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ABSTRACT

OBJECT-ORIENTED ARCHITECTURE FOR CONCURRENT PROCESSES

IN A PORT SIMULATION

Reejo Mathew
Old Dominion University, 2002
Director: Dr. James F. Leathrum

An architectural model to represent the resources and infrastructure within a cargo

terminal, as well as to support the concurrent but opposite flow of cargo within the

terminal, is presented in this thesis. The model supports the configuration of an individual

cargo terminal according to its characteristics, as well as the processing involved in the

simultaneous flow of cargo in opposite directions through the terminal. This is useful in

the analysis of the flow of military cargo and aids the decision-making process to

increase the efficiency and throughput of any military operation. This model has been

developed with the aim of supporting the simulation and analysis of the flow of at least

200,000 pieces of cargo with the cargo being modeled as individual pieces. It is also

envisioned that the model be used to connect multiple cargo terminals to represent an

end-to-end concurrent cargo flow from a cargo depot within the Continental United

States to a Theater of War.

Co-Directors of Advisory Committee: Dr.Roland R. Mielke

Dr. Frederic Mckenzie
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Chupter I

INTRODUCTION

1.1 Overview

'An architectural model to represent the resources and infrastructure within a

cargo terminal, as well as to support the concurrent but opposite flow of cargo within the

terminal, is presented in this thesis. The model supports the configuration of an individual

cargo terminal according to its characteristics, as well as the processing involved in the

simultaneous flow of cargo in opposite directions through the terminal. This is useful in

the analysis of the cargo flow and aids the decision-making process to increase the

efficiency and throughput of any military operation.

1.2 Problem Statement

Transportation Logistics Planning is used extensively to prepare for the

movement of military cargo, i.e., troops, equipment, and supplies, from a military

installation to the Theater of War. The initial input of troops into a Theater of War is

usually by air. Afler this initial input, the movement of military cargo, both for offensive

purposes as well as for sustainment of the existing force, is by sea, usually through a

commercial seaport. For a variety of reasons, both political and economic, only a portion

of the entire seaport is available for military operations. For any military operation, it is

possible that the flow of cargo from the Theatre of War back to the installation will begin

before the flow in the opposite direction has ended, with some military units starting to

The reference model for this work is "A Reconfigarabte Object Model for Port Operations" from the
Proceedings of the Summer Computer Simulation Conference, SCSC 2000:603-608.



return to the installation while other units are still being deployed. Moreover, after the

initial surge of military equipment and personnel into the Theater of War, cargo supplies

meant to sustain the existing force constitute a major portion of the cargo flow. This

results in a bi-directional flow of cargo and resources, with cargo moving in both

directions competing for limited resources and infrastructure within a cargo terminal.

Proper resource and infrastructure allocation is important in any transportation logistics

operation. It is important to ensure that the flow of cargo in one direction does not

unnecessarily delay, or worse, stall the flow of cargo in the opposite direction. Therefore,

resource and infrastructure allocation between the concurrent flows of cargo, as well as

the resolution of any contention that might arise, is vital.

It is impractical and expensive to conduct actual military exercises to study the

effects that various ship arrival profiles and the availability of port infrastructure and

resources for the concurrent cargo flow have on the efficiency of the entire operation.

Simulation provides a viable alternative to capture the concurrent flow of cargo within a

model. It also enables an analysis of the simulation results for maximum efficiency and

throughput within the confines of resources and infrastructure availability.

1.3 Benefits of Simulation

Simulation is a cost-effective and simplistic method for modeling a complex

physical system with a level of detail just enough to adequately represent a real-world

system under consideration. The processing involved in the system needs to be modeled

with appropriate detail so that the developed model provides an accurate representation of



the system for a detailed analysis. An analysis of the simulation results can then be used

to aid in the decision-making to improve the performance and efficiency of the system.

1.4 Requirements

Most of the architectural models that have been developed previously have been

devoted to modeling the flow of cargo in a single direction within a particular cargo

terminal. In order to perform a thorough analysis of extended cargo and transportation

logistics within the terminal, an architectural model for the cargo terminal should be able

to handle the simulation of concurrent cargo flow in opposite directions. The model

represents the resources and infrastructure within a cargo terminal and supports the

concurrent but opposite flow of cargo within the terminal. The model is intended to be

reconfigurable as well as generic; the same model can be used to represent an airport, a

cargo depot, or an intermediate staging area in the Theater of War. It is also envisioned

that the model be used to connect multiple cargo terminals to represent an end-to-end

concurrent cargo flow from a cargo depot to the Theater ofWar.

Previous models usually took 60 minutes to simulate 8000-10000 pieces of cargo

with a similar level of detail. This model has been developed with the aim of supporting

the simulation and analysis of the flow of at least 200,000 pieces of cargo with the cargo

being modeled as individual pieces. Additionally, the model has been developed to

execute within an execution time that would make the model useful in a real-world

situation, i.e., crisis management.



1.5 Architectural Approach

Object-oriented programming was developed with the basic intention of

supporting the simulation of real-world systems. In object-oriented methodology, a

simulation program is written to simulate the states and activities of real-world objects.

An attribute represents the physical properties of the system. A method is an operation

that can modify the behavior of the object by manipulating its attributes. A real-world

system involves multiple entities interacting with each other through the lifetime of the

system. Object-oriented methodology aids in simulating this process by instantiating

multiple objects and observing the interaction of the objects.

Hence, the model for concurrent process in a port simulation has been developed

using an object-oriented, top-down approach because of the following properties:

~ Encapsulation: The properties and behavior of a physical object is concentrated

within a single simulation object.

~ Modularity: An object is independent of any other object.

~ Inheritance: This property is vital for a hierarchical structure with multiple

objects inheriting the properties of a single object and then personalizing their

attributes and behavior.

The architectural model is intended to be a shell around the cargo processing

model, which is unique to each cargo terminal as well as to each area within the terminal.

The model acts as an interface for the cargo processing model with the outside world.

This structure is shown in Figure 1.1.



Figure 1.1 Architectural and Cargo Processing Models

1.6 Chapter Overview

Chapter 2 briefly mentions the related research in the field of port simulations.

The chapter then describes the CPORTS project. The simulation model, which is the

focus of this thesis, has been developed mainly in support of the CPORTS project.

Chapter 3 lists the requirements of the model for concurrent processes in a port

simulation. The chapter then provides a complete description of the simulation model.

Chapter 4 briefly describes the various rail operations that occur in a port. The

Port of Debarkation (POD) and Port of Embarkation (POE) operations are described

separately. A more detailed description is available in Appendices A and B. The chapter

then provides a detailed description and analysis of the manner in which the simulation

model described in Chapter 3 is used to adequately represent the concurrent POD / POE

rail operations in the port.

Chapter 5 concludes the thesis and offers suggestions on improvements and

additions to the model.



Chapter II

BACKGROUND

2.1 Overview

This chapter gives a brief description of the research that has been done by

various research groups in developing port simulations for the purpose of transportation

logistics planning and analysis, both for military as well as commercial cargo.

2.2 Existing Port Models

Port simulation models that currently exist in literature differ widely in their

objectives, model complexity, level of detail and the factors taken into consideration

within the model. This difference is mainly due to the variation in the questions that the

particular model attempts to answer as well as the model fidelity.

A port model developed at Haifa University, Israel, is described in [3]. It models

different types of cargo arriving on ships and resources used until ships dock at the berth

and cargo is unloaded from the ships. The model addresses multiple port functions, ship

arrival profiles, cargo composition on ships and availability, allocation, and utilization of

resources, as well as the co-ordination between terminals in more than one port. The

focus of the model, however, is the idle times for ships waiting to dock at the port.

A model aimed at improving logistic processes at the Riga Harbour Container

Terminal (RHCT) is discussed in [4]. It models the RHCT in detail with the arrival of



ships, unloading of containers, and crane capabilities. It also models the storage of

containers at import yards and their transfer to export yards to be loaded onto trains to be

carried out of the cargo terminal. The model is basically a queuing network model with

the explicit intent of modeling the RHCT, which leads to a rigid structure for the model.

A decision support system for an intermodal container terminal at La Spezia

Cargo Terminal in Italy is studied in [5]. The simulation of the terminal is a discrete-

event simulation based on the process-oriented paradigm. The model captures an import

flow, i.e., containers arriving by ships to be transported to their destination by trucks and

trains, as well as an export flow, i.e., containers arriving by trucks and trains and leaving

the terminal on ships. It also captures the storage of containers, resource allocation, and

scheduling for loading and unloading operations. The model is at a high level of

abstraction focusing mainly on resource allocation between both flows of cargo, import

and export.

A more generic model for a cargo terminal is proposed in [6], [7], with the focus

being on resource allocation for container operations within the terminal, The logistics

planning involved in the transport of containers and modeling of operations until ships

dock at the port for unloading are discussed in [6]. The model aims to reduce the ship

turnaround time (time a ship has to spend at a terminal) by optimally utilizing the

terminal resources. Genetic algorithms are used in [7] to create ship arrival profiles that

improve the ship turnaround time as well as to aid in the decision-making about resource



allocation and terminal organization (container layout within the terminal). Neither

model, however, models cargo handling.

All the cases mentioned above are limited by the fact that they model commercial

operations at a specific cargo terminal with a varying level of detail about the operational

behavior of the terminal. Most of the above research put forward the argument that the

model can be extended to include an improved level of detail.

Transportation logistics planning for military operations has also been previously

modeled. PORTSIM (Port Simulation) [8], [9], developed by Argonne National

Laboratory (ANL), addresses two modes of military cargo operations: Port of

Embarkation (POE) and the Port of Debarkation (POD). The POE mode deals with the

arrival of cargo at the port via trains and highway transports, staging the cargo, and

loading a ship with cargo. The POD mode focuses on the activities of unloading cargo

from a ship, staging, parking, and inspection of the cargo, and clearing the cargo from the

port using trains and highway transports. PORTSIM has a fully functional POE model;

however, the POD model has not been correctly and fully developed. Moreover,

PORTSIM suffers from the following problems: mutually exclusive POE and POD

processes, fixed cargo flow, unmanageable code, slow execution times, and single-run

capability only.

POPS (Port Operational Performance Simulator) [11], developed by the Military

Traffic Management Command Transportation Engineering Agency (MTMCTEA),



estimates the capability of a seaport to handle military cargo. POPS analyzes cargo at the

aggregate (Short Ton (STON)) level rather than at the entity level. It is a statistical

analysis of the ability of the port rather than a true port model.

2.3 CPORTS

CPORTS (Configurable Port Simulation) [I], [2] is a discrete-event simulation

developed by Dr. James F. Leathrum, Jr. and his research group at Virginia Modeling,

Analysis, and Simulation Center (VMASC) for MTMCTEA. CPORTS is used to analyze

the movement of military cargo through a seaport.

The seaports (henceforth referred to as ports) under consideration are commercial

ports, and therefore, complete access to all port facilities is generally not available.

CPORTS is useful for comparing and selecting ports as well as in determining port

throughput capability, and allocation and utilization of critical resources. The architecture

for concurrent POD / POE processes in a port simulation, the focus of this thesis, has

been developed mainly in support of the CPORTS project as well as to support the

networking of cargo terminals for a complete intra-theater analysis.

CPORTS is designed to obtain the following data:

~ Port Closure Time.

~ Port Throughput Capability.

~ Cargo Data (during its flow through the port) for detailed analysis.

~ Ship Data.
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~ Stranded Cargo Data.

CPORTS is also used to identify the following:

~ Potential bottlenecks within the port.

~ Port resources limiting movement of cargo.

~ Implications if certain port infrastructure or resources are constrained or

unavailable.

~ Impact of various ship arrival profiles.

CPORTS is designed with the intent of configuring a port according to its specific

characteristics rather than designing a generic port with a rigid structure. The general

processes in a port are modeled and then access is available to the port expert to specify

the process times as well as available infrastructure and resources in the port. CPORTS

process modeling addresses the POD mode of operation within a port and has been

developed entirely at VMASC.

Figure 2.1 shows the typical flow of POD cargo through a port [12], [16]. Cargo

is brought into the port by ships, which are processed through the Anchorage Area for an

available space at the set of Berth Areas. Cargo is then unloaded from a ship and is

transported by berth side resources to the Staging Areas (SAs). In the SAs, cargo is

processed differently based on the mode of transport by which the cargo is scheduled to

leave the port. Cargo scheduled to leave by highway transports is processed through a

Loading Area and leaves through a gate. Cargo scheduled to leave by convoy is



Loaded Ships

Figure 2.1 CPORTS POD Macro Cargo Flow



assembled in the Convoy Construction Area (CCA). Cargo scheduled to leave by rail is

processed through the Rail Spur Area (RSA) and the Interchange Yard Area (IYA) to be

loaded onto trains, which carry the cargo out of the port.
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Chapter III

ARCHITECTURAL MODEL

3.1 Overview

An architectural model defines the components of a system, specifies the manner

in which they interact with one another, and details the interconnection between these

components. A long supply chain exists in the flow of military cargo from an installation

in the Continental United States (CONUS) to the Theatre of War. New military units are

continually deployed and existing units return to the installation while the military

operation is still under way. The model described here is required to simulate and analyze

one step in the flow of military cargo from an installation to the Theatre of War, as well

as the simultaneous flow of cargo in the reverse direction, from the Theatre of War back

to the installation.

3.2 Problem Statement

The architectural model is designed to support the concurrent, but opposite, flow

and processing of cargo through a cargo terminal. It supports the configuration of a cargo

terminal as well as the interconnection and intraconnection between cargo terminals to

facilitate the physical movement of cargo. A cargo terminal should be able to handle

cargo flowing in opposite directions simultaneously as it is conceivable that the flow of

cargo from the Theatre of War back to the installation will begin before the flow in the

opposite direction has ended with some military units starting to return to the installation

while other units are still being deployed. This results in a bi-directional flow of cargo
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and resources, with cargo moving in both directions competing for a limited number of

resources within a cargo terminal. Figure 3.1 shows the typical two-way flow of cargo

between cargo terminals. Cargo is transported from the installation to a CONUS port,

from where it is transferred to an Outside Continental United States (OCONUS) port.

Cargo is then delivered from the OCONUS port to the Theatre of War. A reverse flow of

cargo follows the same logistical path.

Installation
CONUS

Port
OCONUS

Port
Theatre of

War

Figure 3.1 Cargo Flow from Installation to Theatre of War

Most of the architectural models that have been developed previously for this

purpose have been devoted to modeling the flow of cargo in a single direction [8], [9],

[10], [11], a basic limitation. Cargo flowing in the opposite direction has a direct effect

on the availability of resources and infrastructure in a cargo terminal. Cargo has to wait

longer for infrastructure in the cargo terminal to be freed up and / or for a suitable

resource to become available. This in turn affects the clearance time for the cargo, i.e.,

the time for the cargo to flow through the cargo terminal. It also affects the order in

which cargo is cleared from a cargo terminal depending on the precedence given to cargo

flowing in a particular direction. Moreover, improper resource or infrastructure allocation

between the concurrent flows of cargo within a cargo terminal can lead to the system

being deadlocked. It is possible that both cargo flows might be waiting for resources and

infrastructure to be freed up by the other cargo flow leading to a deadlock.
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It is therefore prudent and essential to develop a model for a cargo terminal

capable of handling concurrent operations. This enables an expert to study and correctly

analyze the effect that the cargo flowing in one direction has on the infrastructure and

resources of the cargo terminal as well as on the cargo flowing in the opposite direction

over the full lifetime of the operation.

3.3 Model Requirements

The architectural model has been developed with the intention of satisfying the

following basic requirements:

~ Concurrent Port of Debarkation (POD) and Port of Embarkation (POE)

operations through the same cargo terminal.

The model should support concurrent POD and POE operations through a single

cargo terminal. This is the focus of this model.

~ Initialization of multiple cargo terminals simultaneously.

The model should support the initialization of multiple cargo terminals

simultaneously as well as the flow of cargo between them. This enables the

simulation of an end-to-end cargo flow from point of origin to destination.

~ Reconfigurable Cargo Terminals.

An individual cargo terminal should have the ability to be initialized independent of

other cargo terminals. The cargo terminals should also be reconfigurable, that is, the

infrastructure and the resources in the cargo terminal as well as the sequence of cargo

flow through the areas in a single terminal should be changeable.
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~ Simulation of Z00,000 pieces of cargo.

The model should support the simulation of 200,000 pieces of cargo within a

reasonable execution time.

3.4 Architectural Model Description

The architectural model to support concurrent POD / POE operations is described.

The architecture is defined to be object-oriented and is developed using a hierarchical,

top-down approach. The purpose of this architecture is to adequately satisfy the model

requirements described in the previous section. Moreover, special attention has been

given to the flexibility, robustness, scalability, and performance of the model. The

architecture is designed to be flexible enough to incorporate changes in the model as well

as robust enough to ensure that the changes do not break the architecture. The

architecture is also meant to be scalable in terms of new cargo terminals being initialized

or new cargo terminal areas being added to a particular cargo terminal. The architecture

is built keeping in mind that any changes to the model should not cause any substantial

degradation in performance because of the architecture itself.

POD Port Process Model:: Resource
+cargo: Cargo

+SetCargo(in cargo: Cargo)
+Removecargoe

POD Port Process Modelcaover
+hascargo: Boolean
+moverType: Mover Type
+destPortArealD; Integer
+SetMoverType(in type: Mover Type)
+SetDestPortArealD(in id: Integer)
+SetHasCargo(in val: Boolean)

POD Port Process ModelcResource Move POD Port Process ModelcTransport

Figure 3.2 Mover, Resource, Transport and ResourceMover Classes



The main purpose of the architecture is to model the flow of cargo. This is

achieved by using a Mover class. A mover is an object that carries cargo from one

physical port area to another. Resource movers and transports that are further used to

model the flow of cargo to and from a port area are all derived from the Mover class and

the Resource class. Figure 3.2 shows this class structure.

3.4.1 Transit Interface

At the top level, the flow of cargo between cargo terminals is modeled. The cargo

transportation network is comprised of a set of cargo terminals interconnected by a

transportation infrastructure [I]. This transit interconnection interface is modeled using

the TransitInterface class shown in Figure 3.3.

Figure 3.3 Transitinterface Class

The Transitlnterface is used for a common interface between various objects that

are used in the simulation. Each object used in the simulation tltat represents

infrastructure within the cargo terminal inherits the TransitInterface object. This enables

the modeling of the transit of resources and transports through the cargo terminal with the

ExitPoint of one connected to the EntryPoint of the other. The same TransitInterface

object can be used to connect cargo terminals to model an end-to-end flow of cargo. The

result is a hierarchical structure as shown in Figure 3.4.
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Figure 3.4 Network of Cargo Terminals

3.4.2 Cargo Terminals

The cargo terminals include the installation (point of cargo origin) and the

destination (usually the Theatre of War) as well as intermediate points of storage

(CONUS or OCONUS ports) and change of transportation or transfer. The cargo

terminals are modeled using the CargoTerminal class shown in Figure 3.5.

The CargoTerminal class encapsulates a single cargo terminal, clearly defining

the entry and exit points for that terminal as well as the internal characteristics and

operations of the terminal. The main purpose of the CargoTerminal class is to provide

interfaces between the cargo terminal and the external cargo transport infrastructure [I].

It has individual entry and exit points for the different types of cargo that are handled by



POD Port Process Modes:Transit Interface
-transit: Transit

+Entry Point()
+Exit Point()
«signal»-Individual Objects override these methodsg

POD Port Process Modes:Cargo Terminal

+cargorerminallD: Integer
+cargorerminalName: String
+Sea Entry Point()
+Sea Exit Point()
+Rail Entry Pointe
+Rail Exit Point()
+Hwy Entry Point()
+Hwy Exit Point()
+Air Entry Point()
+Air Exit Point()

Figure 3.5 CargoTerminal Class

the cargo terminal, namely Sea, Rail, Highway and Air. The EntryPoints are called by an

external transportation intrastructure object for transports or resources arriving at the

terminal. The Ex'ftPoints are called by the processing infrastructure within the cargo

terminal to pass the n'ansports back to the external transportation infrastructure object

when the processing within the cargo terminal is done. Thus, the CargoTerminal class

provides an interface to the operational modeL A seaport and an airport, though varying

in their structure and function, can both inherit the CargoTerminal class with no changes

to its structure. Other cargo terminal examples include installations, warehouses,

intermediate storage areas, etc.

The CPORTS project involves the simulation of a port. Figure 3.6 shows a Port

class. The Port class is inherited from the CargoTerminal class and encompasses all the

infrastructure, operations, and resources within the port. It defines the attributes to
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POD Port Process Modelceargo Terminal

+cargoTerminallD: Integer
+cargoTerminalName: String
+Sea Entry Point()
+Sea Exit Points
+Rail Entry Points
+Rail Exit Point()
+Hwy Entry Points
+Hwy Exit Point()
+Air Entry Point()
+Air Exit Points

POD Port Process ModelcPort

+portName: String

+TransportArriveHwy()
+TransportLeaveHwy()
+TransportArriveRail()
+TransponLeaveRail()
+TransportArriveShip()
+TransporlLeaveShip()
+TransporlLeaveAir()
+TransportArriveAir()

Figure 3.6 Port Class

specify the characteristics of the port as well as the infrastructure and resources within the

port. It also includes the methods to define the operations within the port. It is completely

self-contained for a single port as shown in Figure 3.7. (All objects are represented by

rounded boxes in this document, while methods of individual objects are represented by

ovals.) It is also desired that the architecture will support initialization and operation of

multiple ports concurrently. This can be achieved by instantiating multiple instances of

the Port object and allowing the TransitInterface to provide the means for an

interconnection network between the ports. In a stand-alone, single port environment, the

Port object is connected to the ShipArrival module on one end and a Land / Air

Operations module on the other end. The ShipArrivai module models the arrival of cargo

to a POD port by sea. The ShipArrival module feeds ships arriving with cargo to be

offloaded into the simulation. The port processes the cargo accordingly. On the other end,
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Figure 3.7 A Complete Port

the port object is connected to a Land / Air Operations module to model the arrival of

external transports to transport the cargo out of the port to various destinations. Figure 3.8

shows this interconnection.

Figure 3.8 Port and External Transportation Interface
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Figure 3.9 shows the connection of the Air, Highway, Rail and Sea entry and exit

points to the EntryPoint and ExitPoint of the port. This enables the simulation to have a

common entry and exit point for all resources and cargo into the port, simplifying the

interconnect to external models.

Figure 3.9 Port Entry and Exit

The complete architecture for concurrent POD / POE operations at the port level

is shown in Figure 3.10. When a port is initialized, a Port object is initialized which

inherits all the properties of the Transitlnterface class and the CargoTerminal class. The

appropriate methods of the parent objects are overwritten in the Port object to reflect the

operations and infrastructure of the particular port.
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POD Port Process Modeh:Transit Interface
-transit: Transit

+Entry Point(in mover: Mover)
+Exit Point(in mover: Mover)
«signal»-Individual Objects override these methods()

POD Port Process Modeh:Cargo Terminal

+cargoTerminallD: Integer
+cargoTerminalName: Stding
+Sea Entry Point()
+Sea Exit Point()
+Rail Entry Point()
+Rail Exit Point()
+Hwy Entry Point()
+Hwy Exit Point()
+Air Entry Point()
+Air Exit Point()

POD Port Process ModelxPort

+portName; String

+TransportArriveHwy()
+TransportLeaveHwy()
+TransportArrlveRail()
+TransportLeaveRail()
+TransportArriveShtp()
+TransportLeaveShip()
+TransportLeaveAir()
+TransportArriveAir()

Figure 3.10 Port Level Architecture

3.4.3 Cargo Terminal Areas

The different areas within a cargo terminal are modeled using the

CargoTerminalArea class shown in Figure 3.11. The CargoTerminalArea class has

various attributes to identify itself and to establish its association with a parent cargo

terminal. It also has methods to signal the arrival of cargo and resources into the cargo

terminal area as well as methods to reserve, allocate, and release space in the cargo

terminal area.
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POD Port Process Modeh:Transit Interface
-transit: Transit

+Entry Point()
+Exit Point()
«signal»-Individual Objects override these methodse

POD Port Process Modeh:Cargo Terminal Area

+parentCargoTerminal: Cargo Terminal
+cargoTerminalArealD: Integer
-cargoTerminalAreaName: String
+available: Integer
-capacity: Integer
-committed: integer
-reserved: integer
+Cargo Arrive()
+Cargo Leave()
+Resource Amve()
+Resource Leave()
+Request Space()
+Obtain Space()
+Release Space()
«signal»-Individual Objects override the first 4 methods()

Figure 3.11 CargoTerminalArea Class

A port area is the physical area within a port where the various port operations are

performed. Each port has the following general port areas:

~ Anchorage

~ Berth Areas

~ Staging Areas (SAs)

~ Loading Areas

~ Convoy Construction Areas (CCAs)

~ Gates

~ Rail Spur Areas (RSAs)

~ Interchange Yard Areas (IYAs)

~ Helicopter Re-Assembly Areas
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~ Helicopter Staging Areas

~ Helicopter Takeoff Areas

These port areas are modeled using the PortArea class, which is inherited from

the CargoTerminalArea class. This is shown in Figure 3.12.

POD Port Process Modeiccargo Terminal Area

+parentCargoTerminal: Cargo Terminal
+cargoTerminalArealD: Integer
-cargoTerminalAreaName: String
+available: Integer
-capacity: integer
-committed: Integer
-reserved: Integer
+Cargo Arrive()
+Cargo Leaves
+Resource Arrive()
+Resource Leave()
+Request Space()
+Obtain Space()
+Release Space()
«signal»-Individual Objects override the first 4 methods()

POD Port Process Modes:Port Area

+Port Area ID: Integer
+Port Area Name: String
+Parent Port; Port

Figure 3.12 PortArea Class

Each individual port may have one or more of these port areas. Certain port areas

might be totally absent form a port and need not be initialized at the time of the

simulation. All the individual PortArea objects inherit the PortArea class as well as the

methods associated with it. Each individual port area may add various other methods to

model the port operation at that particular port area. Figure 3.13 shows the various port

areas mentioned earlier.
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+Port Area ID
+Port Area Na
+Parent Port:

: Integer
me: Stnn
Port

POD Port Process Modek:Port Area

POD Port Process Model.:Convoy Construction Area

-convoy exists
-require drivers
-convoy
-convoy size
-unit driver pool

+Cargo Arrive(in mover: Mover)
+Cargo Leave(in mover; Mover)
+Resource Leave()
+Release Space()

POD Port Process Modek:Anchorage Area

+Cargo Leave(in ship: Mover)
+Request Spaceg
+Cargo Arrive(in ship: Ship)
+Resource Arrive()
+Resource Leave()
+Berth Available()

POD Port Process ModeluGate Area
-¹ ofinbound lanes
-set of mbound lanes
-¹ of outbound lanes
-set of outbound lanes
-lanes . Lane
+Cargo Arnve(): Transport
+Cargo Leave(): Transport
+Resource Arriveg: Transpor!
+Resource Leave(): Transport
-Gate Process(in transport, in set of lanes, in direction)

POD Port Process Model: Interchange Yard Area

+Length:Integer
+Cargo Arnve()
+Cargo Leave()
+Resource Arrive()
+Resource Leave0
+Send Tramp

POD Port Process Modek:Berth Area

+Cargo Arnve(in ship: Ship)
+Cargo Leaveg
+Resource Arnvee
+Resource Leave(in ship: Ship)
+Unload Ship(in ship . Ship)
+Ramp Unload(in ship: Ship)
+Crane Unload(in ship Ship, in crane)
+Get Cranes()
+Flatrack Unload()
+Halo Unload()

POD Port Process Modeh:Staging Area (Open)

+Get Cargo(in cargoType: Cargo Type)
+Cargo Arrive(in mover . Mover)
+Cargo Leave(in mover: Mover)
+Resource Arrive(in mover: Mover)
+Resource Leave(in mover; Mover)
+Get Container(): Container
+Get Vehicle(): Vehicle
+Get Pallet(): Pallet
+PortArealnit(in port: Port, in scenarioStream)
+Process Cargo()
+Release Space()

POD Port Process Model zTake-Off Area (Halo)

+Cargo Arnveg
+Cargo Leaveg
+ Resource Arrive()
+Resource Leave()

POD Port Process Modek:Loading Area

-end ramp pool

+Resource Arrive()
+Cargo Leave(in transport: Transport)
+Cargo Arrive()
+Resource Leave()
+Request Space()
+Release Space()
+Obtatn Spacee

POD Port Process Modek:Rail Spur Area

+Length . integer
-Vehicle Loading Mode

+Cargo Arrive()
+Cargo Leave()
+Resource Arrive()
+Resource Leave()
+Load Cargo()

POD Port Process Modeh:Re-Assembly Area (Halo)

+Cargo Amve()
+Cargo Leave()
+Resource Leave()

POD Port Process Madel: Staging Area (Aviation)

+Cargo Arriveg
+Cargo Leave()
+Resource Leaveg
+Get Cargo()

Figure 3.13 Port Areas
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Figure 3.14 A Complete Port Area

The PortArea object is completely self-contained for a single port area as shown

in Figure 3.14. Both transports and resources arriving with cargo, as well as arriving to

carry cargo out of the port area, enter the area through the EntryPoint. A mover (transport

or resource) carrying cargo into a port area uses the CargoArrive method to enter the port

area, while a mover (transport or resource) arriving to carry the cargo out of the port area

Figure 3.15 Port Area Entry and Exit
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uses the Resoui ceArrive method. The mover, when leaving the port area with cargo, uses

the CargoLeave method while the empty mover uses the ResoureeLeave method. After

being processed in the port area, transports and resources leave through the ExitPoint.

The extra wrapping around the port area by the TransitInterface provides a single point of

entry and exit through the port area. Figure 3.15 shows the entry and exit of all cargo and

resources to and from a port area through the EntryPoint and ExitPoint.

The complete architecture for concurrent POD / POE operations at the port area

level is shown in Figure 3.16.

POD Port Process Modeb:Transit Interface
-transit: Transit

+Entry Point()
+Exit PointP
«signal»-individual Objects override these methodsg

POD Port Process Modeb:Cargo Terminal Area

+parentcargoTerminal: Cargo Terminal
+cargoTerminalArealD: Integer
-cargoTerminalAreaName: String
+available: integer
-capacity: Integer
-committed: Integer
-reserved: Integer
+Cargo Arrive()
+Cargo Leave()
+Resource Arrive()
+Resource Leave()
+Request Space()
+Obtain Space()
+Release Space()
«signal»-Individual Objects override the first 4 methods()

POD Port Process Modeh:Port Area

+Port Area ID: Integer
+Port Area Name: String
+Parent Port: Port

Figure 3.16 Port Area Level Architecture
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When a port is initialized, a PortArea object is initialized for each port area within

the port, which inherits all the properties of the TransitInterface class and the

CargoTerminalArea class. The appropriate methods of the parent objects are overwritten

in the PortArea object to reflect the operations and infrastructure of the particular port

area. The complete architecture for concurrent POD / POE operations is shown in Figure

3.17.

3.5 Interconnection between Components

Figure 3.18 Interconnection between Components

The previous section described the various components of the architectural model.

It also described the capabilities provided to connect together multiple cargo terminals as

well as the various cargo terminal areas within a single cargo terminal. This section deals

with how these capabilities are used to achieve the desired interconnection between

components for an end-to-end cargo flow.



POD Port Process Model".Cargo Temilnsl

+cargoTerminaSD . Integer
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+Rail Entry PointQ
Rail Exit Point()

+Hwy Entry Pmntg
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+Resource Laaveg

POD Port Process Model Gate Area
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+Cargo Lea eQ: Transport
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POD Port Process Model Convoy Constn tlo Are

woflvoy exists
squire dnvers

convoy
wonvoy size

I dm 8 pool
~Cargo Amve(in mover Mo )
+Cargo Le e(m mover: Mover)
Resource Leave()

+Release SpscsQ

POD Port Process Model:.Staging Area (Aviation

iCargoA Q
~ Cargo Leaveg
Resource Leaveg

~Get CargoQ

POD Port Prm s M d b RemssemblyA ea(Halo

Cargo AmveQ
~Cargo L
~ Resource Lea eg

POD Port Presses Model Loading Area
-e d amp pool

Resoume AmveQ
+Ca go Leave( n transport. Transport)

Cargo AmveQ
+R L vg
+ Request SpaceQ
RI mSp Q
Obis n Space()

pOD Port Process Model Int r h g Y d Are
~Length Integer
~Cargo Amveg
+Cargo Leave()
+Resou ca AmveQ
+Res u 8 Leave()
Send Train()

Fig 3.17 Complete Architecture for Concurrent POD I POE Operations
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Figure 3.18 shows the manner in which components are interconnected. Cargo is

brought into the port by a transport through the EntryPoint of the port. Cargo is then

processed through the various port areas following a predetermined sequence. This

sequence can be different for different types of cargo and is usually dependent on the

processing required for a particular type of cargo and the transport that is needed to carry

the cargo out of the port. In a particular port area, cargo enters through the EntryPoint

and is processed accordingly. Cargo then leaves the port area through the ExitPoint and is

transported to the next port area in its sequence through the EntryPoint of that port area.

This interconnection can also be used to support concurrent operations through a

single cargo terminal. Both flows of cargo (POD and POE) enter a port area through the

EntryPoint and are processed based on the mode of cargo. Both flows of cargo then leave

the port area through the ExitPoint to the next port area in their respective flow. This

interconnection can also be extended to connect ports (or cargo terminals) together to

achieve an end-to-end flow of cargo from an installation to the Theatre of War and vice

versa.

3.6 Resource Handling for Concurrent Operations

Resources are a vital part of the CPORTS simulation and play an important part in

the transport of cargo from one port area to another. Resource handling, in turn, becomes

very important for concurrent POD / POE operations so that a lack of resources does not

hinder the flow of cargo in one or both directions.
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There are various approaches to dealing with resources.

~ Resources can be placed in a common pool for use by both the POE and POD

operations. In this case, the resources are allocated on a first-come-first-served

basis.

~ Resources can be separated into pools dedicated to either POD or POE operations.

~ Resources can be allocated based on a prioritized allocation procedure. The

priority can be constant for the entire duration of the simulation or can be changed

according to the cargo load flowing in a particular direction at a particular point in

the simulation.

~ Resources can be placed into pools that are distributed in various port areas and

then reallocated based on need.
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Chapter IV

CONCURRENT RAIL OPERATIONS

4.1 Overview

This chapter describes the various rail operations within a port. The infrastructure

as well as the various processes involved in the clearance of rail cargo is detailed in the

first part of the chapter. The chapter discusses the simulation of concurrent rail operations

within the architecture described in Chapter 3 and the methods used to resolve various

issues involved. The chapter concludes with an analysis of the results of the simulation.

4.2 Description of Rail Operations

This section deals specifically with the process model used in CPORTS to deal

with the clearance of rail cargo from a port. The first sub-section describes the

infrastructure within the port that is used for rail operations. The following sub-sections

describe the various processes involved in POD and POE rail operations.

4.2.1 Operational Infrastructure

Rail operations are concentrated within two areas in a port - the Interchange Yard

Area (IYA) and the Rail Spur Area (RSA). An IYA is a holding area for empty trains

waiting to be loaded with cargo as well as a reconstruction area for trains loaded with

cargo. A RSA is usually smaller than an IYA and is further inside the port. It is a holding

area for strings of rail cars being loaded with cargo.
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4.2.2 Port of Debarkation (POD) Operations

Rail cargo is brought into the port in the same manner as other types of cargo and

is processed through the Berth Areas and the Staging Areas (SAs) in a similar fashion. At

this stage, cargo is processed differently based on the mode of transport by which the

cargo is scheduled to leave the port. Cargo scheduled to leave by highway transports is

processed through a Loading Area and leaves through a gate. Cargo scheduled to leave

by convoy is assembled in the Convoy Construction Area (CCA). The CCA can be inside

or outside the port and cargo may have to pass through a gate to get to the CCA. Once a

convoy has been assembled, it proceeds to its destination.

Rail cargo follows a different path through the port, which is shown in Figure 4.1

[12], [16]. Rail cargo is processed in the SA and is placed in a central pool for the entire

set of staging areas called the rail cargo pool. The cargo waits in this rail cargo pool until

a train arrives at the port to carry the cargo out of the port. When enough cargo to fill a

train arrives in the SA, a train, if available is advanced to the IYA. At the IYA, the train

is split into rail strings to fit the smaller RSAs for loading cargo. The cargo meant for a

rail string is sent from the SA to the appropriate RSA. Once the rail string is loaded, it is

pulled back to the IYA and the next rail string is sent to the RSA. This continues until the

entire cargo is loaded onto the train. After it has finished loading, the train waits for a

commercial locomotive to become available. The commercial locomotive then pulls the

loaded train out of the port to its destination. Figure 4.2 shows the process-level

interaction between various port areas during the flow of POD rail cargo through the port.

The various POD processes and their interaction are described in detail in Appendix A.
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Loaded Ships
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Figure 4.1 Flow of POD Rail Cargo through a Port



Figure 4.2 POD Rail Cargo Processes
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4.2.3 Port of Embarkation (POE) Operations

Rail cargo is brought into the port by trains that have been loaded with cargo at an

installation or a POD port. These trains are then advanced to the next available IYA at the

port. At an IYA, a train is split into rail strings to fit the smaller RSAs. At an RSA, the

rail strings are unloaded using the resources available in that area. Resources arrive to

transport the cargo from the RSA to a suitable SA. Once a rail string has been unloaded,

it is pulled back to the IYA and the next rail string is sent to the RSA. This continues

until the entire cargo has been unloaded from the train. After it has finished unloading, a

train waits for a commercial locomotive to become available. The commercial

locomotive then pulls the empty train out of the port to its destination. In the SA, rail

cargo waits to be transported to the Berth Areas to be loaded onto ships, which are

assigned to carry the cargo. Cargo is loaded onto the ships, which then clear the cargo

from the port through the Anchorage Area.

This flow of POE rail cargo through a port is shown in Figure 4.3 ]'12], ]'16].

Figure 4.4 shows the process-level interaction between various port areas during the flow

of POE rail cargo through a port. The various POE processes and their interaction are

described in detail in Appendix B.

4.2.4 Resource Contention between POD and POE Operations

The POE operations through a port directly affect the POD operations while both

operations are being run concurrently. Specifically, the POE operations affect the
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Empty Ships

Figure 4.3 Flow of POE Rail Cargo through a Port
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Figure 4.4 POE Rail Cargo Processes

clearance times for the POD operations due to the diversion of port infrastructure and

resources for POE operations. The availability of the following infrastructure and

resources are affected by the POE operations.
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~ Port Infrastructure

All infrastructure within the port has a finite storage area. POE rail operations

increase the contention for the following port areas.

~ 1nterchange YardAreas

Trains carrying POE rail cargo and trains scheduled to carry POD rail cargo have

equal priority to enter the IYA. The trains carrying POE rail cargo take up space in an

IYA, delaying empty trains waiting to carry POD rail cargo out of the port.

~ Rail Spur Areas

Rail strings carrying POE rail cargo and rail strings to be loaded with POD rail

cargo have equal priority to enter the RSA. Since an RSA accepts only one rail string

(POD or POE) at a time, rail strings waiting to be loaded with POD cargo are delayed

by POE rail strings being unloaded, thereby affecting the clearance of POD rail cargo

through the port.

~ Staging Areas

All types of POD cargo (except helos and watercraft) wait in the SA for transports

and resources to clear them out of the port. POE rail cargo that is brought into the

RSA requests space in the SA. Since all requests for space (for POD or POE cargo)

are granted on a first-come-first-served basis, POD cargo is on a ship for a longer

time waiting for space to be freed up in the SA.
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~ Berth Areas

Ships loaded with POD cargo wait in the berth areas for the cargo to be unloaded.

Ships arriving at the port to carry POE cargo out of the port also request space in the

Berth Areas. Since all requests for space (for POD or POE ships) are granted on a

first-come-first-served basis, POD ships may have to wait longer to dock at the port.

~ Port Resources

Port resources are available on a limited basis. POE rail operations increase the

contention for the following resources.

~ Port Locomotives

Port locomotives haul rail strings between an IYA and an RSA. Locomotives

required to haul POE rail strings reduce the number of locomotives available for rail

strings carrying POD cargo.

~ Staging Area Resources

Container handlers and drivers are required to transport cargo between a SA and

an RSA. POE rail cargo increases the requests for these resources, thereby delaying

POD cargo waiting in the SA to be transported to the RSA.

~ Berth Area Resources

Harbor pilots, tugs, cranes, line handlers, chassis, container handlers, and drivers

are required to transport cargo between a SA and a Berth Area. POE cargo increases

the requests for these resources, thereby delaying POD cargo waiting in the Berth

Area to be transported to the SA.
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A potential deadlock situation that might arise is the scenario that the SA is filled

with POD rail cargo waiting for trains to carry it out of the port, while the IYAs and

RSAs in the port are filled with POE rail strings and trains waiting for space to be freed

up in the SA so that cargo can be unloaded from the rail strings and the POE trains can

leave the port. In this case, the simulation is deadlocked with both POD and POE

operations being stalled for need of infrastructure and / or resources. The deadlock can be

resolved operationally by increasing the available area in the port areas, particularly the

SA, by adjusting the arrival profile of cargo and / or transports entering the port or by

partitioning infrastructure and resources based on the mode of cargo (POD or POE).

4.3 Simulation of Concurrent Rail Operations

This section deals with the simulation of concurrent rail operations through a port.

It shows the ease with which the POE rail operations can be simulated concurrently with

the POD rail operations using the architecture described in Chapter 3. The first part of

this section deals with the interconnection between components within the model. The

second part of the section discusses how resource and infrastructure contention is

resolved in the model.

4.3.1 Concurrent Rail Operations

POD operations are first modeled using the architecture described in Chapter 3.

POE rail operations are then integrated into the same architecture to model the concurrent

flow of rail cargo through the port. POE rail operations are modeled from the arrival of

trains at the port loaded with cargo till the SA, for demonstration purposes. A complete
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concurrent POD / POE simulation can be developed by extending the POE process model

to model the flow of cargo until they are loaded on to ships and by including other types

of cargo arriving by different transport modes.

Figure 4.5 Micro-Level Interconnection between Port
Areas for Concurrent POD I POE Rail Operations



Figure 4.6 Macro-Level Interconnection for
Concurrent POD I POE Rail Operations

Figures 4.2 and 4.4 show the processes involved in the flow of rail cargo through

a port. Both POD and POE resources and transports follow complementary paths through

the port. The interconnection between port areas is common for both the POD and POE

rail operations. Figure 4.5 shows the micro-level interconnection between various port

areas during the flow of cargo. At a higher level of abstraction, resources and transports

enter and leave a port area through the EntryPoint and ExitPoint respectively. A resource

or a transport enters a port area and is processed based on the process mode of the cargo

(POD or POE) it is carrying or is scheduled to carry at some point in the future. The
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architecture is, therefore, flexible and robust enough to integrate both the POD and POE

rail processes. Figure 4.6 shows the macro-level interconnection for both processes.

4.3.2 Resolving Resource and Infrastructure Contention

An important aspect of integrating POD and POE operations into the same

architecture is to resolve the resource and infrastructure contention within the port, which

might not appear for a POD operation. It is unavoidable that the POE operations delay the

clearance of POD cargo through the port. However, it is vital that the POE operations do

not stall all operations within the port. The contention between various resources is

resolved in the following manner.

~ Port Infrastructure

~ Interchange YardAreas

Trains carrying POE rail cargo and trains destined to carry POD rail cargo, both

compete for common space in the IYAs. Once an IYA has been selected, space is

requested in that IYA. The allocation of space indicates that space is available and

that the space has been reserved for the train. When the train leaves the IYA, it

releases its space.

~ Rail Spur Areas

Rail strings carrying POE rail cargo and rail strings to be loaded with POD rail

cargo both compete for common space in the RSAs. Since an RSA accepts only one

rail string (POD or POE) at a time, once an RSA has been allocated, no other requests
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for space in the RSA are granted. When the rail string leaves the RSA, it releases its

space indicating that space is available for the next rail string.

~ Staging Areas

Port areas in general have limited capacities. Multiple pieces of cargo can be

concurrently transiting to a SA, each requiring space. The cargo arriving at the SA

first occupies the space, with the other(s) being forced to wait outside the SA. This

could result in an infinite queue. To address this, port areas have a request space

capability. Before the cargo begins to transit to a port area, space is requested in the

port area. The granting of space not only indicates that space is available, but that

space has been reserved for the cargo. When the cargo leaves the port area, it releases

its space.

~ Port Resources

~ Port Locomotives

Locomotives are kept in a single resource pool within the port. Locomotives are

requested from the same central pool to haul both POD and POE rail strings between

RSAs and IYAs and then are released back into the same pool.

~ Staging Area Resources

Container handlers and drivers required to transport cargo between a SA and an

RSA are kept in a single resource pool (one for each) within the port. Both POD and

POE rail cargo request resources from the same pools.
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4.4 Analysis and Results

This architecture for concurrent POD / POE processes is tested by simulating the

flow of concurrent rail cargo through the port of Ad Dammam in Saudi Arabia. The Ad

Dammam scenario has been built to simulate the POD operations through the port for the

CPORTS project. As mentioned before, all the resources and infrastructure of the port

generally are not available for military operations. A specified portion of the port is

allocated for military operations. Certain modifications need to be made to the scenario

usually used for POD operations to accommodate the simulation of POE rail operations

concurrently with the POD operations:

~ A separate executable file is built to simulate the concurrent flow of rail cargo.

~ The POD cargo consists of only rail cargo and the same is true for the POE cargo.

~ The SA capacity in the port of Ad Dammam that is available for POD operations

has been increased by a factor of 1.3 to handle the extra load of the POE rail cargo

as well to avoid any possible deadlock condition that might occur within the

simulation.

~ Resources and infrastructure within the port are allocated on a first-come-first-

served basis for both POD and POE operations.

Figure 4.7 shows the routes between various port areas as well as the flow of

different types of POD cargo through the port of Ad Dammam [13j, [16]. Figure 4.8

shows the POE cargo flow. The simulation of concurrent operations involves flow of

POD and POE cargo simultaneously.
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The details of the simulation are given below:

~ Number of POD rail cargo = 21264 pieces.

~ Empty trains to carry POD cargo out of the port arrive with an interarrival time

that has an exponential distribution with a mean of 100 hours.

~ Empty POD trains return to the port to carry more cargo after a cycle time that

has an exponential distribution with a mean of 350 hours.

~ Number ofPOE rail cargo = 14150 pieces.

~ Trains carrying POE cargo arrive once every 24 hours (constant).

~ Both POD and POE trains have equalpriority to enter the port and to be allotted

space in the IYAs and RSAs.

Graph 4.1 Closure Times for Port Ad Dammam for various Cargo flows
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Graph 4.1 shows the closure times for the POD cargo and POE cargo by

themselves as well as the closure times for the concurrent flow of POD and POE cargo.

The graph shows that clearance of POD cargo is affected by the POE cargo. After all the

POE cargo has been cleared through the port, the POD cargo continues to be cleared at

the same rate as when only POD cargo flows through the port.

Graph 4.2 Closure Times for various Cargo flows with varying number
of Rail Spur Areas

Graph 4.2 shows the effect of the number of RSAs on the clearance of cargo

through the port. The graph shows that as the number of RSAs increases, the clearance

times for all flows of cargo decreases. The graph also shows that four RSAs are enough

to clear this particular cargo scenario.
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Graph 4.3 shows the effect of the number of IYAs on the clearance of cargo

through the port. Similar to the previous graph, it shows that as the number of lYAs

increases, the clearance times for all flows of cargo decreases. Since only rail cargo is

involved in this particular simulation run, the number of RSAs and IYAs has the most

impact on the clearance of cargo.

Graph 4.3 Closure Times for various Cargo flows with varying number
of Interchange Yard Areas

The performance of the simulation in terms of execution time depends on the

configuration of the machine being used. Table 4.1 shows the execution times for the

POD simulation and the POE simulation, as well as the simulation of the concurrent flow

of cargo on different machines. The table shows that the concurrent simulation does not

add significant overhead to the POD simulation above the required POE simulation time.
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Table 4.1 Execution Times for the Simulation

The results of the analysis can be summarized as follows:

~ POE operations have a significant impact on POD operations. This impact is

important when the flow of POD cargo is mainly for sustainment of existing

military forces, while the POE cargo is mainly cargo returning afler deployment.

~ The architecture is robust and flexible enough to handle concurrent operations.

~ The simulation of concurrent operations for a relatively large scenario executes

within 30 seconds on any standard computer.

~ The model can support the simulation of 500,000 pieces of cargo, which

adequately satisfies the stated requirement of the model.



s4

Chapter V

CONCLUSION

Transportation logistics simulation is extensively used by the military to plan for

the transportation of military cargo, i.e., troops, equipment, and supplies, to the Theatre

of War. The architecture described in this thesis provides a means of analyzing the

concurrent flow of cargo in opposite directions, both to and from the Theatre of War,

through a cargo terminal and eventually through a network of cargo terminals. Although

this architecture has been developed for military applications, it can also be used for

commercial applications to study the flow of commercial cargo through a network of

cargo terminals to its final destination. This chapter details the achievements of this thesis

and suggests several enhancements.

5.1 Achievements

The work described in this thesis document has achieved the following:

It is the first architecture that supports the simulation of concurrent POD and POE

military operations.

~ The architecture itself is object-oriented and hence exhibits all the advantages of

object-oriented programming.

~ The simulation of concurrent operations shows the effect that POE processes have

on POD processes. The clearance times, as well as the availability of resources

and infrastructure for POD operations, are clearly affected by the POE operations.
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~ The simulation of concurrent operations enables the port expert to devise methods

to support concurrent operations without adversely affecting either of the

operations.

~ The time required for the simulation of concurrent operations is on average no

worse than the sum of the simulation times for individual POD and POE

operations.

The architecture can support the simulation of 500,000 pieces of cargo flowing in

both directions.

~ This architecture is currently being used for the simulation of a network of cargo

terminals and has proved to be extremely flexible for development purposes.

5.2 Enhancements

The architecture described in this thesis provides a framework to support the

simulation of concurrent POD / POE operations through a port. The architecture is shown

to be robust enough to support concurrent rail operations through a port. It is hoped that

the architecture would support a full-scale concurrent operation through a port.

Towards that end, a few possible enhancements are listed below.

~ The architecture described in this document has been tested with a full POD flow

of rail cargo and a minimal, restricted flow of POE rail cargo. A full test can be

performed by describing the full POE processes until cargo is loaded onto ships,

which then leave the port.
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~ The architecture can be tested further by incorporating other transport modes like

Highway, Air and Convoys into the POE process model.

~ The architecture can be used to initialize multiple cargo terminals at the same

time and to connect them together to form a network of terminals. This will help

to study an end-to-end cargo flow in both directions.

~ This architecture has been developed in the MODSIM simulation language [14],

[15]. Due to the limited lifetime of the MODSIM language, there is a need to

implement the architecture in other object-oriented languages like C++ or Java to

support future projects.

Overall, the architecture has been successful in meeting all the requirements for

the simulation of concurrent POD / POE operations through a port. The success of the

architecture has been borne out further by the fact that the Military Traffic Management

Command Transportation Engineering Agency (MTMCTEA) is funding the effort for a

complete POD / POE model to be built explicitly to adhere to this architecture.
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APPENDICES

A. POD Rail Processes

The processes associated with the clearance of POD rail cargo through a port can

be described in two ways. The first is by studying the scenario of an empty train arriving

at the port, getting loaded with cargo waiting to be loaded and leaving the port filled with

cargo. The second is by studying the scenario where the cargo arrives before a train is

available to carry it out of the port or there are trains waiting for cargo to fill them so that

they can leave the port. Both are described in detail below.

A,1 Selecting cargo to fill a single train

The process of handling a train arriving at the port is shown in Figure A.l.

Figure A.1 Model Flow Diagram for POD TransportArriveRail process
in a Port Object
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When the train arrives at the port, it does not directly enter the port. It calls the

InitTrainCargo process in the StagingAreaSet object (Refer to Figure 4.2), which in turn

triggers the rail cargo pool in the set of Staging Areas (SAs) to define enough cargo,

which will fit in that train. In the InitTrainCargo process, a new TrainStatus object is

defined for the train. The TrainStatus object is a clone of the train that has just arrived at

the port and is used to allot cargo to the train without having the train enter the port. The

TrainStatus object is initialized with all the characteristics of the train. Figure A.2 shows

a TvainStatus object.

Figure A.2 TrainStatus Object

Cargo, if available is slotted to be loaded onto the train by calling the

FillRailCargo process in the StagingAreaSet object (Refer to Figure 4.2). If no rail cargo

is available to be loaded, the train (i.e., the respective TrainStatus object) is added to a

queue waiting for rail cargo. The InitTrainCargo process is shown in Figure A.3.

In the FillRailCargo process, cargo that is available to be loaded on the train is

pulled out from the rail cargo pool and is passed on to the PutCargoonTrain process in

the StagingAreaSet object (Refer to Figure 4.2) to see if that particular piece of cargo can



Figure A.3 Model Flow Diagram for POD InitTrainCargo process
in a StagingAreaSet Object

fit on the train. If the piece of cargo fits on the train, it is scheduled to be put on the train

by adding it to the TrainStatus object. If the train is not filled up completely and no

further rail cargo is currently available to be loaded, the train (i.e., its TrainStatus object)

is added to a queue where it waits for further cargo. The FillRailCargo process is shown

in Figure A.4.

In the PutCargoOnTrain process, it is verified whether the piece of cargo will fit

on the train. Appropriate allowance is made for buffering at the ends of a rail car as well

as a buffer between two pieces of cargo. If the piece of cargo does not fit on the train and

no other train is available to be loaded, the piece of cargo is added back to the rail cargo
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[Last piece of cargo in
Rail Cargo Pool OR Train Putt]

Figure A.4 Model Flow Diagram for POD FiliRailCargo process
in a StagingAreaSet Object

pool where it waits for another train to be loaded. The PutCargoOnTrain process is

shown in Figure A.5.

The second way of describing the processes associated with the clearance of POD

rail cargo through a port is by studying the scenario where the cargo arrives before a train

is available to carry it out of the port or there are trains waiting for cargo to fill them so

that they can leave the port. In both cases, the SA calls the ProcessRailCargo process in

the SragingAreaSet object (Refer to Figure 4.2). This process is shown in
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[IF Cargo Length &= (Rail Car Length - (2 x Buffer))]

[IF Cargo Length &= Current Car Length]

Add Cargo to Train

[IF Current Car & 1]

Decrement Current Car

Return Not Fit

Return cargo Pui on Train

Calculate Current Car Length

Calculate Current Car Length

Return Train Full

[IF Current Car = 1 AND Current Length = 0]

Return Train Full

Figure A.5 Model Flow Diagram for POD PutCargoOn Train process
in a StagingAreaSet Object

Figure A.6. The piece of rail cargo that just arrived in the SA is checked to ascertain

whether it can fit on any of the waiting trains (if any available), which already have cargo

available to be loaded. The trains waiting for cargo are represented by their respective

TrrginStatus objects. If adding the piece of cargo fills up a train, then the train is triggered

to enter the port using the GetTrain process in the fnterchr2ngeYardAreaSet
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[mar

Figure A.6 Model Flow Diagram for POD ProcessRaiiCargo process
in a StagingAreaSet Object

object (Refer to Figure 4.2). This process is explained in the next section. If the piece of

cargo cannot be fitted on any available train, it is added to the rail cargo pool waiting for

a train that can carry it out of the port.



A.2 Triggering a train to enter the port

Once enough cargo has arrived in the SAs to fill a train or if the last piece of rail

cargo has arrived, the train is triggered to enter the port. This is done using the GetTrain

process. The cars that are not scheduled to carry any cargo are marked as full before the

train enters the port. The GetTrain process is shown in Figure A.7.

Figure A.7 Model Flow Diagram for POD GetTrain process
in an InterchangeYardAreaSet Object

Before the train enters the port, it waits for the simulation to select an Interchange

Yard Area (IYA) from the set of available IYAs. The selection is based on the maximum

utilization of the available IYAs. If an IYA exists that can accommodate the train, then

the IYA with the most available space is selected. If one is not available, then the train

waits for an IYA to become available. The SelectlYA process in the

1nterchangeYardAreaSet object (Refer to Figure 4.2) is shown in Figure A.8. Once an

IYA is selected, the train is triggered to enter the port. An IYA is shown in Figure A.9.
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Figure A.S Model Flow Diagram for POD SelectIYA process
in an InterchangeYardAreaSet Object

Figure A.g InterchangeYardArea Object
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The ResourceArrfve process in the InterchangeYardArea object (Refer to Figure

4.2) models the empty train entering the IYA. The rail cars of the train are uncoupled and

the commercial locomotive that brought the train into the port is allowed to leave. The

train is then ready to be sent to the Rail Spur Area (RSA) to be loaded with cargo. The

ResourceArtdve process is shown in Figure A. IO.

Once the empty train has arrived in the IYA, the train is broken up into strings of

rail cars to be sent to the RSA. It is possible that the entire train might not fit in the RSA

at one time. Hence, the RSA that can fit the largest number of rail cars is selected. The

string of rail cars are removed from the train and attached to a port locomotive which

then transports it to the selected RSA.

Figure A.10 Model Flow Diagram for POD ResourceArrive process
in en InterchangeYardArea Object

The SendTrain process in the InterchangeYardArea object (Refer to Figure 4.2) is

shown in Figure A. I l.



Figure A.11 Model Flow Diagram for POD SendTrain process
in an InterchangeYardArea Object

If the entire train can fit into any of the available RSAs, then the train is directed

to one of these RSAs. However, if the train is too large to fit into any of the available

RSAs, then the train is broken up into strings of rail cars to fit into the available RSA. If

no RSA is currently available, then the train waits for one to become available. The

SelectRSA process in the RaiISpurAreaSet object (Refer to Figure 4.2) is shown in Figure

A.12.

Once an RSA has been selected, the string of rail cars waits for a port locomotive

to arrive, which transports it to the RSA. The RcsourceLeave process in the

InterchangeyardArea object (Refer to Figure 4.2) is shown in Figure A.13.



Figure A.12 Model Flow Diagram for POD SelectRSA process
in a RailSpurAreaSet Object

Figure A.13 Model Flow Diagram for POD ResourceLeave process
in an InterchangeYardArea Object
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A.3 Loading a train with its cargo

As the string of rail cars leaves the IYA for the RSA, it triggers the set of SAs to

gather the rail cargo destined to leave on that string, and send it to the RSA for loading.

The GetRaitCargo process in the StagingAreaSet object (Refer to Figure 4.2) is shown in

Figure A.14.

Figure A.14 Model Flow Diagram for POD GetRatlCargo process
in a StagingAreaSet Object

The individual SAs are triggered to send the cargo to the RSA via the CargoJ eave

process in the StagingArea object. The SendRai!Cargo process in the StagingAreaSer

object (Refer to Figure 4.2) is shown in Figure AA5.
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Figure A.15 Model Flow Diagram for POD SendRailCargo process
in a StagingAreaSet Object

An RSA is shown in Figure A.16.

Resource carrying
cargo arrives from
the Staging Area

Cargo Arrive Cargo Arrive Cargo Leave

Loaded Rail String
transits to the

Interchange Yar Area

Cargo Leave

Load Cargo

Resource Leave

Empty resources
transiting back to
the Staging Area

Resource
Leave

Resource
Arrive

Resource Arrive

Empty Rail String
arrives from the

Interchange Yard Area

Figure A.16 RailSpurArea Object
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Cargo scheduled to be loaded on to a train arrives in the RSA from the SA via the

CargoArrive process in the RailSpurArea object (Refer to Figure 4.2). The cargo waits

for the string of rail cars to arrive and is then loaded on to the train. The CargoArrive

process is shown in Figure A.17.

Figure A.17 Model Flow Diagram for POD CargoArrive process
in a RailSpurArea Object

The string of empty rail cars enters the RSA via the ResourceArri ve process in the

RailSpurArea object (Refer to Figure 4.2), which is shown in Figure A.18.

Figure A.18 Model Flow Diagram for POD ResourceArrive process
in a RailSpurArea Object
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Once the cargo as well as the string of rail cars to carry the cargo has arrived in

the RSA, the cargo is loaded onto the rail cars. The process of loading the cargo varies

depending on the type of cargo as well as the loading resources available in the particular

RSA. The LoadCargo process in the RailSpurArea object (Refer to Figure 4.2) is shown

in Figure A.19.

[Last eece]

Figure A.tg Model Flow Diagram for POD LoadCargo process
in a RailSpurArea Object
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When all the cargo has been loaded on to the string of rail cars, the string waits

for a port locomotive to pull it out of the RSA to the IYA where it came from. The

CargoLeave process in the RailSpurArea object (Refer to Figure 4.2) is shown in Figure

A.20.

Figure A.20 Model Flow Diagram for POD CargoLeave process
in a RailSpurArea Object

A.4 Train leaving the port with its cargo

The CargoArrive process in the InierchangeYardArea object (Refer to Figure 4.2)

is shown in Figure A.21. Once the string of rail cars arrives in the IYA loaded with cargo,

the port locomotive is uncoupled from the string and the string is attached to the main

train. If all the rail cars in the train have been loaded with their cargo, the train is sent out

of the port via the CargoLeave process in the InterchangeYardArea object (Refer to

Figure 4.2).
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Figure A.21 Model Flow Diagram for POD CargoArrive process
in an Interchange YardArea Object

The train waits for a commercial locomotive to become available to haul it out of

the port. The CargoLeave process is shown in Figure A.22. The train then leaves the port

and travels to its destination.

The TransporrLeaveRail process in the Port object (Refer to Figure 4.2) is shown

in Figure A.23.
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Figure A.22 Model Flow Diagram for POD CargoLeave process
in an interchangeYardArea Object

Figure A.23 Model Flow Diagram for POD TransportLeaveRail process
in a Port Object

B. POE Rail Processes

The processes associated with the clearance of POE rail cargo through a port can

be described by following the path of a train arriving at the port loaded with cargo.
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B.l Train with cargo arriving at the port

The POE rail cargo is brought into the port by trains arriving at the port with the

cargo loaded onto them at a previous location such as an installation or a POD port. The

trains wait for a suitable IYA to become available in the same manner as a POD train. As

soon as one becomes available, the trains advance to the IYA. The TransportAtriveRai I

process in the Port object (Refer to Figure 4.4i is shown in Figure B.l.

Figure B.1 Model Flow Diagram for POE TrartsporttttrriveRail process
in a Port Object

B.2 Train entering the port

In the IYA, the rail cars of the train are uncoupled and the commercial locomotive

that brought the train into the port is allowed to leave. The train is then ready to be sent to

the RSA to be unloaded. The train is split into strings of rail cars to fit the RSA. The

CargoArrive process in the InterchangeYardArea object (Refer to Figure 4.4i is shown in

Figure B.2.
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Figure B.2 Model Flow Diagram for POE CargoArrive process
in an InterchangeYardArea Object

Once, the RSA has been selected, the string of loaded rail cars is sent to that

particular RSA. The CargoLeave process in the InterchangeYardArea object (Refer to

Figure 4.4) is shown in Figure B.3.

B.3 Unloading the train

The CargoArrive process in the RailSpurArea object (Refer to Figure 4.4) is

shown in Figure B.4. Once the string of rail cars loaded with cargo has arrived in the

RSA, the cargo waits for a resource to become available to carry it to the SA.
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Figure B.3 Model Flow Diagram for POE Cargoieave process
in an InterchangeYardArea Object

Once available, the cargo is unloaded and again waits for space to become available in a

SA.

When space becomes available, the resource transports the cargo to the SA. The

CargoLeave process in the RailSpurArea object (Refer to Figure 4.4) is shown in Figure

B.5. This process continues until all the cargo has been unloaded from the string of rail

cars. The string then returns to the IYA. The ResourceLeave process in the RailSpurArea

object (Refer to Figure 4.4) is shown in Figure B.6.

B.4 Empty train leaving the port

Once, the string of empty rail cars arrives in the IYA, the port locomotive is

uncoupled from the string and the string is attached to the main train. The
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T Empty]

[String Empty]

Figure B.4 Model Flow Diagram for POE CargoArrive process
in a RailSpurArea Object

ResourceArrive process in the InterchangeYat dArea object (Refer to Figure 4.4) is shown

in Figure B.7.



Figure B.5 Model Flow Diagram for POE CargoLeave process
in a RailSpurArea Object

Figure B.6 Model Flow Diagram for POE ResourceLeave process
in a RailSpurArea Object

If all the rail cars in the train have been unloaded, the empty train is sent out of

the port via the RcsourceLeave process in the InterchangeYardArea object (Refer to

Figure 4.4). The empty train waits for a commercial locomotive to become available to

haul it out of the port. The RcsourceLeave process is shown in Figure B.g. The

TransportLeaveRail process in the port object (Refer to Figure 4.4) is shown in Figure

B.9.
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[No. of empty cars

Figure B.7 Model Flow Diagram for POE ResourceArrive process
in an InterchangeYardArea Obj ect

Figure B.9 Model Flow Diagram for POE TransportieaveRail process
in a Port Object
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Figure B.s Model Flow Diagram for POE ResourceLeave process
in an Interchange YardArea Object
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