
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 2004

Generic Performance Evaluation Tool Implementation for an Generic Performance Evaluation Tool Implementation for an

Imaging Fourier Transform Spectrometer Imaging Fourier Transform Spectrometer

James M. Mengert
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Engineering Commons, Programming Languages and Compilers Commons, and

the Software Engineering Commons

Recommended Citation Recommended Citation
Mengert, James M.. "Generic Performance Evaluation Tool Implementation for an Imaging Fourier
Transform Spectrometer" (2004). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old
Dominion University, DOI: 10.25777/7jm8-6b58
https://digitalcommons.odu.edu/ece_etds/431

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fece_etds%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fece_etds%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/431?utm_source=digitalcommons.odu.edu%2Fece_etds%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

GENERIC PERFORMANCE EVALUATION TOOL IMPLEMENTED FOR AN

IMAGING FOURIER TRANSFORM SPECTROMETER

by

James M. Mengert
B.S. Computer Engineering, May 2001, Old Dominion University

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
MAY 2004

Approved by:

ABSTRACT

GENERIC PERFORMANCE EVALUATION TOOL IMPLEMENTED FOR AN
IMAGING FOURIER TRANSFORM SPECTROMETER

James M. Mengert
Old Dominion University, 2002
Director: Dr. Lee A. Belfore II

Evaluation software for analyzing general analytical model applications utilizing

MATLAB is presented in this thesis. The focus is to provide an interactive environment

for the evaluation of model applications relating to an Imaging Fourier Transform

Spectrometer. The Generic Performance Evaluation Tool (GPET) was developed by

researchers at Old Dominion University and NASA-Langley Research Center and was a

NASA-Langley Research Center sponsored project. GPET is capable of producing a

multitude of object-oriented input data for any number of individual model applications.

The tool is also capable of creating user-defined input interfaces for the purpose of

viewing and/or editing input object data, along with creating user-defined result

interfaces for viewing evaluated object data in a textual format. Additionally, the tool

can create various user-defined graphs to allow object data to be evaluated in a graphical

format. With the model applications being designed within the context of the software,

all of these capabilities provide the user with a very flexible tool for evaluating any

analytical model application.

This thesis is dedicated to my wife, Paula, and our son Christopher

AC KNOWLEDGEMENTS

I would like to acknowledge the people who have helped me in this work. First, I

would like to thank Dr. Lee A. Belfore II, for his support and direction in the

development of this thesis. Second, I would like to thank Dr. John W. Stoughton, for his

advice and guidance in the development of the software.

I would like to thank the most important people in my life. My wife, Paula, has

provided an enormous amount of support throughout my graduate studies. My parents,

Helen and Elroy, have always provided me with encouragement in all my endeavors. My

sister, Margie, has constantly imparted a positive outlook on life. And finally, to our son

Christopher, who, in his own way, has reminded me that there must always be time to

play.

TABLE OF CONTENTS

Page

LIST OF TABLES V1n

LIST OF FIGURES. 1X

LIST OF SYMBOLS

Chapter

X1

1. INTRODUCTION

1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8

Overview
Motivation ..

Modeling
Graphic User Interface Design.
Verification and Validation.
MATLAB Programming Language
Research Objective
Thesis Organization.

3
3

4
4
5

BACKGROUND

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Introduction ..

GIFTS.
The Michelson Interferometer
Modeling
Software Development Stages
GUI Design
The MATLAB Language
Chapter Summary..

6
6
7
9

10
ll
13

18

3. SOFTWARE SPECIFICATIONS AND OVERVIEW

3.1
3.2

3.3

3.4

Introduction ..

Software Development Stages
3.2.1 Problem Analysis ..

3.2.2 Program Design.
3.2.3 Program Implementation..
Various Models.
3.3.1 Compositional Model.
3.3.2 Operating Systems Model ..

3.3.3 Shell Model.
3.3.4 The GPET Model ..

Software System Architecture

. 20
... 20

. 21
. 21
. 22
. 22
. 23
. 24
. 26
. 28
. 30

3.5 Chapter Summary.. . 31

4. GPET IMPLEMENTATION

4.1
4.2

4.3
4.4

4.5

4.6

Introduction ..

Object Development..
4.2.1 Classes.
4.2.2 Inheritance.
Application Template
System Interface
4.4.1 Installation of Model Applications...........
4.4.2 Removal of Model Applications
Application Interface.
4.5.1 Adding Experiments.

4.5.1.1 Experiment Selection Interface
4.5.1.2 Object Instantiation ..

4.5.1.3 Adding the Experiment
4.5.2 Experiment Removal..
4.5.3 Selecting Experiments..............................
4.5.4 Input/Results Creator Interface

4.5.4.1 Variable Template
4.5.4.2 Input Parameter Interface
4.5.4.3 Result Interface ..

4.5.4.4 Edit Override
4.5.5 Figure Plotter Interface.
Chapter Summary..

. 32

. 32

. 33

. 34

. 34

. 36
.... 37
.... 39

. 40

. 41
.... 42

. 45
.... 48

. 52
... 53
.... 54

. 56
.... 56

59
61
62
67

5. GPET TESTING AND EVALUATION

5.1
5.2
5.3

5.4

Introduction .

Verification and Validation ..

Master Test Plan..
5.3.1 Phase One: Test of GPET Primitive................
5.3.2 Phase Two: Test of Pre-Existing Model
5.3.3 Phase Three: Different Model Applications....
Chapter Summary.

68
... 69

69
... 7 1

... 75

... 79
84

6. CONCLUSION, LIMITATIONS, AND FUTURE RESEARCH

6.1
6.2
6.3

Conclusion.
Software Problems and Limitations
Future Work

87
89
91

REFERENCES. 92

APPENDIX. 94

APPENDIX A — MATLAB SOURCE FILES. 95

APPENDIX B — GPET USERS MANUAL 96

B. I

B.2

B.3

97
97
97
98
98
98
99
99
100
100
100
101
101
101

102
103

Experiment... 104
Application 104

105
106
106
108
108
108
109
109
109
110
111
112
112
113
113
114
115

Background .

Features .

B.2.1 Object-Oriented Experiments
B.2.2 Multiple Applications.
B.2.3 Input/Results Interface Creator..
B.2.4 Figure Creator.
Details of Operation.
B.3.1 System Interface

B.3.1.1 Application Installation ..

B.3.1.1.1 Application Template.................................
B.3.1.1.2 Variable Template......................................
B.3.1.1.3 Installation..

B.3.1.2 Application Uninstallation
B.3.2 Application Interface

B.3.2.1 Creating New Experiments ..
B.3.2.1.1 From Default Values
B.3.2.1.2 From a Previously Created

B.3.2.1.2.1 Within Same
B.3.2.1.2.2 From Another Application 105

B.3.2.2 Removing Existing Experiments..................................
B.3.2.3 Selecting an Experiment.

B.3.3 Input/Results Interface Creator Interface
B.3.3.1 Creating a New Interface.

B.3.3.1.1 Input .

B.3.3.1.2 Results ..
B.3.3.2 Editing an Existing Interface..

B.3.3.2.1 Input .

B.3.3.2.2 Results ..
B.3.3.3 Reinstalling an Interface

B.3.3.3.1 Input .

B.3.3.3.2 Results ..

B.3.4 Figure Creator Interface
B.3.4.1 Creating a New Figure.

B.3.4.1.1 Selecting Variables.....................................
B.3.4.1.2 Graph Type Selection.................................

B.3.4.2 Editing an Existing Figure.

APPENDIX C — VARIABLE TEMPLATE . .117

VITA 130

LIST OF TABLES

TABLE

2.1 MATLAB/C++ Class Comparison .

PAGE

15

4.1 Parent/Child Class Relationship. 34

4.2 Application MAT File Variables.. 38

4.3 Experiment Selection Interface Functions

4.4 Input/Result Interface Functions.

4.5 Push Button and Associated Function Calls.

45

59

63

4.6 Figure Plotter Interface Functions. 67

5.1 Master Test Plan Areas for GPET Software. 70

5.2 Areas Tested within each Phase. 71

5.3 Test Numbers and Associated Initial Values 73

5.4 Output Variable Names and Associated Operation..... 73

5.5 Output Variable Names and Associated SP Locations 73

5.6 Input Variable Assignments. 81

5.7 Subtraction Results from Modified Model Application....

LIST OF FIGURES

FIGURE

2.1 Michelson Interferometer.

PAGE

2.2 Model Development Progression

2.3 Software Development Process for GPET

2.4 Example MATLAB Class

2.5 Parent/Child Class in MATLAB ...

16

18

3.1 Component Architecture

3.2 Mathematical Model

3.3 Conceptual Compositional Model.

23

24

24

3.4 Operating System/Application Architecture.

3.5 Conceptual Operating System Model.

25

26

3.6 Shell Architecture.

3.7 Conceptual Shell Model.

27

28

3.8 GPET Architecture 30

4.1 Application Architecture 33

4.2 Application Template Flow Diagram..

4.3 GPET-GIFTS Main Menu Interface

35

37

4.4 Uninstall Flow Diagram.

4.5 Typical Application Interface

39

41

4.6 'AddExp'asic Flow Diagram. 42

4.7 Experiment Selection Interface 43

4.8 Experiment Selection Interface Option Three

4.9 Pseudo code for the Experiment class.. 46

4.10 Pseudo code for the Result class 48

4.11 Directory and Filename Dialog Box 49

4.12 Experiment Name Dialog Box.

4.13 Disabled Selections.

50

50

4.14 Option 2 Selection. 51

4.15 Option 3 Selection.

4.16 Selection for Deleting an Experiment.

4.17 Selecting an Experiment.

4.18 Input Parameters/Output Results Interface Creator .

52

52

53

55

4.19 Input Interface 57

4.20 Result Interface 60

4.21 Figure Plotter Interface. 62

4.22 Newly Created Plot.

4.23 Edit Axes Properties Dialog box..

5.1 Prototype Application Architecture (Standalone Form)

64

65

72

5.2 TEST U5 .. 74

5.3 Prototype Results.

5.4 SNR Plots

5.5 Revised SNR Plots ..

76

77

79

5.6 Two Application Interfacing .. 80

5.7 Prototype Results Page 1

5.8 Modified Prototype Results Page 1.

82

84

LIST OF SYMBOLS

SYMBOL DESCRIPTION

API

CTRL

DOS

Application Program Interface

Control

Disk Operating System

FORTRAN Formula Translation

GIFTS

GPET

GUI

Geostationary Imaging Fourier Transform Spectrometer

General Purpose Evaluation Tool

Graphical User Interface

MATLAB Matrix Laboratory

NASA

SNR

V&V

National Aeronautics and Space Administration

Signal-to-Noise Ratio

Verification and Validation

CHAPTER I

INTRODUCTION

1.1. Overview

The term "model" can be used to represent just about any entity. The automotive

industry uses computer visualization to help aid in bringing a concept into reality;

architects build models of buildings to aid in their visualization of what the real building

would look like at a scaled down level. In this thesis, analytical models are used to

describe physical entities. Analytical models will be used within a contained

environment referred to as the General Performance Evaluation Tool (GPET). The tool

has the ability to evaluate any number of analytical models; however, in this thesis a

specific analytical model will be evaluated to demonstrate the capabilities of GPET.

The analytical model used in this thesis is an instrument called GIFTS.

Geostationary Imaging Fourier Transform Spectrometer (GIFTS) is a next generation

satellite that will significantly improve 3- to 5-day weather forecasting. The goal of the

GIFI'S instrument is to retrieve temperature, water vapor, and wind sounding

information, along with chemical composition information of the atmosphere from space

[7]. Modeling is also used in this thesis to help describe the software tool that will be

used to evaluate the end user model applications.

1.2. Motivation

This project began in the fall of 2000 as an undergraduate senior design project .

Part of the goal of the project was to develop a user-friendly Graphical User Interface

(GUI) to support the development of an end-to-end model of an imaging infrared Fourier

'he journal model followed in the thesis is IEEE Transactions on Computer.

Transform Spectrometer [4]. The GUI shell was to have the ability to manage a number

of model applications, be able to edit input values for each application, and save input

and result data to a global database, where the user can evaluate the data through such

means as spreadsheets. Even though the project was successful, many improvements

were identified that could be added in future versions. These improvements include a

more efficient manner to install model applications, the use of data objects for use within

the model applications, the creation of interfaces for editing input data as well as viewing

result data, and providing the ability to create various types of graphs as an alternative for

evaluating application-specific data.

The research for this thesis evolved from a need to have a flexible system for

creating/managing analytical models for scientific instrumentation. The project was

funded by NASA-Langley Research Center to support instrument modeling in the GIFfS

project.

1.3. Modeling

Models are used in many industries and most engineering disciplines. Models can

take on many forms that most may not even realize. These forms include mathematical

equations, a physical entity, or even a mere guiding mental image [8]. The four reasons

for model development are that it is easier, less expensive, faster to analyze a model than

the entity being modeled, and the entity may not exist [8].

In this thesis, conceptual models are presented to give an abstract understanding of

the functionality behind the real software [9], but do not represent the software itself. A

conceptual model is defined as having components that have not been clearly identified

in terms of system-theoretic categories such as state, event, and function [9].

1.4. Graphical User Interface Design

The main reason the Graphical User Interface (GUI) exists is to give an efficient

portal that employs visual cues for effectively using the software application. Before the

GUI, users had to use keyboard entry to enter specific commands at a shell prompt to

accomplish such tasks as editing text files, formatting hard drives, or to launch

applications. With the GUI, the user is presented with pushbuttons, radio buttons, and list

boxes with appropriate actions to allow the user to make decisions based on the type of

application is running.

On the surface, it may seem that a GUI is easy to design, develop, and implement.

However, there are a number of design concepts that the GUI programmer needs to be

aware of, and these concepts are discussed in this thesis.

1.5. Verification and Validation

Verification and Validation (V&V) is probably the most important process used in

testing. V&V is used in software to help build quality in the end product by

comprehensively analyzing software during each stage of software development

(Verification), along with analyzing the completed product (Validation) [3].

The concept of V&V evolved during the late 1960s and into the 1970s as software

use in military and nuclear power systems increased [3], where not having such a process

could lead to disastrous consequences. Since then, V&V has found its way into such

industries as automotive, airlines, medical, home electronics, military, and space.

'ommand shell, application shell: A place to enter commands to access computer resources or
respectively run a simulation.

1.6. MATLAB Programming Language

MATLAB is a high performance language for technical computing [5]. It is an

interpreted language that uses either script or function files. MATLAB can be used in

many contexts including math and computation, algorithm development, modeling,

simulation, and prototyping, data analysis, scientific and engineering graphics, and

application development (including GUI implementation) [5].

The foundation data element for computing in MATLAB is an array that is

dimensioned implicitly, that often allows the user to solve many technical problems

involving matrices and vector formulations in a fraction of the time then it would take to

write a program in a compiled language solution such as C or FORTRAN [5]. The

MATLAB system consists of five main sections. They are the MATLAB language,

working environment, handle graphics, mathematical function library, and the

Application Program Interface (API), that is used when translating MATLAB code to the

C language.

1.7. Research Objective

The objective of this thesis research is to present a methodology for managing

models, and to demonstrate the methodology using a specific model. The tool will

provide the capability of examining model application behavior based on a given set of

object-oriented input parameters.

Without a specific and controlled environment, the developer of model applications

must add functionality to the model applications that may not necessarily be directly

related to the focus of the application. Some of the problems to deal with when creating

model applications include: no consistency in the manner of viewing/editing input data

and reviewing result data, any data that needs to be collected must be performed within

the application, the input and result data could be vulnerable to corruption, no central

location for the collection of data among multiple applications, and the composition of

multiple models. These are the problems that the mechanisms discussed are focused on

solving. Therefore, to meet the research objective, the following goals need to be met:

l. Install and uninstall model applications within a shell environment.
2. Create unlimited input data objects for use in evaluating model applications.
3. Modify input data object values through the use of an interface.
4. Provide the viewing of result object data in either a graphing format or by the

use of an interface.
5. Use result data objects from one application as an input data object into a

different application.
6. Provide the user the ability to create user-defined interfaces for the

viewing/editing of input data object values, and for the viewing of result data
object values.

7. Provide the ability to store input data and result data values to an external
database text file.

1.8. Thesis Organization

Chapter II presents background information on the mechanisms used to create the

Generic Performance Evaluation Tool (GPET). Chapter III discusses software

specifications of GPET. Chapter IV presents the detailed implementation of GPET.

Chapter V describes the testing and validation of the software. Chapter VI discusses the

summary and future works for GPET.

CHAPTER II

BACKGROUND

2.1 Introduction

In this chapter, foundational information is laid out to lead to the design, development

and testing of the GPET software. The foundation for this research began as a senior

design project as an undergraduate student. Part of the project involved establishing an

environment in which all model applications related to a NASA-sponsored project named

Geostationary Imaging Fourier Transform Spectrometer (GIFTS) can be tested. A brief

background of GIFTS and the undergraduate project is presented in t12.2. The heart of

the GIFTS instrument is the Michelson Interferometer. A brief description of the

Michelson Interferometer along with its intended use within GIFTS is given in ti2.3. The

foundation for the design, development, and implementation for this research project is

the modeling of the system. 52.4 discusses modeling in general, however, the specific

models that were developed will be discussed in more detail in Chapter III. 52.5 provides

an overview of the software development processes by discussing program analysis,

design, and implementation that takes the conceptual model of the system and defines a

process to implement the tool. In 52.6, some of the key concepts of Graphic User

Interface Design will be discussed. In 52.7, aspects of the MATLAB programming

language are presented, where comparisons are made between that language and C++.

The chapter summary in t12.8 highlights general information within this chapter.

2.2 GIFTS

GIFTS is analogous to a three-dimensional video camera that records the time

evolution of atmospheric structure by taking snapshots of the atmosphere in intervals of

time [7]. The instrument will measure water vapor, wind sounding and the chemical

composition of the atmosphere, and will be used to improve the accuracy of three- to

five-day weather forecasting [7].

Part of the goal of the Fall 2000 senior design project included the development of an

object-orien'ted GUI shell to manage the GIFTS-based model applications. The term

'model application'efers to the specific script files developed and run in MATLAB.

Script files will be discussed in 52.5. Even though the undergraduate project was

successful, other opportunities for improvement were apparent. One of the

improvements is to develop and implement a way of installing the model applications

into the shell, because the installation process using the original shell was quite

cumbersome. Some other improvements to the original shell are the implementation of

an interface creation tool, object-oriented data, and a plotting tool. The overall object of

this project is to do research on ways to improve the software, then design, develop, and

implement a new version of software.

2.3 The Michelson Interferometer

The heart of the GIFTS instrument is the Michelson Interferometer. Figure 2.1

illustrates the basic components of the Michelson Interferometer. The components

include a beamsplitter, two mirrors, collimator, condenser, and a detector.

Mirror

Detector

Figure 2.1 Michelson Interferometer

For the purposes of this discussion, the source is a monochromatic light. The

source emits in all directions, so a collimator is used to render the source parallel.

The source is then applied to a beamsplitter. Ideally, the beamsplitter allows half of

the light to pass through, and reflect the other half. Fixing both mirrors, the two

beams then travel to their respective mirrors on the arms of the interferometer. The

returning beams are recombined at the beamsplitter, with the light waves interfering

by the principle of superposition [10]. The interference of the waves will either be

constructive or destructive. The recombined beam propagates to a condenser that

focuses the beam on the detector. The detector measures the intensity at different

mirror positions to form the interference pattern or interferogram [10].

The intended use of the Michelson interferometer is to measure broadband spectrums.

The interferogram produced from the interferometer is the Fourier Transform of the

spectrum. Interested readers can see [19] for the mathematical derivation.

2.4 Modeling

Models are used in most engineering disciplines because it is usually less expensive

and requires less time to create models than the real entity. The purpose of any model is

to facilitate analysis, either explicitly or implicitly [8]. A good model is one that is less

complex than the entity it represents, but retains important salient characteristics.

Frequently, model development is a hierarchal process. The development begins with

the conceptual model that is used when model components have not been clearly

identified in terms of state, event, or function [9]. Once the conceptual model is

completed, many paths can be taken to create a more system-theoretic model. These

include the declarative, functional, constraint, and spatial models. Figure 2.2 illustrates

the hierarchy of model design [9].

Figure 2.2 Model Development Progression

Further discussion of specific model development for this project will continue in

Chapter III.

10

2.5 Software Development Stages

The GPET software tool is implemented using a three-step approach known as the

Top-Down Design Process as follows: (I) Problem Analysis, (2) Problem Design, and (3)

Program Implementation [I]. Seeing as it is practically impossible to solve any problem

without knowing the nature of the problem, Problem Analysis defines what the software

is suppose to do in terms of requirements. Problem analysis begins with a clear problem

statement to guide the analysis process [I].

Stage two is the Program Design stage. In this stage, the original problem is broken

down into smaller independent sub problems, where each of the sub problems is easier to

solve than the original problem. More detail is added as the original problem is

partitioned into smaller units. Once a sufficient amount of detail is added to the

subproblem, an algorithm can be created to solve each of the subproblems [I].

The third stage is the Program Implementation stage. It is at this stage that a

particular programming language is selected and used. The algorithms created in stage

two are implemented using the MATLAB programming language.

The Top-Down Design Process is utilized throughout the software development

cycle. At any point within the process problems may occur that may require reviewing

the problem statement, and possibly making changes. Figure 2.3 illustrates the entire

software development process, and also includes Verification and Validation.

Figure 2.3 Software Development Process for GPET

2.6 GUI Design

During the creation of a GUI, it is easy to focus on what the developer wants.

Therefore, it is essential that the developer remembers whom the interface is being

created for, which is of course, the end user. GUI design should be thought of as an

informal negotiation between the developer(s) and the end user(s). One of the most

important aspects of efficient GUI Design is to involve the end user in the development

12

process. The involvement should not apply specifically with the actual coding, but for

such areas as layout of individual interface screens, high-level functions, and interface

screen colors.

In addition to the aforementioned, do not constrain users to one type of choice on how

to perform a particular task. For example, Microsoft Word provides the user with

various methods for saving files. The 'Save'peration could be performed from either a

pull-down menu, or from an icon with an appropriate printer symbol. This allows

different users to perform tasks in a manner in which they are accustomed, and be able to

use that knowledge within another application.

The design should be kept simple while maintaining redundancy. Keep windows and

dialogs clean and simple, otherwise the user could become confused [2]. Always make

the user feel as though he/she knows what they are doing. Give the users simple choices

when the application is first launched, and then make more functionality available as

more windows come into focus.

In addition to the three concepts noted above, other GUI considerations are important.

One is the ability to understand the behavior of people [2]. This became an issue for this

project. At one point in the GPET development process, an interface was being created

to allow the user to plot variables. Originally, the user had to recall specific variables

from his model application before the variables could be plotted. The user recommended

that instead, a list of all possible variables could be presented, allowing the user to

recognize the specific variables to be plotted. The lesson learned in this example is that

the user would rather recognize what is needed rather than trying to recall what is needed.

13

Another consideration is that the developers need to be aware of the context required

at a particular time and also accepted practices for various icons [2]. While not an issue

in this project, being aware of such things as placing a pushbutton object onto a window

with a particular picture within the object could pose a problem. For example, placing a

picture of an envelope on a pushbutton object may mean 'send this email now'o one

user, while another user may understand it to mean 'save the email to a file'.

Clarity is defined as 'being free from obscurity and easy to understand'. When

creating applications, the developer must be very clear when labeling pushbuttons, radio

buttons, and the like. The developer needs to be careful of using words that have similar

meanings. Using 'Product'n one pushbutton and 'Merchandise'n another pushbutton

may confuse the user [2]. One possible remedy to avoid confusion when labeling objects

is to create and use a table of reserved words [2]. The table could contain the reserved

word, along with its meaning and behavior, and possibly whether it should appear on a

pushbutton and/or pull-down menu, and/or a shortcut keystroke.

One last consideration here is to provide visual or audible feedback to the user. If

selecting a particular item within an interface may delete a file, then it would be in the

users'est interest to be warned. There are areas within the GPET system that provide

such feedback.

2.7 The MATLAB Language

The MATLAB language is an interpretive language that shares features with other

higher-level languages such as C++, but includes many differences as well. MATLAB

uses many of the same reserved words such as 'if', 'for', and 'else', although the precise

syntax differs. It also makes use of the class constructor to allow the encapsulation of

14

attributes, and only allows methods of the class to act upon the attributes, keeping them

contained. Furthermore, MATLAB has optional libraries that may need to be purchased

that will compile the MATLAB code into object code and ultimately an executable.

The MATLAB language uses two forms of files: script and function Biles. Script files

cannot accept input arguments or return output arguments, and only operate on variables

within the user workspace. Also, variables from a script file persist within the workspace

after running the file. In contrast, functions can accept input arguments, produce output

arguments, and internal variables are local to the function. If a variable is shared among

several functions, that particular variable must be declared GLOBAL within all functions

that need to share the value within the variable.

Table 2.1 illustrates similarities and differences between the MATLAB and C++

programming languages. Some of the similarities include the use of class constructors,

the 'class'eserved word, the use of inheritance, and the use of private methods and

attributes. Differences include the use of a specific directory for the class, the directory

name being the same as the class name, and the use of specific directories for subclasses,

all of which are required in MATLAB. Also, MATLAB does not use the reserved

KEYWORDS 'Private'nd 'Public'. Instead, MATLAB reserves a private subdirectory

for each class that will contain private methods.

Table 2.1 MATLAB/C++ Class Comparison

S cific director for class
Class constructors
Class destructors
'Class'ord reserved
Director name same as classname
Executable created
Uses Inheritance
S cific directo for subclasses
Private methods and attributes
'Private'ord reserved
'Public'ord reserved

MATLAB
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes
No
No

C++
No
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes

The 'varargin's a variable used in MATLAB, and is a variable length input argument

list (cell array). The cell array contains the optional arguments used by a function. When

used, the 'varargin'ariable must be the last input argument used by the function. For

example, the function

function myplot (x, varargin)

shows 'x's the first input argument, and 'varargin's the last input argument. By using

the 'varargin'rgument within a class (or any function), the class will have a number of

'case'or IF) statements to choose from, and the number of statements will depend on

how many input arguments are within the 'varargin'ariable, along with the number of

arguments listed before the 'varargin'ariable. Each statement will implement a

particular constructor. The format is

'@classnamelprivatelmerhod name.m'. In this manner, the method has scope only

within the 'classname', which means that the method can be called by any method within

the 'classname'irectory; however, it cannot be called from the MATLAB command

16

line or by methods outside of the class directory [5]. In addition to the above, the file

must be a function file (not script), and the function name must be class name [5]. An

example of the format in which a class in defined in MATLAB is shown in Figure 2.4

A particular constructor in C++ is called depending on the input argument(s), if there

are any. In C++, all methods and attributes are public by default. If any method or

attribute for a class must be private, then the reserved word 'private's used within the

class.

function object = classname(obj name, varargin)

switch nargin

case 1

Case 1 statements
obj = class (obj name, obj type, obj)

case 2
Case 2 statements
obj = class (obj name, obj type, obj)

case n

Case n statements
obj = class (obj name, obj type, obj)

otherwise
error ('rong number of input parameters')

end

Figure 2.4 Example MATLAB Class

Inheritance is also used in MATLAB, where child classes are allowed to inherit

attributes and methods from its parent class. The constructor function for a class that

inherits the behavior of another has two special characteristics. First, the constructor

calls the constructor function for the parent class to create the inherited fields. Second,

the calling syntax for the class function is slightly different, reflecting both the child and

parent classes [5]. The use of inheritance implies that any object that belongs to a child

I7

class will have the same fields as the parent class plus any additional fields specifically

for the child class. Also, any methods associated with objects of the parent class can

operate on objects of the child class. However, methods that operate on objects of the

child class cannot access fields within objects of the parent class. In Chapter IV we will

look at inheritance within the GPET software. Figure 2.5 illustrates a partial Parent/Child

class in MATLAB.

Inheritance is used in C++ much the same as it is used in MATLAB. In C++, child

and parent classes are referred to as base (parent) and derived (child) classes [6]. Derived

classes inherit all public methods and attributes from the base class. Any private methods

and/or attributes in the base class cannot be inherited. In other words, inheritance does

not imply access [6].

18

function object = inferiorclassname (obj name, varargin)

inferiorto ('supetiorclassname')
switch nargin
'/o

case 1

Case 1 statements
obj = class (obj name, obj type, obj)

case 2
Case 2 statements
obj = class (obj name, obj type, obj)

case n

Case n statements
obj = class (obj name, obj type, obj)

otherwise
error (Wrong number of input parameters'

end

function object = superiorclassname (input argument)

superiorto ('inferiorclassname')

superiorclassname.value01 = input argument value 01

superiorclassname.value n = input argument value n
object = class (obj, 'object name'
end

Figure 2.5 Parent/Child Class in MATLAB

2.8 Chapter Summary

This chapter began with a discussion of how this research came about. First, a brief

introduction to the GIFTS related research was presented. Next, a discussion of general

modeling was presented along with the hierarchal approach to modeling. The modeling

discussion was followed by the software development stages that were involved in taking

the tool from a problem statement to implementation. Next, background on the Graphic

I9

User Interface (GUI) design was presented. Issues discussed included user perspective,

clarity, and providing visual and audible feedback to users. MATLAB programming

concepts were then discussed. Finally, a comparison of the development of classes and

inheritance between MATLAB and C++ were briefly discussed along with an example of

a class design in C++ as well as base and derived class examples in the same language.

CHAPTER III

SOFTWARE SPECIFICATIONS AND OVERVIEW

3.1 Introduction

GPET was developed for the purpose of evaluating the GIFTS instrument. The

Top-Down Design technique was used in the overall development of GPET. The

three phases of the Top-Down technique are (I) Problem Analysis, (2) Program

Design, and (3) Program Implementation. In 53.2, these three phases will be

discussed in more detail. The foundation to the design of this software is three

types of conceptual models, that collectively, represent GPET, and 53.3 discusses

these models. Following the Top-Down discussion, overall generic software

architecture is developed and discussed. tt3.4 illustrates the generic architecture that

will be implemented in Chapter IV. ti3.5 is the chapter conclusion.

3.2 Software Development Stages

There are three phases in the Top-Down Design process. In this section, the

three phases will be discussed in detail. First, the Problem Analysis phase will be

discussed, where a problem statement has been created, and used as the

requirements in further development of GPET. Second, the Program Design phase

will break down the problem statement into smaller subproblems. In breaking down

a large problem into many smaller subproblems, then solving the smaller problems,

in essence, the large problem is being solved. Once all large problems have been

broken down into its smallest component, an algorithm can be developed to solve

each subproblem. Third and finally, in the Program Implementation phase, the

algorithms developed in phase two can be implemented in MATLAB.

21

3.2.1 Problem Analysis

The Problem Analysis phase begins by developing a problem statement. The

problem statement is essentially a set of high-level requirements that state what the

software is required to do. These requirements are the goals that were discussed in

tel.7 (Research Objective).

There are many issues to deal with when looking at the problem statement in

greater detail. Some of the more important issues include making the installation

and un-installation process as user-friendly as possible, the creation of actual

objects for both input and result data, and for providing an environment where users

have the ability to view the results of data in either a textual interface format and/or

graphical environment.

3.2.2 Program Design

The problem statement previously presented represents program functionality at

a high level. The next phase is to take the problem statement and break each point

down into smaller and smaller subproblems. As each original problem is sub-

divided further smaller problems, each smaller problem will be much easier to

solve. Once each of the smaller problems is sufficiently broken down, algorithms

can be created to solve the smaller problems.

As an example of taking a large problem and dividing it up into subproblems,

item one from the problem statement refers to the ability to install and uninstall

model applications. When looking at the installation part of the problem,

subproblems evolve. One of the subproblems would be to test the environment to

see if an application with the same name exists. Another subproblem would be to

22

ensure that each application has its own subdirectory to store not only the

application files, but also all input and result interfaces that are created for the

application, as well as any graphing plots for the application. There is also another

subproblem of keeping track of experiment and result objects that are created, and

then deleted, for a particular application, so that the environment can conserve

memory and file space. Still another subproblem is the way of keeping track of the

values of certain variables that are needed by all applications, but may have

different values. These are examples of taking a larger problem of being able to

install an application, and creating subproblems with more detail, to solve. In this

situation, the program design is the process of taking a requirement of installing and

uninstalling model applications from the problem statement, and developing smaller

problems that are easier to solve than the original.

3.2.3 Program Implementation

The third software development phase takes the work that was accomplished in

phase two (Program Design) and implements that work into a particular

programming platform. As was stated before, the programming platform used to

implement GPET is MATLAB. The reason for using MATLAB is two-fold. First,

the end user developed the original GIFTS model application in MATLAB, and

second, the predecessor to GPET was developed using the MATLAB platform.

3.3 Various Models

In Chapter II, modeling took a hierarchal approach that begins with the

conceptual model. Fundamental to this thesis are three conceptual models presented

in this subsection that become the foundation that represents the software system

23

being created. The three conceptual models are known as the Compositional Model,

the Operating Systems Model, and the Shell Model. These models were devised by

the author to provide an understanding on how the tool should function. From the

conceptual models, the GPET model (ti3.3.4) is developed by using characteristics

from the three conceptual models. These models are discu'ssed in more detail in the

following sections.

3.3.1 Compositional Model

The Systems Model is developed by first creating individual component models,

then constructing the Systems Model by cascading individual component models.

The Component Architecture that was developed and incorporated into the Systems

Model is shown in Figure 3.1.

'5

o

$
~

tutu or
Output

Figure 3.1 Component Architecture

24

From a mathematical perspective, the input would be a vector. The vector would

be placed within the computational engine (model application). Once the analysis is

complete, the computational engine produces an output vector. Figure 3.2

illustrates this process.

Figure 3.2 Mathematical Model

The heart of the Component Architecture is the Computational Engine. The

Computational Engine will be unique for each component, and the cascading of the

individual components will yield an overall Systems Model. Figure 3.3 illustrates

the System Model.

Figure 3.3 Conceptual Compositional Model

3.3.2 Operating Systems Model

The Operating System Model has characteristics of a typical operating system.

The Operating System architecture is illustrated in Figure 3.4.

25

Create

Figure 3.4 Operating System/Application Architecture

The operating system architecture resembles that of the component architecture

in Figure 3.1; however, in this architecture the application monitors file/memory

usage and communicates that information to the operating system. The operating

system would know the allotted amount of available memory and would prevent

further memory usage if there were insufficient memory.

From the operating system architecture the conceptual operating system model

was developed and is illustrated in Figure 3.5. In this model, it is shown that the

operating system monitors file and memory usage from all applications, where each

26

application is providing the information to the operating system. Note that the

operating system does not provide any data input or result output. In this model,

that responsibility falls upon the application.

Figure 3.5 Conceptual Operating System Model

3.3.3 Shell Model

In the Shell Model, all applications are installed within an environment known as

a shell. The architecture for this model is shown in Figure 3.6. Within the

architecture is the computational engine. Input to the computational engine can

come from one of three sources. Those sources are from a new input object, an

existing input object, or from a converted result object. The new input object is

created from an external database, and is defined as never being used within the

computational engine. The existing input object is defined as an object that has

27

been applied to the computational engine at least one time. The converted result

object is in reality an input object.

Figure 3.6 Shell Architecture

The various control inputs are used to create input objects, select a specific object as

an input to the computational engine, run the computational engine, and save the

results to the external database.

28

The conceptual model of the shell is illustrated in Figure 3.7. Any number of

applications can be run from within the shell, limited only by physical constraints,

such as hard drive space. As with the architecture, there are three possible inputs to

any application. The inputs are from an external source, an existing input, or from

previous results.

Figure 3.7 Conceptual Shell Model

3.3.4 The GPET Model

In 113.1, it was stated that the conceptual models that represents GPET, in fact,

contain characteristics of the Compositional, Operating System, and Shell models,

29

with the major emphasis on the Shell model. This section discusses how, out of the

three separate models, the GPET Model evolved.

In the Compositional Model, individual components are cascaded to ultimately

develop a compositional model. In GPET, several model applications can be

cascaded, ultimately creating a compositional model.

In the Operating Systems model, File and Memory Management mechanisms are

incorporated. In GPET, File and Memory Management mechanisms have been

implemented to conserve memory and file space when adding and deleting

experiments.

In the Shell Model, applications are installed within an environment where the

data is contained within objects, and resources are provided for evaluation purposes,

thus reducing the model application to a computational engine. The GPET Model

most closely follows the Shell Model.

In many higher level programming languages software is developed to a

particular platform (e.g. Windows). For example, Microsoft Word is an

application that is developed for the Windows platform. Conceptually, GPET is

no different. In order for model applications to function properly within GPET, the

application must follow certain rules or it will not work correctly. Consequently,

the model application is conceptually being designed for a particular platform, in

this case GPET.

30

3.4 Software System Architecture

Once the interfaces have been identified through the software development

stages, software system architecture can be developed. Figure 3.8 illustrates the

architecture of the Generic Performance Evaluation Tool (GPET).

Sretem Imertace

htrut/Results Crsatsr Imertace

Figure 3.8 GPET Architecture

The following modules are identified in the architecture. They are: Systems

Interface, Application Interface, Experiment Creation Interface, Input/Results

Creator Interface, Figure Plotter Interface, Input Parameters Interface, and the

Results Interface.

31

This system is a three-tier system. The Systems Interface is the main interface.

This interface is at the top of the tier (Top-level). Below the Systems Interface are

all Application Interfaces. These interfaces are referred to as Second-level

interfaces. Third-level interface include the Input/Results Creator, Experiment

Creator, Input Parameter, Results, and Figure Plotter Interfaces.

3.5 Chapter Summary

This section focused on the developmental process involved in designing the GPET

software. The chapter begins with an overview of the Michelson Interferometer.

Specifically, the components as well as a high-level description of the interferometer, was

discussed. Next, various conceptual models were looked at, and from those conceptual

models, a hybrid model evolved. Then, the software development stages that were

followed, was discussed. Finally, architecture of the tool was created based on the

software development process that was followed. The architecture will be the foundation

on the implementation of the GPET tool, which will be discussed in detail in Chapter IV.

CHAPTER IV

GPET IMPLEMENTATION

4.1 Introduction

This section will focus on the implementation of GPET. In this section we outline the

implementation of GPET in MATLAB. We will begin by describing how objects are

developed (54.2) in our platform of choice and how they function in the environment in

which we are working. In order for GPET to work properly with applications, the

Application Template is required to work within the shell, and is discussed in 54.3. The

main menu in GPET is referred to as the System Interface, and will be discussed in 54.4.

From the System Interface any number of applications can be launched. In 54.5 the

Application Interface and all associated interfaces are detailed. The chapter concludes

with the Chapter Summary in 54.6.

4.2 Object Development

The Problem Statement in 53.4.1 states that the use of input and result data objects

will be used to contain their respective data values. In MATLAB, classes are used, along

with inheritance. Classes are used to provide encapsulation of data, where attributes

contained within one object will be protected (or hidden from) other objects. Classes in

MATLAB will be discussed in 54.2.1. Inheritance creates a parent/child relationship

between classes, and is discussed in 54.2.2. Figure 4.1 illustrates the application

architecture and how objects fit within the application.

33

Delete

Figure 4.1 Application Architecture

4.2.1 Classes

The MATLAB platform was selected for the implementation of GPET as a result of

end users requirement. Objects that are developed in MATLAB mostly parallel objects

in higher-level languages such as C++. Chapter 2 (Background) discusses the manner in

which MATLAB implements classes in the creation of objects.

GPET makes use of two specific objects, referred to as the Experiment Object and the

Result Object. Each of these objects contains a maximum of 200 values that can be used

when performing experiments and for saving the results of those experiments

respectively. To preserve the data contained within these objects, methods have been

developed to perform such tasks as reading, writing, and viewing the data contained

within either the Experiment or Results object.

The flexibility of class constructors illustrates another advantage of using classes. A

particular class may implement more than one class constructor, which is based on the

number of input arguments when creating the class. GPET implements three class

constructors for the Experiment Object and two constructors for the Results Object,

34

which will be discussed in more detail in the Experiment Selection Interface section

(54.4.4.1).

4.2.2 Inheritance

When working with inheritance, we are dealing with child and parent classes. GPET

makes use of inheritance. With inheritance, a child object inherits all the attributes from

its parent object, and is also allowed to call the methods of the parent class. In addition,

the parent class is allowed to access those fields that were previously inherited from the

parent class, but can not access attribute that are new to the child class.

Whenever a user creates a new experiment, GPET instantiates an Experiinent/Results

pair. Table 4.1 illustrates the Parent/Child relationship of both the Experiment and Result

Objects. For input objects, the child class is the Experiment class and the parent class is

the ExpIn class. For result objects, the child class is the Results class and the parent class

is the ExpOut class.

Table 4.1 Parent/Child Class Relationship

The parent class in each object contains only the values. The child class stores the name

that is given to each Experiment/Results object pair. The reason for this is to give a

relationship between a particular experiment and the results created from that experiment.

4.3 Application Template

Any application that is run with GPET will function only as a computational engine.

In other words, the only purpose of the application is to produce calculations based on

35

specific input values from Experiment Objects. No other functionality should be

incorporated into the application. To this end, the development of the Application

Template was required. The purpose of the template is to give the procedure for

developing applications to run within GPET.

The Application Template is a sequence of eight steps necessary to create the

application. Figure 4.2 illustrates a flow diagram of the Application Template.

Figure 4.2 Application Template Flow Diagram

The instructions within the template that precede each step must be adhered to for the

application to operate properly within the shell. The application template contains the

36

following eight steps. The first step defines any constants that the application requires to

function. The second step defines global variables that are required by the GPET

software. It is noted within the Application Template that these global variables must not

be deleted. The third step contains the global variables that are used to store calculated

internal application results after computation. In the fourth step, the application creates a

results object that will be used to store the user-defined result values after all

computations are performed within the application. In the fifth step, all experiment

variables that are used within the application are defined. The sixth step is where all

computations within the application are performed. The seventh step stores all user-

defined result values into the results object. In the eighth and final step, the result object

is saved.

4.4 System Interface

The System Interface is the main interface for the GPET-GIFTS system. The

interface provides the functionality to install, uninstall, and launch applications. Figure

4.3 illustrates the System Interface. In this section, the implementation of how

applications are installed and removed from the system, are discussed.

37

Figure 4.3 GPET-GIFTS Main Menu Interface

4.4.1 Installation of Model Applications

The underlying code that supports the installation of applications performs three major

tasks. First, the application name that is provided will be applied to the Systems Interface

to give the ability to launch the application. Second, a MAT file will be created to hold

all information that the application will require to function properly. Third, an

application interface will be created that will be used to provide all the necessary

resources to run experiments, as well as view the results of performed experiments.

The first step for installing an application is to provide a unique application name.

GPET verifies that the application name is unique and legal. Each application resides in

its own directory and GPET updates the MATLAB search path to make the application

available.

38

Next, the System Interface is updated to make the new application available through

the GUI 'Run Application'enu. Furthermore, relevant pull-down menus are associated

with the new application in the Application Interface to be discussed in more detail in

114.5

In order to keep information about one application separate from other applications,

part of the installation process creates an application MAT file. This file stores 12

different pieces of information relating to the application. These pieces of information

include such data as the number of experiments associated with the application, the

names of those experiments, the actual experiment and result objects, along with other

pertinent data. Table 4.2 summarizes the 12 MAT file variables that each application

uses.

Table 4.2 Application MAT File Variables

MAT Variable
Ex NameCell
Ex Ob'Cell
MATFile
MAX COUNT
ResOb'Cell
a INITFile
A Path
ex r counter
in utWindowCounter
resultWindowCounter
trackCounter
trackDelEx

Descri tion
Cell Arra to store ex eriment names
Cell Arra to store Ex eriment ob'ects
MAT file name
Maximum number of ex eriments installed
Cell Arra to store Result ob ects
Variable Tem late file name
Arra thatcontains full director athto a lication
Number of ex riments installed
Number of In ut Interface windows created
Number of Result Interface windows created
Number of ex riments that have been deleted
Cell Arra to store deleted a lication names

39

4.4.2 Removal of Model Applications

Complementing application installation, the System Interface also provides the ability

to uninstall applications. A flow diagram of the uninstall function is provided in Figure

4.4.

Figure 4.4 Uninstall Flow Diagram

This function performs four tasks. First, the user is prompted for the name of the

application to remove. Second, the name is checked against currently installed

applications to ensure that the application exists. If the application does not exist, the

user will receive a message stating such. Assuming the application does exist, the next

step removes the previously create application window. Third, the application MAT file

40

is deleted. Fourth and finally, the application path is removed using the MATLAB Path

Browser.

4.5 Application Interface

Figure 4.5 illustrates a typical Application Interface. Once the interface is created, it

will serve a multitude of functions, including adding and deleting experiments from the

application, as well as selecting individual experiments to use within an application. The

interface will also provide the creation of customized Input and Result Interfaces for

viewing data in a textual format, and provide the functionality of creating various types

of graphical plots. The remaining part of this section is devoted to the implementa'tion of

what has just been described.

41

Figure 4.5 Typical Application Interface

4.5.1 Adding Experiments

The functionality necessary to add experiments is encapsulated in the 'AddExp'unction,

which is called through the Experiment Selection Interface.

Experiments may be created in one of three ways. First, default values for an existing

application can be read from a database. Second, values can be taken from an existing

experiment object within the same application. Third, values from a Result Object from a

different application. The overall process is illustrated in Figure 4.6.

42

Figure 4.6 'AddExp'asic Flow Diagram

4.5.1.1 Experiment Selection Interface

The Application Interface still exists when the Experiment Selection Interface is

selected. To prevent inadvertent software functionality, certain selections within the

Application Interface are disabled, in the event the user brings the Application Interface

43

Window into focus. There are a number of functions associated with the Experiment

Selection Interface shown in Figure 4.7.

Figure 4.7 Experiment Selection Interface

Once the Experiment Selection Interface is in focus there are three radio buttons to

select from and two pushbuttons. When the top radio button is selected, default values

from a user-generated database are used. When the second radio button is selected,

values are used from a previously created experiment within the same application.

Situations arise when the user wants to use the results of one application as input to

another application. Option three was developed to support this capability. Recall from

the installation section that when an application is installed, an application MAT file is

created, containing all information required by a particular application. The source

application MAT file is temporarily loaded into the user workspace. The user is then

given a list of the experiments to choose from, and its respective result object data will be

used as input to the destination application. Then the destination application is then

reloaded. Figure 4.8 illustrates option three.

Figure 4.8 Experiment Selection Interface Option Three

The first of the two pushbuttons is the 'Reset'utton. The action in response to

clicking on this button clears all the radio button selections and hides any visible list

boxes. It also checks to ensure that if a different application MAT file is loaded into the

user workspace, it is reset to use the currently open applications MAT file.

The other pushbutton is the USE button. The actions in response to clicking on this

button includes storing the appropriate information that will be used in the second part of

experiment addition process, resets the user workspace back to the currently running

application if needed, then closes the Experiment Selection Interface.

45

Once the appropriate selections have been made to create a new experiment, interlocks

are used to prohibit certain selections within the Application Interface until the

experiment has been completely added. Table 4.3 lists the various functions used with

the Experiment Selection Interface, along with details of the purpose of the function.

Table 4.3 Experiment Selection Interface Functions

Function
exprSelection Create

defaultValues callback

ExpSelradio2 callback

ExpSelradio3 callback

AddExpSel

ExpSelreset callback

UseButton callback

exprSelection DeleteFcn

Pur use
Disables certain selections within the
Application interface in the event the user
brin s the A lication Interface into focus.
Allows the user to select only one of the
options at a time. Sets the 'selectButton'ariable

to ' '.
Allows the user to select only one of the
options at a time. Sets the 'selectButton'ariable

to '2'.
Allows the user to select only one of the
options at a time. Sets the 'selectButton'ariable

to '3'.
Loads the selected source application MAT
file.
Clears all radiobutton selections. Hides
any visible list boxes. Resets application
MAT file to currentl o en a lication.
Stores appropriate data that will be used in
the currently running application. Resets
user workspace to currently running
application. Closes Experiment Selection
Interface.
Enforces interlocks to guarantee proper
o eration for se uential user in ut.

4.5.1.2 Object Instantiation

As previously discussed, GPET provides three class constructors to instantiate

Experiment Objects and two class constructors to instantiate Result Objects. For

Experiment Objects, the first constructor sets all values to zero, the second constructor

46

uses a previously created object, and the third constructor is used when creating a new

object from an existing external database (text file). Currently, GPET uses the second

and third constructor, leaving the first constructor for future development. A partial

listing of the pseudo code for the constructors of the Experiment class is shown in Figure

4.9.

function ei = Exp eriment (name, varargin)
switch nargin
case 1

Set object name fid d to input argument name
While n is less than 201

Set cell array nto 0
Call Expln function using cell array as input argument
Create experiment object

case 2

Set object name fidd to input argument name
Set internal experiment obj ect equal to variable input argument one
Convert internal experiment object from numeric values to a cell array
Create experiment object

case 201
Set object name field to input argument name
Create internal cell array &om input arguments
Call Expln function using cell array as input argument
Create experiment object

Otherwise
Output error message due to invalid number of input arguments

end

function expinput = Expln (values)
While n is less than 201

Set experiment field value n to cell array value n
.Create internal experiment object
end

Figure 4.9 Pseudo code for the Experiment class

Initially, the Experiment function is called (ultimately an experiment object will be

created). The Experiment class is the child class, and will call upon the Expln function

(parent class) to apply the 'varargin'if available) values to the fields within the ExpIn

47

class, and will create an 'expin'bject. When the Expln function ends, the object is used

as an input argument when creating the experiment object. In all cases, objects must be

given a name.

Case 1 is used to create an object, where all 200 values within the object are set to

zero (this case is not used in the current version of GPET). The case statement sets all

the values to zero, so there is no need to have a 'varargin'ariable, and the 'nargin'number

of arguments) value is equal to one (all objects must have a name). After all

values have been set to zero, the Expln class (parent class from Table 4.1) is called to

create an 'expin'bject.

Case 2 is used when option two or three is selected on the Experiment Selection

Interface. In both of these cases, objects already exist, either from an existing experiment

within the same application, or from a converted Result object from a different

application. In either of these situations, an internal object is created, and applied as an

input argument when instantiating the new experiment object. In case 2, the Expln parent

class is not used.

Case 201 is used when option one is selected on the Experiment Selection Interface.

With this option we are using an external database, and therefore must assign each of the

200 input values individually. The 'varargin'rgument will contain 200 arguments. The

switch argument 'nargin'ill be equal to 201 (the name plus the 200 input arguments).

In Case 201, a cell array is created from the 'varargin'ariable. The cell array is then

used as an input argument to the Expln class when it is called. The Expln class will

create an 'expin'bject, and that object will be used as an input argument when

instantiating the experiment object.

48

Instantiation of a Results Object is similar to that of an Experiment Object with the

exception that there are only two class constructors instead of three. Figure 4.10

illustrates the class constructors for the Result (child) and ExpOut (parent) classes.

function ER = Results (name, varargin)
switch nargin
case 1

Set object name Geld to input argument name
While n is less than 201

Set cell array value n to 0

Call EzpOut function using cell array as input argument
Create Result object

case 201
Set object name Geld to input argument name
Create internal cell array from input from input arguments
Call ExpOut function using cdl anny as input argument
Create Result object

Otherwise
Output error message due to invalid number ofinput arguments

end

function ExpResult = EzpOut (values)
While n is less than 201

Set Result field value n to cell arrya value n
Create internal Result object
end

Figure 4.10 Pseudo Code for Result class

4.5.1.3 Adding the Experiment

Adding an experiment to the application is a two-step process. The first step involves

the use of the Experiment Selection Interface, where the user is given three options to

select from in retrieving data. Once a decision is made on which option to use, the

'AddExp'unction is called. When 'AddExp's started, information is collected based

on the option that was selected during step one.

49

Option 1 the Experiment Selection Interface (Use Default Values) first presents a

dialog box. The dialog box shown in Figure 4.11 asks for the input path and filename of

the database in which to retrieve data. Since MATLAB is matrix-based, the database

must be implemented as a matrix as well.

Figure 4.11 Directory and Filename Dialog box

The database file (text file) is configured as a 20x20 matrix so that both experiment and

result values can be contained in one database file. The constraint comes from user

consensus of having 200 input and 200 result variables within the respective objects. The

overall yield is 400 variables, and thus would fit within the 20x20 matrix. The first 20

rows by 10 columns are reserved for experiment values. The remaining 20x10 section is

reserved for results that the user may wish to save. The values from the database are

loaded into the user workspace in a user-defined variable. Once the data is inserted into

the database, another dialog box (Figure 4.12) appears asking the user to provide a unique

experiment name. Assuming the experiment name does not exist, an experiment object is

created by applying each value within the user-defined variable as an input argument.

50

Figure 4.12 Experiment Name Dialog box

Along with the experiment object a result object is also created. The only input argument

to the result object is the name. The name given is the same name as the experiment

object.

There are two cell array variables that store all experiment and result objects for a

specific application. If there are currently five objects stored in each of the cell arrays,

and the third object pair is to be deleted, there would be an empty cell in the middle of

both cell arrays. If there were no way of keeping track of empty cells, memory would be

wasted. Therefore, the next step in adding an experiment/result object pair is to identify

any empty cells, and if one exists, use that cell to store the currently created

experiment/result pair. If no empty cells exist, then add the experiment/result object pair

at the end of their respective cell arrays.

The next step enables and disables certain selections on the Application Menu. Figure

4.13 illustrates the specific areas that are enabled and disabled.

v SniR MODEL

File Cn-:.'.e i.':» i::-.i ": Exit

Add Expeniment

.& .".nnem

Figure 4.13 Disabled Selections

There is only one selection enabled, and that selection is 'Add Experiment'. The final

step for option I is to update the running application MAT file. This is the file that

contains all information pertinent to a particular application.

Option 2 on the Experiment Selection Interface (Use values from another experiment)

is similar to option I with a few exceptions. In option 2, an external database is not used

for retrieving data, so there is no need to ask for an input path and filename. The data is

already contained within another experiment object in the same application. Figure 4.14

illustrates the selection of option 2. The remaining steps of tracking deleted

experiment/result object pairs, menu enabling/disabling, and updating the application

MAT file is performed in the same manner as option I.

Figure 4.14 Option 2 Selection

For the most part, option 3 on the Experiment Selection Interface (Use values from

another application) creates an experiment/results pair much like that of option 2. For

option 3 however, we are creating an experiment object by using the results of an

experiment within a different application. Figure 4.15 shows the option 3 selection. On

the surface this may not seem to be a difficult task. The task would include opening the

other applications'AT file, get a copy of the result object, and store that value within a

52

temporary object, then use the temporary object as an input argument when creating the

new experiment.

Figure 4.15 Option 3 Selection

However, a result object cannot just be placed into an experiment object. The two

objects may look similar, but they are indeed two totally different object types. The

result object must be transformed into an experiment object before the experiment object

can be saved. The 'res2exp'unction is used to break down the 200 individual values,

and then rebuild those values into an experiment object.

4.5.2 Experiment Removal

The process of removing an experiment begins by selecting 'Delete Experiment'rom

the File pull-down menu. When this is selected another menu will appear with the names

of all current experiments. Figure 4.16 shows an application window with 'Delete

Experiment'elected and a list of available experiments to delete.

Figure 4.16 Selection for Deleting an Experiment

53

Once the particular experiment is selected, a search of the experiment cell array is

performed to find the particular experiment to be removed. There is an index number

associated with each element within the cell array. This index number is also associated

with the experiments result object in result cell array. Once the experiment name is

found, the index number is used to actually replace the experiment and result objects with

an empty matrix. Then, the tracking variables used to note where experiments and results

have been deleted are updated in the event that a new experiment is added. Next, the

experiment name is removed from the 'Select Experiment'nd 'Delete Experiment'ull-

down menus within the Application Interface. The last step is to update the application

MAT file with the current objects contained within the experiment and result cell array

variables.

4.5.3 Selecting Experiments

Under the File menu in the Application Interface a particular experiment is selected to

use prior to running the application. Figure 4.17 illustrates the selection of a particular

experiment. When a particular experiment is selected, the 'ExpObjCell'ell array

variable is searched to find the object by comparing the selected experiment name from

the pull-down menu to each object name until the correct object if found.

1I'NR MODEL

Create Run Display Exit

Preselect Experiment

Delete an Experiment

Select an Expenment SNR001

SNR002

Figure 4.17 Selecting an Experiment

54

4.5.4 Input/Results Creator Interface

The Input/Results Creator Interface was developed to provide the ability to create

input and/or result interfaces that allow the viewing of input and result variables in a

textual format. The Input/Results Creator Interface is shown in Figure 4.18. In the case

of input variables, the variables can be changed prior to running an experiment with a

particular application. In the event that a particular application is uninstalled, and later

reinstalled, previously created interfaces can be reinstalled without starting from scratch.

The ability exists as well to edit an existing input or result interface. When this selection

is made, a list of available input (or result) interface(s) is/are displayed within a list box

to choose from. There is a limit on the number of input and result interfaces that are

created. With the maximum limit of 200 input and 200 result variables, a maximum of

20 pages of input and 20 pages of result interfaces can be created respectively.

55

Figure 4.18 Input Parameters/Output Results Interface Creator

In the subsections to follow, discussions will begin with the Variable Template. The

template is used in conjunction with the Input/Result Interface Creator Interface to

provide internal variable names. The internal variables names are displayed on the

Input/Result Interface Creator Interface to aid the user in providing formal names to the

internal variables. The subsections following the Variable Template will discuss the

creation of an Input Parameter Interface, and a Result Interface, using the Input/Result

Interface Creator Interface. The last subsection discusses the ability to reinstall Input and

Result Interfaces when an application has been uninstalled, and later reinstalled.

56

4.5.4.1 Variable Template

The purpose of the variable template is to identify which of the ten variables on an

input or result interface belongs to a specific internal variable within the application.

Using this template, the user associates internal variable names with formal names within

the application.

The Variable Template is a file that contains MATLAB code, and the user modifies

the template by adding internal variables names within the template, that are contained

within the users'odel application. The variable names entered within the template will

be displayed on the Input/Result Interface Creator Interface whenever the user creates

input and/or result interfaces, and aids the user in giving formal names to the internal

variables. Appendix C contains the Variable Template along with instructions contained

within the template on how to set up the template. Additional information on the

Variable Template is found in the Users'anual in Appendix B.

4.5.4.2 Input Parameter Interface

The Input/Result Interface Creator creates an Input Parameters Interface by default.

After page title and menu title information are supplied, the Transfer Data pushbutton

becomes enabled, allowing the user to associate formal names to their internal variables.

These names are retrieved from the variable template that was discussed in tl4.5.4.1.

Once the desired associations have been entered, the user commits these associations.

The underlying code for the pushbutton event performs several tasks, and those tasks are

listed in Table 4.4. One of the tasks performed, but not listed in the table is the manner in

which newly created interfaces are named. Figure 4.19 illustrates an Input Interface. The

formal names are displayed on the left side of the interface.

57

Figure 4.19 Input Interface

A specific naming convention is applied to both the Input and Result Interfaces. The

first three characters are the first three capital letters of the word 'application'. The next

character(s) is the application number that has been installed. Following the application

number is a character that defines the interface as either an Input (I) or Result (R). The

next four characters are the word 'PAGE'. The last character(s) is the page number of

58

either the Input of Result Interface. Once the appropriate filename is created, the files are

saved into the same directory in which the specific application is stored.

To clear all entered data on the Input/Result Interface Creator, the 'Clear Data'ush

button is used. This pushbutton performs two tasks. It will clear all information for

formal variable names, as well as clear the page name and menu name.

The Input/Result Interface Creator provides the ability to edit existing Input and

Result Interfaces. This is a three-step process. First, as a result of selecting the Edit

Existing Interface radio button, an event will take place that will display a list box. The

list box will list (seeing as we are discussing input interfaces) any Input Interfaces that

have been created. Second, clicking on the 'Load Data'ushbutton will call an event that

will open the specific Input Interface, retrieve formal names, than place those formal

names within the Input/Results Interface Creator Interface. Third, when editing is

complete, clicking the 'Transfer Data'ush button calls an event that will send the

updated formal names to the currently open interface, as well as saving the edited

interface within the currently open application folder. Table 4.4 lists the functions that

are implemented within the Input/Result Interface Creator.

59

Table 4.4 Input/Result Interface Functions

Function
Page menu callbacks

transfer data

Clr data

radiobuttonl callback

load data

Pur ose
Prevent interface from creating either an input
or result interface until a minimum amount of
information is su lied
Tests for maximum number of either Input or
Result Interfaces. Transfers data from the
Input/Result Interface Creator to the
res ctive created interface
Clears all information for formal variable
names, a e name, and menu name.
Update list box when editing an existing Input
or Result Interface.
Retrieves formal names of the interface that
requires editing and places them within the
In ut/Result Interface Creator

4.5.4.3 Result Interface

As was noted previously when the Input/Result Interface Creator is started, it is

configured to create an Input Interface. Selecting the Result Interface enables the user to

create a result interface. The system is allowed to have up to 20 input pages and up to 20

output pages. Information is entered in a manner similar to the Input Interface. Figure

4.20 illustrates a user-created result interface.

60

Figure 4.20 Result Interface

Editing a Result Interface is accomplished much like that of the Input Interface with a

couple of exceptions. The Results Interface must be selected first to set up for creating a

Result Interface. Then, select Edit Existing Interface radio button. A list of all

previously created Result Interfaces will appear. The manner of selecting and editing a

specific result interface is the same as with an Input Interface.

61

4.5.4.4 Edit Override

When an application is uninstalled from GPET, the uninstall process does not remove

any of the created Input and Result Interfaces for that application from the uninstalled

applications directory. If the user later wishes to install the application, it would be

somewhat cumbersome to try and recreate the same Input and Result Interfaces. The Edit

Override radio button is incorporated within the Input/Result Interface Creator for the

purpose of reinstalling existing interfaces.

When the Edit Override radio button is first selected, a method is invoked to warn the

user that this button should only be used when reinstalling either Input and/or Result

Interfaces after reinstalling an application. 'Edit Override's used in conjunction with

the 'Edit Existing Interface'nd the 'Results Interface'adio buttons. A combination of

the 'Edit Override'nd 'Edit Existing Interface'ush buttons will allow a reinstallation

of an Input Interface. Selecting all three radio buttons will allow the reinstallation of a

Result Interface.

There are a couple of differences between editing an existing interface and reinstalling

an existing interface. The first difference is that in a normal edit, all information is

available. In a reinstall situation the Menu Title on the Input/Result Interface Creator is

missing because of the destruction of the Application Interface when it was uninstalled.

The user will need to input Menu Title information prior to being able to allow the

transfer of data. The second difference has to do with the counters that keep track of how

many Input and Result Interfaces that have been created. In a normal edit we do not want

any of the counters to change. We are only doing an edit. However, this is not the case

in a reinstall. In a reinstall we are actually "fooling" the system into believing we are

62

creating a new interface even though we are only replacing an already existing one. The

checking of all of the radio buttons occurs when we click on the 'Transfer Data'ush

button.

4.5.5 Figure Plotter Interface

The Figure Plotter Interface gives the added ability to graph the results of currently

run experiments. The Figure Plotter has the functionality to create a number of pre-

defined plots, allow editing of plots that have already been created, along with displaying

a list of all created plots within an application, and displaying a list of all workspace

variables for the currently running application. Figure 4.21 illustrates the Figure Plotter

Interface.

Figure 4.21 Figure Plotter Interface

The Figure Plotter is subdivided into six sections. The 'Select a Figure'ection

provides a list of previously created plots for an application. The three pushbuttons

63

associated with this section allow the updating of the figure list, displaying a currently

selected figure, and deleting an unwanted figure.

The 'Select a Variable to Plot'ection lists all variables that are contained in the user

workspace, and functionality exists that will update the variable list.

The 'Variables Selected'ection displays the currently selected variables that will be

plotted. This section is useful when the variable list become lengthy, and provides the

user with a quick look at what has been selected. A maximum of two variables can be

selected.

The 'Selected Plots'ection is an information section. It informs the user of what

types of plots that can be selected. The two displays will either be 'Pie Chart'r 'All

Other Plots', depending on the number of variables that are selected.

The 'Plotting Controls'ection add functionality that will allow adding more variables

to an existing plot, replace currently plotted variables, or to 'explode' pie chart.

Exploding is nothing more than separating the largest section of the pie from the

remaining part of the pie.

The 'Plotting Functions'ection provides functionality to use existing MATLAB

plotting functions to create a variety of user-defined plots. Table 4.5 lists the five push

buttons and their associated functions.

Table 4.5 Pushbutton and Associated Function Calls

Figure 4.22 shows a newly created plot using the Figure Plotter. The MATLAB'plot'as

its own tools available, allowing complete customization of plot. These tools include

the ability to edit axes properties, line properties, and text properties. This means that a

title to the plot, label 'x'nd/or 'y'oordinates, and turn grids on and off, can be added.

The Axes Property dialog box is illustrated in Figure 4.23.

Figure 4.22 Newly Created Plot

65

Figure 4.23 Edit Axes Properties Dialog box

The only plotting push button that requires only on input is the 'Pie'ush button.

With pie plotting, the ability to 'explode' portion of the pie chart exists; the largest slice

of the pie chart is pulled away from the rest of the chart.

There are two important facts that the user needs to be aware of. The first has to do

with saving the plot. If the user wishes to use the figure list within the Figure Plotter,

then the created figure needs to be saved into the same directory as the application. The

second has to do with the interaction between the property dialog boxes that open to

change properties of the plot and the Windows XP operating system. Windows XP has

two types of appearances that can be selected from the 'Display Properties'ialog box.

When this selection is set to 'Windows XP style', the user will have a very hard time

being able to make changes to any of the dialog boxes when trying to customize a plot.

Therefore, it is very highly recommended that if the user plans on creating customized

66

plots, then set the style within the 'Appearance section'f the 'Display Properties'o

'Windows Classic Style'.

MATLAB is a command line oriented application, where users have the capability of

entering data into the workspace from a keyboard. With this in mind, the advanced user

knows that he/she has the added capability of adding temporary variables to the

workspace. But that alone does not allow the user to use that variable within the Figure

Plotter. Therefore, the push button 'Update Variable List's implemented to update any

variables that may have been added to the workspace. It also will change both variable

names in the 'Variables Selected'ection to 'NONE'.

When a new plot is created and saved into the appropriate application directory, the

'Select a Figure'ist box is not automatically updated. The 'Update Figure List'ush

button was created and implemented to searches the currently running application

directory to find any files that has the (.fig) extension. All of these filenames are

collected and placed into the 'Select a Figure'ist box. Table 4.6 lists the functions that

are used in conjunction with the Figure Plotter.

67

Table 4.6 Figure Plotter Interface Functions

Function
U date fi box
U date listbox
varDisplay

plot callback

et twovars
et onevar

pie callback

fi Dis la
detect figure

figDelete

Pur ose
Checks and u dates the list containin reviousl created fi ures.
Checks and u dates the list containin reviousl created variables.
Controls specific sections of the Figure Plotter Interface. Checks to see
if a lot is o n.
Retrieves values to be plotted by using the 'get twovars'unction and
uses the MATLAB lot() function to rform actual lottin .

Retrieves values to be lotted when usin the 'ot callback'unction.
Retrieves values to be lotted when usin the 'e callback'unction.
Retrieves values to be plotted by using the 'get onevar'unction and
uses the MATLAB pie() function to perform actual plotting. Also uses
the MATLAB explode() function to separate the largest section of the

ie chart.
Used to o n a lot after it has been selected from the fi ure list.
Enables the 'Add Variables'nd 'Replace Variables'adio buttons on
the Fi ure Plotter.
Searches for the figure that is selected within the figure list and deletes
the actual fi ure file usin the MATLAB delete() function.

4.6 Chapter Summary

This section described the implementation process that was required to bring GPET

into existence. Individual interfaces'ere discussed along with the controlling methods

associated with that interface. Each interface that exists or is created belongs to or

becomes an architectural component within the entire system. Control of the system

comes from the various methods (functions) belonging to each component of the overall

architecture. In the next section, we will test and evaluate the entire system for reliability

as well as limitations.

CHAPTER V

GPET TESTING AND EVALUATION

5.1 Introduction

This section will look at the testing method used to validate the GPET software

system. Testing of any software package requires a detailed master test plan, and this

software is no different. The primary focus of the master test plan is to evaluate all

aspects of GPET.

The chapter begins with a discussion on verification and validation. Specifically, the

discussion will include what verification and validation is and the differences between the

two types of testing. Verification and validation is covered in ti5.2. The discussion will

then turn to the various tests plans created for GPET. This all begins with a master test

plan.

The master test plan consists of two parts. Part one is a table that contains the areas of

functionality, and the second part comprises three phases of testing. The Master Test

Plan is discussed in lt5.3. Phase one of the Master Test Plan, which is covered in I5.3.1,

is based on a prototype application developed from scratch. Phase two is based on an

existing GIFTS-related model application that will be modified for the GPET system,

which will be discussed in 55.3.2. Phase three will evaluate GPET with the installation

of the two applications and will be discussed in ti5.3.3. Each individual phase will not

evaluate the entire software system. It is the culmination of all three phases that achieves

overall validation. The chapter summary highlights the chapter, which is covered in ti5.4.

69

5.2 Verification and Validation

Verification and Validation is a software engineering discipline that helps build

quality into software [3]. Verification is accomplished during each life-cycle phase to

ensure that requirements of the previous life-cycle phase are being met. Validation

involves the conformation of the software at the end of development to ensure that the

software does what it is suppose to do [3]. The previous version of the tool cannot be

used to validate GPET because of the amount of functionality implemented within GPET

that is not supported in the previous version. Validation of GPET is derived from

ensuring that the requirements within the Problem Statement are met. Some of the

benefits of V&V include uncovering potential errors early, ongoing evaluation against

system requirements, gives feedback to management for the purpose of knowing the

progress of development, and gives the user a step-by-step view of the software so that

early fixes can be accomplished [3].

The scope of this chapter is to test the overall functionality of the GPET software. To

that end the Master Test Plan was developed. The purpose of the Master Test Plan is to

test the overall functionality of the GPET software by creating a table of areas of

functionality along with test phases. Each test phase will validate specific areas of

functionality within the software, and the cumulative phases will validate the overall

package. An important point to note is that testing is focused on the GPET software, not

on the accuracy of the calculations performed within the model applications.

5.3 Master Test Plan

The purpose of creating the Master Test Plan for this project is to define all the areas

within GPET to be tested. The Master Test Plan for this GPET is a 30-point test plan,

70

where the three phases will test the 30 points. During the three phases, there will be

some overlapping, where some areas of the master plan will be tested multiple times.

The multiple testing will only serve to further validate that particular area. Table 5.1 lists

the 30-point testing of the GPET software.

Table 5.1 Master Test Plan Areas for GPET Software

1 A lication Tem late
2 Variable Tem late
3 Installin a lication
4 Uninstallin a lication
5 Selectin an a lication

16

17

18

19

20

Create Result Interface
Test max number of Result Interfaces
Test Result internal variable names
Edit an exitin In ut Interface
Edit an existin Result Interface

6 Preselectin an ex riment
7 Use default values

21
22

10 Add an ex riment 25

8 Use values from another ex riment 23
9 Use values from another a lication 24

Reinstall an In ut Interface
Reinstall a Results Interface
Run an ex riment
View In ut values usin In ut Interface
Edit values usin In ut Interface

11 Check for existin ex eriments
12 Selectin an ex riment
13 Create an In ut Interface

26
27
28

View results usin Results Interface
Plot variables with Fi ure Plotter
Dis la anexistin lot

14 Test max number of In ut Interfaces 29
15 Test In ut internal variable names 30

Edit an existin lot
Delete an existin lot

Using Table 5.1 as reference, Table 5.2 illustrates the areas of the Master Test Plan that

will be tested within each phase. This table will be reference within its respective

section.

Table 5.2 Areas tested within each phase

5.3.1 Phase One: Test of GPET Primitives

As described in earlier chapters, the model application is essentially a computational

engine within GPET, meaning that all it does is calculate values from equations. Even

though GPET was developed for GIFTS, as long as any model application conforms to

the Application Template, it will work within GPET.

In this phase a model application is designed and implemented from scratch, and after

evaluating it as a standalone, the application will be implemented within GPET by using

the Application Template. Figure 5.1 illustrates the architecture of the application as a

standalone. This test phase will test all areas listed in the first row of Table 5.2 Note

that not every area listed tn this phase will be explicitly mentioned. The areas not

discussed were implicitly tested while testing the areas that were considered for

discussion.

72

store SP

U
I

ID
I0

Figure 5.1 Protoytype Application Architecture (Standalone Form)

Once the application has been developed as a standalone, it will be run several times

for the purpose of collecting data. These runs will correlate to different experiments

within the shell, and will be collected for reference. Once the standalone application is

run a number of times, it will be installed into GPET using the Application Template.

Several experiments are created within the application that will parallel the number of

runs performed as a standalone. The application will be run a number of times to

produce various results. These inputs and results will be compared to the standalone

application input and results.

The standalone application begins by defining the directory and filename of the

location of the database. The database file is opened, and the data is loaded into the

workspace under the variable called 'SP'. 'SP's a 20x20 matrix. For this application,

focus will be placed within a small portion of that matrix. On the input side the

application consists of 20 values labeled 'a'hrough 't'. The input variables are listed as

constants within the application. So, in order to run the application with different values,

the application itself must be modified. For this phase it was decided that five tests

73

would be sufficient to test the areas listed earlier. Table 5.3 lists the tests and the

associated input values used.

Table 5.3 Test Numbers and Associated Initial Values

After input values are assigned they are then stored into SP(1,1) through SP(1,10) and

SP(2,1) through SP(2,10). The calculations on the variables are now performed in four

sections. Table 5.4 lists the manner in which the calculations are taking place.

Table 5.4 Output Variable Names and Associated Operation

Once the calculations are completed, results are assigned to specific elements of the'SP'atrix.

Table 5.5 lists the variable names and the areas of the 'SP'atrix that the

variables are stored in.

Table 5.5 Output Variable Names and Associated SP Locations

Finally, the database is opened once again. This time the values that were stored into the

'SP'atrix are now saved into the database file, and then the file is closed. Figure 5.2

illustrates Test U5 inputs and results stored within a database text file.

-2.50000e+000
-2.25000e+000
-2.00000e+000
-1.75000e+000
-1.50000e+000
-1.25000e+000
-1.00000e+000
-7.50000e-001
-5.00000e-001
-2.50000e-001

e+
-3.75000e+000
-2.75000e+000
-1.75000e+000
-7.50000e-001
7.50000e-001
1.75000e+000
2.75000e+000
3.75000e+000
4.75000e+000

INPUT
VALUES

2.5000 e-0 1
5.00000e-001
7. 50000e-001
1.00000e+000
1.25000e+000
1.50000e+000
1.75000e+000
2.00000e+000
2.25000e+000
2.50000e+000

-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001
-2.50000e-001

RESULT
VALUES

0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000

e+
1.14286e+000
1.20000e+000
1.33333e+000
2.00000e+000
5.00000e-001
7.50000e-001
8.33333e-001
8.75000e-001
9.00000e-001

0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000
0.00000e+000

e+
3.50000e+000
1.87500e+000
7. 50000e-001
1.25000e-001
1.25000e-001
7. 50000e-001
1.87500e+000
3.50000e+000
5.62500e+000

Figure 5.2 TEST U5

Once all the data is collected from the standalone model application, steps are taken to

incorporate the model application into the GPET system. This includes the use of the

application template to format the application into, as well as creating the variable

initialization file for use within the Input/Result Interface Creator. Once these files are

created and placed into its respective application directory, the model application was

installed the application into the GPET shell. From that point, two input interfaces were

created that will allow the modifying of experiment inputs prior to running the

application. Four result interfaces were created to provide the ability to view the

outcome of selected experiments and compare those results with the standalone model

75

application. Next, five experiment/result object pairs were created using the 'Default

Values'election from the Experiment Selection Interface. This selection allows the use

of an external database to provide preset values into each experiment object. Once all

five experiment/result object pairs were created, the Input Interfaces were used (two

interfaces) 'to set the input values according to the value set forth in Table 5.3. Once all

the values for each experiment are set correctly, each experiment is selected individually

and the application is run. Upon completion of the experiment, each of the four Result

Interfaces is open separately and the results within the interface is viewed and compared

to the database file associated with the standalone application. In all five experiments,

the results of the installed application were identical to those of the standalone

application. Figure 5.3 illustrates one of the result interfaces displaying the results from

running experiment 'proto05'. Next to each result text field is the data that came from

running 'TEST U5'f the uninstalled version. Figure 5.2 shows the input and result

from running 'TEST U5'.

5.3.2 Phase Two: Test of Pre-Existing Model

In this phase we will use a pre-existing model application called 'SNR model'. The

'SNR model'odel application is a standalone application, and was actually the

foundation model application used in testing the shell in the undergraduate project.

Unlike the prototype model application, the 'SNR model'odel application has many

dialog boxes that are used to enter data and to review the results of assigned input data,

textually, built into the model application. In addition, various MATLAB plot functions

have been incorporated into the model application for viewing results in a graphical

format.

76

5.62500e+000

3.50000e+000

1.87500e+000

7.50000e-ooi

1.25000e-001

1.25000e-001

7. 50000e-001

1.87500e+000

3.50000e+000

S.62SOOe+OOO

Figure 5.3 Prototype Results

The standalone version begins by requesting the user for the directory and file name of

the external database to retrieve and send data. Five dialog boxes will then appear

showing the user what the input value are set at and gives the user an opportunity to

change the data. Some calculations are than performed followed by seven different plots

(one of which is a pie chart plot). Two more dialog boxes appear after the calculations

77

that show the results of some of the calculations that have taken place. After that two

more plots are shown, and finally three more dialog boxes showing results.

Since we have an existing model application, we need to collect data on this

standalone version. Specifically, the application will run with values that have been

previously assigned by the end user. Then, we will change two input values (Wl and

W2), which were chosen at random, and run the application a second time. We will have

the ability to change these values through the use of a dialog box that has been hard-

coded into the model application. The purpose of this test is not to ensure that the

application is working properly, but to provide reference plots'o use once the model

application is installed into GPET.

Figure 5.4 shows one of the plots when W 1 = 650 and W2 = 1130 (Figure 5.4.a) and

Wl = 700 and W2 = 1200 (Figure 5.4.b). This will be used after the model application is

installed. We will once again plot SNR vs. wavenumber with the two sets of values, do a

screen capture, change the two sets of values, and plot SNR vs. wavenumber.

(a) Wl = 650, W2 = 1130 (b) W 1 = 700, W2 = 1200

Figure 5.4 SNR Plots

78

After collecting data in the standalone version, we will then install the model

application into the GPET system. This test phase will test all areas listed in the second

row of Table 5.2. As with tj5.3, not every area listed will be discussed explicitly in this

section, but at some point each area was tested. The standalone version of the model

application uses a database format that is not consistent with the database format of the

GPET system. Therefore, the database needs to be formatted so that it fits the 20x20

format that the system uses. Then, the application can be started and can create the two

experiments that are needed. The first experiment will contain all the original values, and

the second will contain the revised Wl and W2 values.

When the appropriate values have been placed into the two objects, the first

experiment is selected to run (with the original values). After running the experiment, the

Figure Plotter is used to create the plot similar to that in the standalone version. The

variables that will be selected will be Fl first followed by SNR. These are the two

variables that the user had plotted in the standalone application. When selecting the

PLOT function, a figure will appear with the appropriate plot that can be manually

customized to have the same appearance as the plot produced by the standalone. The

second experiment is selected and the same procedures are followed as was for the first

one. Figure 5.5 illustrates the results of the two experiments with experiment 'revsnr001'hown

in Figure 5.5.a and 'revsni002'hown in Figure 5.5.b. These two experiments are

identical to those in Figures 5.4.a and 5.4.b respectively. The internal variables used to

create the plots were also compared directly and were found to be identical as well. A

point to keep in mind is that the real test within these three phases is to ensure that the

shell functions properly. In all three phases, the model applications are not being tested.

79

(a) 'revsnt001'b) 'revsnr002'igure

5.5 Revised SNR Plots

5.3.3 Phase Three: Compositional Model Applications

One of the features built into the GPET software is the ability to take the results from

one application and feed them to the inputs of a different application. This functionality

may be used in the event that the end user is designing a modular-based application. The

application would be divided into smaller sub-applications. The user could then easily

collect data for each sub-application as well as apply the results to follow on sub-

applications. This phase focuses on testing this particular functionality. This test phase

will test all areas listed in the third row of Table 5.2, and as with the previous test phases,

not every area will be discussed, however, they were tested at some point during the

overall phase testing. Figure 5.6 illustrates the interfacing of two applications.

A very interesting question would be: "If the results of one application contain 40

values, but the input to the following application only takes 20 inputs, then how are 20

80

Input Data
Object

APP I

Result Data
Object Result Object

Conversion
Interface

Input Data
Object

APP 2

Result Data
Object

Figure 5.6 Two-Application Interfacing

input variables selected from the possible 40 variables?" In order to answer this question

the Application Template for the application receiving the input from a previous result

needs to be examined. In the Application Template, there is a section that assigns

experiment object values to the application variables. An example of this assignment

would be

wl = get value (expinput, 'v01');

where 'wl's an application variable, 'expinput's the experiment object, and 'v01's a

field value within the object that gets assigned to 'wl'. Using the 'get value'unction,

any of the 200 variables ('v01'hrough 'v200') within an experiment object can be

retrieved and assigned to an application variable. It does need to be understood that the

experiment object that is being referred to contains the 40 values (in this test) from a

previously created result object. However, any of the 20 values can be chosen from the

current application by the way the current application is developed. In other words, only

20 values are needed for the input to the current application from a possible 40 values.

In this test two applications are required. The prototype application will be used along

with a modified version of the prototype. Note that there will be no running of the

standalone modified prototype application. Recall in (t5.3 the prototype application has

with 20 input variables and 40 output variables, and that it performed some basic

arithmetic and then stored the results with a result object. The modified version of the

prototype application also takes 20 input variables and produces 40 output values. The

81

only difference between the two applications is the order of the calculations. The

modified version performs subtraction, multiplication, addition, and subtraction in that

order.

Testing starts by first creating a particular set of 20 input values for the original

prototype application. We will focus only on the portion of the application that performs

addition. This will correlate to pages one and two of the Input Interface, and page one of

the Result Interfaces of the prototype application. Table 5.6 shows the particular values

assigned, the variables used in the addition, and the results of the operation.

Table 5.6 Input Variable Assignments

Once these values have been placed into the experiment for the primitive application, we

then run the experiment. Figure 5.7 illustrates page one of the results for the prototype

application. The results within this interface are the same as those within Table 5.6.

The next step is to take 20 calculated values from the 40-value result object of the

original prototype application and use those values as input to a new experiment within

the modified prototype application. The Application Template for the modified model

application was designed so that the first 20 result values from the result object will be

82

applied as input. Table 5.7 shows the inputs being used, the operation to be performed on

them, and results of the operation.

Figure 5.7 Prototype Results Page 1

83

Table 5.7 Subtraction Results from Modified Model Application

The subtraction part of the modified model application will be considered. Figure 5.8

shows the results of the 10 subtraction operations, which are identical to those in Table

5.6.

84

Figure 5.8 Modified Prototype Results Page 1

5.4 Chapter Summary

In this chapter, the testing and evaluation of the GPET software was discussed. The

chapter begins with a discussion of Verification and Validation, where the difference

between the two terms is brought forth. Next, a master test plan was developed that lists

30 areas of functionality. The master test plan is broken down into three phases, where

85

each phase tests a portion of the software, and the culmination of the three phases tests all

areas of the Master Test Plan.

Phase One of the Master Test Plan uses a prototype model application that performs

simple arithmetic operations. The model application was created as a standalone

application, and was run a number of times for the purpose of collecting data for

reference. The prototype model application was then installed into GPET, and was run a

numbers from within the software. The results were collected from the shell and

compared to the standalone version, and the results were found to be identical.

Phase Two of the Master Test Plan used an established model application designed

specifically for GIFI'S. It was delivered as a standalone model application. The

standalone version was run twice, once with original database values, and a second time

with two variables altered. The original model application contained a number of

MATLAB plots, where one of the plots was selected for comparison between the

standalone version and the installed version. The selected plot from the standalone and

installed versions was captured twice and used for comparison, where the comparison of

the plots revealed identical results.

The purpose of Phase Three was to demonstrate the ability to take the results of one

application and use them as input into a completely different application. In the testing

we used the prototype application along with a modified version of itself. The two

applications take 20 inputs and produce 40 results. In the prototype application, focus

was placed on the portion of the application that performed the addition operation.

Manual calculations were performed on the values used in the addition operation, and

those results were compared with the results collected from the installed prototype

86

application, and those results were found to be identical. These results were then applied

as input to the modified prototype application, where only the subtraction part of that

application was considered. Again, manual calculations were performed and collected,

followed by running the modified model application and collecting those results. The

comparison of the manual calculations against the results of running the installed

application yielded identical results.

CHAPTER VI

CONCLUSION, LIMITATIONS, AND FUTURE RESEARCH

6.1 Conclusion

This thesis concentrated on the research, design, development, and implementation of

an object-oriented approach in creating a Generic Performance Evaluation Tool (GPET)

in software using the MATLAB programming language. The research for the project was

funded through NASA-Langley Research Center. The goal of the project was to provide

an object-oriented environment in which to perform experimental analysis and to review

experimental results in a textual and graphical format. The areas involved included

conceptual modeling, Software Engineering, Graphic User Interface Design concepts,

Test Validation, and MATLAB programming.

The foundation to modeling is the conceptual model, which serves as a knowledge

base to build upon [9]. Three conceptual models were developed, which were the

Systems Model, Operating System Model, and the Shell Model, to give different

perspectives on the direction in which software development could go. From the three

models the Shell model provided the best development path, mainly due to the existence

of the software that was implemented as an undergraduate project that could be built

upon.

The next stage was to use the Top-Down development process, which involves

Problem Analysis, Program Design, and Program Implementation. The problem

statement provides high-level information on what the software is suppose to do.

Program Design requires taking the problem statement, and produce smaller, more

specific subproblems, until a point is reached the subproblems cannot be broken down

88

any further. At this point algorithms can be produced. The final step, Program

Implementation, takes the algorithms and implements them in a specific programming

language. The Top-Down design process is not strictly a single iterative process. At any

point within the design process the problem statement may change, and those changes

need to follow through the process.

Graphic User Interface design played an important role behind the scenes in the

development of GPET. One of the largest elements in successful software is to ensure

that the end user is involved in the design process. With GPET, the developer and user

worked closely to ensure that issues brought forth by the user were being addressed and

resolved by the developer. Design issues that could be important to the user are color,

layout of controls, understandability of controls, and redundancy. It takes more than

good code writing to make a great software package, and not receiving feedback from the

audience using the software will more than likely lead to failure.

Another important role in the software development process is the testing of the

software. Testing involves the verification and validation of the software. As was

mentioned, verification occurs during each phase of software development, where testing

in one phase verifies the previous stage. On the other hand, validation is performed on

the entire package. In this thesis, focus was placed on the validation of the entire

package. The validation of GPET required a 30-point master test plan. The test plan was

divided into three test phases, where each phase tested certain points of the master test

plan with overlapping of some of the points. All three phases combined tested all 30

areas of functionality.

89

The programming of GPET involved learning how to program using MATLAB,

which included object-oriented programming. Comparisons were made between object-

oriented programming in MATLAB and C++, where some similarities and many

differences between the two languages were discussed. Topics of discussion included

classes, objects, and inheritance.

In concluding, the problem to solve was no contained environment to evaluate GIFTS

instrument analytical model applications in MATLAB, and to solve the problem required

Modeling, Top-Down Design Process, GUI Design, along with Verification and

Validation to move from conc'ept through implementation.

6.2 Software Problems, Limitations and Constraints

The research, design, development, and implementation of GPET was a great success.

However, there are problems and limitations in the software. One of the problems

involves the Windows XP operating system. Specifically, the problem becomes apparent

when using the 'plot editing'unction when using the Figure Plotter. When the operating

system is set to display windows using the 'Windows XP Style', the user will have a

problem in setting some of the values within the 'plot editing'ialog window. In order to

resolve this limitation the 'Windows and Buttons'election within the Display Properties

dialog box for Windows XP needed to be set to 'Windows Classic Style'. It is currently

unknown what the source of the problem is; however, there are two possible sources.

First, the specific version of MATLAB used (Release 11, version 5.3 was used to

implement GPET) may have compatibility problems with XP. Second, the operating

system itself could be the culprit.

90

There are also software problems that exist within GPET. One of the problems occurs

when an experiment is added to or deleted from an application. In order for an

experiment to be added or deleted, code had to be built into GPET to cause it to

completely exit. A possible explanation for this is that the only way for the Application

Interface to be updated is to first close its interface window, and to update system

variables requires closing the main window. GPET must then be restarted.

Another problem occurs when installing/uninstalling applications to/from GPET. In

order for an application to be installed, a unique directory must exist with the application

being installed. In order to add the directory to the MATLAB path, the path browser

must be started. This is an automatic operation when an installation occurs, however, the

user is still forced to save the path and close the path browser window manually.

Numerous hours were spent on trying to eradicate the manual steps; however, the manual

steps must still be performed. The same situation occurs when uninstalling applications

as well. An associated intermittent problem that occurs is that sometimes the path

browser does not display for updating. If the path browser does not display, then the user

is forced to manually open the path browser and enter the directory of the application

being installed.

Like any software tool, GPET has a number of constraints. One constraint is the

number of input and result variables contained within each object. GPET is constrained

to 200 input and result variables each. Another constraint is the external database. It

must be set up as a 20x20 matrix. The user is also constrained to 10 input and 10 result

variables per Input and Result Interface when creating such user-defined interfaces, and

that will constrain the user to a maximum of 20 input and result interfaces each.

91

6.3 Future Work

In order for GPET to function it must be used within the MATLAB environment. An

improvement to the current software would be to implement GPET into a standalone

executable. The current version of MATLAB does have specific libraries that allow for

development into a standalone software package; however', these libraries are available as

an add-on module that can be purchased from MathWorks.

Even though producing a standalone software package is in the realm of possibility,

further research is needed on how to develop the model applications so that they can be

utilized by the standalone version.

92

REFERENCES

[I]. Frank L. Friedman, Elliot B. Koffman, Problem Solving, Abstraction, and Design
Using C++, Addison-Wesley Publishing Company, 1994.

[2]. "Principles of good GUI Design"
http://axp16.iie.org.mx/Monitor/v01m03/ar ihc2.htm.

[3]. Dolores R. Wallace and Roger U. Fujii, Software Verification and Validation: An
Overview, IEEE Software pp 10-17, May 1989.

[4]. James Mengert and Denise Linthicum, User Interface and Signal Processing for
Modeling an Imaging Fourier Transform Spectrometer, ECE486 Senior Design
Project Report, December 2000.

[5]. "The Mathworks HelpDesk"
http://www.mathworks.corn/access/helpdesk/help/techdoc/matlab prog/
matlab prog.shtml.

[6]. Frank M. Carrano, Data Abstraction and Problem Solving with C++, Walls and
Mirrors, Addison-Wesley Publishing Company, 1995.

[7]. "NASA to fly high-tech Earth observer"
http://www.enn.corn/enn-news-archive/2000/01/01082000/gifts 8841.asp.

[8]. Gerard J. Holzmann, From Code to Models, Proceeding of the Second
International Conference on Application of Concurrency to System Design
(ACSD'01) pp 3-10.

[9]. Paul A. Fishwick, Simulation Model Design and Execution, Prentice-Hall, 1995.

[10]. Reinhard Beer, Remote Sensing by Fourier Transform Spectrometry, John Wiley
& Sons, Inc, 1992.

93

Supplemental Sources Consulted

[1]. Ralph Highnam, Michael Brady, Model-Based Image Enhancement of Far
Infrared Images, IEEE Transactions on Pattern Analysis and Machine Intelligence
pp 410-415, April 1997.

[2]. Dan R. Olsen, Jr., Developing User Interfaces, Morgan Kaufmann, 1998.

[3]. Joel Spolsky, User Interface Design for Programmers, Springer-Verlag, 2001.

[4]. Jeongwon Baeg and Yoshiaki Fukazawa, A Dialog-oriented User Interface
Generation Mechanism, pp 310-317, Proceedings of the 3 Asia-Pacific Software
Engineering Conference (APSEC '96) pp 310-317.

[5]. Laura A. Valaer and Robert G. Babb II, Choosing a User Interface Development
Tool, IEEE Software pp 29-39, July/August 1997.

[6]. Sumner P. Davis, Mark C. Abrams, James W. Brault, Fourier Transform
Spectrometry, Academic Press, 2001.

[7]. "Michelson Interferometer"
http://www.physics.berkeley.edu/courses/labs/7c/7cmicls01/7cmiclsO I.pdf.

94

APPENDIX

95

APPENDIX A — MATLAB SOURCE FILES

The source files for the GPET software are too large to incorporate within this thesis.

All source files will accompany the thesis on a separate CD, and all files will be in the

MATLAB .m format.

96

APPENDIX B — GPET OPERATING MANUAL

97

B.l Background

The concept of GPET itself was derived from an undergraduate project that focused in

part on creating an environment (shell) in which model applications relating to the

Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) project could run

using MATLAB. The GIFTS project is a NASA-Langley Research Center sponsored

project. It is an advanced satellite that will incorporate, among other uses, the ability to

make more accurate weather predictions. A report titled "User Interface and Signal

Processing for Modeling an Imaging Fourier Transform Spectrometer" goes into detail on

how the user interface (GUI) was designed, developed, and implemented.

GPET-GIFTS is a much more advanced version of the software then its predecessor.

Many of the newer features will be discussed in detail in the following sections.

B.2 Features

Some of the features of this software package include the ability to have many

experiments per application, and to have multiple applications. Also, the user is given

the ability to create their own personally designed input and results interface windows.

The user is also given the flexibility to producing individualized graphs.

B.2.1 Object-Oriented Experiments

One of the abilities of MATLAB is to create user-defined classes. MATLAB defines

a particular manner in which these classes are utilized; however, they are analogous to

classes in C++.

Another capability of MATLAB is the use of inheritance. In this software system we

make use of inheritance.

98

In making use of classes and inheritance, we decided to develop the concept of an

experiment and a result. An experiment (for our purposes) is the collection of data for

processing within an application. A result is the collection of data produced from the

execution of an application.

In our system, an experiment and result are two separate objects. Each object has the

ability to contain 200 scalar variables. Therefore, in totality, each experiment has the

ability of making use of 400 individual variables.

B.2.2 Multiple Applications

GPET-GIFTS is designed to have a multitude of model applications. Each application

in turn will have the ability to contain many experiments. As will be explained in more

detail in section three, experiments from one application may be used to create

experiments within another application.

B.2.3 Input/Results Interface Creator

Having experiment and result objects is all good and well, however, the user would be

extremely limited if there was no way of being able to edit inputs prior to running

experiments, and being able to view the results of a currently ran application. Therefore,

this software tool provides the user the ability to design Input and Result Interface

windows.

B.2.4 Figure Creator

In addition to having the ability to view results of an experiment, the user will most

likely desire a manner in which to view certain results graphically. Therefore, the ability

for the user to create and annotate graphs, were incorporated into the software.

99

B.3 Details of Operation

In this section we will give a detailed explanation of how to use GPET-GIFTS. The

major areas covered include the System Interface, Application Interface, Input/Results

Interface Creator, and the Figure Creator.

B.3.1 System Interface

In order to display the System Interface window, MATLAB needs to be running.

Once MATLAB has been started, the user must change directory into the system

directory, &drive letter&/Research/@expin. Once the user is in this directory, open the

System window by typing "GIFTS MAIN". The System window is displayed in

Figure 3.1.

Figure 3.1 GPET-GIFTS Main Menu Interface

B.3.1.1 Application Interface

In order to install an application, the user needs to create a directory for the

application, and two files are needed. The application directory is created within the

subdirectory '&drive letter&/Research/GIFTS/Application/&application name&/'.

Onc'e the subdirectory is created, they need to be populated with the Application

Template, and the Variable Template.

B.3.1.1.1 Application Template

Within the subdirectory, '&drive letter&/Research/blank/'s a Bile called

'APP TEMPLATE.m'. This is a template file used t'o help the user create an application.

There are a number of notes within the file that instruct the user on how to use the

template. Once these instructions are followed, save the Bile within the application

subdirectory previously created. Give the application file a unique name that clearly

identifies the model application. Be careful not to change 'APP TEMPLATE.m'.

B.3.1.1.2 Variable Template

Within the same directory as 'APP TEMPLATE.m's a file called 'variable init.m'.

Within this file are directions on how to modify this Bile for the user's application. As

with the Application Template, save this Bile to the application subdirectory previously

created. The name of the variable template Bile needs to follow the following format:

'(application name) init.m'. As an example, if your application file is called

'SNR MODEL.m', the application initialization file needs to be called

'SNR MODEL INIT.m'. Also be careful not to modify 'variable init.m'.

101

B.3.1.1.3 Installation

Once the subdirectory has been created for the application, and the associated Biles

have been added to the subdirectory, it is time to install the application using the System

Interface. From the 'File'ull-down menu, select 'Install Application'. At this point a

dialog box will appear. Enter the application subdirectory and application name within

the two sections of the dialog box, than click on 'OK'. At this point the Path Browser

interface will open. Select 'File'nd than 'Save Path'. Than select 'File'gain and

select 'Exit Path Browser'o close the Path Browser. At this point the application has

been installed.

B.3.1.2 Application Uninstallation

To uninstall an application, select 'Uninstall Application'rom the 'File'ull-down

menu. Once again a dialog box will appear. Enter the directory and filename in the

associated sections of the dialog box, than click on 'OK'. As with the install process the

Path Browser interface will open. Select 'Save Path'rom the 'File'ull-down menu.

Then select 'Exit Path Browser'rom the 'File'enu to close the Path Browser. The

application is now removed from the System Interface. The uninstall process WILL

NOT delete the application file that was created from the Application Template, or the

application variable Bile that was created from the Variable Template.

B.3.2 Application Interface

In the process of installing an application, a selection is added to the 'Run

Application'ull-down menu. Clicking on the application name will open the

Application Interface. It is within this window that experiments are created the results

displayed either textually or graphically. Figure 3.2 displays an Application Interface.

102

Figure 3.2 Typical Application Interface

When an application is first created, there are of course no experiments associated

with the application. Therefore, the user has been restricted to just a few options. These

options include the creation of an experiment (2-step process), creating Input and/or

Result Interfaces, or exit the application.

B.3.2.1 Creating New Experiments

As was previously mentioned creating an experiment is a 2-step process. The first

step involves how the experiment will be developed. There is an interface displayed that

gives the user three options of creating the experiment. The second step actually creates

103

the experiment and results object, and updates the Application Interface. The user needs

to retype 'GIFTS MAIN'n the command line to restart the shell.

B.3.2.1.1 From Default Values

Once the user has opened the application window, select 'PreSelect Experiment'rom

the 'File'ull-down menu. This will open the 'Experiment Select'nterface. Figure'3.3

illustrates the 'Experiment Select'nterface.

Figure 3.3 Experiment Selection Interface

Select option I (Use Default Values). Then click on the 'Use'ushbutton on the bottom

right side of the window. This will bring the user back to the Application Interface. The

next step is to select 'Add Experiment'rom the 'File'ull-down menu, which has now

been activated from the previous step. There will now be a dialog box display prompting

the user to provide the path and filename of the external database to use to provide the'efaultsettings for theexperiment. Enter the information and select 'OK'. Another

dialog box opens asking the user to provide a name for this particular experiment. Enter

a name for the experiment the click on the 'OK'utton. At this point the user will notice

that the entire shell has closed. Retype 'GIFTS MAIN'o restart the shell, than select

the application from the 'Run Application'ull-down menu.

B.3.2.1.2 From a Previously Created Experiment

Options two and three from the 'Experiment Select'nterface window give the user

the ability to use another experiment from the same application, or use another

experiment from another application to create a new experiment.

B.3.2.1.2.1 Within The Same Application

The process of creating a new experiment from another experiment starts out the same

as for option I (Using Default Values). Once the 'Experiment Select'nterface window

is open, select 'Use Values from another Experiment'ption. When this option is

selected, a menu will appear with a list of all experiments contained within the current

application. Select the appropriate experiment and click on the 'Use'ushbutton. This

will once again bring the user back to the Application Interface window. Select 'Add

Experiment'rom the 'File'ull-down menu. A dialog box will appear prompting the

user for a unique experiment name. Enter the information and click on the 'OK'

105

pushbutton. Once again the entire shell will close. Retype 'GIFTS MAIN'o restart the

shell and select the application from 'Run Application'ull-down menu.

B.3.2.1.2.2 From Another Application

In order for this option to be used, there must be at least two applications installed,

and the application that the user want to get data from must have at least one experiment

contained within that application. Once these two conditions are met, select 'PreSelect

Experiment'rom the 'File'ull-down menu. When the 'Select Experiment'indow

opens, select 'Use Values from another Application'. When this option is selected a

menu will appear with all applications listed. When the user selects the application of

choice, another menu will appear with all experiments listed for that application. Select

the experiment of choice. Then click on the 'Use'ushbutton. The user is brought back

to the Application Interface. Select 'Add Experiment'rom the 'File'ull-down menu.

A dialog box is presented to the user to give the new experiment a name. Give an

appropriate name and click on 'OK'. At this point the entire shell will close. Retype

'GIFTS MAIN'r use the up-arrow key to display 'GIFTS MAIN'n the command

line, than press ENTER. Select an application to run.

B.3.2.2 Removing Existing Experiments

When deleting a particular experiment, an application must be in use (Application

Window open). From the 'File'ull-down menu select 'Delete an Application'. Select

the particular experiment to delete. As in the process of creating an experiment, the shell

closes upon experiment deletion. Restart the shell by typing 'GIFTS MAIN'rom the

command line, or use the up arrow until 'GIFTS MAIN's displayed on the command

line, than press ENTER.

106

B.3.2.3 Selecting an Experiment

In order to select a particular experiment to use within an application, an Application

Window must be open. Select 'Select Experiment'rom the 'File'ull-down menu.

Click on the experiment to use. Once the pull-down menu disappears, the experiment has

been selected. At this point the user can run the application using the current experiment

selection by selecting 'Run Application'nder the 'Run'ull-down menu. After the

application runs, a message dialog box will appear informing the user that the application

run has completed.

B9.3 Input/Results Interface Creator Interface

The Input/Results Interface Creator Interface gives the user the ability to create

interface windows for both input and results. Figure 3.4 illustrates the Input/Results

Interface Creator.

107

Figure 3.4 Input/Results Interface Creator Interface

The user is given the ability to view and edit input variable(s) to an experiment within a

particular application, or view the results of an experiment that has just completed. The

interface creator displays the proper variable names given within the application so that a

description can be given within the interface window being created. The interface creator

also gives the user the capability of reinstalling existing interface windows in the event

that the application is uninstalled and reinstalled. The user will have the capability of

modifying any existing input or results interface should changes be necessary. The user

is limited to creating 20 input and 20 results pages per application. This is to allow the

viewing and/or editing of 200 input or 200 results variables.

108

B.3.3.1 Creating a New Interface

To create a new interface, an Application Window must be open. From the 'Create'ull-down

menu select 'Input/Results Interface'. The Input/Results Creator Interface

window will appear.

B.3.3.1.1 Input

The default option when the Input/Results Interface window opens is to create an

Input Interface. There are two pieces of information that is required before an Input

interface is created. There MUST be a Page Title and a Menu Title. The 'TransferData'ushbutton

will not be enabled until those two pieces of information exist. Once that

information is entered, the user than can TAB down to any of the editing boxes and give

a proper variable name a descriptive name. Once the information is entered, click on the

'Transfer Data'ushbutton. At this point all windows will close including the shell.

Restart the shell by retyping 'GIFTS MAIN'n the command line or use the up arrow

key to display 'GIFTS MAIN'n the command line, than press ENTER.

B.3.3.1.2 Results

To create a Results Interface, open the Input/Results Interface as described in section

3.3.1. Select the option 'Results Interface'. When this selection is made, a message

dialog box will appear informing the user that a Results interface is being created. Click

'OK'. The user will notice that the proper variable names have changed reflecting output

result variables that the user defined in the application variable file. As with an Input

interface, the user must ensure that Page Title and Menu Title information must be

entered before a Results interface can be created. Once this information is available,

enter a description for each results variable listed. After the information is entered, select

109

the 'Transfer Data'ushbutton to create the Results interface. All windows including the

shell window will close. Retype 'GIFTS MAIN'r use the up arrow to display

'GIFTS MAIN'n the command line, than press ENTER.

B.3.3.2 Editing an Existing Interface

There may be a time in which an Input or Results interface may need to be edited.

One particular situation is when only a portion of a page is used and the user wishes to

add more variables to that page, or the user may want to modify an existing description.

For these situations and others, the Input/Results Interface Creator has the capability of

modifying existing Input and Results interfaces.

B.3.3.2.1 Input

Follow the directions from section 3.3.1 to open the Input/Results Interface window.

With the interface creator in Input mode, select the 'Edit Existing Interface'adio button.

A list of all Input Interfaces previously created will be displayed in the list window.

Select the window to modify and click on 'Load Data'ushbutton. The selected Input

interface window will appear. Bring the Input/Results Interface Creator window to the

foreground. Make the appropriate changes to any desired descriptions, than click on

'Transfer Data'o update the Input interface. All windows will close. Restart the shell

by typing 'GIFTS MAIN't the command line prompt, or use the up arrow until

'GIFTS MAIN's shown on the command line, than press ENTER.

B.3.3.2.2 Results

Follow the directions from section 3.3.1 to open the Input/Results Interface window.

Set the interface into Results mode by selecting the 'Results Interface'adio button.

Next, select 'Edit Existing Interface'adio button. A list of all Results interfaces

previously created will be displayed in the list window. Select the window to modify and

click on 'Load Data'ushbutton. The selected Results interface window will appear.

Bring the Input/Results Interface Creator window to the foreground. Make the

appropriate changes to any desired descriptions, than click on 'Transfer Data'o update

the Results interface. All windows will close. Restart the shell by typing

'GIFTS MAIN't the command line prompt, or use the up arrow until 'GIFTSMAIN's

shown on the command line, than press ENTER.

B.3.3.3 Reinstalling an Interface

There may be a'situation in which an existing application may need to be reinstalled

(Uninstall Application and Install Application from the system shell). It could take a

great deal of effort on the part of the user to have to recreate all of the previously

designed Input and Results interfaces. Therefore, an option has been implemented to

reinstall previously created Input and Result interfaces for a reinstalled application. It is

at this point that we need to recognize the naming convention for creating Input and

Result interface windows.

There are five parts to the naming of either an Input or Results interface window. It is

important to understand this naming convention when reinstalling interface windows.

We will use as an example the interface window named 'app1IPAGE1'. The five parts

are 'app', '1', 'I', 'PAGE', and '1'. Part one is a constant string. It will always be 'app'.

The second part refers to the application number. It indicated the number of applications

installed. The third part will be either the letter 'I'or Input, or 'R'or Results. The

fourth part is the constant string 'PAGE'. The last part is the page number for that

particular application. As more interfaces are created, this value will accordingly.

111

Therefore, 'app1IPAGE1'epresents application I, Input page, and is page I of that

application.

B.3.3.3.1 Input

To reinstall an input interface, follow the directions in section 3.3.1 to open the

Input/Results Interface window. There is a section of the window for reinstalling

interfaces. Click on the radio button within this section. A message box will appear

informing the user that this selection should only be used for reinstallations. Click 'OK'.

Next, select the 'Edit Existing Interface'adio button. A list of all input interface

windows will appear within the listbox. Take a look at the page number on the upper

right side of Input/Results Creator Interface. This is the page number of that particular

application being reinstalled. This is important information that will help the user to

select the proper input page to reinstall. Using the naming convention noted in section

B.3.3.3., select the appropriate input interface that matches with the page number within

the Interface creator. As an example, if the page number shown on the Input/Creator

Interface window is '', than select the interface that ends with 'PAGE1'rom the

listbox. Press the 'Load Data'ushbutton. That particular page will be displayed.

Within the Input/Results interface, add a name to the 'Menu Name'ditbox, and press the

TAB key. The user will notice that the 'Transfer Data'ushbutton will become enabled.

The user does have the ability to make changes to any of the editboxes at this point, as

long as there is information in both the 'Page Name'nd 'Menu Name'ditboxes. Once

the appropriate changes have been made, select the 'Transfer Data'ushbutton. The

interface has been reinstalled back into the shell, and all windows will close. Restart the

shell by typing 'GIFTS MAIN'rom the command line, or using the up arrow the

display 'GIFTS MAIN'n the command line, than press ENTER.

B.3.3.3.2 Results

Reinstalling a Results interface window is done in much the same manner as an Input

interface window, with one difference. Follow directions in section 3.3.1 to open the

Input/Results Creator Interface. Select the 'Results Interface'adio button. An

information message will appear informing the user that he/she is indeed selecting a

Results Interface. Press 'OK'. Than select the 'Edit Existing Interface'adio button. A

list of Results Interface windows will appear in the listbox. Then select the 'Reinstall

Application'adio button. An information message will appear warning the user of when

to use the radio button. Press 'OK'. The selected Results interface window will open.

Using the Input/Results Interface window, add in an appropriate name in the 'Menu

Name'ditbox and press TAB. The 'Transfer Data'ill become enabled. The user has

the option of making changes to any of the editboxes, or to transfer existing data to the

existing interface. Once all changes are made, press the 'Transfer Data'ushbutton. All

windows including the shell will close. Retype 'GIFTS MAIN'rom the command line,

or use the up arrow to display 'GIFTS MAIN'n the command line, than press ENTER.

B.3.4 Figure Creator Interface

In order to give the user more flexibility in developing various types of graph charts,

GPET-GIFTS has given the user a way of selecting variables to add to a graph, select the

type of graph to implement, and plot new data to an existing graph. The user is also

given the ability to add title and axis labeling, add grid lines, select normal or semilog

113

graphing parameters in the x- or y- axis directions, as well as adding and modifying

legends. Figure 3.5 illustrates the Figure Plotter Interface.

Figure 3.5 Figure Plotter

B.3.4.1 Creating a New Figure

In order to create a new figure, a particular experiment for an application must be

selected and ran first so that the variables are available within the local workspace. After

running the experiment, open the Figure Plotter Interface by selecting 'Figure'rom the

'Display'ull-down menu within the Application Interface.

B.3.4.1.1 Selecting Variables

Within the Figure Plotter is a listbox that displays the all the variables within the local

workspace. Next to the listbox is a section named 'Variables Selected'. When a variable

is selected, that variable name is inserted into the top box of this section. Also, there is

another section named 'Selected Plots'. With one variable selected "Pie Chart Only" will

be displayed in this section. In order to select a second variable, the CTRL key will need

to be used. Scroll up or down to find the second variable. While holding down the

CTRL key, click on the second variable to select it. The 'Variables Selected'ection will

display the second variable, and the 'Selected Plots'ection will display "All Other

Plots".

B.3.4.1.2 Graph Type Selection

The Figure Plotter has six available plot types. They are Plot, Semilogx, Semilogy,

Bar, Pie, and LogLog. Plot is a standard plot with x and y-axes. Semilogx is a standard

plot with the x-axis in log format. Semilogy is a standard plot with the y-axis in log

format. A bar chart displays vertical bars. A pie chart is as its name implies, a circular

plot separated into pie-wedge shapes. A LogLog plot is a standard plot with both axes in

a log format.

The user will notice that with only one variable selected, only the pie chart pushbutton

is enabled. With two variables selected all plot types are available except the pie chart.

With the appropriate variable(s) selected, click on the particular plot of interest. A

figure window will appear with the appropriate variables plotted. If the user wants to add

more lines to this figure, go back to the Function Plotter. Adding more lines should only

be done using the plot, semilogx, semilogy, or loglog type plots. It should not be

attempted on either a pie or bar chart plot. At the Function Plotter, select two more

variables to plot. Than, select 'Plot on Current Graph'adio button within the 'Plotting

Controls'ection. Then, click on the same plot pushbutton as was done on the first plot.

The user should now see two lines within the same figure. Additional lines may be added

using the same approach as was previously described.

With the figure displayed, the user has the ability to edit the figure to add such items

as a title, x- and y-axis labels, adjust lower and upper limits on both axes, among other

adjustments. Figure 3.6 illustrates the 'Edit Axes Properties'ialog box.

Figure 3.6 Edit Axes Properties Dialog Box

To open the 'Edit Axes Properties'ialog box click on the 'Tools'ull-down menu on

the figure, than select 'Axes Properties'. After all modifications are made to the figure,

the user can save the figure. If the user chooses to save the figure, ensure that it is saved

to the same directory as the application file(s). If the figure is not in the application

directory, the user will not be able to display it at a later time for editing and/or viewing.

B.3.4.2 Editing an Existing Figure

This feature gives the user the ability to add additional graphs, or edit textual portions

of a previously saved figure. In order to edit an existing graph, the Figure Plotter

Interface window must be open. Refer to section B.3.4.1 to open the Figure Plotter. On

the left side of the Figure Plotter Interface is a listbox titled 'Select a Figure'. This

listbox displays all previously created figures for a particular application. Highlight the

figure to be edited by clicking on it. Than press the 'Display Figure'ushbutton to open

the figure. At this point the user can add additional lines by following the procedure in

section B.3.4.1.1 (SELECTING VARIABLES). Once the variables are selected, click on

the 'Plot on Current Graph'adio button. Select the appropriate plot function that was

used on the figure to plot the current line. Make any label changes by using the 'Edit

Axes Properties'ialog box. Open the 'Edit Axes Properties'ialog box by following

the procedures in the last paragraph of section B.3.4.1.2. Once all changes have been

made select 'Save'rom the 'File'ull-down menu on the figure to save the figure.

Close the figure by selecting 'Close'rom the 'File'ull-down menu.

APPENDIX C — VARIABLE TEMPLATE

%variable init.m

%Created by James M. Mengert
%Modified on: 8/31/2002

%This file is used in conjunction with the inputCreator()
%interface window. It gives the user the ability of
%knowing which variables are being labeled within the
%interface window.

%DIRECTIONS TO USE THIS FILE
%Within the switch statement are a number of case
%statements. Within each case statement are 10 variables
%names Variablel to Variable10. These variables at this
%point are blank strings. The first 200 variables are for
%the Input Interface, and the second 200 variables are for
%the Results Interface.

%All the user needs to do is give each variable a string
%representing the variable name that the user created
%within the associated application. Once the varible
%strings have been placed, save the file to the application
%subdirectory that the user has created. Refer to the
%user's manaul on creating an application subdirectory.

%SPECIFIC STEPS TO CREATING THIS FILE FOR YOUR APPLICATION

1. Ensure there is an application directory for your
%application

2. Copy the variable init.m file to your application
%directory

3. Open the file.
4. Edit the name on the first line to

"your application name" init.m
where "your application name" is the name of your
application.

5. Edit the name of the function so that it is identical
to the name on the first line.

function variable init ()

%Get handles to StaticText displays
%'DO NOT EDIT THIS SECTION

StaticTextHandle101 = findobj ('Tag', 'StaticText101');
StaticTextHandle102 = findobj ('Tag', 'StaticText102');
StaticTextHandle103 = findobj ('Tag', 'StaticText103');

119

StaticTextHandle104 = findobj ('Tag', 'StaticText104');
StaticTextHandle105 = findobj ('Tag', 'StaticText105');
StaticTextHandle106 = findobj ('Tag', 'StaticText106');
StaticTextHandle107 = findobj ('Tag', 'StaticText107');
StaticTextHandle108 = findobj ('Tag', 'StaticText108');
StaticTextHandle109 = findobj ('Tag', 'StaticText109');
StaticTextHandle110 = findobj ('Tag', 'StaticText110');

StaticTextHandle50 = findobj ('Tag', 'StaticText50');
page = get (StaticTextHandle50, 'String';
page = str2num (page);

RadioButton3Handle = findobj ('Tag', 'Radiobutton3');
ButtonValue = get (RadioButton3Handle, 'value';
%?nput variables
if ButtonValue == 0

switch page
case 1

Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 2
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 3
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6

I
I

I
I

I
I

I
I

1

I

1

I

I

120

Variable7
Variable8
Variable9
Variable10

case 4
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 5
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 6
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 7
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I
I

I
I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I
I

I
I

I
I

Variable10
case 8

Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 9
Variable1
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 10
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 11
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 12
Variablel

122

Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 13
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 14
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 15
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 16
Variablel
Variable2
Variable3

123

Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

case 17
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

case 18
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

case 19
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

case 20
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6

0

0

0

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I
I

I
I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
f

I I
I

124

Variable7
Variable8
Variable9
Variable10

end %End of swit
end %End of IF

if ButtonValue
%Result variables

switch page
case 1

Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Var'iable8
Variable9
Variable10

I
I

I
I

I
I

I I
I

ch

I
I

I
I

I
I

1

I
I

1

I
I

I
I

I
I

I
I

case 2
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 3
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 4
Variablel
Variable2
Variable3

I
1

I

I
I

I
I

I
I

I
I

I
1 I

I
1 I

I
I 1

I

I
I

I

I I
I

I
I

I
I

I
I
I

I

I
I

I
I

I
I

125

0

Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variablel

case 5
Variablel
Variable2
Variable3
Variable4
Vaziable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 6
Variablel
Variable2
'Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 7
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 8
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6

I I
I

I I
I

I I
f

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I
I

I I
I

I
I I

I
I I

I
I I

I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I
I

I
I

I
I

I
I

I I
I

I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

I I
I

126

0

0

0

Variable7
Variable8
Variable9
Variablel

case 9
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variablel

case 10
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variablel

case 11
Variable1
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variablel

case 12
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9

127

Variable10
case 13

Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 14
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 15
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 16
Variablel
Variable2
Variable3
Variable4
VariableS
Variable6
Variable7
Variable8
Variable9
Variable10

case 17
Variablel

1

I
I

I

I
I
I

I

1

I
I

I

I
I

I

I
I

I
I

I
I

I
I

I
I

1

I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I I

I

I
f

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

128

Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 18
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variable10

case 19
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

case 20
Variablel
Variable2
Variable3
Variable4
Variable5
Variable6
Variable7
Variable8
Variable9
Variablel

end %End of
end %End of IF

0

0
swit

1

I
1

I
1

I
1

I
1

I

1

I

1

I

I
I

1 1

I

I
I

I
I

1

I
1

I
1

I
I

I
I

I
I

I
I

I
1 1

I

I
I

I
1

I

1

I

I
I

1

I
1

I

I
1

I
I

I

I
I

1

I
1

I
1

I
1

I

I
I

1

I

1

I

I
I

1 1

I

ch

129

%DO NOT EDIT THIS SECTION

set (StaticTextHandle101,
set (StaticTextHandle102,
set (StaticTextHandle103,
set (StaticTextHandle104,
set (StaticTextHandle105,
set (StaticTextHandle106,
set (StaticTextHandle107,
set (StaticTextHandle108,
set (StaticTextHandle109,
set (StaticTextHandle110,

'String',
'String',
'String',
'String',
'String',
'String',
'String',
'String',
'String',
'String',

Variablel);
Variable2);
Variable3);
Variable4);
Variable5);
Variable6);
Variable7);
VariableB);
Variable9);
Variable10);

130

VITA

Jim Mengert was born in Upon graduating from

high school in June 1976, he enlisted in the military, and remained there until his

retirement in June 1996. Jim's academic accomplishments include receiving his

Associate of Science degree in Computer Science from Tidewater Community College,

Virginia Beach, VA, in December 1997. He received his Bachelor of Science Degree in

Computer Engineering with a minor in Computer Science from Old Dominion

University, Norfolk, Virginia, in May 2001. He will receive his Master of Science

Degree in Computer Engineering from Old Dominion University in May 2004. Jim is

currently employed as an Engineer within the Tactical Communication Support branch

with the Space and Naval Warfare Systems Center (SPAWAR).

	Generic Performance Evaluation Tool Implementation for an Imaging Fourier Transform Spectrometer
	Recommended Citation

	tmp.1723556391.pdf.uWRQl

