

AR
Helo with Pilots

Loaded Ships
N, OR
Ship Queue t Ship Amival |
Anchorage ! {Duremy JFAST) ¢ ..
e m Module .
(TARGET PPF) |
Resource i
! Ships Resource
A 2
\\ ‘4
Berths
""""""" " s
Carge
Resource Resource
Resource 4 3 Resosuroe
12
L3 / 4
S ; Rait Spur e
'/’ \\ R e -"," l‘u:
/ _— 5 .- — 1
Resource
Resqurce Loaded g
Resource Rail 1
12 A ;
“\ e ’ Rail Assets
i B
™, ranspot Vg oo oy
tnterchange Yard -, ) mmy
Empty Loading Area .k“ \W‘L Modsie |
Transperts’ ‘ (ELis) |
Resource Loaded
8 Transports
A
Resource )
11,12 -
.'Q Gates
/'; Resourca
Resources:
1. Harbor Pilots, Tugs
2. Cranes, Line Handiers
3. Chassis, Container Handilers, Drivers
4. Inspectors
5. Container Handlers, Drivers
Loaded Transports WY Transport Assets 6. End Ramps
OR 7. Empty Railcars, Locomotives
A 8. Emply Transports
D‘M;d“" o 8. Container Handiers, Drivers
B |- 10. End Ramps, Mobila Cranes
(EList 11, Helo Piiols
12. Tractors
13. Miitary Unit Drivers

Figure 2.1 CPORTS POD Macro Cargo Flow



assembled in the Convoy Construction Area (CCA). Cargo scheduled to leave by rail is
processed through the Rail Spur Area (RSA) and the Interchange Yard Area (IYA) to be

loaded onto trains, which carry the cargo out of the port.



13

Chapter 11T

ARCHITECTURAL MODEL

31  Overview

An architectural model defines the components of a system, specifies the manner
in which they interact with one another, and details the interconnection between these
components. A long supply chain exists in the flow of military cargo from an installation
in the Continental United States (CONUS) to the Theatre of War. New military units are
continually deployed and existing units return to the installation while the military
operation is still under way. The model described here is required to simulate and analyze
one step in the flow of military cargo from an installation to the Theatre of War, as well
as the simultaneous flow of cargo in the reverse direction, from the Theatre of War back

to the installation.

3.2  Problem Statement

The architectural model is designed to support the concurrent, but opposite, flow
and processing of cargo through a cargo terminal. It supports the configuration of a cargo
terminal as well as the interconnection and intraconnection between cargo terminals to
facilitate the physical movement of cargo. A cargo terminal should be able to handle
cargo flowing in opposite directions simultaneously as it is conceivable that the flow of
cargo from the Theatre of War back to the installation will begin before the flow in the
opposite direction has ended with some military units starting to return to the installation

while other units are still being deployed. This results in a bi-directional flow of cargo



14

and resources, with cargo moving in both directions competing for a limited number of
resources within a cargo terminal. Figure 3.1 shows the typical two-way flow of cargo
between cargo terminals. Cargo is transported from the installation to a CONUS port,
from where it is transferred to an Outside Continental United States (OCONUS) port.
Cargo is then delivered from the OCONUS port to the Theatre of War. A reverse flow of

cargo follows the same logistical path.

—» CONUS |——» OCONUS |———P Theatreof

Instaliation Port Port War

Figure 3.1 Cargo Flow from Installation to Theatre of War

Most of the architectural models that have been developed previously for this
purpose have been devoted to modeling the tlow of cargo in a single direction [8], [9],
[10], [11], a basic limitation. Cargo flowing in the opposite direction has a direct effect
on the availability of resources and infrastructure in a cargo terminal. Cargo has to wait
longer for infrastructure in the cargo terminal to be freed up and / or for a suitable
resource to become available. This in tumn affects the clearance time for the cargo, i.e.,
the time for the cargo to flow through the cargo terminal. It also affects the order in
which cargo is cleared from a cargo terminal depending on the precedence given to cargo
flowing in a particular direction. Moreover, improper resource or infrastructure allocation
between the concurrent flows of cargo within a cargo terminal can lead to the system
being deadlocked. It is possible that both cargo flows might be waiting for resources and

infrastructure to be freed up by the other cargo flow leading to a deadlock.



It is therefore prudent and essential to develop a model for a cargo terminal

capable of handling concurrent operations. This enables an expert to study and correctly

analyze the effect that the cargo flowing in one direction has on the infrastructure and

resources of the cargo terminal as well as on the cargo flowing in the opposite direction

over the full lifetime of the operation.

33

Model Requirements

The architectural model has been developed with the intention of satisfying the

following basic requirements:

Concurrent Port of Debarkation (POD) and Port of Embarkation (POE)
operations through the same cargo terminal.

The model should support concurrent POD and POE operations through a single
cargo terminal. This is the focus of this model.

Initialization of multiple cargo terminals simultaneously.

The model should support the initialization of multiple cargo terminals
simultaneously as well as the flow of cargo between them. This enables the
simulation of an end-to-end cargo flow from point of origin to destination.
Reconfigurabie Cargo Terminals.

An individual cargo terminal should have the ability to be initialized independent of
other cargo terminals. The cargo terminals should also be reconfigurable, that is, the
infrastructure and the resources in the cargo terminal as well as the sequence of cargo

flow through the areas in a single terminal should be changeable.



» Simulation of 200,000 pieces of cargo.
The model should support the simulation of 200,000 pieces of cargo within a

reasonable execution time.

34  Architectural Model Description

‘The architectural model to support concurrent POD / POE operations is described.
The architecture is defined to be object-oriented and is developed using a hierarchical,
top-down approach. The purpose of this architecture is to adequately satisfy the model
requirements described in the previous section. Moreover, special attention has been
given to the flexibility, robustness, scalability, and performance of the model. The
architecture is designed to be flexible enough to incorporate changes in the model as well
as robust enough to ensure that the changes do not break the architecture. The
architecture is also meant to be scalable in terms of new cargo terminals being initialized
or new cargo terminal areas being added to a particular cargo terminal. The architecture
is built keeping in mind that any changes to the model should not cause any substantial

degradation in performance because of the architecture itself.

POD Port Process Model::Resource| POD Port Process Model::Mover
+cargo : Cargo +hasCargo : Boolean

+SetCargo(in cargo : Cargo) +moverType : Mover Type
+RemaveCargo(} +destPortArealD : Integer

+SetMoverType(in type : Mover Type)
+SetDestPortArealDiin id : integer)
+SetHasCargo(in val : Boolean)

]

POD Port Process Model::Resource Mover| POD Port Process Model::Transport

Figure 3.2 Mover, Resource, Transport and ResourceMover Classes



17

The main purpose of the architecture is to model the flow of cargo. This is
achieved by using a Mover class. A mover is an object that carries cargo from one
physical port area to another. Resource movers and transports that are further used to
model the flow of cargo to and from a port area are all derived from the Mover class and

the Resource class, Figure 3.2 shows this class structure.

3.4.1 Transit Interface

At the top level, the flow of cargo between cargo terminals is modeled. The cargo
transportation network is comprised of a set of cargo terminals interconnected by a
transportation infrastructure [1]. This transit interconnection interface is modeled using

the TransitInterface class shown in Figure 3.3.

POD Port Process Model:: Transit Interface
-transit ; Transit

+Entry Point(in mover : Mover)
+Exit Point(in mover : Mover)
«signal»-Individual Objects override these methods()

Figure 3.3 Transitinterface Class

The Transitinterface is used for a common interface between various objects that
are used in the simulation. Each object used in the simulation that represents
infrastructure within the cargo terminal inherits the Transitinterface object. This enables
the modeling of the transit of resources and transports through the cargo terminal with the
ExitPoint of one connected to the EntryPoint of the other. The same Transitinterface
object can be used to connect cargo terminals to model an end-to-end flow of cargo. The

result is a hierarchical structure as shown in Figure 3.4,



18

N { N 4 N 4
Cargo Cargo
Terminal Cargo Cargo Terminal
(CONUS) Terminal Terminal (OCONUS)
J \. w, \. J \.

/ Cargo

Terminal
Area

Cargo
Terminal
Arca

Cargo
Terminal
Area

J

Cargo
Terminal
Area

Cargo Terminal

\-

Figure 3.4 Network of Cargo Terminals

3.4.2 Cargo Terminals

The cargo terminals include the installation (point of cargo origin) and the
destination (usually the Theatre of War) as well as intermediate points of storage
(CONUS or OCONUS ports) and change of transportation or transfer. The cargo

terminals are modeled using the CargoTerminal class shown in Figure 3.5.

The CargoTerminal class encapsulates a single cargo terminal, clearly defining
the entry and exit points for that terminal as well as the internal characteristics and
operations of the terminal. The main purpose of the CargoTerminal class is to provide
interfaces between the cargo terminal and the external cargo transport infrastructure [1].

It has individual entry and exit points for the different types of cargo that are handled by



19

POD Port Process Model::Transit interface
-transit ; Transit

+Entry Point{)
+Exit Point{)
«signal»-Individual Objects override these methods()

i

POD Port Process Model::Cargo Terminal

+cargoTerminaflD : integer
-+cargoTerminalName : String

+Sea Entry Point()
+Sea Exit Point()
+Rail Entry Paint()
+Rail Exit Point()
+Hwy Entry Point()
+Hwy Exit Point()
+Air Entry Point()
+Air Exit Point()

Figure 3.5 CargoTerminal Class

the cargo terminal, namely Sea, Rail, Highway and Air. The EntryPoints are called by an
external transportation infrastructure object for transports or resources arriving at the
terminal. The ExitPoints are called by the processing infrastructure within the cargo
terminal to pass the transports back to the external transportation infrastructure object
when the processing within the cargo termtnal is done. Thus, the CargoTerminal class
provides an interface to the operational model. A seaport and an airport, though varying
in their structure and function, can both inherit the CargoTerminal class with no changes
to its structure. Other cargo terminal examples include installations, warehouses,

intermediate storage areas, etc.

The CPORTS project involves the simulation of a port. Figure 3.6 shows a Port
class. The Port class is inherited from the CargoTerminal class and encompasses all the

infrastructure, operations, and resources within the port. It defines the attributes to



20

POD Port Process Model::Cargo Terminal

+cargoTerminallD : Integer
+cargoTerminalName : String

+3ea Entry Point(}
+Sea Exit Point()
+Rail Entry Point()
+Rail Exit Point{}
+Hwy Entry Point(}
+Hwy Exit Point{()
+Air Entry Point(}
+Air Exit Point()

POD Port Process Model::Port]
+portName : Siring

+TransportArriveHwy()
+TransporiLeaveHwy(}
+TransportArriveRail()
+TransportLeaveRail(}
+TransportArriveShip(}
+TransportLeaveShip()
+TransporileaveAir()
+TransportArriveAir()

Figure 3.6 Port Class

specify the characteristics of the port as well as the infrastructure and resources within the
port. It also includes the methods to define the operations within the port. It is completely
self-contained for a single port as shown in Figure 3.7. (All objects are represented by
rounded boxes in this document, while methods of individual objects are represented by
ovals.) It is also desired that the architecture will support initialization and operation of
multiple ports concurrently. This can be achieved by instantiating multiple instances of
the Port object and allowing the Tranmsitlnterface to provide the means for an
interconnection network between the ports. In a stand-alone, single port environment, the
Port object is connected to the ShipArrival module on one end and a Land / Air
Operations module on the other end. The ShipArrival module models the arrival of cargo
to a POD port by sea. The ShipArrival module feeds ships arriving with cargo to be

offloaded into the simulation. The port processes the cargo accordingly. On the other end,



A

Hwy Arrive

Sea Arrive

A

'
|

Hwy Leave

Rail Arrive

Rail Leave

4__—": Sea Leave D

Air Arrive

Alnn
MYUU

Air Leave

Figure 3.7 A Complete Port

the port object is connected to a Land / Air Operations module to model the

21

)
|

arrival of

external transports to transport the cargo out of the port to various destinations. Figure 3.8

shows this interconnection.
4
I

Rail Arrive

» =

Rail Leave

1 Sea Leave

Al

\ Air Leave
.~/

Figure 3.8 Port and External Transportation Interface

[<€m B =P e R J




22

Figure 3.9 shows the connection of the Air, Highway, Rail and Sea entry and exit
points to the EntryPoint and ExitPoint of the port. This enables the simulation to have a
common entry and exit point for all resources and cargo into the port, simplifying the

interconnect to external models.,

[ MET B R rm;»:uJ

Figure 3.9 Port Entry and Exit

The complete architecture for concurrent POD / POE operations at the port level
is shown in Figure 3.10. When a port is initialized, a Port object is initialized which
inherits all the properties of the TransitInterface class and the CargoTerminal class. The
appropriate methods of the parent objects are overwritten in the Port object to reflect the

operations and infrastructure of the particular port.



23

POD Port Process Model:: Transit Interface
-transit : Transit

+Entry Point(in mover : Mover)
+Exit Point(in mover : Mover)}
asignal»-individual Objects override these methods()

|

POD Port Process Model::Cargo Terminal|

+cargolerminallD : Integer
+cargoTerminalName : String
+Sea Entry Point{}

+3ea Exit Point()

+Rail Entry Paint()

+Rail Exit Point()

+Hwy Entry Point()

+Hwy Exit Point()

+Air Entry Point()
+Air Exit Point()

POD Port Process Madel::Port

+portName : String
+TransportarriveHwy()
+TransportLeaveHwy()
+TransportArriveRail(}
+TransportlLeaveRail()
+TransportArriveShip()
+TransportLeaveShip()
+TransportLeaveAir()
+TransportArriveAir(}

Figure 3.10 Port Level Architecture

3.4.3 Cargo Terminal Areas

The different areas within a cargo terminal are modeled using the
CargoTerminaldrea class shown in Figure 3.11. The CargoTerminaldrea class has
various attributes to identify itself and to establish its association with a parent cargo
terminal. It also has methods to signal the arrival of cargo and resources into the cargo
terminal area as well as methods to reserve, allocate, and release space in the cargo

terminal area.



24

POD Port Process Model:: Transit Interface
-transit : Transit

+Entry Point()
+Exit Point{)
«signal»-Individual Objects override these methods()

T

PQD Port Process Model::Cargo Terminal Area

+parentCargoTerminal : Cargo Terminal
+cargoTerminalArealD : Integer
-cargoTerminalAreaName : String
+available : Integer

-capacity : Integer

-committed : Integer

-reserved : Integer

+Cargo Arrive()

+Cargo Leave({}

+Resource Arrive()

+Resource Leave(}

+Request Space()

+Obtain Space()

+Release Space()

asignal»-Individual Objects override the first 4 methods()

Figure 3.11 CargoTerminalArea Class

A port area is the physical area within a port where the various port operations are

performed. Each port has the following general port areas:

= Anchorage

» Berth Areas

» Staging Areas (SAs)

= Loading Areas

» Convoy Construction Areas {CCAs)

»  (ates

» Rail Spur Areas (RSAs)

» Interchange Yard Areas (IYAs)

= Helicopter Re-Assembly Areas



25

» Helicopter Staging Areas

= Helicopter Takeoff Areas

These port areas are modeled using the Portdrea class, which is inherited from

the CargoTerminalArea class. This is shown in Figure 3.12.

POD Port Process Model::Cargo Terminal Area

+parentCargoTerminal : Cargo Terminal
+cargo TerminalArealD : integer
-cargoTerminalAreaName : String
+available : Integer

-capacity : Integer

-committed : Integer

-reserved : Integer

+Cargo Arrive()

+Cargo Leave()

+Resource Arrive()

+Resource Leave()

+Request Space()

+0Obtain Space()

+Release Space()

«signal»-Individual Objects override the first 4 methods()

I

PCD Port Process Model::Port Area

+Port Area ID : Integer
+Port Area Name : String
+Parent Port ; Port

Figure 3.12 PortArea Class

Each individual port may have one or more of these port areas. Certain port areas
might be totally absent form a port and need not be initialized at the time of the
simulation. All the individual Portdrea objects inherit the PortArea class as well as the
methods associated with it. Each individual port area may add various other methods to
model the port operation at that particular port area. Figure 3.13 shows the various port

areas mentioned earlier.



PQOD Port Process Model::Port Area

+Port Area 1D | Intager

+Parant Port : Port

+Port Area Name : String

PQD Port Process Model::Convoy Construction Ara JAN POD Port Process Model::Gate Area
-convoy exists -# of inbound lanes
-require drivers -set of inbound lanes
~-Convoy -# of outbound lanes
-convoy size -set of outbound lanes
-unit driver pool -lanas : Lane
+Cargo Arrive(in mover : Mover) +Cargo Arrive() : Transpari
+gargo Leate(in r(l;over : Mover) +gargo Lea;e(.} : ;I;ra;w_spoﬂ "
+Resource Leave +Resource Amive() : Transpo
+Release Space() +Resource Leave() : Transport
-Gate Process(in transport, in set of lanes, in direction)
POD Port Process Model::Anchorage Area
POD Port Process Model:Interchange Yard Area
+Cargo Leave(in ship 1 Mover) +Length : Integer
+Request Space() +Cargo Arrive()
+Cargo Arrive(in ship : Ship) +Cargo Leave()
+Resaurce Arrive() +Resource Arrive()
+Resource Leave() +Resource Leave()
+Berth Available() +Send Train{)
PQD Port Process Model::Berth Area POD Port Process Model::Loading Area
-end ramp pool
+Cargo Arrive(in ship : Ship) +Resource Arrive()
+Cargo Leave() +Cargo Leave(in fransport ; Transport)
1+Resource Arrive() +Cargo Arrive()
+Resource Leave{in ship ; Ship) +Resource Leave()
+Unload Ship(in ship : Ship) +Request Space()
+Ramp Unload(in ship : Ship) +Release Space()
+Crane Unload(in ship : Ship, in crane) +Obtain Space()
+Get Cranes()
+Flatrack Unload{) POD Port Process Model::Rail Spur Area
*+Helo Unioad() +Length : integer
POD Port Process Model::Staging Area {Open) ;\/Cehlcle;o‘adxgg Mode
| —J+Carge Arrive
+Cargo Leave()
+Get Carga(in cargoType : Cargo Type) +Resource Arrive()
+Cargo Arrive(in mover : Mover) +Resource Leave()
+Cargo Leave(in mover : Mover) +Load Cargo{)
+Resource Arrive(in mover : Mover)
+Resource Leave(in mover . Mover) POD Port Process Model::Re-Assembly Area {Helo}
+Get Container() : Container
+Get Vehicle() : Vehicle -
+Get Pallet() : Pallat :ga‘:g" i‘" ve()
+PortArealnit(in port : Port, in scenarioStream} -+Ra 9o ea:e(}v
+Process Carga() esource Leave()
*Release Space() POD Port Process Model::Staging Area (Aviatlon)}
POD Port Process Model:: Take-Off Area (Helo})
—+Cargo Arrive()
: +Cargo Leave()
+Cargo Arrive() —
+Cargo Leave() :ge?cgrca Leave()
+Resource Arive() et Cargo()
+Resource Leave()

Figure 3.13 Port Areas

26



27

Process
Cargo

Resource
Arrive

Resource
Leave

PORT AREA

Figure 3.14 A Complete Port Area

The PortArea object is completely self-contained for a single port area as shown
in Figure 3.14. Both transports and resources arriving with cargo, as well as arriving to
carry cargo out of the port area, enter the area through the EntryPoint. A mover (transport
Or resource) carrying cargo into a port area uses the CargoArrive method to enter the port

area, while a mover (transport or resource) arriving to carry the cargo out of the port area

e B

Resource
Leave

Resource
Arrive

\ PORT AREA /

Figure 3.15 Port Area Entry and Exit




28

uses the Resourcedrrive method. The mover, when leaving the port area with cargo, uses
the Cargoleave method while the empty mover uses the Resourceleave method. After
being processed in the port area, transports and resources leave through the ExitPoint.
The extra wrapping around the port area by the Transitinterface provides a single point of
entry and exit through the port area. Figure 3.15 shows the entry and exit of all cargo and

resources to and from a port area through the EntryPoint and ExitPoint,

‘The complete architecture for concurrent POD / POE operations at the port area

level is shown in Figure 3.16.

POD Port Process Model::Transit Interface
~transit : Transit

+Entry Point()
+Exit Point()
«signal»-individual Objects override these methods()

|

POD Port Process Model::Cargo Terminal Area

+parentCargoTerminal : Cargo Terminal
+cargoTerminalArealD : Integer
-cargoTerminalAreaName : String
+available : Integer

-capacity : Integer

-committed : Integer

-reserved : integer

+Cargo Arrive()

+Cargo Leave()

+Resource Arrive()

+Resource Leave()

+Request Space(}

+Obtain Space()

+Releasa Space(}

«signal»-Individual Objects override the first 4 methods()

POD Port Process Model::Port Area‘

+Port Area ID : Integer
+Port Area Name : String
+Parent Port : Port

Figure 3.16 Port Area Level Architecture



29

When a port is initialized, a PortArea object is initialized for each port area within
the port, which inherits all the properties of the Transitlnterface class and the
CargoTerminalArea class. The appropriate methods of the parent objects are overwritten
in the PortArea object to reflect the operations and infrastructure of the particular port
area. The complete architecture for concurrent POD / POE operations is shown in Figure

3.17.

3,5  Interconnection between Components

/ PORT \

Port
Areal

Exit
Point Point

L !

|

/

Figure 3.18 Interconnection between Components

The previous section described the various components of the architectural model.
It also described the capabilities provided to connect together multiple cargo terminals as
well as the various cargo terminal areas within a single cargo terminal. This section deals
with how these capabilities are used to achieve the desired interconnection between

components for an end-to-end cargo {low.



POD Port Procass Modal::Garge Terminal
+cargoTemminallD : Integer POD Port Process Model:Cargo Terminal Area
FeargoTerminalama : String POD Purt Process Model: Transit Intarface [+parantCGargoierminal : Cargo Teminal
+Sea Entry Poini} — ~ +cargoTarminalArealD : Integer
+Saa Exit Point{) ransit : Transit LeargoTarminalAreaName : String
+Rait Entry Point(} +Entry Poinl{) (] available : Integer
+Rail Exit Paint() +Exit Point() I-eapacity : Integer
+Hwy Entry Point() vsignal»-Individual Qbjects ovarida these methods()| -commifted : Integer
+Hwy Exit Peint() -raserved : Intager
+Air Entry Point(} +Cargo Arrive{)
+AIr Exit Paint() POD Port Process Model::Port Arga! +Cargo Leave()
+Port Asea 1D : Intsger +Rasource Arrive()
IPOD Port Procass Model:;Port|  |+Port Area Name : $trng +Resource Leave()
PCD Port Process Modsl: Installatl R periName - Siing +Parent Port : Port *g;aqes; Spacg()
: +Obtain Space
+TransportArriveHwy() +Release Spaca()
gra:smrll-es_wesm?g] AN signals-Individual Objects override the first 4 methods()
ransportAmiveRal ..
oDPoPe - - TransnortLeaveRall() FOD Port Process Model::Anchorage Areal -
cess Modal::Destination +TransportAsriveShic) POD Port Process Mode!l::Barth Arga
+TransportLeaveShip(} [+Cargo Leaval(in ship : Mover)
+TransportL aaveAir(} |—+Request Spaca() +Cargo Arrive{in ship : Ship)
+TransportArrivaAir() +Cargo Arrive(in ship : Ship) +Cargo Leave()
+Resource Arrive(} +Resource Arrive() o
+Resource Leave() [+Resource Leave(in ship : Ship)
POD Fort Frocess Model::Rall Spur Area +Berth Availablef) I [+Unlead ShipGn ship : Ship)
+Langth : Integer POD Port Process Model;:Take-Otf Area (Helo) B +Ramp Unload(in ship : Ship)
mVahicle Loading Mode - T +Crane Unload{in ship : Ship, in crane)
[ Gargo Arive() - POD Port Process ModeloStaging Area (Avialion] ' || oot Cranes()
L Cargo Leave() [+Cargo Arive() +Staging +Flatrack Untoadd{)
R At +Cargo Leava() +Halo Urnload(}
esource Arive() +Rasource Amive() -
+Rasource Leave() +Resource Leave() ——{*Carge Arrive() ‘
+Load Carge() +Cargo Leave() . |POD Pert Process Model: Staging Area {Open)
+Rescurce Leave()
POD Port Process Model::Gate Area +CGat Cargof)

+Get Cargo(in cargoType : Cargo Type)
+Carga Arriva(in mover : Maver)
+(Cargo Laave(in mover : Maver)

-4 of inbound lanes
-set of inbound fanes

- ct'f ?u[bsb‘;“d La:'Ies POD Port Process Model:Re-Assembly Area (Helo) +Resource Arrive{in maver : Mover)
:139 ol Otla und lanes +Resource Leave(in mover - Mover)
anes : ﬁﬂ - +Gel Container{] : Container
+Carga Arcive() : Transport +Cargo Arrivel) +Gat Vehicle() : Vehicle
+Cargo Leava() ; Transport *Cargo Leave() +Get Pallat() : Pallet
+Rescurce Armrive{) : Transport *Resource Leave() +PortArealnit{in port : Port, In scenarioStream)
+Rescurce Leave() : Transport +Process Cargo(}
-Gale Process{in transport, in set of lanas, in direction) +Releass Space()
POD Port Process Medel::Convoy Construction Area POD Porl Process Model:Loading Areal POD Port Procass Model:Interchange Yard Aroal
[-convoy exists -end ramp pool [+Length : Integer
require drivers +Resource Arive() -
-CONVoY +Cargo Arrive()

+Cargo Leave{in transpori : Transport)
-COnYOY SiZe F—+Cargo Arrvel) +Cargo Leave{)

punit diiver pool Resource Leavel) Renoures Loavel)
+Cargo Arnve(in mover . Mover) +Requast Space() l+Send Tran(}
+Cargo Leave(in mover : Mover} +Releasa Space()

+Resource Leava() +Qbtain Spaca()

+Release Space()

Fig 3.17 Complete Architecture for Concurrent POD / POE Operations

0¢



31

Figure 3.18 shows the manner in which components are interconnected. Cargo is
brought into the port by a transport through the EntryPoint of the port. Cargo is then
processed through the various port areas following a predetermined sequence. This
sequence can be different for different types of cargo and is usually dependent on the
processing required for a particular type of cargo and the transport that is needed to carry
the cargo out of the port. In a particular port area, cargo enters through the EntryPoint
and is processed accordingly. Cargo then leaves the port area through the £xitPoint and is

transported to the next port area in its sequence through the EntryPoint of that port area.

This interconnection can also be used to support concurrent operations through a
single cargo terminal. Both flows of cargo (POD and POE) enter a port area through the
EntryPoint and are processed based on the mode of cargo. Both flows of cargo then leave
the port area through the ExitPoint to the next port area in their respective flow. This
interconnection can also be extended to connect ports (or cargo terminals) together to
achieve an end-to-end flow of cargo from an installation to the Theatre of War and vice

versa.

3.6  Resource Handling for Concurrent Qperations

Resources are a vital part of the CPORTS simulation and play an important part in
the transport of cargo from one port area to another. Resource handling, in turn, becomes
very important for concurrent POD / POE operations so that a lack of resources does not

hinder the flow of cargo in one or both directions.



32

There are various approaches to dealing with resources.

Resources can be placed in a common pool for use by both the POE and POD
operations. In this case, the resources are allocated on a first-come-first-served
basis.

Resources can be separated into pools dedicated to either POD or POE operations.
Resources can be allocated based on a prioritized allocation procedure. The
priority can be constant for the entire duration of the simulation or can be changed
according to the cargo load flowing in a particular direction at a particular point in
the simulation.

Resources can be placed into pools that are distributed in various port areas and

then reallocated based on need.



33

Chapter IV

CONCURRENT RAIL OPERATIONS

4.1 Overview

This chapter describes the various rail operations within a port. The infrastructure
as well as the various processes involved in the clearance of rail cargo is detailed in the
first part of the chapter. The chapter discusses the simulation of concurrent rail operations
within the architecture described in Chapter 3 and the methods used to resolve various

issues involved. The chapter concludes with an analysis of the results of the simulation.

4.2  Description of Rail Operations

This section deals specifically with the process model used in CPORTS to deal
with the clearance of rail cargo from a port. The first sub-section describes the
infrastructure within the port that is used for rail operations. The following sub-sections

describe the various processes involved in POD and POE rail operations.

4.2.1 Operational Infrastructare

Rail operations are concentrated within two areas in a port - the Interchange Yard
Area (IYA) and the Rail Spur Area (RSA). An IYA is a holding area for empty trains
waiting to be loaded with cargo as well as a reconstruction area for trains loaded with
cargo. A RSA is usually smaller than an [YA and is further inside the port. It is a holding

area for strings of rail cars being loaded with cargo.



34

4.2.2 Port of Debarkation (POD) Operations

Rail cargo is brought into the port in the same manner as other types of cargo and
is processed through the Berth Areas and the Staging Areas (SAs) in a similar fashion. At
this stage, cargo is processed differently based on the mode of transport by which the
cargo is scheduled to leave the port. Cargo scheduled to leave by highway transports is
processed through a Loading Area and leaves through a gate. Cargo scheduled to leave
by convoy is assembled in the Convoy Construction Area (CCA). The CCA can be inside
or outside the port and cargo may have to pass through a gate to get to the CCA. Once a

convoy has been assembled, it proceeds to its destination.

Rail cargo follows a different path through the port, which is shown in Figure 4.1
[12], [16]. Rail cargo 1s processed in the SA and is placed in a central pool for the entire
set of staging areas called the rail cargo pool. The cargo waits in this rail cargo pool until
a train arrives at the port to carry the cargo out of the port. When enough cargo to fill a
train arrives in the SA, a train, if available is advanced to the IYA. At the IYA, the train
is split into rail strings to fit the smaller RSAs for loading cargo. The cargo meant for a
rail string is sent from the SA to the appropriate RSA. Once the rail string is loaded, it is
pulled back to the IYA and the next rail string is sent to the RSA. This continues until the
entire cargo is loaded onto the train. After it has finished loading, the train waits for a
commercial locomotive to become available. The commercial locomotive then pulls the
loaded train out of the port to its destination. Figure 4.2 shows the process-level
interaction between various port areas during the flow of POD rail cargo through the port.

The various POD processes and their interaction are described in detail in Appendix A.



Helos

Helos

/

Resource
1

Ships

Ship Queue
Anchorage

Staging Arez
Open or
Covered

)i
5
{
K

Resource

Loaded Ships
OR

Ship Arrival
(Dunimy |
JFAST) Module |
(TARGET PPF)

Resource

[

Interchange

b ' N
! Impts /v‘\ BRI . ~ y
lr':m\pm'l}/ \ e —h
L._________; i
SIS 1 asuded T |
! Trinspor iy
SR S
S e | 4
EI P ST e Loadec
p
1] —
- . .. Rail
B T ‘\‘ —
- . o . o
- \‘\ '\ / . :
' '

Rall Assets
OR

Dummy
Module

{EList)

35

Raesources:
. Harbor Pilots, Tugs
. Cranes, Line Handlers

1

2

3

4. Inspectors

5. Container Handters, Drivers
6. End Ramps

7. Empty Railcars, Locomotives
B. Empty Transports

9. Container Handlers, Drivers
10. End Ramps, Mobile Cranes
11. Helo Pilots

12, Tractors

13. Military Unit Drivers

Figure 4.1 Flow of POD Rail Cargo through a Port

. Chassis, Container Handlers, Drivers




36

o
Fill Rgit Cargp  Jz "
\.
4
1o il & train 4
Enough cargo
to fill a train
L Rail Spur Area
\.
—
Get Train
L ransit
. < I g
Initialize ; i
. Trigger Train .
cargofortrain oot e port R Transport
Leave Rail
Port m
------------------ - y

Figure 4.2 POD Rail Cargo Processes



37

4.2.3 Port of Embarkation (POE) Operations

Rail cargo is brought into the port by trains that have been loaded with cargo at an
installation or a POD port. These trains are then advanced to the next available IYA at the
port. At an IYA, a train is split into rail strings to fit the smaller RSAs. At an RSA, the
rail strings are unloaded using the resources available in that area. Resources arrive to
transport the cargo from the RSA to a suitable SA. Once a rail string has been unloaded,
it is pulled back to the IYA and the next rail string is sent to the RSA. This continues
until the entire cargo has been unloaded from the train. After it has finished unloading, a
train waits for a commercial locomotive to become available. The commercial
locomotive then pulls the empty train out of the port to its destination. In the SA, rail
cargo waits to be transported to the Berth Areas to be loaded onto ships, which are
assigned to carry the cargo. Cargo is loaded onto the ships, which then clear the cargo

from the port through the Anchorage Area.

This flow of POE rail cargo through a port is shown in Figure 4.3 [12], [16].
Figure 4.4 shows the process-level interaction between various port areas during the flow
of POE rail cargo through a port. The various POE processes and their interaction are

described in detail in Appendix B.

4.2.4 Resource Contention between POD and POE Operations
The POE operations through a port directly affect the POD operations while both

operations are being run concurrently. Specifically, the POE operations affect the



Empty Ships
OR

Ship Arrival
(Dummy :
JFAST) Module |-
(TARCGET PPF) |’

R

Helos

Fopty
] r‘.m'-pm‘l}Jr

s

Toadee L

L ransports

Helos

Resources:

. Harbor Pilots, Tugs

. Cranes, Line Handlers

. Chassis, Container Handlers, Drivers
. Inspectors

. Container Handlers, Drivers

. End Ramps

. Empty Railcars, Locomatives
. Empty Transports

. Container Handders, Drivers
10. End Ramps, Mobile Cranes
11. Helo Pilots

12, Tractors

13. Military Unit Drivers

3 6'; |
WoENOO AW

Yoot
Dneny };

E_ i
. i
¥
I P A

Figure 4.3 Flow of POE Rail Cargo through a Port




39

r Y
' ™y
— -
I
e |
Arive .
Staging Area
Set of Staging Areas \_ aing y
\. « s
.‘ Transit J
e ™
-

Select RS

e
—
-
R
Interchange Yard Lenve
. Area . )
Set of interchange Ya?d~a_r eas Transnl fTransu \
g - I .. - J
Port
\ w

Figure 4.4 POE Rail Cargo Processes

clearance times for the POD operations due to the diversion of port infrastructure and
resources for POE operations. The availability of the following infrastructure and

resources are affected by the POE operations.



40

e Port Infrastructure
All infrastructure within the port has a finite storage area. POE rail operations

increase the contention for the following port areas.

= Interchange Yard Areas
Trains carrying POE rail cargo and trains scheduled to carry POD rail cargo have
equal priority to enter the IYA. The trains carrying POE rail cargo take up space in an

IY A, delaying empty trains waiting to carry POD rail cargo out of the port.

»  Rail Spur Areas

Rail strings carrying POE rail cargo and rail strings to be loaded with POD rail
cargo have equal priority to enter the RSA. Since an RSA accepts only one rail string
(POD or POE) at a time, rail strings waiting to be loaded with POD cargo are delayed
by POE rail strings being unloaded, thereby affecting the clearance of POD rail cargo

through the port.

»  Staging Areas

All types of POD cargo (except helos and watercraft) wait in the SA for transports
and resources to clear them out of the port. POE rail cargo that is brought into the
RSA requests space in the SA. Since all requests for space (for POD or POE cargo)
are granted on a first-come-first-served basis, POD cargo is on a ship for a longer

time waiting for space to be freed up in the SA.



4]

= Berth Areas

Ships loaded with POD cargo wait in the berth areas for the cargo to be unloaded.
Ships arriving at the port to carry POE cargo out of the port also request space in the
Berth Areas. Since all requests for space (for POD or POE ships) are granted on a

first-come-first-served basis, POD ships may have to wait longer to dock at the port.

Port Resources

Port resources are available on a limited basis. POE rail operations increase the

contention for the following resources.

= Port Locomotives
Port locomotives haul rail strings between an IYA and an RSA. Locomotives
required to haul POE rail strings reduce the number of locomotives available for rail

strings carrying POD cargo.

»  Staging Area Resources
Container handlers and drivers are required to transport cargo between a SA and
an RSA. POE rail cargo increases the requests for these resources, thereby delaying

POD cargo waiting in the SA to be transported to the RSA.

® Berth Area Resources

Harbor pilots, tugs, cranes, line handlers, chassis, container handlers, and drivers
are required to transport cargo between a SA and a Berth Area. POE cargo increases
the requests for these resources, thereby delaying POD cargo waiting in the Berth

Area to be transported to the SA.




42

A potential deadlock situation that might arise is the scenario that the SA is filled
with POD rail cargo waiting for trains to carry it out of the port, while the IYAs and
RSAs in the port are filled with POE rail strings and trains waiting for space to be freed
up in the SA so that cargo can be unloaded from the rail strings and the POE trains can
leave the port. In this case, the simulation is deadlocked with both POD and POE
operations being stalled for need of infrastructure and / or resources. The deadlock can be
resolved operationally by increasing the available area in the port areas, particularly the
SA, by adjusting the arrival profile of cargo and / or transports entering the port or by

partitioning infrastructure and resources based on the mode of cargo (POD or POE).

4.3  Simulation of Concurrent Rail Operations

This section deals with the simulation of concurrent rail operations through a port.
It shows the ease with which the POE rail operations can be simulated concurrently with
the POD rail operations using the architecture described in Chapter 3. The first part of
this section deals with the interconnection between components within the model. The
second part of the section discusses how resource and infrastructure contention is

resolved in the model.

4.3.1 Concurrent Rail Operations

POD operations are first modeled using the architecture described in Chapter 3.
POE rail operations are then integrated into the same architecture to model the concurrent
flow of rail cargo through the port. POE rail operations are modeled from the arrival of

trains at the port loaded with cargo till the SA, for demonstration purposes. A complete



43

concurrent POD / POE simulation can be developed by extending the POE process model
to model the flow of cargo until they are loaded on to ships and by including other types

of cargo arriving by different transport modes.

f -~ oy
( Staging
Area

Resource Resaurce
Leave Arnve
; Cargo Cargo “\
kY Leave Arnve ;

4 K - ™
4 ," A 3 /
Resource ™/ Cargo ~ _:\
Arrive Adrive
Rail Spur
Area
Resocurce Cargo B
Leave Y Leave ;
\ N _), N \
\_ N " )

Port

~\

Transport

Asrive Rail

Resource Resource
Arrive Leave
Interchange
a

L % Yard Are J |

Figure 4.5 Micro-Level Interconnection between Port
Areas for Concurrent POD / POE Rail Operations



44

Rail Spur
Area

Interchange
Yard Area

_/

Port

Figure 4.6 Macro-Level Interconnection for
Concurrent POD / POE Rail Operations

Figures 4.2 and 4.4 show the processes involved in the flow of rail cargo through
a port. Both POD and POE resources and transports follow complementary paths through
the port. The interconnection between port areas is common for both the POD and POE
tail operations. Figure 4.5 shows the micro-level interconnection between various port
arcas during the flow of cargo. At a higher level of abstraction, resources and transports
enter and leave a port area through the EntryPoint and ExitPoint respectively. A resource
or a fransport enters a port area and is processed based on the process mode of the cargo

(POD or POE) it is carrying or is scheduled to carry at some point in the future. The



45

architecture is, therefore, flexible and robust enough to integrate both the POD and POE

rail processes. Figure 4.6 shows the macro-level interconnection for both processes.

4.3.2 Resolving Resource and Infrastructure Contention

An important aspect of integrating POD and POE operations into the same
architecture is to resolve the resource and infrastructure contention within the port, which
might not appear for a POD operation. It is unavoidable that the POE operations delay the
clearance of POD cargo through the port. However, it is vital that the POE operations do
not stall all operations within the port. The contention between various resources is

resolved in the following manner.

¢ Port Infrastructure
v [nterchange Yard Areas
Trains carrying POE rail cargo and trains destined to carry POD rail cargo, both
compete for common space in the IYAs. Once an IYA has been selected, space is
requested in that IYA. The allocation of space indicates that space is available and
that the space has been reserved for the train. When the train leaves the IYA, it

releases its space.

= Rail Spur Areas
Rail strings carrying POE rail cargo and rail strings to be loaded with POD rail
cargo both compete for common space in the RSAs. Since an RSA accepts only one

rail string (POD or POE) at a time, once an RSA has been allocated, no other requests



46

for space in the RSA are granted. When the rail string leaves the RSA, it releases its

space indicating that space is available for the next rail string.

= Staging Areas

Port arcas in general have limited capacities. Multiple pieces of cargo can be
concurrently transiting to a SA, each requiring space. The cargo arriving at the SA
first occupies the space, with the other(s) being forced to wait outside the SA. This
could result in an infinite queue. To address this, port areas have a request space
capability. Before the cargo begins to transit to a port area, space is requested in the
port area. The granting of space not only indicates that space is available, but that
space has been reserved for the cargo. When the cargo leaves the port area, it releases

its space.

Port Resources
»  Port Locomotives

Locomotives are kept in a single resource pool within the port. Locomotives are
requested from the same central pool to haul both POD and POE rail strings between

RSAs and I'Y As and then are released back into the same pool.

* Staging Area Resources
Container handlers and drivers required to transport cargo between a SA and an
RSA are kept in a single resource pool (one for each) within the port. Both POD and

POE rail cargo request resources from the same pools.



47

4.4 Analysis and Results

This architecture for concurrent POD / POE processes is tested by simulating the
flow of concurrent rail cargo through the port of Ad Dammam in Saudi Arabia. The Ad
Dammam scenario has been built to simulate the POD operations through the port for the
CPORTS project. As mentioned before, all the resources and infrastructure of the port
generally are not available for military operations. A specified portion of the port is
allocated for military operations. Certain modifications need to be made to the scenario
usually used for POD operations to accommodate the simulation of POE rail operations

concurrently with the POD operations:

= A separate executable file is built to simulate the concurrent flow of rail cargo.

» The POD cargo consists of only rail cargo and the same is true for the POE cargo.

s The SA capacity in the port of Ad Dammam that is available for POD operations
has been increased by a factor of 1.3 to handle the extra load of the POE rail cargo
as well to avoid any possible deadlock condition that might occur within the
simulation.

=  Resources and infrastructure within the port are allocated on a first-come-first-

served basis for both POD and POE operations.

Figure 4.7 shows the routes between various port areas as well as the flow of
different types of POD cargo through the port of Ad Dammam [13], [16]. Figure 4.8
shows the POE cargo flow. The simulation of concurrent operations involves flow of

POD and POE cargo simultaneously.



Helo Re-Assy

Area
Helos
Convoy
Organic Vehicles h 4

14

Rail Cargo

Aviation Staging Commercial Container ) )
A']I-ga Truck Loading Loading Area Rail Spur #1 Rail Spur #2
17 1 20 P
Convoy
Loaded Host Nation
Transports Motar Transports
¥ Loaded
Helo Take-Off Transports
18 . Main Gate Interchange Yard Interchange Yard
24 #1 #e
23
Convoy )
Vehicles ot
Loaded Empty Loaded Empty
T P Trains P . Trains
ransports Transports .
b 1-HIGHWAY |:
4-AIR : Canvay Cenveys and  |%
Helo with Pilots Cons‘timcﬁon Transparts 2 . RAIL
9
BN Convoys N Lo N

NGS i o N
Figure 4.7 CPORTS POD Scenario File Routes for Port Ad Dammam

8y



Helo Re-Assy
Area
14

Helos

Aviation Staging
Area

15

Helo Take-Off
16

4- AR
Helo with Pilols

Loaded Ships
AnchorasgeArea
/ mpty Ships

Organic Vehieles

Coemmercial Container
Truck Loading Loading Area
17 18
L o Convoy
Loaded Host Nation
Transports Motar Transports

oaded
Transports

Main Gate
24

Convoy
Vehicles

Loaded Empty
Transports Transports

1 - HIGHWAY
Convoy Convoys and
Ccnsgrgctjon Transports

Convoys

Figure 4.8 CPORTS POE Scenario File Routes for Port Ad Dammam

Loaded
Trains

oF



50

The details of the simulation are given below:

*  Number of POD rail cargo = 21264 pieces.

=  Empty trains to carry POD cargo out of the port arrive with an interarrival time
that has an exponential distribution with a mean of 100 hours,

* Empty POD trains return to the port to carry more cargo afier a cycle time that
has an exponential distribution with a mean of 350 hours.

=  Number of POE rail cargo = 14150 pieces.

» Trains carrying POE cargo arrive once every 24 hours (constant).

= Both POD and POE trains have equal priority to enter the port and to be allotted

space in the TY As and RSAs.

Closure Times for Port Ad Dammam

# of cargo

= POD with no POE
— POE with no POD
Concurrent POD
—— Concurraent POE

0 50 100 150 200 250 300 350 400

Graph 4.1 Closure Times for Port Ad Dammam for various Cargo flows



51

Graph 4.1 shows the closure times for the POD cargo and POE cargo by
themselves as well as the closure times for the concurrent flow of POD and POE cargo.
The graph shows that clearance of POD cargo is affected by the POE cargo. After all the
POE cargo has been cleared through the port, the POD cargo continues to be cleared at

the same rate as when only POD cargo flows through the port.

Closure Times with varying # of RSA
(RSA Length = 1000 ft using MobileCranes for Loading &

1000 ~ Unloading)

900
800

700
600

500

Days

400

300

—— POD with no POE
—— POE with no POD
~— Concurrent POD
— Concurrent POE

200

100

Graph 4.2 Closure Times for various Cargo flows with varying number
of Rail Spur Areas

Graph 4.2 shows the effect of the number of RSAs on the clearance of cargo
through the port. The graph shows that as the number of RSAs increases, the clearance
times for all flows of cargo decreases. The graph also shows that four RSAs are enough

to clear this particular cargo scenario.



52

Graph 4.3 shows the effect of the number of IYAs on the clearance of cargo
through the port. Similar to the previous graph, it shows that as the number of [YAs
increases, the clearance times for all flows of cargo decreases. Since only rail cargo is
involved in this particular simulation run, the number of RSAs and I'YAs has the most

impact on the clearance of cargo.

Closure Times with varying # of IYA (IYA Length = 5000 ft)
700
600
500
, 400
S
a
300
200 ~"POD with no POE
—— PQOE with no POD
100 —— Concurrent POD
0 - Concurrent POE

#of IYA

Graph 4.3 Closure Times for various Cargo flows with varying number
of Interchange Yard Areas
The performance of the simulation in terms of execution time depends on the
configuration of the machine being used. Table 4.1 shows the execution times for the
POD simulation and the POE simulation, as weil as the simulation of the concurrent flow
of cargo on different machines. The table shows that the concurrent simulation does not

add significant overhead to the POD simulation above the required POE simulation time.



53

Execution Time | Execution Time | Execution Time
Configuration
for POD for POE for Concurrent
No. | (Processor Speed /
Simulation Simulation Simulation
RAM size)
(seconds) (seconds) (seconds)
Pentium 4
1 7 2 9
(24 GHz/ 1 GB)
Pentium 4
2 9 2 11
(2 GHz/ 1 GB)
Pentium 4
3 14 3 16
(1.4 GHz / 512 MB)
Pentium 3
4 12 4 16
(1 GHz / 512 MB)
Pentium 3
5 18 5 23
(667 MHz / 256 MB)
Pentium 3
6 24 6 30
(500 MHz / 256 MB)

Table 4.1 Execution Times for the Simulation

The results of the analysis can be summarized as follows:

POE operations have a significant impact on POD operations. This impact is

important when the flow of POD cargo is mainly for sustainment of existing

military forces, while the POE cargo is mainly cargo returning after deployment.

The architecture is robust and flexible enough to handle concurrent operations.

The simulation of concurrent operations for a relatively large scenario executes

within 30 seconds on any standard computer.

The model can support the simulation of 500,000 pieces of cargo, which

adequately satisfies the stated requirement of the model.



54

Chapter V

CONCLUSION

Transportation logistics simulation is extensively used by the military to plan for
the transportation of military cargo, i.e., troops, equipment, and supplies, to the Theatre
of War. The architecture described in this thesis provides a means of analyzing the
concurrent flow of cargo in opposite directions, both to and from the Theatre of War,
through a cargo terminal and eventually through a network of cargo terminals. Although
this architecture has been developed for military applications, it can also be used for
commercial applications to study the flow of commercial cargo through a network of
cargo terminals to its final destination. This chapter details the achievements of this thesis

and suggests several enhancements.

5.1  Achievements

The work described in this thesis document has achieved the following:

= ]t is the first architecture that supports the simulation of concurrent POD and POE
military operations.

= The architecture itself is object-oriented and hence exhibits all the advantages of
object-oriented programming.

* The simulation of concurrent operations shows the effect that POE processes have
on POD processes. The clearance times, as well as the availability of resources

and infrastructure for POD operations, are clearly affected by the POE operations.



5.2

55

The simulation of concurrent operations enables the port expert to devise methods
to support concurrent operations without adversely affecting either of the
operations.

The time required for the simulation of concurrent operations is on average no
worse than the sum of the simulation times for individual POD and POE
operations.

The architecture can support the simulation of 500,000 pieces of cargo flowing in
both directions.

This architecture is currently being used for the simulation of a network of cargo

terminals and has proved to be extremely flexible for development purposes.

Enhancements

The architecture described in this thesis provides a framework to support the

simulation of concurrent POD / POE operations through a port. The architecture is shown

to be robust enough to support concurrent rail operations through a port. It is hoped that

the architecture would support a full-scale concurrent operation through a port.

Towards that end, a few possible enhancements are listed below.

The architecture described in this document has been tested with a full POD flow
of rail cargo and a minimal, restricted flow of POE rail cargo. A full test can be
performed by describing the full POE processes until cargo is loaded onto ships,

which then leave the port.



56

= The architecture can be tested further by incorporating other transport modes like
Highway, Air and Convoys into the POE process model.

* The architecture can be used to initialize multiple cargo terminals at the same
time and to connect them together to form a network of terminals, This will help
to study an end-to-end cargo flow in both directions.

* This architecture has been developed in the MODSIM simulation language [14],
[15]. Due to the limited lifetime of the MODSIM language, there is a need to
implement the architecture in other object-oriented languages like C++ or Java to

support future projects.

Overall, the architecture has been successful in meeting all the requirements for
the simulation of concurrent POD / POE operations through a port. The success of the
architecture has been borne out further by the fact that the Military Traffic Management
Command Transportation Engineering Agency (MTMCTEA) 1s funding the cffort for a

complete POD / POE model to be built explicitly to adhere to this architecture.



37

REFERENCES

ft] Leathrum, J., T. Frith, R. Mathew et al. 2002. “An Object Architecture for the
Simulation of Networks of Cargo Terminal Operations,” In Preparation.

[2] Leathrum, J. and T. Frith. 2000. “A Reconfigurable Object Model for Port
Operations,” Proceedings of the Summer Computer Simulation Conference, SCSC
2000: 603~608.

[3] Hayuth, Y., Pollatschek, M.A., Roll, Y. 1994. “Building a Port Simulator,”
Simulation 70, no. 3 (Mar.): 179~189.

[4] Merkuryew Y., Tolujew, J., Blumel, E. 1998, “A Modeling and Simulation
Methodology for Managing the Riga Harbour Container Terminal,” Simulation 71,
no. 2 (Feb.): 84~95.

[5] Gambardella, L.M., Rizzoli, A.E., Zaffalon, M. 1998. “Simulation and Planning of an
Intermodal Container Terminal,” Simulation 71, no. 2 (Feb.): 107~116.

[6] Ramani, K.V. 1996. “An Interactive Simulation Model for the Logistics Planning of
Container Operations in Seaports,” Simulation 66, no. 5 (May): 291~300.

[7] Bruzzone, A., Signorile, R. 1998. “Simulation and Genetic Algorithms for Ship
Planning and Shipyard Layout, "Simulation 71, no. 2 (Feb.): 74~83.

[8] Nevins, M., C. Macal and J. Joines. 1998. “A Discrete-Event Simulation Model for
Seaport Operations,” Simulation 70, no. 4 (Apr.): 213~223,

[9] Nevins, M., C. Macal and J. Joines. 1995. “PORTSIM: An Object-Oriented Port
Simulation,” Proceedings of the Summer Computer Simulation Conference, SCSC

1995: 160~165.



38

[10] Braun, M., G. Lurie, K. Simunich et al. 2000, “ELIST8: A Simulation System for
Transportation Logistics Planning Support,” Proceedings of the Summer Computer
Simulation Conference, SCSC 2000: 693~698.

[11] Port Operational Performance Simulator (POPS) User Manual, Version 1, 1987.

[12] T. Frith, Leathrum, J.,, R. Mathew et al. 2002. “CPORTS Process Model,”

http://iwww.vmasc.odu.edu/portsim/CPorts_Process_Model pdf

[13] T. Frith. 2000. “CPORTS Port Scenario Layout.”

[14] MODSIM-III Reference Manual, CACI Products Company, La Jolla, CA.

[15) MODSIM-III Tutorial, CACI Products Company, La Jolla, CA.

[16] Microsoft Visio 2000, Microsoft Corp., Redmond, WA.



59

APPENDICES

A. POD Rail Processes

The processes associated with the clearance of POD rail cargo through a port can
be described in two ways. The first is by studying the scenario of an empty train arriving
at the port, getting loaded with cargo waiting to be loaded and leaving the port filled with
cargo. The second is by studying the scenario where the cargo arrives before a train is
available to carry it out of the port or there are trains waiting for cargo to fill them so that

they can leave the port. Both are described in detail below.

A.1  Selecting cargo to fill a single train

The process of handling a train arriving at the port is shown in Figure A.1.

GVait for trigger to enter the poa

Geﬂect Interchange Yard Area {wait untill availab!eD

El'ransit train to Interchange Yard |

Figure A.1 Model Flow Diagram for POD TransportArriveRail process
in a Port Object



60

When the train arrives at the port, it does not directly enter the port. It calls the
InitTrainCargo process in the StagingAreaSet object (Refer to Figure 4.2), which in turn
triggers the rail cargo pool in the set of Staging Areas (SAs) to define enough cargo,
which will fit in that train. In the nitTrainCargo process, a new TrainStatus object is
defined for the train. The TrainStatus object is a clone of the train that has just arrived at
the port and is used to allot cargo to the train without having the train enter the port. The
TrainStatus object is initialized with all the characteristics of the train. Figure A.2 shows

a TrainStatus object.

POD Port Process Model:;Train Status

-Current Rail Car : Integer

-Current Rail Car Length : Integer
-Current Rail Car Capacity : imteger
-Status init(in train)

-Init Current Car Length(in train}

-Init Current Car Capacity(in train)
-Calculate Current Car Length{in cargo)
-Calculate Current Car Capacity(in cargo)
-Decrement Car(}

Figure A.2 TrainStatus Object

Cargo, if available is slotted to be loaded onto the train by calling the
FillRailCargo process in the StagingAreaSet object (Refer to Figure 4.2). If no rail cargo
is available to be loaded, the train (i.e., the respective TrainStatus object) is added to a

queue waiting for rail cargo. The InitTrainCargo process is shown in Figure A.3.

In the FillRailCargo process, cargo that is available to be loaded on the train is
pulled out from the rail cargo pool and is passed on to the PurCargoOnTrain process in

the StagingAreaSet object (Refer to Figure 4.2) to see if that particular piece of cargo can



6]

@ine new Train Status Objea

@eﬁne MNo. of Rail Cars and Length of Tra@

[Last Piece of Rail Cargo

[Carge is available in N
Rail Cargo Pool] >\ has ot arrived]
\l/ ~/
Gali SAS :: Filk Rail Car@ Gdd Train Status object to Queue of available Status ob}ec@

Figure A.3 Model Flow Diagram for POD /nitTrainCargo process
in a StagingAreaSet Object

fit on the train. If the piece of cargo fits on the train, it is scheduled to be put on the train
by adding it to the TrainStatus object. If the train is not filled up completely and no
further rail cargo is currently available to be loaded, the train (i.e., its TrainStatus object)
is added to a queue where it waits for further cargo. The FillRailCargo process is shown

in Figure A.4.

In the PutCargoOnTrain process, it is verified whether the piece of cargo will fit
on the train. Appropriate allowance is made for buffering at the ends of a rail car as well
as a buffer between two pieces of cargo. If the piece of cargo does not {it on the train and

no other train is available to be loaded, the piece of cargo is added back to the rail cargo



62

(Se!ect next piece of cargo from Rait Cargo POOD

Ga!l SAS 1 Put Cargo On Tra@

[Last piece of cargo in
Raill Cargo Pool OR Train Full}

[Train Full
OR
Last Piece of Rail Cargo
AND something on train)]

N

{ Call IYS » Get Train } Gdd Train to Queue of available Status objecg

Figure A.4 Model Flow Diagram for POD FillRailCargo process
in a StagingAreaSet Object

pool where it waits for another train to be loaded. The PutCargoOnTrain process is

shown in Figure A.S.

The second way of describing the processes associated with the clearance of POD
rail cargo through a port is by studying the scenario where the cargo arrives before a train
is available to carry it out of the port or there are trains waiting for cargo to fill them so
that they can leave the port. In both cases, the SA calls the ProcessRailCargo process in

the StagingAreaSet object (Refer to Figure 4.2). This process is shown in



63

Variable Descriptions:

Cargo Length: length of individual cargo
Rail Car Length: length of any rail car
Current Car Length: available length in current car
Current Car: count of cars currently being loaded
Buffer: spacing on each end of a rail car

[iF Cargo Length <= {Rail Car Length - (2 x Buffer}}]

[IF Cargo Length <= Current Car Length]

N

['F Current Car > 1] { Retumn Not Fit
: : N
Add Cargo 1o Train
{ Decrement Current Car }
@tum cargo Put on Traa

@alculate Current Car Le@
Return Train Full
”) o)

Calculate Current Car Len

7o)

[IF Current Car = 1 AND Current Length = 0]

<\
e
{ Return Train Full

Figure A.5 Mode! Flow Diagram for POD PutCargoOnTrain process
in a StagingAreaSet Object

Figure A.6. The piece of rail cargo that just arrived in the SA is checked to ascertain
whether it can fit on any of the waiting trains (if any available), which already have cargo
available to be loaded. The trains waiting for cargo are represented by their respective
TrainStatus objects. If adding the piece of cargo fills up a train, then the train is triggered

to enter the port using the GetTrain process in the InterchangeYardAreaSet



64

{ Setect Next Train Status Object from queus

@II SAS :: Put Cargo On Tra@

[Train is Full]

5/

[more trains available]

N\

>

Call I'YS :: Get Train

[Train NOT Fuli)

</{ [Last Piece]

[NOT Last Piece)

[Put on Train]
[Not Put on Train}

NV

[If no more
trains available]

\!/ Send All Trains )
{ Add piece of carge lo Rail Cargo Pool in ranked order of RDD |

Figure A.6 Model Flow Diagram for POD ProcessRailCargo process
in a StagingAreaSet Object

object {Refer to Figure 4.2). This process is explained in the next section. If the piece of
cargo cannot be fitted on any available train, it is added to the rail cargo pool waiting for

a train that can carry it out of the port.



65

A.2  Triggering a train to enter the port

Once enough cargo has arrived in the SAs to fill a train or if the last piece of rail
cargo has arrived, the train is triggered to enter the port. This is done using the GetTrain
process. The cars that are not scheduled to carry any cargo are marked as full before the

train enters the port. The GetTrain process is shown in Figure A.7.

@ars which won't Carry any cargo are marked as F@

Gﬁgger train to enter interchange Ya@

®

Figure A.7 Model Flow Diagram for POD GetTrain process
in an InterchangeYardAreaSet Object

Before the train enters the port, it waits for the simulation to select an Interchange
Yard Area (IYA) from the set of available 1Y As. The selection is based on the maximum
utilization of the available IYAs. If an IYA exists that can accommodate the train, then
the IYA with the most available space is selected. If one is not available, then the train
waits for an IYA to become available. The SelectIYA process in the
InterchangeYardAreaSet object (Refer to Figure 4.2} is shown in Figure A.8. Once an

IYA is selected, the train is triggered to enter the port. An IYA is shown in Figure A.9.



{Interchange Yard Exists

that

can hold the train]

N

66

@Iect Interchange Yard w/ most available spa@

@ait for an Interchange Yard to free up sp39

@ocate Space in the Interchange Yard for Tr:aiD

Gelum interchange Ya@

Figure A.8 Model Flow Diagram for POD SelectiYA process
in an InterchangeYardAreaSet Object

Loaded Rail
String arrives

|7 Cargo Arrive >

Locomotive with
Loaded Train
Leaves

Cargo Arrive Cargo Leave

Cargo Leave

SendTrain

Resource Resource

QResource Leave

mpty Rail String
transiting to

Leave Arrive

<Resource Arrive ‘

Locomotive with
Empty Train

the Rail Spur Area

N _

Figure A.9 InterchangeYardArea Object

Arrives



67

The ResourceArrive process in the InterchangeYardArea object (Refer to Figure
4.2) models the empty train entering the I'YA. The rail cars of the train are uncoupled and
the commercial locomotive that brought the train into the port is allowed to leave. The
train is then ready to be sent to the Rail Spur Area (RSA) to be loaded with cargo. The

ResourceArrive process is shown in Figure A.10.

Once the empty train has arrived in the IYA, the train is broken up into strings of
rail cars to be sent to the RSA, It is possible that the entire train might not fit in the RSA
at one time. Hence, the RSA that can fit the largest number of rail cars is selected. The
string of rail cars are removed from the train and attached to a port locomotive which

then transports it to the selected RSA.

Gncouple railcars ({time) '

Call IY::8end Train

Figure A.10 Model Flow Diagram for POD ResourceArrive process
in an InterchangeYardArea Object

The SendTrain process in the InterchangeYardArea object (Refer to Figure 4.2) is

shown in Figure A.11.



68

®
%

N
N

Gelect Rail Spur {wait until availab@
@eate a string to fit in selected Rail Spur )

Gemove cars in string from no. of empty cars in tra@

@n 1Y 1 Resource Lea@

l

[No, of empty railcars = Q]

Figure A.11 Model Flow Diagram for POD SendTrain process
in an InterchangeYardArea Object

If the entire train can fit into any of the available RSAs, then the train is directed
to one of these RSAs. However, if the train is too large to fit into any of the available
RSAs, then the train is broken up into strings of rail cars to fit into the available RSA. If
no RSA is currently available, then the train waits for one to become available. The
SelectRSA process in the RailSpurAreaSet object (Refer to Figure 4.2) is shown in Figure

Al2.

Once an RSA has been selected, the string of rail cars waits for a port locomotive
to arrive, which transports it to the RSA. The Resourceleave process in the

InterchangeYardArea object (Refer to Figure 4.2) is shown in Figure A,13.



[Rail Spur Available] {Rail Spur NOT Available)

69

<

[Train larger than any
Rail Spur avatlable]

@ail for Rail Spur t

o become availabla

f

Return largest Rail Spur ] @tum smallest Rail Spur that can hoki Tr@

Return Rail Spur }

Figure A.12 Model Flow Diagram for POD SelectRSA
in a RailSpurAreaSet Object

[Gel Resource {Port IocomotiveD

@nnect String to Locometive (Tim@

Transit to RS

process

Figure A.13 Model Flow Diagram for POD Resourcel eave process

in an InterchangeYardArea Object



70

A.3  Loading a train with ifs cargo
As the string of rail cars leaves the IYA for the RSA, it triggers the set of SAs to
gather the rail cargo destined to leave on that string, and send it to the RSA for loading.

The GetRailCargo process in the StagingAreaSet object (Refer to Figure 4.2) is shown in

!

@rrent Car is No. of Rail Caa

@un’em Car Length is {Length - (2 x Buﬂe@

Figure A.14.

@Bl Next Piece of Cargo from Rail Cargo Peol

D

[tF (Cargo Length <= Current Car Length)] /( [IF NOT}

[IF NOT) [IF (Current Car = 1)]

( Dacrement Current Car'
( Calculate Current Car Length )

<

( Call SA :: Send Rail Cargo |

@Iculata Current Car Length

@ piece of cargo back into Rail Cargo pool at the beginni@

®

Figure A.14 Model Flow Diagram for POD GetRailCargo process
in a StagingAreaSet Object

The individual SAs are triggered to send the cargo to the RSA via the CargoLeave
process in the StagingArea object. The SendRailCargo process in the StagingAreaSet

object (Refer to Figure 4.2) is shown in Figure A.15.



71

@t Appropriate Resour@

@all SA ;: Cargo Lea@

®

Figure A.15 Model Flow Diagram for POD SendRailCargo process
in a StagingAreaSet Object

An RSA is shown in Figure A.16.

Resource carrying | 7\ Loaded Rail String
cargo arrives from transits to the

the Staging Area Interchange Yard Area

Cargo Arrive l/ Cargo Arrive Cargo Leave Cargo Leave
Load Cargo
Resource Leave Risource Resqurce )<Resource Arrive
eave Arrive i

Empty resources Empty Rail String
transiting back to arrives from the

the Staging Area - _/ Interchange Yard Area

Figure A.16 RailSpurArea Object



72

Cargo scheduled to be loaded on to a train arrives in the RSA from the SA via the
CargoArrive process in the RailSpurArea object (Refer to Figure 4.2). The cargo waits
for the string of rail cars to arrive and is then loaded on to the train. The CargoArrive

process is shown in Figure A.17.

G\’ait for Train (string of rail cars) to become availab@

Gall RS :; Load Carga

Figure A.17 Model Flow Diagram for POD CargoArrive process
in a RailSpurArea Object

The string of empty rail cars enters the RSA via the ResourceArrive process in the

RailSpurArea object (Refer to Figure 4.2), which is shown in Figure A.18.

{ Wait for Parking Time )

Release Locomotive

Figure A.18 Model Flow Diagram for POD ResourceArrive process
in a RailSpurArea Object



73

Once the cargo as well as the string of rail cars to carry the cargo has arrived in
the RSA, the cargo is loaded onto the rail cars. The process of loading the cargo varies
depending on the type of cargo as well as the loading resources available in the particular
RSA. The LoadCargo process in the RailSpurArea object (Refer to Figure 4.2) is shown

in Figure A.19.

@e! a piece of Cargo from Available Rail Cargo P@

[Vehicle] PN [Contatner}

—
[End Ramp) [Mobile Cranej [Chassis] [CH]
N

N

Qoad Vehicle using End Ram a E.oad Vehicle using Mebile Crana

| Load Container (time} '
Load Cantainer {time)

Release CH

Call RS :: Resource | eave

[NOT Last]
[Last Piece]

Call RS :: Cargo Leave

Figure A.19 Model Flow Diagram for POD LoadCargo process
in a RailSpurArea Object



74

When all the cargo has been loaded on to the string of rail cars, the string waits
for a port locomotive to pull it out of the RSA to the IYA where it came from. The
CargoLeave process in the RailSpurArea object (Refer to Figure 4.2) is shown in Figure

A20.

Get Resource (Port LocomotiveD

1 Wait for time to get locomaotive to Rail Spur Area and hook up to Rail Stri@

Transit to 1Y

Figure A.20 Model Flow Diagram for POD CargoLeave process
in a RailSpurArea Object

A4 Train leaving the port with its cargo

The CargoArrive process in the InterchangeYardArea object (Refer to Figure 4.2)
is shown in Figure A.21. Once the string of rail cars arrives in the IY A loaded with cargo,
the port locomotive is uncoupled from the string and the string is attached to the main
train. If all the rail cars in the train have been loaded with their cargo, the train is sent out
of the port via the CargoLeave process in the ImterchangeYardArea object (Refer to

Figure 4.2).



75

EJncouple loaded railcar strin

g from port locomotive (timeD

Gelease Resource (Port LocomotiveD

@d cars in String to no. of completed railcars in tr@

[No. of full cars = No. of cars in train}

[No. of full cars < No. of cars in train] N

Gall IY :: Cargo Leava

Figure A.21 Model Flow Diagram for POD CargoArrive process
in an InterchangeYardArea Object

The train waits for a commercial locomotive to become available to haul it out of

the port. The CargoLeave process is shown in

and travels to its destination.

The TransportLeaveRail process in the

in Figure A.23.

Figure A.22. The train then leaves the port

Port object (Refer to Figure 4.2) is shown



76

GVai! for scheduling time for commercial locomotive to arriva

G:ouple loaded train to commercial locomotive (timeD

Goaded Train Leaves the Port on RaD

®

Figure A.22 Model Flow Diagram for POD CargoLeave process
in an InterchangeYardArea Object

El‘rain leaves the Port (commercial locomolive with loaded railcarsD

®

Figure A.23 Model Flow Diagram for POD TransportLeaveRail process
in a Port Object

B. POE Rail Processes
The processes associated with the clearance of POE rail cargo through a port can

be described by following the path of a train arriving at the port loaded with cargo.



77

B.1  Train with cargo arriving at the port

The POE rail cargo is brought into the port by trains arriving at the port with the
cargo loaded onto them at a previous location such as an installation or a POD port. The
trains wait for a suitable IYA to become available in the same manner as a POD train. As
soon as one becomes available, the trains advance to the IYA. The TransportArriveRail

process in the Port object (Refer to Figure 4.4) is shown in Figure B.1.

@Iect Interchange Yard Area {wait untill availablea

Gransit to Interchange Yara

Figure B.1 Model Flow Diagram for POE TransportArriveRail process
in a Port Object

B.2  Train entering the port

In the IY A, the rail cars of the train are uncoupled and the commercial locomotive
that brought the train into the port is allowed to leave. The train is then ready to be sent to
the RSA to be unleaded. The train is split into strings of rail cars to fit the RSA. The
Cargodrrive process in the InterchangeYardArea object (Refer to Figure 4.4) is shown in

Figure B.2.



78

l Uncouple loaded railcars (tirneD

[No. of full railcars = 0]

2%

[Select Rail Spur {wait until availablea

@eate a string to fit in selected Rail Spur )

Gemove cars in string from no. of full cars in traD

(Cal] 1Y :: Cargo Leavea

Figure B.2 Model Flow Diagram for POE CargoArrive process
in an InterchangeYardArea Object

Once, the RSA has been selected, the string of loaded rail cars is sent to that
particular RSA. The CargoLeave process in the InferchangeYardArea object (Refer to

Figure 4.4) is shown in Figure B.3.

B.3  Unloading the train
The Cargodrrive process in the RailSpurdrea object (Refer to Figure 4.4) is
shown in Figure B.4. Once the string of rail cars loaded with cargo has arrived in the

RSA, the cargo waits for a resource to become available to carry it to the SA.



79

(Get Resource (Port IocomotiveD

Gonnect String to Locomotive (tim@

Transit to Rail Spur

Figure B.3 Model Flow Diagram for POE CargolLeave process
in an InterchangeYardArea Object

Once available, the cargo is unloaded and again waits for space to become available in a

SA.

When space becomes available, the resource transports the cargo to the SA. The
CargoLeave process in the RailSpurArea object (Refer to Figure 4.4) is shown in Figure
B.5. This process continues until all the cargo has been unloaded from the string of rail
cars. The string then returns to the IYA. The ResourceLeave process in the RailSpurdrea

object (Refer to Figure 4.4) is shown in Figure B.6.

B.4  Empty train leaving the port
Once, the string of empty rail cars arrives in the IYA, the port locomotive is

uncoupled from the string and the string is attached to the main train. The



80

@ei a piece of Cargo from Rail S:ri@

(Wait for Resource to carry cargo to Staging Area

[End Rampl /< [Mobile Crane)
v N \!

E}nioad Vehicle using End Ra@ Ejnload Vehicie using Mobile Cranea [String NOT Empty]

!

(Seiec% a Staging Area for the piece of Cargo

G’Vait for space to be available in Staging Area

Gail RS .. Cargo Leava

[String Empty]

Galr RS :: Resource Leave l

Figure B.4 Model Flow Diagram for POE CargoArrive process
in a RailSpurArea Object

ResourceArrive process in the InterchangeYardArea object (Refer to Figure 4.4) is shown

in Figure B.7.



81

E‘ransit to Staging Area

Figure B.5 Model Flow Diagram for POE CargolLeave process
in a RailSpurArea Object

@ait for time to get Port Locomotive to Rail Spur Area and hook up to Rail Stri@

1 Transit to Interchange Ya@

.

Figure B.6 Model Flow Diagram for POE Resourcel eave process
in a RailSpurArea Object

If all the rail cars in the train have been unloaded, the empty train is sent out of
the port via the ResourceLeave process in the InterchangeYardArea object (Refer to
Figure 4.4). The empty train waits for a commercial locomotive to become available to
haul it out of the port. The ResourcelLeave process is shown in Figure B.8. The
TransportLeaveRail process in the Port object (Refer to Figure 4.4) is shown in Figure

B.9.



E)ncoupie emply railcar string from port locomotive (timeD

Geiease Resource (Port Locomotive) l

@d cars in String to no. of empty railcars in tra@

)Q {No. of ernpty cars = No. of cars in train)

Gail 1Y :: Resource Lea@

{No. of emply cars < No. of cars in irain]

Figure B.7 Model Flow Diagram for POE ResourceArrive process
in an InterchangeYardArea Object

| Train leaves the Port {commercial locomotive with empty railcarsD

Figure B.9 Model Flow Diagram for POE TransportleaveRail process
in a Port Object

82



(Wait for scheduling time for commercial locomotive to arriva

E}ouple empty train 1o commercial locomotive (timeD

Gmpty Train Leaves the Pora

Figure B.8 Model Flow Diagram for POE ResourcelLeave process
in an InterchangeYardArea Object

83



84

CURRICULUM VITA
for
REEJO MATHEW

DEGREES:
Master of Science (Computer Engineering), Old Dominion University, Norfolk,
VA, December 2002,

Bachelor of Engineering (Electronics Engineering), Sardar Patel College of
Engineering, Mumbai University, Mumbai, India, June 2000.

PART TIME EMPLOYMENT:
Research Assistant at the Virginia Modeling Analysis and Simulation Center
(VMASC) involved in the PORTSIM (Port Simulation), JLOTS (Joint Logistics
Over The Shore) and Intra-Theater Sealift projects, developing simulations of a
port operation for the Military Traffic Management Command Transportation
Engineering Agency (MTMCTEA) of the US Army. (August 2000 — Present)

Project Intern at the Tata Institute Of Fundamental Research (T.LF.R), Mumbali,
India in the Development and Analysis of a Receiver Circuit of a Zero Field
Nuclear Magnetic Resonance (NMR) Spectrometer. (August 1999 — April 2000)

SCHOLARLY ACTIVITIES COMPLETED:
J. Leathrum, R. Mielke, T. Frith, R. Mathew. 2002. “Modeling New Technologies
in a Joint Logistics Over The Shore (JLOTS) Operation,” Summer Computer
Simulation Conference (SCSC) 2002, San Diego, CA.



	Object-Oriented Architecture for Concurrent Processes in a Port Simulation
	Recommended Citation

	tmp.1723486113.pdf.Ym0g5

