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Abstract
The coupled pseudostate approximation (McGovern et al 2009 Phys. Rev. A 79 042707) has
been applied to Li2+ + Li(2s, 2p0,±1) collisions at 16 MeV with emphasis on studying the fully
differential ionization measurements of Ghanbari-Adivi et al in the azimuthal plane (2017 J.
Phys. B: At. Mol. Opt. Phys. 50 215202). The states of the valence electron in the Li target are
calculated using the model potential of Stein (1993 J. Phys. B: At. Mol. Opt. Phys. 26 2087).
Altogether 164 states with angular momenta l = 0 to 9 are employed in the scattering
calculation. It is assumed that the electron in the Li2+ is frozen in the 1s state and its screening
of the Li2+ nucleus is fully taken into account. Previous calculations on this system (3DW-EIS
and CDW-EIS) have treated the Li2+ as a bare ion with a nuclear charge of 2 au. Except for
normalisation, agreement with the experimental data of Ghanbari-Adivi et al is generally quite
good. But, where agreement is best it is found that the cross section is very much first Born.
Except in one case, quite good accord is also obtained with the 3DW-EIS calculations of
Ghanbari-Adivi et al, particularly on normalisation. Screening by the 1s electron has little
effect on the fully differential calculations undertaken here. The double differential cross
section d2σ/dEdqt and the single differential cross section dσ/dE are also calculated. Here 1s
screening is found to be important at large (transverse) momentum transfers qt and large
ejection energies E. In addition, the pseudostate approximation gives cross sections for
discrete transitions, total ionization and total scattering.

Keywords: L̂i{2+}, Li(2s), Li(2p), ionization, discrete excitations, pseudostate approximation

(Some figures may appear in colour only in the online journal)

1. Introduction

Cold target recoil ion momentum spectroscopy (COLTRIMS)
[1, 2] has been a highly successful technique for the detailed
study of differential ionization of atoms and molecules. It is

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

also known as the reaction microscope (ReMi). One limita-
tion of COLTRIMS has been the mass of the target, which
is restricted to light systems such as hydrogen and helium.
However, one advantage is that, since the method depends
on momentum balance, it can be used in situations where
the ionizing projectile is deflected through a very small angle
while the momentum transfer is still measurable. Such is
usually the case for heavy projectiles like ions. In a very
important new development in which a magneto-optical trap
(MOT) is introduced into the COLTRIMS set-up, it has now
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become possible to study targets very much heavier than
hydrogen or helium. This new approach is named MOTReMi
[3, 4] so far, applications have been made to ionization of Li
by protons [5], O8+ [5–7], and most recently, by Li2+ [8].

Positive ion projectiles, unlike electrons, enable us to
change the strength of the interaction with the target by vary-
ing the charge. A useful parameter in this regard is the ratio of
the charge of the projectile to its speed (all in atomic units),
usually called η. Thus measurements have made for 6 MeV
protons on Li (η = 0.06), 24 MeV O8+ on Li (η = 1.03) and
now 16 MeV Li2+ on Li (η = 0.21). The smaller η, the more
we expect to be in a perturbative (usually first Born) regime,
the larger η, the less effective should perturbation theory
be.

But η is a rough parameter. For total ionization cross
sections it is probably quite good. But, for differential ioniza-
tion, it is too crude an object. Here we must expect the viability
of perturbation theory to depend upon the particular kinemat-
ical arrangement. Thus the first Born approximation does not
take account of the interaction between the projectile and target
nuclei (suitably screened by any passive electrons if necessary)
(we shall refer to this as the NN interaction) and so we must
not expect it to be viable in situations where the NN interaction
may be important [9–15] (usually the larger momentum trans-
fers). However, for those kinematics which contribute most to
the total ionization cross section, η may not be a bad guide.

The most rigorous test of theory is presented by fully dif-
ferential cross sections (FDCS), in the case of single ioniza-
tion also called triple differential cross sections (TDCS). Some
FDCSs have been measured for O8+ impacting on Li(2s) and
Li(2p) at 24 MeV (η = 1.03) [6, 7].

Lithium is a convenient target for theory since it should be
possible to treat it as a one-electron system in the presence of
a core of frozen 1s2 electrons. Furthermore, it has been fea-
sible experimentally to excite the ground state 2s electron to
the 2p state and so we have the opportunity of studying ion-
ization both from a spherically symmetric ground state and a
non-sperically symmetric excited state. The recent appearance
of new FDCS measurements for Li2+ on Li(2s, 2p) at 16 MeV
(η = 0.21) [8] extends the rigorous test of theory into a new
domain and into a region where perturbation theory has a better
chance of being successful. We shall see how this works
out.

While FDCSs are the most desirable comparison with the-
ory, lower order differential cross sections, such as double
differential (DDCS) and single differential (SDCS) can also
be very useful, as can be seen in [9–16]. Indeed, having
the complete set of experimental data on differential cross
sections, including the total ionization cross section, is to be
recommended for checking consistency.

In this paper we apply the powerful method of the coupled
pseudostate approximation [9–18] to study the new data on
Li2+ + Li FDCSs [8]. This approximation has already been
used to study Li(2s) and Li(2p) targets for the cases of p and
O8+ projectiles [15]. We shall assume that the electron in the
Li2+ is in the 1s state. Note that we do not assume that the
Li2+ is a bare ion with nuclear charge Zp = 2 au, unlike other
theoretical calculations [8, 19]. Ghorbani et al [19] have

remarked that a proper treatment of the 1s electron in the Li2+

projectile may explain some discrepancies they see between
their theory and experiment. Whereas we do not give the 1s
electron in Li2+ full rein, the binding energy of this electron
is so large that a frozen orbital treatment should give the right
indication of its importance, or not. We have previously used
this frozen orbital approximation for bound orbitals in Au24+

and Au53+ projectiles [14].
It is useful to highlight the important differences between

the present work and the earlier calculations of Ghanbari-Adivi
et al [8] and Ghorbani et al [19] on the Li2+ + Li system.
Both these works are based on the same continuum distorted
wave philosophy but differ in some details. In both cases, the
long-range interaction between the projectile and the bound
target electron in the initial state is taken into account by
an eikonal phase, while the interaction between the projec-
tile and the ionized electron in the final state is represented
by a Coulomb wave in which the ejected target electron scat-
ters off the projectile, assumed to be a bare charge of 2 units;
the remaining interactions between the projectile and the tar-
get are treated perturbatively. Ghorbani et al [19] use the
continuum distorted wave eikonal initial state approximation
(CDW-EIS) [20, 21] and work within the framework of
the impact parameter approximation. On the other hand,
Ghanbari-Adivi et al [8] adopt a fully quantal treatment,
described as the three-body eikonal initial state approxima-
tion (3DW-EIS). However, we have shown in [9] that an
excellent approximation to a full wave treatment, at all but
the lowest impact energies, has the appearance of the impact
parameter formalism. To dismiss such an approximation as
‘semiclassical’ on this account is to totally misunderstand the
situation. Consequently, we do not consider the difference
between the impact parameter treatment of Ghorbani et al [19]
and the full quantal treatment of Ghanbari-Adivi et al [8] to be
significant for the situation they have studied, i.e. Li2+ + Li at
16 MeV.

Where differences could arise are on more minor matters
such as the choice of target wave functions and the screen-
ing of the 1s2 electrons in Li. Here both sets of authors use
Hartree–Fock wave functions [22] for the initial state (2s or
2p) of the active target electron. Where they differ is in the
representation of the final ionized electron in the field of the
target. For this Ghorbani et al [19] use a pure Coulomb wave
with an effective charge Zeff = ni

√
−2εi, where ni and εi are

the principal quantum number, and energy, of the initial state
of the active target electron. This is intended to take some
account of the shielding of the Li nucleus by the 1s2 pas-
sive electrons. By contrast, Ghanbari-Adivi et al [8] generate
the final ionized state by solving the equation for the elec-
tron in the static Hartree–Fock field of the target which can be
described by an effective charge Zeff(r) which varies from ZT

(the full Li nuclear charge = 3 au) at r = 0 to 1 au as r →∞,
where r is the distance measured from the Li nucleus. In this
way screening of the nucleus by the 1s2 electrons is nicely
taken into account.

However, neither of these approaches guarantees that the
initial and final states of the active electron are orthogonal
(although they may be pretty well close to orthogonality, this

2
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Figure 1. TDCS (in the laboratory frame) for 16 MeV Li2+ impact on Li(2s). The energy of the ejected electron in eV and the momentum
transfer q of the Li2+ projectile in au are indicated on each panel. Approximations: CP (black curve); CPB1 (red curve). Experimental data
from [8] have been normalised as described in text to give best visual fit to CP curve in each case.

remains to be tested). We have pointed out in [23] that this
lack of orthogonality can lead, at the first Born level, to spu-
rious 1/q4 behavior of the cross section, rather than 1/q2,
as the momentum transfer q tends to zero. As the first Born
component of the scattering amplitude dominates at small q,
this needs to be kept in mind. Also, as Ghorbani et al [19]
have shown, use of approximate wave functions can lead to

significant post-prior discrepancy in the CDW-EIS approxima-
tion, the extent of the discrepancy depending very much on
the kinematics (see figure 1 of Ghorbani et al [19]). Ghanbari-
Adivi et al [8] do not mention post-prior discrepancy in the
3DW-EIS approximation.

In contrast to the continuum distorted wave approxima-
tions discussed above, our coupled pseudostate approach is
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Table 1. Integral cross sections (in units of a2
0) for Li2+ impact on Li(2s) and Li(2p0,±1) at 16 MeV.

Initial state Approx. Li(2s) Li(2p) Li(3s) Li(3p) Li(3d) Li(4s) Li(4p) Li(4d) Li(4f) Other Disc. Ionization Total

Li(2s) CPB1 3.06 22.99 0.32 0.15 0.49 0.066 0.062 0.16 0.015 0.37 2.14 29.45
Li(2s) CP 2.56 22.37 0.31 0.15 0.50 0.065 0.061 0.16 0.016 0.37 2.12 28.31
Li(2s) CPBARE 2.47 19.77 0.31 0.15 0.49 0.064 0.059 0.16 0.016 0.36 1.99 25.83
Li(2p0) CPB1 3.01 2.66 1.61 0.35 15.03 0.12 0.074 2.57 0.20 2.28 4.53 32.41
Li(2p0) CP 2.51 2.20 1.23 0.35 14.00 0.11 0.074 2.47 0.20 2.25 4.50 29.87
Li(2p0) CPBARE 2.51 2.11 1.23 0.34 13.96 0.11 0.073 2.44 0.20 2.19 4.39 29.54
Li(2p±1) CPB1 9.99 5.77 4.56 0.96 15.29 0.35 0.21 2.61 0.18 2.58 5.12 47.59
Li(2p±1) CP 8.88 5.17 3.79 0.95 13.13 0.32 0.21 2.40 0.18 2.48 5.05 42.55
Li(2p±1) CPBARE 8.87 5.08 3.79 0.95 13.13 0.32 0.21 2.42 0.18 2.52 4.95 42.43

completely different. Firstly, it is non-perturbative, but does
depend upon the quality of the pseudostate basis used; we
have reason to believe that the basis is good for present pur-
poses [15]. In principle, the basis takes account of all impor-
tant dynamical factors, including those associated with the
initial and final state interactions of the projectile with the
active electron. In particular, it gives a description (dependent
upon the basis) of all the main physical processes, e.g. elastic
scattering, discrete excitations of the target, total ionization;
in this sense we get a complete, and internally consistent, pic-
ture of the outcomes of the collision (e.g. see table 1 of the
present paper). Of especial relevance to the Li target is the
dominant resonance coupling between the Li(2s) and Li(2p)
states. This is treated explicitly in the coupled pseudostate
approach, unlike the continuum distorted wave approximation.
We also take account of the 1s electron in Li2+(1s) which in
the distorted wave approximations is treated as a bare ion with
charge +2 au.

In this work, we also calculate the first Born approxima-
tion. This serves three purposes. Firstly, it is a useful standard
against which to measure other approximations. Secondly, if
it should turn out that we are in the first Born regime, then it
is a strong test of the experimental data, unclouded by the cor-
rectness, or otherwise, of the more difficult treatment of higher
order effects. Thirdly, it is a check on the pseudostate basis and
approximation [15]. Since the pseudostate approximation can
be run in first Born mode, failure to reproduce the indepen-
dently calculated first Born limit would reflect badly upon it,
e.g. an inadeqate pseudostate basis.

We begin in section 2 with a short review of the cou-
pled pseudostate approximation used here, which is described
in greater detail in [9–18]. Some calculational details are
given in section 3. Results are presented in section 4. Here
we make comparison with the recent experimental data of
Ghanbari-Adivi et al [8], the main motivation for this paper,
and with the CDW-EIS and 3DW-EIS approximations of
Ghorbani et al [19] and Ghanbari-Adivi et al [8]. A few sig-
nificant differences are found, although there is rough over-
all agreement. Here, we are also interested in how close the
results are to a pure first Born approximation. Conclusions are
presented in section 5. Throughout we use atomic units (au)
in which � = me = e = 1. The symbol a0 denotes the Bohr
radius and all reported differential cross sections refer to the
laboratory frame of reference [9].

2. Theory

The theory we require here is a combination of that devel-
oped in [15] for a bare ion scattering off Li and the treatment
described in [14] for dealing with a structured projectile in
which the electrons are assumed to be frozen.

As in [15], we use the model potential of Stein [24] for the
Li atom:

VA = −VT
core(r) + Vexch(r) + Vcore

pol (r) (1)

here r is the position vector of the valence electron relative to
the nucleus, VT

core is the static potential of the Li+(1s2) core as
seen by a unit positive charge, Vexch represents the exchange
interaction between the valence electron and the 1s2 core elec-
trons, and Vcore

pol accounts for polarisation of the 1s2 core by the
valence electron. Explicitly,

VT
core =

ZT

r
− 1

2π

∫
R1s(r′)R1s(r′)

|r − r′| dr′

=
(ZT − 2)

r
+ VT

SR(r) (2)

where ZT (= 3 au) is the charge on the Li nucleus, R1s/
√

4π is
the normalised wave function of the 1s electrons, and VT

SR(r)
is short range and given by

VT
SR(r) = 2

∫ ∞

r
r′

(
r′

r
− 1

)
R1s(r′)R1s(r′)dr′. (3)

The wave function R1s is taken from the tables of Clementi and
Roetti [22] for Li+.

For the interaction between the Li2+(1s) projectile and the
neutral Li atom we take

V = − ZP

|R − r| + ZPVT
core(R) + (ZP − 1)2Vcore

pol (R)

+
1

4π

∫ [
1

|R + r′ − r| − VT
core(|R + r′|)

]

× R+
1s(r

′)R+
1s(r

′)dr′ (4)

where ZP (= 3 au) is the charge on the Li2+ nucleus, R is the
position vector of the Li2+ nucleus relative to the Li nucleus,
and R+

1s/
√

4π is the hydrogenic wave function for the 1s elec-
tron in Li2+. The first two terms in (4) represent the interaction
of the Li2+ nucleus with the valence electron of Li and with its

4
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static 1s2 core, while the fourth term gives the corresponding
interaction of the frozen 1s electron in Li2+. The third term
represents the polarization of the 1s2 core by the Li2+ (1s)
projectile. Here we do not take account of the 1s electron and
just use the asymptotic charge (ZP − 1), see [15]; for Li core
polarization is small.

Using (2) and (4) may be recast as

V = − (ZP − 1)
|R − r| + (ZP − 1)VT

core(R) + (ZP − 1)2Vcore
pol (R)

− VP(|R − r|) + (ZT − 2)VP(R)

+
1

4π

∫ [
VT

SR(R) − VT
SR(|R + r′|)

]
R+

1s(r
′)R+

1s(r
′)dr′

(5)

where

VP(X) ≡ 1
4π

∫ [
1
X
− 1

|X + r′|

]
R+

1s(r
′)R+

1s(r
′)dr′. (6)

The first three terms in (5) give the interaction we would have
if the Li2+(1s) were treated as a bare ion with charge 2 au.
The remaining terms give the screening of the Li2+ nucleus
by the frozen 1s electron. The potential VP is of short range
and is easily calculated. The last term in (5), which is also of
short range, requires a little more effort; fortunately it does not
depend upon r and is a function only of the magnitude of R.

Having established the projectile–target interaction poten-
tial, according to (5), the theory follows the development of
[15], where the reader will find all of the details. To sum-
marize, we introduce a set of orthonormal states ψα for the
valence electron in the Li target which diagonalize the atomic
Hamiltonian

HA = −1
2
∇2 + VA (7)

i.e.
〈ψα |HA|ψβ〉 = εαδαβ. (8)

The set of statesψα is so chosen that the lower energy members
are good approximations to the valence eigenstates of inter-
est, in particular the 2s and 2p states. The higher members of
the set give a discrete representation of the ionized states of
the valence electron and are referred to as ‘pseudostates’. In
the diagonalization (8) a ‘fictitious’ 1s state appears, lying in
energy 1.7 au below the 2s ground state; this state is discarded
from the set.

The dynamical response of the valence electron under
impact is described by the time-dependent wave function Ψ
satisfying

(HA + V)Ψ = i
∂Ψ

∂t
(9)

in an impact parameter formalism. We emphasize again that
this is an excellent approximation to a full wave treatment at all
but the lowest impact energies (see [9]), i.e. it is not to be con-
demned as a ‘semiclassical’ approximation. The wave function
Ψ is expanded in the set ψα according to

Ψ =
∑
α

aα(t, b)e−iεαtψα(r) (10)

where b is the impact parameter, i.e.

R = v0tk̂ + b (11)

where v0 = v0k̂ is the incident velocity of the Li2+ ion relative
to the Li target and defines the z-direction, and

k̂ · b = 0. (12)

Substituting (10) into (9) gives the coupled equations

i
daα

dt
=

∑
β

ei(εα−εβ )t 〈ψα |V|ψβ〉 aβ (13)

which are solved subject to the boundary conditions

aα(−∞, b) = δα0 (14)

where ψ0 is the initial state of the valence electron. From the
solutions to (13) we can construct an ionization amplitude (see
[15] for details)

f ion(κ, θκ,φκ − φq, qt, m0) (15)

where m0 is the magnetic quantum number of ψ0 (≡ ψn0l0m0 ),
qt is the transverse component (i.e. in the direction perpendic-
ular to z) of the momentum transfer q (see [15]), (q, θq,φq)
are the polar angles of q about the z-direction, and (κ, θκ,φκ)
are the polar angles of the momentum κ of the ionized elec-
tron relative to the Li nucleus. Then the triple differential cross
section (TDCS) for observing the ionized electron and the scat-
tered Li2+ ion in the laboratory, where the Li target is assumed
to be initially at rest, is given by

d3σL

dEdΩfdΩκ
=

vfκ

v0
m2

P| f ion|2 (16)

here mP is the mass of the projectile and vf is the final veloc-
ity of the Li2+ ion after ionization. The TDCS given in (16)
is the cross section for the ionized electron being ejected with
energy between E and E + dE into a solid angle dΩκ while
the Li2+ projectile is scattered into the solid angel dΩf , all
as observed in the laboratory frame of reference. Note that,
unlike Ghanbari-Adivi et al [8] and Ghorbani et al [19], all of
our cross sections are given in the laboratory frame of refer-
ence [9]. These other authors use the centre-of-mass (relative)
coordinate system where the cross section is given by [9]

d3σ

dEdΩfdΩκ
=

vfκ

v0
μ2| f ion|2 (17)

μ being the reduced mass of the Li2+—Li system. But, since
the projectile and target have essentially the same mass in this
case, μ = mP/2, so that

d3σL

dEdΩfdΩκ
= 4

d3σ

dEdΩfdΩκ
. (18)

Therefore, in making comparison with their work we have
increased their cross sections by a factor of 4. Also of
interest here is the double differential cross section (DDCS)

5
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d2σ/dEdqt, the single differential cross section (SDCS)
dσ/dE, the integral cross section σnlm,n0 l0m0 for scattering to
any final state nlm, the total ionization cross section σion,n0l0m0 ,
and the total cross section σtot,n0l0m0 . Expressions for these are
given in [15].

The full coupled state approximation (13) with the full
interaction potential (5) we shall label as CP. The coupled
equations (13) can also be run in first Born mode by replac-
ing aβ on the right-hand side of (13) by δβ0. When this is done
using the full potential (5) we shall label the approximation
as CPB1. Switching off the contribution of the 1s electron in
Li2+(1s), i.e. using only the first three terms in (5), so treat-
ing the Li2+(1s) as a bare ion of charge ZP − 1 = 2 au, we
can rerun the full coupled state approximation (13) and obtain
an approximation which we label as CPBARE. The same
approximation run in first Born mode gives us CPBAREB1.
From these approximations we can assess how important it is
to take explicit account of the 1s electron and how close our
results are to the first Born limit. But, furthermore we can also
calculate the first Born amplitude for ionization by the bare ion
directly from (see [15])

2(ZP − 1)
q2

〈
ψ−
κ (r)

∣∣eiq·r∣∣ψ0(r)
〉

(19)

here the ionized wave function ψ−
κ corresponds to an electron

with momentum κ scattering off the model potential VA with
ingoing scattered wave boundary conditions. Since the same
potential VA is used for the generation of ψ0 and ψ−

κ , these
functions are orthogonal. As a result only the first of the three
terms in (5) contribute, which explains the absence of VT

core
and Vcore

pol from (19). We label this approximation EXBAREB1
since it is an exact first Born approximation, i.e. it does not
depend on the choice of a pseudostate basis.

The amplitude (19) is evaluated in partial wave form as
described in [15].3

3. Calculational details

The experimental data of Ghanbari-Adivi et al [7] cover ejec-
tion energies of 2, 10 and 20 eV. For each ejection energy we
have used the corresponding 164 state set (l = 0 to 9, n = l + 1
to 21, excluding 1s) constructed in [15] by diagonalizing HA

in a basis of Laguerre functions,

χklm(r) = (λlr)lL2l+2
k−1 (λlr)e−λlr/2Ylm(r̂) (20)

with k = 1 to (21 − l), l = 0 to 9. Each set has been con-
structed so that there is one state n = N of each angular sym-
metry (lm) with energy exactly equal to that of the ionized
electron [15], i.e.

εNlm =
κ2

2
. (21)

3 In reference [15], the result is incorrectly quoted. In equation (42) of [15]
an overall factor of 2ZP/q2 is missing, while in equation (43) the factor
(−i)l−λ

√
(2λ+ 1)/2 e−iηl/π2 should be 2

√
2(2λ+ 1) il+λe+iηl . However,

the calculated values for f B1
ion in reference [15] are correct.

The values ofλl have been chosen so that the states with N = 8,
N = 11, and N = 13 have energies of 2, 10 and 20 eV respec-
tively. All three bases give good energies for the n = 2, 3 and
4 eigenstates of Li. See [15] for details. In calculating the first
Born amplitude (19) for ionization of Li(2s) and Li(2p), it does
not matter from which of the three sets we take the 2s and 2p
wave functions, all are equally good for present purposes.

See [15] for further details.

4. Results

4.1. Triple differential cross sections (TDCS)

Our primary concern in this paper are the TDCS measurements
of Ghanbari-Adivi et al [8]. These have been made for ioniza-
tion of Li(2s) and Li(2p) for ejection energies of 2, 10 and 20
eV and momentum transfers q of 0.4 au and 1.0 au in each
case. Setting up a right-handed Cartesian coordinate system in
which the Li target is at the origin and the Li2+ is incident
in the positive Z-direction and is scattered into the positive
half of the X − Z plane, the measurements observe electron
ejection into the X − Y plane (θκ = π/2) as a function of
the azimuthal angle φκ(0 � φκ < 2π). The measurements are
not absolute but are internormalised for the same Li state.
For Li(2p) the target is in a mixed combination of magnetic
substates:

(0.86)Li(2p−1) + (0.09)Li(2p0) + (0.05)Li(2p+1). (22)

It is shown in [15] that

f ion(κ, θκ,φq − φκ, qt,−m0) = f ion(κ, θκ,φκ − φq, qt, m0)
(23)

from which it follows that the TDCS for −m0 is the mirror
image of that for +m0 in the plane φκ = φq. Consequently, for
m0 
= 0 we have a dichroism, while for m0 = 0 the TDCS must
be symmetric about φκ = φq. Equal admixtures of −m0 and
+m0 would also lead to symmetry about φκ = φq, but this is
not the case here for Li(2p) where the initial state of the target
is heavily weighted toward the m0 = −1 substate (see (22)). As
a result, we do not expect to see such symmetry in the Li(2p)
measurements, but we do expect it in the Li(2s) data.

First, let us address the quality of the pseudostate bases used
in the present calculations. By comparing CPBAREB1 with
EXBAREB1 we get a good indication. For the cases studied
here, we find agreement between the two within 1%, except for
20 eV ejection from Li(2p0) at q = 0.4 au; here the difference
is about 4% at the peak of the cross section. But then, this is a
relatively small cross section, being only about 5% of Li(2p±1)
ionization in the same kinematics. Indeed, we generally find,
in all of our approximations, that ionization from Li(2p0) is
small compared with that from Li(2p±1), for q = 0.4 au, rang-
ing from about 2% to 5% on going from 2 eV ejection to 20
eV ejection, and for q = 1.0 au, varying from 2% to 10% for
the same ejection energy range. Consequently, our calculations
indicate that the measured cross section (22) is largely ioniza-
tion from Li(2p−1). The agreement between CPBAREB1 and
EXBAREB1 suggests that the bases are of very good quality
for present purposes.
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Figure 2. TDCS (in the laboratory frame) for 16 MeV Li2+ impact on (0.86)Li(2p−1) + (0.09)Li(2p0) + (0.05)Li(2p+1). The energy of the
ejected electron in eV and the momentum transfer q of the Li2+ projectile in au are indicated on each panel. Approximations: CP (black
curve); CPB1 (red curve). Experimental data from [8] have been normalised as described in text to give best visual fit to CP curve in each
case.

Let us now turn to the screening of the Li2+(1s) nucleus
by the 1s electron. We can see the effect of this screening by
comparing CP with CPBARE (or CPB1 with CPBAREB1).
Here, in all three cases, Li(2s, 2p0, 2p±1), we see differences
in the main peak (the dominant part of the TDCS, see figures 1
and 2) only up to about 6%, the differences usually increasing
with q and with ejection energy. In the geometries studied here,

1s screening is obviously not a significant effect. While we
have restricted the dynamics of the 1s electron by freezing it,
we find it hard to believe that a more flexible treatment would
yield any significant change. We therefore see no evidence that
the 1s electron of Li2+ will explain the discrepancies between
the calculations of Ghorbani et al [19] and experiment, as these
authors have tentatively suggested.
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In figure 1 we compare our CP and CPB1 calculations with
the experimental data of Ghanbari-Adivi et al [8] for ioniza-
tion of Li(2s). The data have been normalised for best visual fit
to the CP curve for 2 eV ejection at q = 0.4 au. This should fix
the normalisation of the Li(2s) measurements in all the other
cases. However, as Ghanbari-Adivi et al [8] also find in com-
parison with their 3DW-EIS theory, this results in experimental
cross sections which are too high in the other cases. We have
therefore applied a further normalisation by a factor β to give
the best visual fit of the other measurements to our CP results;
this factor is indicated on each of the figures. The changes in
normalisation are substantial.

At 2 eV ejection, the TDCS decreases by an order of mag-
nitude on going from q = 0.4 au to q = 1.0 au (figures 1(a)
and (b)), but the reverse is true for 10 and 20 eV ejection
(figures 1(c) through (f)). Where the cross section is largest
(2 eV, q = 0.4 au; 10 and 20 eV, q = 1.0 au) there is generally
good agreement between experiment and the CP values. But it
is also clear from the agreement between CP and CPB1 that,
in these cases, the cross section is largely first Born. For the
other situations (figures 1(b), (c), (e)) where the cross section
is an order of magnitude smaller, CP and CPB1 differ notice-
ably, but yet not that much. Here experiment is more scattered
but still in fair accord with the CP results. In particular, for 2
eV ejection at q = 1.0 au (figure 1(b)) the experimental data
agree well with the width of the CP peak.

Figure 2 compares our CP and CPB1 calculations with the
experimental data of Ghanbari-Adivi et al [8] for Li(2p) in the
combination (22) [8]. The data have been normalised for best
visual fit to the CP results at 2 eV ejection energy and q = 0.4
au (figure 2(a)). As in the Li(2s) case, and consistent with the
3DW-EIS calculations of Ghanbari-Adivi et al [8], this results
in experimental cross sections which are much too high com-
pared with theory in the other kinematics. As with Li(2s), we
therefore introduce a further normalisation factor β to give best
visual fit in the other cases.

For 2 eV ejection and q = 0.4 au (figure 2(a)) we see good
agreement with the experimental data, but we also notice that
the difference between CP and CPB1 is small, indicating that
we are again close to the first Born limit. Nevertheless, it is
clear that the experimental data have a preference for the CP
cross section, rather than CPB1. The results show a single peak
located near φκ = 162◦. In the absence of the 2p±1 dichro-
ism, this would have been placed symmetrically about φκ =
180◦, as we have seen for the Li(2s) results (figure 1). As q
is increased from 0.4 au to 1.0 au, figure 2(b) shows that the
TDCS falls by two orders of magnitude and now displays a
substantial difference between CP and CPB1, although both
again indicate a single peak near φκ = 200◦, i.e. on the oppo-
site side of φκ = 180◦ from q = 0.4 au. Unfortunately, there
are no experimental data for this geometry.

Figures 2(c) and (d) show an interesting situation for 10
eV ejection. At q = 0.4 au (figure 2(c)) there is close agree-
ment between the CP and CPB1 approximations with a sin-
gle peak near φκ = 178◦ for CP and φκ = 175◦ for CPB1.
The cross section is an order of magnitude smaller than for
2 eV ejection at the same q (figure 2(a)). The experimental

data are somewhat scattered but consistent with the theoret-
ical results (except in respect of normalisation, β = 0.60).
When q is increased to 1.0 au (figure 2(d)), the overall magni-
tude of the cross section remains unchanged and CP and CPB1
stay in relatively close agreement. But now we see a split peak,
the dominant peak appearing near φκ = 164◦, the less domi-
nant nearφκ = 197◦, with a minimum between the two near φκ

= 182◦. The CP and CPB1 approximations differ essentially
in the ratio of the two peaks, the CP approximation giving a
smaller ratio 1.46 of the large peak to the small peak com-
pared with the greater ratio 2.26 of the CPB1 approximation.
The experimental data are insufficiently refined to distinguish
such a two-peak structure and only in modest accord with
theory.

For 20 eV ejection (figures 2(e) and (f)) we again see a
single peak at both q values. The q = 0.4 au cross section is
almost two (three) orders of magnitude smaller than for 10 eV
(2 eV) ejection. In this case the peak in CP and CPB1 is near
to φκ = 180◦. While the CP and CPB1 approximations are
close, there is still a clear difference between them. There are
no experimental data for this case. When q is increased to 1.0
au (figure 2(f)) the cross section grows by an order of magni-
tude, the peak moves to near φκ = 176◦, and the CP and CPB1
approximations become very close. The experimental data are
consistent with theory but the error bars are large.

How do our results compare with the original 3DW-EIS cal-
culations of Ghanbari-Adivi et al [8]? We show this compari-
son for Li(2s) in figure 3 and for Li(2p) in figure 4 Although
there are some differences in detail, we see from figure 3 that
the Li(2s) results are very comparable.

The same is true for Li(2p), except for 20 eV ejection at
q = 0.4 au (figure 4(e)). Whereas CP predicts a single peak,
3DW-EIS displays a peak with pronounced shoulders on each
side. However, the central peak heights of the 3DW-EIS and
CP approximations are in very good accord. In figure 4(e) we
also show the CDW-EIS calculation of Ghorbani et al [19].
In contrast to 3DW-EIS, this approximation is in very good
agreement with CP. Yet, when we compare CDW-EIS with CP
for 2 eV ejection and q = 1.0 au (figure 4(b)) there is complete
discord, with CP predicting a single peak but CDW-EIS giving
a pronounced two peak structure. Now, paradoxically, 3DW-
EIS is quite close to CP. It is unclear how these pronounced
differences arise, but the two cases, 2 eV ejection with q =
1.0 au and 20 eV ejection with q = 0.4 au, are cases in which
the TDCS is relatively small (see figure 2), in fact so small that
experiment was unable to measure them. In such a situation it
is to be expected that the TDCS will be much more sensitive
to the details of the approximation. However, we would point
out that CP is the one constant factor here, agreeing well with
one of the other approximation in each case.

4.2. Double differential cross section (DDCS) d2σ/dEdqt

In figures 5 and 6 we show the DDCS d2σ/dEdqt for ioniza-
tion of Li(2s) and Li(2p0,±1) for the three ejection energies 2,
10 and 20 eV. Unlike figure 1 which refers to particular kine-
matics of the TDCS, d2σ/dEdqt is a sum over all outgoing
directions of the ionized electron and all azimuthal directions

8
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Figure 3. Comparison of the present CP approximation with the 3DW-EIS approximation of Ghanbari-Adivi et al [8] for 16 MeV Li2+

impact on Li(2s). The TDCS is given in the laboratory frame of reference. The energy of the ejected electron in eV and the momentum
transfer q of the Li2+ projectile in au are indicated on each panel. CP, black continuous curve; 3DW-EIS, blue dashed curve (indicated as
3DW in figures).

of the momentum transfer:

d2σ

dEdqt
=

qt

k0kf

∫ 2π

0

d2σ

dE fΩf
dφq (24)

where
d2σ

dEdΩf
=

∫
d3σ

dEdΩfdΩκ
dΩκ (25)

and k0 = μv0, kf = μvf .

We have seen that our pseudostate bases are of sufficiently
good quality to represent the TDCSs of figures 1 and 2. But,
are they good enough for calculating the DDCS which extends
over a larger range of kinematics. Again, we can get an insight
by comparing CPBAREB1 with EXBAREB1. For the range
of qt shown in figures 5 and 6 we find excellent agreement
between the two, except for Li(2p0,±1) at 20 eV ejection. For
Li(2p0) the EXBAREB1 cross section can be up to 10% larger
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Figure 4. Comparison of the present CP approximation with the approximations of Ghanbari-Adivi et al [8] (3DW-EIS) and Ghorbani et al
[19] (CDW-EIS (full prior form)) for 16 MeV Li2+ impact on (0.86)Li(2p−1) + (0.09)Li(2p0) + (0.05)Li(2p+1). The TDCS is given in the
laboratory frame of reference. The energy of the ejected electron in eV and the momentum transfer q of the Li2+ projectile in au are
indicated on each panel. CP, black continuous curve; 3DW-EIS, blue dashed curve (indicated as 3DW in figures); CDW-EIS, magenta
dash-dot curve (indicated as CDW in figures).
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Figure 5. Cross section d2σ/dEdqt for Li2+ impact ionization of Li(2s) at 16 MeV and at ejected electron energies E of 2, 10 and 20 eV.
Approximations: CP, solid black curve; CPBARE, dashed black curve; CPB1, solid red curve; CPBAREB1, dashed red curve.

than CPBAREB1 near the peak, and for Li(2p±1) up to 5%
larger, but with very good agreement elsewhere. The differ-
ence can be traced primarily to the number of partial waves
l included in the pseudostate set. This is restricted to l � 9
(see section 3). In the EXBAREB1 approximation (19) we
can add as many partial waves as necessary for convergence,
see (??). The implication is that the pseudostate basis should go
a little higher in angular momenta for these cases.4 This obser-
vation was also made in [15] for O8+ + Li(2p) ionization at
1.5 MeV/amu. See [15] for further discussion.

Now let us look at specific cases. Figure 5 shows
d2σ/dEdqt for ionization of Li(2s). Here we show the CP,
CPBARE, CPB1 and CPBAREB1 approximations. At low
qt there is convergence between CP and CPB1 and between
CPBARE and CPBAREB1. This reflects proximity to the first
Born limit, which we have also seen in figure 1. At large qt

the first Born cross sections start to fall very rapidly below
their full counterparts, CP and CPBARE. This is because the
first Born approximations lack the interaction between the
Li2+ and Li nuclei (see (19)) which is necessary to sustain the
cross section at large qt. This is clearly shown in the theoretical
calculations of [9–13, 15] and in the experimental data quoted
in [15].

4 But this would lead to a large increase in the magnitude of the calculation,
which, for present purposes, would not be worthwhile.

Figure 5 also shows the effect of shielding by the 1s elec-
tron in the Li2+(1s) (compare CP and CPBARE, CPB1 and
CPBAREB1). As with the TDCS, discussed in section 4.1,
shielding effects are small at low qt but more significant at
large qt (where the cross section is anyway relatively small)
and with increasing ejection energy E = κ2/2. This makes
sense in that large qt collisions involve a close encounter
between the two nuclei and large ejection energies require a
hard (and therefore penetrating) collision between the projec-
tile and the ionized electron. It is noteworthy that the full cross
sections lie above the bare cross sections. In the full cross
sections the Li2+(1s) effective nuclear charge varies from 3
au close in, to 2 au asymptotically, as a result of the screen-
ing, whereas, in the bare cross sections the Li2+(1s) effective
nuclear charge is constant at 2 au at all distances.

In figure 6 we show d2σ/dEdqt for ionization of Li(2p0)
and Li(2p±1).5 In the interests of clarity we do not show
the bare cross sections CPBARE and CPBAREB1; suffice
it to say that the differences between CP and CPBARE and
between CPB1 and CPBAREB1 are comparable to those seen
in figure 5. For both Li(2p0) and Li(2p±1) we see convergence
to the first Born limit CPB1 at small qt for 2 eV ejection, and
in the peak region for 10 and 20 eV ejection; in these latter
two cases CPB1 falls below CP on further reduction of qt. At

5 d2σ/dEdqt for Li(2p + 1) is the same as that for Li(2p − 1), see [15].
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Figure 6. Cross section d2σ/dEdqt for Li2+ impact ionization of Li(2p0,±1) at 16 MeV and at ejected electron energies E of 2, 10 and 20
eV. Solid curves Li(2p±1): CP, black; CPB1, red. Dashed curves Li(2p0): CP, black; CPB1, red.

large qt we again see CPB1 falling well below CP as a result of
the Born approximation lacking the nucleus–nucleus interac-
tion. The cross sections for Li(2p0) peak at larger qt than those
for Li(2p±1), there lying above the Li(2p±1) cross section, but
lying below the latter at smaller and larger qt, except that at
large qt the CP cross section for Li(2p0) eventually exceeds
that for Li(2p±1). We notice also a shoulder in the vicinity
of qt = 1.0 au (1.5 au) (1.75 au) for 2 eV (10 eV) (20 eV)
ejection. Such a shoulder was observed in the calculations of
[15] for O8+ impact on Li(2p±1) at 1.5 MeV/amu and was also
noticeable in the corresponding experimental data.

4.3. Single differential cross section (SDCS) dσ/dE

In figure 7 we show dσ/dE for initial states Li(2s), Li(2p0)
and Li(2p±1) in the CP and CPB1 approximations (from best
estimates from our three pseudostate bases, see section 3). The
Li(2p0) and Li(2p±1) cross sections are very similar and almost
an order of magnitude larger than Li(2s) at low energies (less
than about 1 eV). With increasing ejection energy the Li(2s)
cross section eventually crosses over the Li(2p0,±1) curves,
becoming the largest just beyond 10 eV.

We have also calculated dσ/dE in the CPBARE and
CPBAREB1 approximations (not shown) and find minor dif-
ferences from CP and CPB1 up to a few eV of the ejection
energy E. In this energy range screening by the 1s electron

Figure 7. Cross section dσ/dE for Li2+(1s) impact on Li(2s) (black
curves), Li(2p0) (red curves) and Li(2p±1) (blue curves) at 16 MeV.
Solid curves, CP approximation; dashed curves, CPB1
approximation.

in the Li2+(1s) is clearly not so important. However, asymp-
totically in E the BARE cross sections lie below the CP
and CPB1 results. The reason has already been given in
discussing figure 5. For large energy ejection a hard close
collision between the projectile and the ionized electron is
required. This interaction is stronger when screening is taken
into account as the effective nuclear charge of the projectile
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then varies between 2 and 3 au, which is to be compared with
the fixed nuclear charge of 2 au in the BARE approximations.

4.4. Integrated cross sections

In table 1 we show the calculated integral cross sections for
Li2+ +Li(2s, 2p0,±1) at 16 MeV in the CP, CPB1 and CPBARE
approximations. These include transitions to the n = 2, 3 and
4 states, an aggregate of discrete transitions to n � 5 (labeled
‘other discrete’), the ionization cross section and the total
cross section. The results presented are the best estimates from
our three pseudostate bases (for E = 2, 10 and 20 eV, see
section 3). From comparison of the different bases we estimate
that our cross sections for the initial states Li(2s) and Li(2p±1)
are accurate to about 2%, except for n = 4 and other discrete
transitions which have an accuracy of about 5%. For Li(2p0),
things seem to be a little more sensitive, with an estimated
accuracy of 3% except for the n = 4 and other discrete tran-
sitions which now have an accuracy of 10%, and for the tran-
sition Li(2p0) → Li(2s) which also has an accuracy of about
10%.

From the table we see that there is not a great deal of differ-
ence between the three approximations for the n= 4, other dis-
crete, and ionization transitions. Nor is there between the CP
and CPBARE approximations except for the resonance tran-
sition Li(2s) → Li(2p), only here does the screening of the 1s
electron in Li2+(1s) seem to have a substantial effect. The first
Born CPB1 approximation is not greatly at variance with CP,
and often very close, as we might expect at such a high impact
energy.

For Li(2s) the dominant transition is, as expected, to Li(2p).
For Li(2p0,±1) the dominant transition is to Li(3d) with Li(2s)
being close behind for Li(2p±1). Again, this is as expected as
these are optically allowed transitions. Ionization is only about
8% of the Li(2s) total cross section and less that about 15% of
the Li(2p0,±1) totals.

5. Conclusions

We have applied the powerful coupled pseudostate method
[9–18] to Li2+ + Li(2s, 2p0,±1) collisions at 16 MeV with
emphasis on studying the TDCS cross section measurements
of Ghanbari-Adivi et al [8] in the azimuthal plane. These mea-
surements have been made for ejected electron energies of 2,
10 and 20 eV and for momentum transfers q = 0.4 and 1.0
au. Except for normalisation, the agreement with the experi-
mental data is generally quite good. But, where the agreement
is best (where the cross sections are largest) we find that the
cross section is very much first Born, i.e. it is no test of higher
order approximations. While the relative normalisation of the
experimental data is tentative, its trends are totally at vari-
ance with our calculations. In this we are in complete accord
with the 3DW-EIS calculations of Ghanbari-Adivi et al [8].
Indeed, the 3DW-EIS calculations are generally in quite good
agreement with our pseudostate results except for the case of
20 eV ejection from Li(2p) at momentum transfer q = 0.4 au
(figure 4((e)). Here, 3DW-EIS exhibits a pronounced shoulder
structure which is absent from our single-peak cross section.

However, in this case the pseudostate cross section is in very
good agreement with the CDW-EIS approximation of Ghor-
bani et al [19]. But for 2 eV ejection from Li(2p) at q =
1.0 au (figure 4(b)) the situation is completely reversed, with
now pronounced disagreement with CDW-EIS but good agree-
ment with 3DW-EIS ! The one constant factor in these two
cases is the pseudostate result which is supported by one of the
two other approximations. In these two exceptional cases the
cross section is relatively small and, unfortunately, there are
no experimental data (presumably because the cross section is
so small) to test the theoretical results. Where cross sections
are relatively small it is usually a more sensitive test of the
accuracy of the approximation and we must expect to see dif-
ferences, but differences that are not important on the overall
larger scale.

In the 3DW-EIS and CDW-EIS calculations of Ghanbari-
Adivi et al [8] and Ghorbani et al [19] the Li2+ has been treated
as a bare ion with a nuclear charge of 2 au. In our work we
have made explicit allowance for screening by the remaining
electron, which we assume to be frozen in the 1s state. This
means that the effective nuclear charge of our projectile varies
from 2 au at large distance to 3 au close in to the Li2+ nucleus.
As far as the TDCS measurements are concerned we find little
effect of the screening (less than about 6% at most), which
refutes the conjecture of Ghorbani et al [19] that some of the
differences they see between their CDW-EIS calculations and
experiment could be due to the neglect of the 1s electron in the
Li2+.

Where we do see noticeable effects of the screening is
in large momentum transfer collisions and where the ionized
electron has a large ejection energy. Both of these situations
require a hard close collision between the projectile nucleus
and the ionized electron and so the ionized electron senses
the variation in the effective nuclear charge from 2 au to 3 au.
This is seen in our large qt and large E results for the DDCS
d2σ/dEdqt (figure 5) and in the SDCS dσ/dE at large ejected
energy E (see section 4.3). Here proper account of the screen-
ing leads to larger cross sections compared with a bare charge
of 2 au since the effective screened charge is on average greater
than 2 au.

In the DDCS results for d2σ/dEdqt (figures 5 and 6) we
again see the importance of the NN interaction at large momen-
tum transfers. Here the first Born cross sections, which lack the
NN interaction, become orders of magnitude smaller than their
full counterparts at large qt. By contrast, at smaller qt, where
the NN interaction is no longer dominant, there is convergence
between the two. A point of interest here is that the Li(2p0,±1)
cross sections are almost an order of magnitude larger at small
qt than that for Li(2s), reflecting the lower binding energy of
the 2p electron compared with 2s.

As shown in the appendix of [15], the NN interaction does
not contribute to the SDCS dσ/dE. Here we find reason-
able agreement between the first Born and full cross sections
(figure 7).

Finally, we get to a major strength of the coupled pseu-
dostate approximation, namely that it gives a complete and
internally consistent picture of all the main processes. This
is seen in table 1 where, as a spin-off from our ionization
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calculations, we get results for the discrete transitions up to
n = 4 and we see that ionization is a relatively minor process,
amounting to only 8% and 15% respectively of the total cross
sections for Li(2s) and Li(2p0,±1).

It is clear from the results presented here that the TDCS
measurements of Ghanbari-Adivi et al [8] have probed only
the first Born regime. It would be interesting to see such mea-
surements at a much lower, but not too low, impact energy
where higher order effects may be rigorously tested. Since the
pseudostate theory is able to give a complete picture of all the
lower order differential cross sections, it would also be use-
ful to have results for these as well in order to test the internal
consistency both of theory and experiment.
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