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Intrinsic transverse momentum and evolution in weighted spin asymmetries
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3Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University,
Hangzhou, Zhejiang 310027, China
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The transverse momentum-dependent (TMD) and collinear higher twist theoretical factorization
frameworks are the most frequently used approaches to describe spin-dependent hard cross sections
weighted by and integrated over transverse momentum. Of particular interest is the contribution from small
transverse momentum associated with the target bound state. In phenomenological applications, this
contribution is often investigated using transverse momentum weighted integrals that sharply regulate the
large transverse momentum contribution, for example, with Gaussian parametrizations. Since the result is a
kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the
formalisms are related in applications to weighted integral observables. The suppression of a large
transverse momentum tail, for example, can potentially affect the type of evolution that is applicable. We
find that a naive version of a widely used identity relating the k2T-weighted and integrated Sivers TMD
function to a renormalized twist-3 function has strongly ambiguous ultraviolet contributions, and that
corrections to it are not necessarily perturbatively suppressed. We discuss the implications for applications,
arguing in particular that the relevant evolution for transverse momentum weighted and integrated cross
sections with sharp effective large transverse momentum cutoffs is of the TMD form rather than the
standard renormalization group evolution of collinear correlation functions.

DOI: 10.1103/PhysRevD.101.116017

I. INTRODUCTION

Understanding fully the single transverse-spin asymme-
tries (SSAs) of high energy scattering cross sections with
the momentum transfer Q ≫ ΛQCD is still one of the most
fascinating and challenging subjects in QCD since its
discovery in hadronic Λ0 production over 40 years ago
[1]. The transverse SSA, defined as AN ¼ ðσðSTÞ−
σð−STÞÞ=ðσðSTÞ þ σð−STÞÞ, has been observed in many
cross sections σðSTÞ, involving a single transverse hadronic
spin ST , and can be as large as 30%–40% in the forward
region of hadronic single pion production [2–4]. This
contradicted expectations about the size of the asymmetry
that were based on early theoretical calculations [5]. With
the parity and time-reversal invariance of QCD, it was
recognized that the nonvanishing AN is a consequence of

nonperturbative partonic motion and its correlation with the
direction of the observed hadronic spin. Thus, AN is a
uniquely useful observable for probing a hadron’s internal
partonic structure and for studying quantum correlations
between the partonic dynamics and emergent hadronic
properties such as total spin [6].
The ability to understand AN in terms of the correlations

between the partonic motion and hadronic spin relies on
QCD factorization [7] since any cross section with an
identified hadron (and any corresponding asymmetry) is
not perturbatively calculable in QCD. AQCD factorization
formalism for AN depends on the kinematics of measured
cross section σðSTÞ. As a typical two-scale observable, for
example, Drell-Yan lepton pair production by hard quark-
antiquark annihilation, as shown in Fig. 1 for partonic
targets, can have very different factorization formalisms for
ΔσðQT;Q; STÞ ¼ σðQT;Q;STÞ − σðQT;Q;−STÞ, defined
as the difference between cross sections with the transverse
spin flipped. In addition, it has two observed momentum
scales associated with the virtual photon: its invariant
mass Q ¼

ffiffiffiffiffi
q2

p
≫ ΛQCD and the transverse momentum

QT with respect to the collision axis of p and p0. When the
active parton’s transverse momentum is in the range
of kT ∼QT ≪ Q, represented by Fig. 1(a), intrinsic
transverse momentum can be important and transverse

*jqiu@jlab.org
†trogers@odu.edu
‡0617626@zju.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 116017 (2020)

2470-0010=2020=101(11)=116017(12) 116017-1 Published by the American Physical Society

https://orcid.org/0000-0002-7306-3307
https://orcid.org/0000-0002-0762-0275
https://orcid.org/0000-0002-7786-4902
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.116017&domain=pdf&date_stamp=2020-06-25
https://doi.org/10.1103/PhysRevD.101.116017
https://doi.org/10.1103/PhysRevD.101.116017
https://doi.org/10.1103/PhysRevD.101.116017
https://doi.org/10.1103/PhysRevD.101.116017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


momentum-dependent (TMD) factorization is relevant.
Then the contribution to AN from the diagram on the left
can be approximately represented (schematically) by the
TMD factorized expression on the right,

ΔσðQT;Q; STÞ
∝ σ̂ð0Þ

qq̄→ll̄ðQÞ ⊗ fð0Þ;TMD
q̄=q̄ ⊗ kTf

⊥ð1Þ
1T;q=q þOðQT=QÞ; ð1Þ

where σ̂ð0Þ is the lowest-order partonic Drell-Yan cross
section, shown as the lower factorized diagram on the right

of the arrow in Fig. 1(a), fð0Þ;TMD
q̄=q̄ ðx0; k0TÞ is the zeroth-order

unpolarized TMD antiquark distribution of an antiquark,
which is proportional to δð1 − x0Þδ2ðk0TÞ in lowest-order

perturbation theory, f⊥ð1Þ
1T;q=qðx; kTÞ is the first-order quark

Sivers TMD function of a quark, given by the top diagram
on the right of the arrow in Fig. 1, and ⊗ indicates the
convolution of the active parton’s momentum, both longi-
tudinal and transverse in this case. The asymmetry AN is
generated by the nonvanishing Sivers function [8–10].
But, when QT ∼Q, the same diagram, now symbolized

by Fig. 1(b), would give a leading fixed-order contribution
to AN while the loop on the left generates the needed phase
and the quark mass mq generates the spin flip for the AN .
This leads to an asymmetry proportional to g2smq=QT with

strong coupling constant gs, which was predicted to be very
small in view of mq ≪ QT ∼Q [5].
At the same QT ∼Q, however, additional mechanisms

can generate transverse SSAs and these are symbolized in
Fig. 1(c). When the transverse momentum of the active
parton for the hard scattering to produce the lepton pair is in
the range kT ≪ QT ∼Q, the formally higher-order diagram
on the left can be factorized in terms of twist-3 collinear
factorization

ΔσðQT;Q; STÞ
∝ Ĥð1Þ

qðgÞq̄→ll̄ðqÞ ⊗ fð0Þ;collq̄=q̄ ⊗ Tð1Þ
qðgÞ=q þOðΛQCD=QÞ; ð2Þ

where Ĥð1Þ is the lowest-order partonic hard part to produce
the SSA of high-QT lepton pair production. This is shown
as the bottom diagram on the right of the arrow in Fig. 1(c),
with the unpinched pole of the antiquark line having a (red)
bar to indicate the needed phase. The active quark-gluon
composite state allows for the helicity to flip between the
left and the right of the cut in this diagram, even with zero

quark mass. The fð0Þ;collq̄=q̄ ðx0Þ is the zeroth-order unpolarized
twist-2 collinear antiquark distribution of an antiquark at
lowest order of perturbation theory, which is proportional to

δð1 − x0Þ, Tð1Þ
qðgÞ=qðxÞ is the first-order twist-3 quark-gluon

correlation function of a quark, given by the top diagram on
the right, and⊗ indicates the convolution of active parton’s
longitudinal momentum fractions. The typical transverse
momenta of active partons here, which are expected to be
much smaller than the hard scale, QT ∼Q, are integrated
into the twist-3 quark-gluon correlation function, whose
size is determined by the imbalance of quark motion
generated by the color Lorentz force (the gluon) in defining
the twist-3 quark-gluon correlation functions [11–14].
Both TMD and twist-3 collinear factorization formal-

isms, in Eqs. (1) and (2), respectively, have been argued to
be valid to all orders in QCD perturbation theory for their
respective kinematical regimes [15–20]. In an overlap
region where ΛQCD ≪ QT ≪ Q, the TMD and twist-3
collinear factorization formalisms for the SSAs were shown
to be consistent with each other [21–23] when the active
parton kT and the phase of the Sivers TMD function are
perturbatively generated by the twist-3 mechanism.
Both TMD and twist-3 collinear factorization appro-

aches have also been used frequently to describe the
transverse moment of two-scale spin-dependent hard cross
sections and their asymmetries, by integrating over trans-
verse momentum QT while weighting by a single power of
QT , leaving the observables with only a single large
momentum transfer Q [24–28]. In principle, the moments
(or the asymmetries of the moments) of QT distributions
should be described by a QCD collinear factorization
formalism, if one exists, since the active parton’s kT should
be much less than the single hard momentum transfer Q.

(a)

(b)

(c)

FIG. 1. Low-order diagrams for AN of Drell-Yan lepton pair
production by hard quark-antiquark annihilation: (a) TMD fac-
torization when kT ∼QT ≪ Q ¼

ffiffiffiffiffi
q2

p
. (b) Fixed-order pertur-

bative QCD (pQCD) calculation when QT ∼Q. (c) Twist-3
collinear factorization when kT ≪ QT ∼Q.
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In practice, however, both factorization approaches have
been adopted for evaluating the moments of the QT
distributions. For example, an unpolarized Drell-Yan-like
cross section dσ

dQ2 is often calculated in terms of QCD

collinear factorization with perturbatively calculated hard

parts dσ̂ij
dQ2 convoluted with two twist-2 collinear parton

distribution functions (PDFs) fi=HðxÞ [7]. (Here we sup-
press the factorization scale and active parton flavor
indexes, i; j ¼ q; q̄; g.) The same observable can be viewed
as the zeroth moment of the QT distribution, dσ

dQ2 ¼R
dQ2

TðQ2
TÞ0 dσ

dQ2dQ2
T
, with the dσ

dQ2dQ2
T
evaluated in terms

of the TMD factorization formalism and unpolarized TMD
PDFs fi=Hðx; kTÞ when kT ∼QT ≪ Q, along with a proper
matching when QT becomes larger (QT ∼Q) to a cross
section calculation dσPert

dQ2dQ2
T
performed in terms of QCD

collinear factorization with twist-2 collinear PDFs [15].
Both approaches are well-defined within QCD perturbation
theory and within the frameworks of their corresponding
factorization theorems.
Of course, the above remarks apply similarly to other

processes with a transversely polarized hadronic target,
particularly semi-inclusive deep inelastic scattering (SIDIS)
with its typically smaller Q and higher sensitivity to
nonperturbative hadronic structure.
A commonly used relation between TMD PDFs and

twist-2 collinear PDFs,

Z
d2kTfi=Hðx; kTÞ ¼ fi=HðxÞ; ð3Þ

connects the two approaches to each other, up to OðαsÞ-
suppressed terms associated with different ways of includ-
ing high-order corrections [29]. When the full TMD
factorization formalism is used for the region of
QT ≪ Q, and optimized for the region ΛQCD ≪ QT ≪ Q
with resummed lnðQ2=Q2

TÞ-enhanced effects taken into
account, the cross section as a zeroth moment receives
corrections to Eq. (3), as demonstrated for inclusive Higgs
production in a Drell-Yan-like process [29].
It has been proposed that the TMD and twist-3 collinear

factorization approaches to describing the transverse
moment of the two-scale spin-dependent hard cross sec-
tions and their asymmetries are connected through a well-
known relation between the Sivers TMD function
f⊥1T;q=Hðx; kTÞ of hadron H and the twist-3 quark-gluon
correlation function TqðgÞ=HðxÞ [30],

Z
d2kT

k2T
M2

f⊥1T;q=Hðx; kTÞ ¼ −
1

M
TqðgÞ=HðxÞ; ð4Þ

in an analog to the relation in Eq. (3), where factors of the
hadron mass (labeled M) are included by convention to
make both sides dimensionless. To simplify notation, we

have dropped the usual second argument of the twist-3
quark-gluon correlation function TqðgÞ=Hðx; xÞ since for our
purposes we will only be interested in the case where both
active quark momentum fractions are equal. For the relative
minus sign in Eq. (4), the Wilson line in the Sivers TMD
function should be understood to point in the direction
relevant to lepton-hadron SIDIS [31], which would require
an extra minus sign in Eq. (4) if we prefer to use the Sivers
TMD function extracted from the Drell-Yan-type proc-
esses. In this paper, we try to verify the relation in Eq. (4)
and to understand how it is similar or different from the
unpolarized analog in Eq. (3).
The moment of the Sivers function on the left side of

Eq. (4) arises naturally in studies of the moment or weighted
transverse SSAs. For example, the TMD factorized expres-
sion in Eq. (1) can be used to evaluate the QT-weighted
asymmetry if one assumes it is approximately valid for the
full range ofQT-integration, that is, if one neglects theQT ∼
Q “Y-term” correction and assumes exact validity forEq. (4).
This results in a factorized expression proportional to the
integral on the left side of Eq. (4) [30].
The equality in Eq. (4) is widely understood to imply that

TqðgÞ=HðxÞ and f⊥1T;q=Hðx; kTÞ are essentially different ways
of representing similar physics [32–34], namely that of
intrinsic nonperturbative parton transverse momentum inside
a hadron target around kT ∼ ΛQCD. This view has motivated
various interpretations of experimental data, including, for
example, suggestions of tension in the phenomenology of the
Sivers effect [31,32]. Equation (4) is also a common ingre-
dient in phenomenological applications of twist-3 factoriza-
tionbecause practical functional representations of the twist-3
quark-gluoncorrelation function are obtainedviaEq. (4) from
phenomenological extractions of the Sivers function [35]. It
has also been suggested that Eq. (4) provides a kind of
loophole around the problems with TMD factorization that
arise in certain processes [36].
In Eq. (4), both the Sivers TMD function f⊥1T;i=Hðx; kTÞ

and the twist-3 correlation function TqðgÞ=HðxÞ are non-
perturbative but could in principle be extracted from
physically measured SSAs. If the d2kT-integration of a
measured f⊥1T;i=Hðx; kTÞweighted by k2T converges, then the
relation in Eq. (4) can be tested for its Q2 dependence as
well as its x dependence. However, the relation in Eq. (4) is
often used in the literature as an identity to replace one side
by the other side to help in the extraction of the Sivers TMD
functions (or twist-3 correlation functions) and thus does
not treat them as two different functions. Therefore, the
precise reliability of the relation in Eq. (4) can impact
ongoing community efforts to extract nonperturbative
TMD correlation functions and to explore hadron’s internal
partonic structure and its correlation to the emergent
hadronic properties.
In phenomenological applications, an ambiguity imme-

diately arises as to what type of Q2 dependence or scale
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evolution should be expected for the weighted integral on
the left side of Eq. (4) [37]. Taken literally, the right side
of the equation implies that the Q2 dependence should
follow from a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP)-type evolution of twist-3 quark-gluon correla-
tion functions [38,39] since TqðgÞ=HðxÞ should be extracted
from the observed AN factorized in terms of the twist-3
collinear factorization. By contrast, the f⊥1T;i=Hðx; kTÞ is to
be extracted from the observed AN differential in transverse
momentum and factorized in terms of TMD factorization,
whose Q2 dependence should follow the Collins-Soper
style of evolution [15,40], and without a full treatment of
the large QT ∼Q tail the additional transverse momentum
integral would not change this Q2 dependence to the
DGLAP type.
Like all QCD factorization formalisms, both the TMD

and twist-3 collinear factorization theorems for SSAs are
constructed such that collinear and infrared (IR) sensitivity
is automatically removed from the partonic scattering
process and placed in the nonperturbative long-distance
but universal TMD functions and twist-3 quark-gluon
correlation functions, respectively. The predictive power
of the TMD and twist-3 collinear factorization in Eqs. (1)
and (2) relies on (a) the universality of the Sivers TMD
functions and twist-3 collinear quark-gluon correlation
functions and, by extension, (b) their abilities to system-
atically remove the collinear and infrared sensitivities of the
corresponding partonic scattering to ensure the infrared
safety of σ̂ in Eq. (1) and Ĥ in Eq. (2) order-by-order in
QCD perturbation theory at all applicable momentum
scales. Given the difference in operators defining the
Sivers TMD function and the twist-3 quark-gluon corre-
lation function, it is not immediately clear that one should
expect TqðgÞ=HðxÞ and f⊥1T;q=Hðx; kTÞ to have comparable
nonperturbative small transverse momentum behavior,
since the partonic versions of such objects and their scale
evolution are clearly qualitatively different beyond the tree
level [38,41]. The question is whether a weighted kT-
integration of f⊥1T;q=Hðx; kTÞ like Eq. (4) would make them
be the same.
Furthermore, in order to apply QCD factorization to

the moment of spin-dependent hard cross sections and their
asymmetries beyond the tree level in perturbative calcu-
lations, the operators that define Sivers TMD functions
and twist-3 correlation functions in Eq. (4) should be the
renormalized ones, and the renormalization of correspond-
ing nonlocal operators needs to be specified. Otherwise, the
derivation of Eq. (4) involves manipulations with infinite
quantities [30]. So, in view of the widespread use of Eq. (4)
it is important to characterize possible violations to it that
might become apparent once the divergent behavior is
taken into account. Indeed, the violation of Eq. (4) as an
exact statement is already well known (see, for example,
Ref. [42], along with the discussion there regarding

sensitivity to large kT cutoff schemes). In particular, the
removal of ultraviolet (UV) regulators does not generally
commute with the evaluation of transverse momentum
integrals. However, it is typically assumed that, after
kT-cutoffs are in place, violations to Eq. (4) correspond
to small perturbative corrections and that it can be viewed
as a kind of zeroth-order approximation.
There are a number of open questions in the treatment of

factorization for weighted inclusive observables generally,
and we do not intend to address them all here. Indeed, with
only one large momentum scale observed, a complete
derivation of collinear factorization for fully inclusive
weighted moments in terms of twist-3 functions alone
does not yet, to our knowledge, exist. Instead, we will
highlight particular issues that arise by focusing on the
properties of individual parton correlation functions when
their definitions are taken literally. Nevertheless, we
emphasize that, for implementations that focus on the
small or nonperturbative transverse momentum region
while suppressing the large transverse momentum tail,
factorization with TMD correlation functions is natural.
Within the assumption that all operator matrix elements

are calculated using standard renormalization, we will
argue using an explicit calculation that the breakdown
of Eq. (4) is not perturbatively suppressed in the normal
sense and is sensitive instead to a collinear regulator. We
propose, therefore, to take Eq. (4) as a definition for the UV
behavior of TqðgÞ=HðxÞ rather than as a derived result, at
least for those observables that focus on the small trans-
verse momentum region. Moreover, if transverse momen-
tum cutoffs are sharp enough to retain sensitivity to
nonperturbative intrinsic transverse momentum, as with,
for example, narrow Gaussian parametrizations, then evo-
lution of the corresponding weighted and integrated asym-
metries should be for TMD functions rather than through
collinear evolution. The Gaussian (or similar) ansatz
approach to TMD phenomenology has met with significant
success in applications [43–45] and is an approach that
maintains a more natural link to intrinsic nonperturbative
physics than those that focus more on accurately describing
a broad perturbative transverse momentum tail.
Similar identities to Eq. (4) are used to relate other kinds

of twist-3 collinear and TMD functions, for example,
the Collins fragmentation function [46–48], and there are
many similar proposed relations between twist-3 and
TMD correlation functions [e.g., Eqs. (C13)–(C15) of
[49] ]. Thus, our results potentially impact the study of
weighted-integrated correlation functions more broadly.
The rest of this paper is organized as follows: In the next

section, we introduce our conventions for the renormaliza-
tion of PDFs and, in general, parton correlation functions.
As an example, and to set up later discussions of Eq. (4), in
Sec. III we further discuss the relation in Eq. (3) relating
spin averaged TMD PDFs and collinear PDFs. In Sec. IV,
we specify how the proposed identity in Eq. (4) is to be
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tested and show the violation of the identity in terms of an
explicit lowest-order calculation in perturbative QCD in
Sec. V. Finally, we discuss our results and our proposal for
the treatment of the evolution of weighted asymmetries
in Sec. VI.

II. RENORMALIZATION

We will refer to the renormalization of PDFs in the
standard sense of a renormalization of a generalized
operator product. So, for example, the renormalized col-
linear PDF for a quark in a hadron is

fi=Hðx; μÞ ¼ Zij ⊗ fj=H;0; ð5Þ

where i, j represent the quark flavor. The bare PDF
fj=H;0ðxÞ has the usual definition of a PDF, but defined
with bare fields. The ⊗ denotes the usual convolution
products over longitudinal momentum fractions that appear
in collinear factorization, and μ is the usual renormalization
group scale. Our calculations that use dimensional regu-
larization will work in dimension D ¼ 4 − 2ϵ and use a
generalized minimal subtraction scheme for renormaliza-
tion, in which case the Zij beyond zeroth order consist only
of ϵ-poles with mass-independent coefficients.
It is important to note that for higher twist opera-

tors renormalization can mix with operators of lower
dimension.
Renormalization is not the only valid way to define the

ultraviolet behavior of collinear correlation functions, but it
comes with many desirable features, including the auto-
matic cancellation of light cone divergences and order-by-
order validity of number and momentum sum rules. We
therefore view it as the default approach.
Renormalization works similarly for TMD PDFs, though

an extra kind of generalized renormalization is needed in
association with light cone divergences [16]. Such issues
will not arise directly in this paper, however.
For the message of this paper to be clear, it is important

to recall that with the renormalization approach to PDFs,
virtual and real UV divergences need to be consistently
regulated in the same way—see Sec. VI below for more
on this.

III. COMPARISON WITH UNPOLARIZED CASE

The equality in Eq. (3) relating unpolarized TMD PDFs
and collinear PDFs is similar to the relation in Eq. (4) in the
sense that a moment of the TMD PDF is related to a
corresponding collinear PDF. But the two equalities in
Eqs. (3) and (4) are also fundamentally different in the
nature of the operators involved.
For the relation in Eq. (3), the nonlocal operators

defining the TMD PDFs on the left-hand side and the
nonlocal operators of corresponding collinear PDFs on the
right-hand side share the same leading twist local operators

when the operator product expansion is applied to these
nonlocal operators. That is, both sides of the relation in
Eq. (3) share the same leading twist, leading-order pertur-
bative collinear, and UV behavior. As discussed earlier, the
same collinear sensitivities in perturbative calculations
from the two sides of the equality is a requirement
for factorization if both sides of Eq. (3) are to be equally
valid definitions for the collinear PDF. The integration
over k2T, specifically the transverse momentum flow
between the active quark in the scattering amplitude and
its complex conjugate, picks up the leading twist operators
with no transverse separation, which are logarithmically
UV divergent and require renormalization. Consequently,
differences between the two sides of Eq. (3) could
potentially include the effect of different choices (or
schemes) for renormalizing the perturbative leading twist
UV divergence and how this differs from the UV regulator
of the integration over the active parton’s transverse
momentum k2T . This leading twist scheme dependence
does not change the collinear sensitivities of either side
in Eq. (3). That is, any possible difference between the two
sides of the relation in Eq. (3) is infrared insensitive or
perturbatively calculable. Before turning to the extra
complications that might arise with Eq. (4), we quantify
the relation in Eq. (3) in the rest of this section.
As is well known, Eq. (3) is actually valid up to

perturbative corrections for renormalized PDFs (both
collinear and TMD) when a cutoff kc is imposed on the
transverse momentum integral and if TMD PDFs are
defined in any of the usual senses [16,41,50–61] that are
currently used. We may state this explicitly by first defining

ΔfðkcÞ≡ π

Z
k2c

0

dk2Tfi=Hðx; kT; μÞ − fi=Hðx; μÞ; ð6Þ

where the definition of fi=Hðx; kT; μÞ is any of the standard
TMD definitions, and fi=Hðx; μÞ is the standard renormal-
ized parton density. Then it is straightforward to verify that
the following factorization holds:

ΔfðkcÞ ¼
X
ij

Cijðx=x0; αsðμÞ; LÞ ⊗ fj=Hðx; μÞ

þO

�Λ2
QCD

k2c

�
; ð7Þ

where the Cij are mass-independent generalized functions
that depend on μ only through αsðμÞ and powers of the
logarithm

Lðkc=μÞ≡ ln

�
μ2

k2c

�
: ð8Þ

The Cij start at order αsðμÞ or higher. Therefore, as long
as the cutoff kc is fixed roughly at order μ, corrections
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to Eq. (3) are suppressed by at least a power of αsðμÞ.
When both the αsðkcÞ- and ðΛ2

QCD=k
2
cÞ-suppressed terms

in Eq. (7) are dropped, the identity in Eq. (3) is restored.
Verifying the above is possible to do directly in renorma-
lizable model field theories or in pQCD order-by-order.
The purpose of the discussion above is to make

statements about relations like Eqs. (3) or (4) holding at
“lowest-order” precise. Then in the next two sections we
explain why a statement analogous to Eq. (7) fails for
Eq. (4) if applied to ordinary renormalized correlation
functions.

IV. SPIN-DEPENDENT CASE

Now we return to Eq. (4). The general form of the
operator definition of the (pole part of the) twist-3 quark-
gluon correlation function is

TiðgÞ=HðxÞ ¼ gsϵSTαgαβ

Z
dξ−dη−

4π
eixP

þξ−hP; Sjψ̄ ið0ÞGβþ

× ðη−Þγþψ iðξ−ÞjP; Si: ð9Þ

ST is the transverse spin of the target and Gμν is the gluonic
field strength tensor. The analog of Eq. (5) is a renormal-
ized twist-3 quark-gluon correlation function

TiðgÞ=Hðx; μÞ ¼
X
ij

Za;ij ⊗ TjðgÞ=H;0

þ
X
b;ij

mb;ijZb;ij ⊗ hj=H;0;b: ð10Þ

The TiðgÞ=H;0 are defined as in Eq. (9), but here specifically
with bare fields, the hi=H;0;b are any of the possible lower
twist bare collinear operator matrix elements that might be
necessary in the renormalization, and the mb;ij are the
renormalized masses of any of the fields. As before, i and
j are parton flavor indices. The Za and Zb coefficients
are renormalization factors respectively for the bare
collinear twist-3 function TjðgÞ=H;0 and any other lower
dimension operators. In dimensional regularization
with generalized minimal subtraction, they are mass-
independent poles in ϵ.
The analog of Eq. (6) for Eq. (4) is

Δf⊥1TðkcÞ≡ π

Z
k2c

0

dk2T
k2T
M2

f⊥1T;i=Hðx; kT; μÞ

þ 1

M
TiðgÞ=Hðx; μÞ: ð11Þ

If a version of Eq. (4) held at zeroth order, then it would
have to be possible to express Δf⊥1TðkcÞ in the following
factorized way:

MΔf⊥1TðkcÞ¼??
X
ij

Cijðx=x0;L;αsðμÞÞ⊗TjðgÞ=Hðx;μÞ

þ
X
b;ij

mb;ijCb;ijðx=x0;L;αsðμÞÞ⊗hj=H;bðx;μÞ

þO

�Λ2
QCD

k2c

�
; ð12Þ

analogously to the unpolarized case in Eq. (7), but now
allowing for mixing with lower dimensional operators.
Similar to Eq. (7), if Eq. (4) is valid up to perturbative
corrections, then the collinear matrix elements on the right
side of Eq. (12) must be operators with equal or lower
dimension to TiðgÞ=Hðx; μÞ, and the Cij must begin at order
αs or higher and involve only the logarithms L [Eq. (8)].
The “??” is to emphasize that Eq. (12) is provisional and
will actually turn out not to hold.

V. NONVERIFICATION

A complication with checking relations like Eq. (12)
directly is that the functions involved are nonperturbative.
However, the generic behavior that we are interested in
testing can be checked order-by-order in any theory with
the relevant properties of renormalizability and a gauge
interaction, for example, in a model field theory with a
spectator. Moreover, if the factorization in Eq. (12) were
true generally, then it must hold order-by-order for partonic
targets. We consider, therefore, a nonzero mass quark in
pQCD as the target to remain as close to true QCD as
possible, while the quark massmq also serves as a regulator
for perturbative collinear singularities. The lowest-order
nonvanishing graphs are shown in Fig. 2, with Fig. 2(a)
representing the twist-3 collinear calculation [the second
term on the right side of Eq. (11)] and Fig. 2(b) representing
the TMD PDF calculation [the integrand for the first term
on the right side of Eq. (11)].1 Although we are calculating
in perturbation theory, the calculation must be viewed as a
kind of model since the functions are nonperturbative, and
we must assume that a suitable infrared regulator has been
imposed on higher-order graphs, though wewill not need to
make the specific regulator explicit here because all the
graphs in Fig. 2 are infrared and collinear finite with a
nonzero quark mass and a fixed momentum fraction x.
Both calculations in Fig. 2 proceed similarly, up to the

factor of k2T=M
2 and the absent integral over transverse

momentum for the TMD PDF case. Fortunately, several
features of Figs. 2(a) and 2(b) simplify their calculation.
First, the TMD PDF case is finite in both the UV and IR,
even with a zero mass gluon. Second, if we restrict to the
class of nonsingular covariant gauges, they are gauge

1We have labeled the exchanged gluon momentum by q to be
consistent with the notation in [42]. This should not be confused,
however, with a virtual photon momentum like the one in Fig. 1.
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independent as can be seen from the fact they (and their
Hermitian conjugates) are the only graphs that contribute at
OðαsÞ to the transverse single spin asymmetry with
unpolarized active quark, so no subtleties associated with
the Wilson line in the twist-3 quark-gluon correlation
function arise. In general, other graphs are needed for
gauge invariance—see the discussion of Fig. 3 in the
Appendix for more on this. Finally, the graphs contain
no light cone divergences, so subtleties associated with
Wilson lines and light cone regulators do not affect our
calculations. (Of course, in more general higher-order
graphs, all these issues will become important.) The result
is a kind of spectator model that closely mirrors actual
pQCD calculations.
Most of the steps needed to calculate each of the two

terms on the right side of Eq. (11) can be found in already
existing literature [42,62], with only slight modifications
needed in the twist-3 quark-gluon correlation function case

to convert to dimensional regularization and minimal
subtraction. (See Appendix for a discussion of these
calculations.) Model calculations of transverse-spin and
momentum effects were also calculated earlier in [63–66].
While the complete result for Δf⊥1TðkcÞ is not relevant to
our discussion, a very important result is that it involves
double logarithmic terms with the quark mass mq of the
form

Δf⊥1Tðkc∼μÞ

¼−
CFNc

2π
αsðμÞ2xð1−xÞln2

�
μ

ð1−xÞmq

�
þ���: ð13Þ

The “� ��” refers to all other terms not involving double
logarithms of the form ln2ðμ=massÞ.

To see that this creates complications, consider Eq. (12)
expanded through the first several orders,

MΔf⊥1TðkcÞ ¼
X
ij

Cð2Þij ðx=x0; L; αsðμÞÞ ⊗ Tð0Þ
jðgÞ=Hðx; μÞ þ

X
ij

Cð1Þij ðx=x0; L; αsðμÞÞ ⊗ Tð1Þ
jðgÞ=Hðx; μÞ

þ
X
ij;b

mb;ijC
ð2Þ
b;ijðx=x0; L; αsðkcÞÞ ⊗ hð0Þb;j=Hðx; μÞ þ

X
ij;b

mb;ijC
ð1Þ
b;ijðx=x0; L; αsðkcÞÞ ⊗ hð1Þb;j=Hðx; μÞ

þ h:o:þO

�Λ2
QCD

k2c

�
; ð14Þ

with the (...) superscripts denoting the order in perturbation
theory. If Eq. (12) were true, then one of these terms must
contain the double logarithm in Eq. (13). But

Tð1Þ;⊥
jðgÞ=Hðx; μÞ ¼ Tð0Þ;⊥

jðgÞ=Hðx; μÞ ¼ 0; ð15Þ

because at least two gluons (a spectator and a final state
interaction) are needed for the correlation function to be
nonzero. So if Eq. (14) could accommodate Eq. (13), then
the α2s ln2ðμ=ðð1 − xÞmqÞÞ would have to appear in either

the fourth or fifth lines. However, the order α0s h
ð0Þ
b;i=Hðx; μÞ

and the order α1s h
ð1Þ
b;i=Hðx; μÞ can contain at most zero and

one lnðμÞ factors, respectively. This means at least one

power of lnðμ=ðð1 − xÞmqÞÞ would have to be included

inside Cð2Þb;ij or Cð1Þb;ij. If this were done, however, it would
violate the requirement that no logarithms other than the
mass-independent Eq. (8) appear in the hard C-coefficients.
This shows that the factorization in Eq. (14), and therefore
Eq. (12) generally, is invalid.
An equivalent and more direct way to state the above is

simply to note that since the coupling only vanishes like
αsðμÞ ∼ 1= lnðμÞ for μ ≫ ΛQCD, then the term in Eq. (13)
undergoes no suppression at large μ.
It should be understood that, since the correlation

functions are strictly speaking nonperturbative, the mass
scales like the mq in Eq. (13) represent more general non-
perturbative structures. In some ways, therefore, a model

(a) (b)

FIG. 2. (a) Lowest-order pole part of the twist-3 quark-gluon correlation function. (b) Lowest-order TMD Sivers function. The
calculations are nearly identical up to the overall −1=2M, the factor of k2T , and the integral over transverse momentum in the case of the
twist-3 quark-gluon correlation function.
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renormalizable diquark spectator theory is more illustrative
of the problem described above, since mass scales like
the mq in Eq. (13) become more complicated nonpertur-
bative objects.
It is possibly tempting to argue that in a proton target

terms like Eq. (13) would be suppressed by mq=Mp ratios.
But this same ratio appears in all terms to all orders in the
correlation function, so there is no relative suppression.
This is especially clear in other model theories like a
spectator diquark theory—see Eqs. (A7)–(A9). Thus,
the double logarithm in Eq. (13) represents a kind of
strong ultraviolet ambiguity that did not arise in the
unpolarized case.
Furthermore, the fact that the double logarithm in

Eq. (13) goes to infinity as the collinear regulator is
removed, mq → 0, signals that the two sides of Eq. (4)
have different collinear sensitivities (as kT → 0) manifested
by the divergent kT-integration starting from its UV
perturbative region and using dimensional regularization.
The need to account for this divergent mq → 0 behavior
will reappear in the treatment of the very large transverse
momentum (QT ∼Q) region of physical processes like the
Drell-Yan example in Sec. I.
Like in any QCD factorization approach to a physical

observable, perturbative calculations of short-distance hard
parts beyond the lowest-order tree level require perturba-
tively calculated and regularized partonic versions of the
long-distance correlation functions to remove all soft and
collinear divergences in the hard partonic scattering. Since
the moment of the Sivers TMD function and the twist-3
correlation function in the two sides of Eq. (4) have

different collinear sensitivities, the use of the long-distance
correlation functions for QCD factorization treatment of
weighted SSAs requires caution and needs to be made
consistent with a factorization formalism.

VI. DISCUSSION

The contribution to Δf⊥1TðkcÞ in Eq. (13) makes clear
that there is very strong sensitivity to choices in how the
ultraviolet contribution to the integral over transverse
momentum for weighted-integrated asymmetries is imple-
mented. The two schemes we considered were (1) standard
collinear renormalization for the twist-3 collinear correla-
tion function and (2) direct integration of the TMD function
(the Sivers function) with suppression of the large trans-
verse momentum contribution. It is the latter method,
however, that is almost always used in practical phenom-
enological applications. That is, parametrizations of the
twist-3 collinear correlation function are usually con-
structed from the Sivers function via Eq. (4).
This implies that it is the evolution of the Sivers function,

performed using standard TMD evolution techniques and
before the integration over kT, that governs the evolution of
the weighted-integrated asymmetries as they are normally
determined.
The technical reason for the term in Eq. (13) is that

the box-loop integral in Fig. 2(a) produces a power of
ðμ=ðð1 − xÞmqÞ2ϵ in dimensional regularization in addition
to the ðμ=ðð1 − xÞmqÞ2ϵ that already comes from the
divergent kT integral. In a calculation of the renormalized
twist-3 function, both multiply a 1=ϵ2 from the divergent
kT-integral to produce two ln2ðμ=ðð1 − xÞmqÞÞ terms. By
contrast, the TMD PDF calculation is finite at the order of
graphs in Fig. 2, so OðϵÞ factors never contribute. The only
relevant lnðμ=ðð1 − xÞmqÞ in the integral of the TMD PDF
comes directly from the cutoff transverse momentum
integral when it is applied on the left side of Eq. (4). The
result is that the ln2ðμ=ðð1 − xÞmqÞÞ term in the renormal-
ized twist-3 correlation function comes with an extra factor
of 2 compared with the ln2ðμ=ðð1 − xÞmqÞÞ term in the
weighted integral of the Sivers function. Thus, the double
logarithms like Eq. (13) do not cancel in Eq. (11).
The more general reason is that transverse momentum

integrals do not commute with the removal of ultraviolet
regulators, a property that has already been remarked upon
in some detail in, for example, Ref. [42]. This results in a
type of scale anomaly that already appears in the unpo-
larized leading twist case, Eq. (3). In Eq. (7), however, large
contributions analogous to Eq. (13) do not arise because the
transverse momentum integrals corresponding to the par-
ticular graphs in Fig. 2 are finite for the transverse
momentum integral in Eq. (3).
Some physical intuition for the mismatch is gained by

recalling that the design region for the TMD PDF treatment,
where the approximations that give TMD factorization

(a)

(b)

FIG. 3. Graphs (a) and (b), along with their Hermitian con-
jugates, are needed in general for gauge invariance. Analogous
graphs are also needed for the collinear twist-3 function.
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apply, is the very small QT ≪ Q region, including
QT ≲ ΛQCD, whereas the behavior of the TMD PDF at kT
close to physical hard scales is not physically meaningful
without some correction term. But the factor of k2T=M

2 in
the integrand of Eq. (4) effectively discards the relevant
kT ∼ 0 contribution to the cross sectionwhile amplifying the
ill-defined contribution from kT > μ. Therefore, the result-
ing integral is dominated by an arbitrary scheme used to
regulate the large kT behavior. In other words, TMD
factorization derivations apply to cross sections differential
in QT and in the small QT limit, but the QT weighting
suppresses this small QT region (in fact creating a zero)
while magnifying the QT ∼Q region of the cross section
where a different sort of factorization is needed. That the
single QT weighting is the lowest power QT weight that
gives a nonzero integrated transverse SSA does not mitigate
the potential for such shifts in the important momentum
range to spoil relations like Eq. (4).
The particular order in which transverse momentum

integrals are evaluated and ultraviolet regulators are
removed is important. In renormalized collinear correlation
functions (like the twist-3 quark-gluon correlation func-
tion), the ultraviolet regulator needs to be the same for real
and virtual emissions for ensuring such features as the
automatic cancellations of light cone divergences in col-
linear correlation functions [67]. Thus, ultraviolet regula-
tors can only be removed after all integrals are evaluated.
By contrast, in the unintegrated TMD PDFs there are no
regulators on real parton transverse momentum since the
transverse momentum is fixed to values determined by
the physical cross section. It is only at later stages that a
k2T-weighted integral of a phenomenologically extracted
Sivers function is performed, as in Eq. (4), at which point a
cutoff on the physical region of kT ≳ μ is restored in a
separate step. This reversal in the natural order of regulator
removal between the two cases is the origin of the problem
discussed in the previous section.
Forcing a version of Eq. (4) amounts to dealing with

issues such as light cone divergences in the twist-3
quark-gluon correlation function point-by-point in parton
transverse momentum first, before transverse momentum
integrals with real emissions are evaluated. This allows
separate ultraviolet regulators to be applied to real and
virtual ultraviolet divergences. Then it is possible to
impose the requirement that the weighted Sivers and
twist-3 calculations use the same ultraviolet regulators
on real emissions from the outset, thus ensuring Eq. (4).
This is equivalent to defining the TMD PDF first and then
defining the corresponding twist-3 function via the
weighted transverse momentum integral of the TMD
function. In this view, Eq. (4) should be viewed as a
definition rather than a derived result. Nevertheless, such a
convention preserves the logical structure embodied in
relations like Eq. (4) and thereby allows twist-3 calcu-
lations an interpretation in terms of intrinsic transverse

momentum.2 This then provides one answer to the ques-
tion of which type of scale evolution is relevant in
weighted integrals of spin asymmetries, in cases where
large transverse momentum is strongly suppressed. If, as
we suggest above, the collinear TqðgÞ=HðxÞ on the right
side of Eq. (4) is defined via the TMD PDF on the left
side, then evolution is dictated by the TMD evolution of
f⊥1T;q=Hðx; kTÞ at small transverse momentum. Of course,
at very large Q the integral becomes dominated by
nonintrinsic perturbatively generated transverse momen-
tum radiation [68], and a switch to a scheme like [26] may
then be useful to exploit refactorization.
Obtaining a fully fixed prescription for treating diver-

gences in parton correlation functions requires complete
factorization treatments for specific processes, to clarify
how those parton correlation functions contribute to the
evaluation of corresponding hard parts. We emphasize that
more work in this direction is needed.
A potential complication is that if the twist-3 function is

defined via TMD PDFs, then it might inherit some of the
problems with TMD factorization that can arise in hadron-
hadron collisions with measured hadron transverse momen-
tum in the final state [69,70]. Such effects may be
mitigated, however, if scales are evolved high enough that
the integrand is dominated by a perturbatively generated
tail. Moreover, a full treatment of the matching to the large
QT ∼Q region is needed. We leave the investigation of all
such issues to future work.
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APPENDIX: CALCULATION OF Δf⊥1TðkcÞ
Here we explain some of the details leading to Eq. (13).

Since the basic integrals have all been set up before [42],
we will simply refer to earlier literature, only modifying
those parts needed to implement renormalization with
dimensional regularization and minimal subtraction.

2Note that results like [26] amount only to one of potentially
many arbitrary regulator schemes for the integral on the left side
of Eq. (4) and are not actual derivations of Eq. (4). Specifically,
they do not address the question of regulator sensitivity.
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1. The scalar field spectator

It will be simplest to structure the argument by starting
with the result for the scalar diquark model and explain the
steps to transform to QCD. We start from Eq. (29) in
Ref. [42]3 in the scalar model. Here we adopt a sign
convention consistent with Eq. (9) and compute the
integrals over kT and qT in n ¼ 2 − 2ϵ dimensions. In
dimensional regularization, the only n dependence is from
the integration measure and the factor μ4ϵ that comes with
the couplings. With the pointlike coupling between the
nucleon, quark, and spectator diquark, the integral in that
equation becomes, up to overall factors,

IT ≡
Z

dnkT
ð2πÞn

dnqT
ð2πÞn

q2T − ðqT · STÞ2
q2T½k2T þ Λ2

s �½ðkT þ qTÞ2 þ Λ2
s �

¼ πn=2Γð2 − n=2Þ
Γð2Þ

Z
1

0

dα
Z

dnqT
ð2πÞ2n

1

q2T
× ½q2T − ðqT · STÞ2�½αð1 − αÞq2T þ Λ2

s �n=2−2; ðA1Þ

where

Λ2
s ¼ xM2

s þ ð1 − xÞm2
q − xð1 − xÞM2; ðA2Þ

with Ms, mq, and M being the masses of the scalar
diquark, quark, and nucleon, respectively. By choosing
the orientations

qT ¼ qTðsin θ1 sin θ2 � � � sin θn−1;…; cos θ1Þ; ðA3Þ

ST ¼ ð0;…; 1Þ ðA4Þ

in n dimensions [Eq. (A3) takes the form of the standard
n-dimensional spherical coordinates, while in Eq. (A4) all
components of ST are zero except for the last one], it is
straightforward to carry out the angular part of the integral
and verify

Z
dnqTq2T ¼ n

Z
dnqTðqT · STÞ2: ðA5Þ

Then it is valid in Eq. (A1) to replace q2T − ðqT · STÞ2 →
ð1 − 1=nÞq2T and obtain

IT ¼ πn=2Γð2 − n=2Þ
Γð2Þ

�
1 −

1

n

�Z
1

0

dα
Z

dnqT
ð2πÞn ½αð1 − αÞq2T þ Λ2

s �n=2−2

¼ πn

ð2πÞ2n
�
1 −

1

n

�
Γð2 − nÞΛ2ðn−2Þ

s

Z
1

0

dα½αð1 − αÞ�−n=2

¼ πn

ð2πÞ2n
�
1 −

1

n

�
Γð2 − nÞΛ2ðn−2Þ

s
Γ2ðϵÞ
Γð2ϵÞ : ðA6Þ

Restoring the overall factors dropped in Eq. (A1) and expanding near ϵ ¼ 0 gives the logarithmic terms with

−
1

M
TqðgÞ=Hðx; μÞ ¼

NcCFgλ2sgs
16π3

ð1 − xÞ
�
mq

M
þ x

��
ln2ðΛs=μÞ þ

1

2
ð1þ 2γE − 2 ln ð4πÞÞ ln ðΛs=μÞ

�
þ � � � : ðA7Þ

The analog of Eq. (A6) for the weighted Sivers function comes from the integral in Eq. (49) in Ref. [42], which was also
calculated in [62]. Without overall factors the integral is

IS ≡ 1

4πM2

Z
kc

0

dkT
2π

kT
k2T þ Λ2

s
ln
k2T þ Λ2

s

Λ2
s

¼ 1

32π2M2
ln2ðk2c=Λ2

s þ 1Þ: ðA8Þ

Cutting off the kT integral at kc ¼ μ, restoring the overall factors dropped in Eq. (A8), and expanding to lowest order in
Λs=μ,

Z
d2kT

k2T
M2

f⊥1Tðx; kTÞ ¼
NcCFgλ2sgs

32π3
ð1 − xÞ

�
mq

M
þ x

�
ln2ðΛs=μÞ þO

�Λ2
QCD

μ2

�
: ðA9Þ

Note the factor of 2 difference between the double logarithmic terms in Eqs. (A9) and (A7). Subtracting Eqs. (A9) and (A7)
gives a version of Eq. (13) for the case of a scalar field for the spectator.

3Equation (44) of Ref. [42] differs by a sign from Eq. (9) due to a different convention for the direction of the Wilson line. There it is
chosen to be consistent with Drell-Yan-like processes.
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2. QCD

Transitioning to the case of QCD with an incoming quark of mass mq primarily entails a change in the Dirac trace. The
trace part of the Sivers calculation in the diquark model is

TrdiquarkS ≡ Tr½γþð=kþ =qþmqÞð=pþMÞγ5=sTð=kþmqÞ�ð2p − 2k − qÞτnτ
¼ 8ipþ2ð1 − xÞðMxþmqÞϵijqTisTj; ðA10Þ

where the iπδðqþÞ from the eikonal propagator of the Wilson line constrains qþ ¼ 0 and gives the imaginary part of the q
integral [see Eq. (94) of Ref. [62] ]. In QCD this trace becomes

TrQCDS ≡ Tr½γþð=kþ =qþmqÞγμð=pþmqÞγ5=sTγαð=kþmqÞ�dμνðp − k − qÞdσαðp − kÞ × ½ð2p − 2k − qÞτgνσ
þ ðk − p − qÞνgστ þ ð2q − pþ kÞσgτν�nτ

¼ 16ipþ2xmqðx − 1ÞϵijqTisTj; ðA11Þ
where we work in Feynman gauge with the gluon polarization tensor (no ghost graphs contribute at this order):

dμνðqÞ ¼ −gμν: ðA12Þ
Similarly, the traces for the twist-3 quark-gluon correlation function in the two theories are

TrdiquarkT ≡ Tr½γþð=kþ =qþmqÞð=pþMÞγ5=sTð=kþmqÞ�ϵsTρnn̄ð2p − 2k − qÞτð−nτqρÞ
¼ −8ipþ2ð1 − xÞðMxþmqÞ½q2T − ðqT · STÞ2�; ðA13Þ

TrQCDT ≡ Tr½γþð=kþ =qþmqÞγμð=pþmqÞγ5=sTγαð=kþmqÞ�dμνðp − k − qÞdσαðp − kÞ½ð2p − 2k − qÞτgνσ þ ðk − p − qÞνgστ
þ ð2q − pþ kÞσgτν�ϵsTρnn̄ð−nτqρÞ

¼ −8ipþ2ðnxþ 2 − nÞmqðx − 1Þ½q2T − ðqT · STÞ2�: ðA14Þ

The trace part of the twist-3 quark-gluon correlation
function in QCD acquires a dependence on the dimension
n. Note that for Sivers function we always work in four
dimensions (n ¼ 2), so TrQCDS does not have a similar
factor. In the case of twist-3 correlation function, qþ ¼ 0 is
imposed by the delta function from the cut vertex [38,42].
The n and n̄ four-vectors in the above traces represent
lightlike vectors in the minus and plus directions, respec-
tively, not to be confused with the spacetime dimension.
In general, the graphs in Fig. 3 are also needed to give

gauge invariance, but we have confirmed that they do not
contribute in either the twist-3 collinear or TMD calcu-
lations when the target is transversely polarized and the
active quark is unpolarized.
The momentum integrals in QCD and diquark model are

almost identical for both Sivers and collinear twist-3
functions, with only the replacement

Λ2
s → Λ2

g ≡ ð1 − xÞ2m2
q: ðA15Þ

Also note that in the transition to QCD the change of the
coupling constants and the color factors are the same for
Sivers and twist-3 PDFs,

ggsλ2s → 16π2α2S; NcCF → −
1

2
NcCF: ðA16Þ

Aside from the above replacements, for Sivers in QCD
one needs ð1 − xÞðMxþmqÞ → 2mqxðx − 1Þ, as can be
seen from Eqs. (A10) and (A11). The resulting logarithmic
terms are

LS ¼
NcCFα

2
S

2π
xð1 − xÞ ln2 ðΛg=μÞ: ðA17Þ

For the twist-3 quark-gluon correlation function, however, we
must change ð1 − xÞðMxþmqÞ → mqðnxþ 2 − nÞðx − 1Þ
and include the factor ðnxþ 2 − nÞ when expanding near
ϵ ¼ 0 if we wish to obtain all logarithms beyond the double
logarithm. The result is

LT ¼ −
NcCFα

2
S

π
xð1 − xÞ

�
ln2ðΛg=μÞ

þ
�
1þ γE − ln ð4πÞ − 1

2x

�
ln ðΛg=μÞ

�
: ðA18Þ

From Eq. (11)

Δf⊥1TðkcÞ ¼ LT þ LS þ � � �

¼ −
NcCFα

2
S

2π
xð1 − xÞln2ðΛg=μÞ þ � � � : ðA19Þ
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