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APPLICATION NOTE

Detecting special-cause variation ‘events’ from process data
signatures
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ABSTRACT
The ability to detect the special-cause variation of incoming feed-
stocks from advanced sensor technology is invaluable to manufac-
turers. Many on-line sensors produce data signatures that require
further off-line statistical processing for interpretationbyoperational
personnel. However, early detectionof changes in variation in incom-
ing feedstocks may be imperative to promote early-stage preventive
measures. A method is proposed in this applied study for devel-
oping control bands to quantify the variation of data signatures in
the context of statistical process control (SPC). Control bands based
on pointwise prediction intervals constructed from the Bonferroni
Inequality and Bayesian smoothing splines are developed. Appli-
cations using the control band method for data signatures from
near-infrared (NIR) spectroscopy scans of industrial fibers of Switch-
grass (Panicum virgatum) used for biofuels production, Loblolly Pine
(Pinus taeda) fibers for medium density fiberboard production, and
formaldehyde (HCHO) emissions from particleboard were used. Sim-
ulations curves (k) of k = 100, k = 1000, and k = 10,000 indicate
that the Bonferroni method for detecting special-cause variation is
closely aligned with the Shewhart definition of control limits when
the pdfs are Gaussian or lognormal.
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Introduction

Univariate Shewhart control charts have been used extensively by manufacturing and ser-
vice industries for over 70 years. A plethora of literature is available on SPC, but as noted
by Stoumbos et al. [1], and quoted by Bischak and Trietsch [2], ‘the diffusion of new ana-
lytical techniques to application is sometimes slow.’ The aim of this paper is to improve
the diffusion of research for the practitioner by developing prediction intervals or control
bands for data signatures. The contribution of this work is to illustrate prediction intervals
in a new context for real-time interpretation during manufacturing [3]. Rhyne and Trein-
ish [4] appropriately define a ‘data signature as a mathematical data vector designed to
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characterize a portion of the data set, such as an individual time-frame of a scientific sim-
ulation or an article within a corpus.’ This paper is aligned well with the spirit of Woodall
[5], i.e. ‘ . . . there needs to be a quicker transition from the classical (SPC) methods to
newer approaches when appropriate.’ A review of the public domain literature indicated a
gap in the development of control bands for data signatures for use by practitioners. Given
this gap in new SPC methods for data signatures, this study develops control bands for
data signatures using NIR spectroscopy data as an example. The well-defined Bonferroni
and Bayesian methods for univariate-data are used as a basis for enhanced control band
methods for data signatures.

Data challenge

As on-line sensor technologies improve for manufacturing applications, e.g. on-line NIR
spectroscopy, X-ray devices, ultrasonic sensors, etc., (see ‘Industry 4.0’, [6]), operational
personnel have an improved ability to assess more advanced real-time process data of
feedstocks and intermediate/transformed material characteristics. Many on-line sensors
produce full or partial spectral wavelength data (e.g. NIR spectroscopy). It is not always
possible to transform this real-time spectral wavelength data into a real-time univariate
metric (e.g. PLS model) in a timely manner for operational personnel. This results in the
information-loss of real-time data to operational personnel. In this context, developing
statistical prediction intervals for data signatures in the analytical statistical framework
defined by Deming [7, 8] is essential for: (1) quantifying the real-time variation of the
process; (2) detecting special-cause variation events; (3) maintaining process stability; and
(4) timely initiating proactive measures for short-term process improvement. Incoming
feedstock variation is problematic for many industries, and reducing such variation is fun-
damental to lowering operational targets, e.g. weight, density, bonding agents, drying time,
energy usage, etc. [9]. The basic theory of entropy (second law of thermodynamics) implies
that processes tend toward a state of disorder. If something appears to be decreasing in
entropy, the componentmay be influencing another component in the system, and causing
this next component to increase its entropy, e.g. weight variation, bulk density variation,
process cycle time changes, etc. Statistical process control (SPC) is an excellent tool for
detecting real-time entropy. Focusing on variation reduction which ultimately leads to cost
reduction is essential for ensuring business success [3, 8, 10, 11].

Statistical methods have played key roles in the improvement process philosophies
for manufacturing industries [5], e.g. Six Sigma Quality, Lean Six Sigma (LSS), continu-
ous improvement, Total Quality Management (TQM), continuous improvement, etc. Many
enumerative and analytical statistical methods exist for quality improvement through the
quantification and understanding of sources of variation [5, 11–13]. Deming [7] urged us
to distinguish between enumerative and analytical studies. Enumerative studies deal with
characterizing an existing, finite, unchanging target population by sampling from a well-
defined frame, e.g. ANOVA, Design of Experiments, confidence intervals, etc. [12]. In
contrast, analytical studies most frequently encountered in industrial applications, focus
on real-time analysis of a process or system with the aim of process improvement and pre-
diction, e.g. prediction intervals, statistical process control (SPC), control charts, etc. [7,
14]. A key tool in the application of SPC is the implementation of Shewhart and other types
of control charting techniques to quantify and detect variation in the process. Predicting
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outcomes ofmanufacturing applications from such charts is fundamental to avoiding scrap
and rework of the final product [1, 15, 16].

As Ceriolo et al. [17] noted: ‘Functional data analysis (FDA) concerns the statistical
analysis of data which come in the form of continuous functions, usually smooth curves.’
In FDA, each data signature is seen as a single entity, rather than a collection of individual
observations [5, 17]. AsMorris et al. [18] noted, ‘methods that model functional profiles in
their entirety have the potential to extract more information from the data compared with
methods based on arbitrary chosen summary measures,’ i.e. univariate methods may be
inappropriate for detecting real-time changes in quality characteristics that are inherently
non-univariate, [3, 19–25].

Relevant data

NIR spectroscopy data from scans of Switchgrass fiber (Panicum virgatum) as a
feedstock (k = 41) for the production of biofuels are provided by Genera Energy
(www.spc4lean.com), where k = number of data signatures or curves. TheNIR data of real-
time scans of Switchgrass feedstocks without post-statistical analyses are a good example
of the application of control bands to assess the natural- and special-cause variation of
data signatures. The second data are from NIR spectroscopy scans of core fiber samples of
Loblolly Pine (Pinus taeda) used for medium density fiber (MDF) production (k = 100).
The seconddatawere derived froma related study tomeasure characteristics of the Loblolly
pine fibers as related to mechanical properties of the final product [26]. The third data are
fromNIR spectroscopy scans of formaldehyde (HCHO) emissions fromparticleboard after
the pressing stage (k = 20).

All three data sets were used to quantify the natural variation of the data signatures
and detect the possible special-cause variation. Robustness of the proposed control band
methods was tested using simulation of data signatures assuming the common Gaus-
sian, lognormal, and Weibull pdfs [9, 27]. The simulation data signatures were performed
for three sets of data signatures, i.e. k = 100, k = 1000, and k = 10,000. The proposed
approach is important for providing a methodology for developing statistical predic-
tion intervals for data signatures to improve real-time information for manufacturing
operational personnel.

Methods

Bonferroni methods as control bands

One approach to developing prediction intervals for data signatures is based on enhancing
the fundamentals presented by Bonferroni inequality for univariate data [28]. A general
form of the Bonferroni inequality as noted by Milton and Arnold [29] is let A1, A2, . . . ,
Ac be events then,

P[A1 ∩ A2 ∩ . . . . . . . ∩ Ac] ≥ 1 − [P[A1
′] + P[A2

′] + . . . . . .+ P[Ac
′]] (1)

As applied to the study of statistical intervals, the Bonferroni bound from elementary
probability theory provides a simple, conservative lower bound on the actual α-level for
a joint interval-statement [14]. If the simultaneous intervals are statistically independent,

file:www.spc4lean.com
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the joint α-level is,

(1 − αJ) ≥ 1 − α1 − . . . . . . αK (2)

As Hahn andMeeker [14] note, Equation (2) ‘provides a useful way of combining inter-
val statements to give a conservative bound for the actual joint α-level.’ Fisher [30] called
this a ‘confidence ribbon’ since the pointwise statistical intervals are extended until they
have the desired simultaneous coverage probability of 1α. Hahn andMeeker [14] provided
a two-sided 100(1α)% simultaneous prediction interval to contain the values of all of m
future randomly selected observations from a previously sampled population (or process)
that can be described by a normal distribution,

[yIB, yUB] = x̄ ± r(1−α;μ,v)s (3)

where [yIB, yUB] is a two-sided statistical interval, x̄ is the process average, s is the pro-
cess standard deviation and r(1−α;μ,v) is the factor for calculating a normal distribution
two-sided 100(1 α)% prediction interval for m future observations using the results of a
previous sample of n observations. A conservative approximation for r(1−α;μ,v) is,

r(1−α;m,n) ∼=
(
1 + 1

n

) 1
2
t((1−α)/(2m);n−1)2 (4)

where t((1−α)/(2m);n−1) ≈ z(1−α)/(2n) [14]. Thus, normal distribution percentiles provide a
generally adequate approximation for t distribution percentiles whenn is large and 1 − α/2
is not too large (e.g. t(0.975,60) = 2.000 and z(0.975) = 1.960).

In the spirit of the Bonferroni method, Hardle [28] proposed constructing pointwise
prediction intervals on k observations at each value of x. The form of the simultaneous
prediction intervals for any data signature as proposed byHardle [28] using the Bonferroni
method is,

ȳi ± z(1−α)/(2n)si
(
1 + 1

k

) 1
2

(5)

for i = 1, . . . .,n, ȳi is the average curve of k observed curves, z(1−α)/(2n) is the 1 − α per-
centile for the standard normal pdf, si is standard deviation across the k curves Equation
(5) is the approach followed in this study.

Bayesian splines as control bands

In many applications, smooth shapes without discontinuities are preferred. Smoothing
spline curves are useful in applications that require nonparametric regression models.
Wahba [31] proposed Bayesian confidence intervals for a smoothing spline. As noted by
Wang and Wahba [32] it is highly desirable to have interpretable statistical intervals for
these nonparametric estimates.Wang andWahba [32] noted ‘that the best variations of the
bootstrap intervals behave similar to the Bayesian intervals.’ Consider themodel proposed
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by Wahba [31]:

yi = f (ti)+ εi (6)

where, i = 1, . . . , n, ti ∈ [0, 1], ε = (ε1, . . . , εn)T ∼ N(0, σ 2), σ 2 unknown, and f ∈ Wm
where,

Wm =
{
f : f , f , . . . , f (m−1) absolutely continuous,

∫ 1

0
(f (m))

2
dt < ∞

}
(7)

Generally f (t) is a piecewise polynomial, e.g. a cubic spline has the following form over
[i, i + 1],

y(t) = ayt3 + byt2 + cyt + ε (8)

The smoothing spline fλ minimizes

1
n

n∑
i=1

(ψl − φ(τl))
2 + λ

∫ 1

0
(f (m))(t))2dt (9)

over f ∈ Wm. The amount of local averaging, and therefore the smoothness of the estima-
tor, is controlled by the value of λ. Given Equations (7), (8), and (9), Wahba [31] proposed
the (1–α)100% Bayesian confidence intervals for {f (ti)}i=1,n as,

fλ(ti)± zα/2s
√
hi (10)

where i = 1,.., n, zα/2 is the 1–α/2 percentile of a standard normal distribution, s is an
estimate of σ , and hi is the ith diagonal element of the hat matrix. Equation (10) is the
second approach examined in this study.

Application

Applications of the control bands using the Bonferroni method detected special-cause
variation for the data signatures (k = 41) from Switchgrass (P. virgatum) as illustrated in
Figures 1 and 2.

The NIR spectral wavelengths detected one data signature that is completely out-of-
control below the lower control limit near the wavelengths 1290–1380 nm, and another
that had portions of the data signature out-of-control near wavelengths of 1300–1330 nm.
Detecting such events in a real-time setting will alert operational personnel that the feed-
stock quality is changing and be a proactive first step for more detailed investigation of the
process, e.g. change in the age of feedstock, moisture of feedstock, contamination, etc. The
control bands also quantify the natural- or common-cause variation of the data signatures
from incoming feedstocks and may also avoid over-adjustment of the process from sin-
gle curve assessment, e.g. see Deming’s [8] Funnel Experiments related to over-adjusting
processes by operational personnel.

Special-cause data signature variation for Loblolly pine (P. taeda) feedstocks is also
detected from the NIR spectroscopy scans using the Bonferroni method for prediction
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Figure 1. Bonferroni control bands for spectral data signatures of Switchgrass (P. virgatum) fiber feed-
stocks for biofuels.

Figure 2. Zoomed-in section from Figure 1 for Switchgrass (P. virgatum) fiber feedstocks for biofuels.
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Figure 3. Bonferroni control bands for spectral data signatures of Loblolly pine (P. taeda) fiber feedstocks
for medium density fiberboard (MDF).

intervals (Figure 3). See the strong signal of out-of-control for the data signature #69
above the upper control limit highlighted in Figure 3. Such a strong signal is an alert for
immediate investigation.

Out-of-control signals of formaldehyde (HCHO) emissions are detected in data sig-
natures #17 and #20 from the NIR spectroscopy scans of particleboard after pressing
(Figures 4, 5 and 6). Even though the signatures vary by wavelength (nm) location, HCHO
emissions are regulated by the US government not to exceed a limit of 0.10 ppm, which
if exceeded requires a quarantine of final product. Current test methods for estimating
HCHO emissions are conducted by periodic off-line destructive lab tests (e.g. taken one
to two hours apart). Such tests take several hours before results are relayed to operational
personnel. Detection of real-time special-cause variation for HCHO emissions could trig-
ger an alert for closer monitoring of the process and prompt additional lab tests to ensure
legal product conformance.

The figures of the control bands illustrate the importance of this methodology for
practitioners for detecting real-time events that are absent from current manufacturing
analytics, i.e. operational personnel typically does not view data signatures from sensors in
the context of statistical prediction intervals. If presented with such intervals, operational
personnel are immediately alerted to a change in the quality characteristics of the incoming
feedstocks and can take appropriate precautionary measures. This prevents the manufac-
ture of reject or off-grade product which is closely aligned with the Shewhart philosophy
of detecting instability in processes [15].
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Figure 4. Bonferroni control bands for spectral data signatures of HCHOemissions of final particleboard
production.

Figure 5. Zoomed-in section for Figure 4 for spectral data signatures of HCHO emissions (450–700 nm)
of final particleboard production.
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Figure 6. Zoomed-in section for Figure 4 for spectral data signature #17 of HCHO emissions
(2300–2500 nm) of final particleboard production.

Simulated data signatures

To test the ‘false alarm’ rates for the control bands, simulations were developed for data sig-
natures assuming the Gaussian, lognormal and Weibull pdfs which are common to many
industrial applications [27, 33]. Shewhart [15] assumed a Gaussian or normal pdf for
univariate data in the development of Shewhart control limits. Given that Shewhart [15]
developed analytical statistical methods for real-time prediction intervals that are approx-
imately X̄ ± 3s, the expected false alarm rate for Shewhart’s univariate data applications is
0.003. This same false alarm rate is applied to the control band methods of this study. The
results based on the simulated curves for each pdf and k curves are given in Table 1.

The matched results for the Bonferroni and Spline methods for a Gaussian pdf were
consistent with the Shewhart false alarm rate. The Bonferroni method was slightly lower
in false alarm rate by two curves for k < 1000; and the spline method was higher by two or
one curves for k < 1000. The difference for bothmethods relative to the Shewhart method
in alarm rate was± 2 curves for k > 10,000. The small differences in false alarm rates
are a useful result in the detection of special-cause variation and are consistent with She-
whart limits. This was also true as the pdfs departed from the Gaussian as tested under
the assumptions of lognormal or Weibull pdfs. The Bonferroni method when the pdf was
Weibull was closer aligned to Shewhart false alarm rates. This control band method is
important in applications sincemany random variables as related to the strength ofmateri-
als are inherentlyWeibull. The Bayesian spline smoothingmethod had slightly higher false
alarm rates for theGaussian and lognormal pdfs (Table 1).However, the false alarm ratewas
identical to the Shewhart rate for the Weibull pdf. The ability to quantify and distinguish
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Table 1. Count of randomly simulated curves for the Gaussian, lognormal and Weibull parameters that
are beyond the estimated control bands.

Shewhart control chart Bonferroni method Bayesian spline smoothingmethod

Curves Gaussian Lognormal Weibull Gaussian Lognormal Weibull Gaussian Lognormal Weibull

100 4 2 7 2 2 4 5 4 7
1000 7 4 11 5 3 7 9 8 10
10000 47 37 52 46 34 48 49 40 52

between natural (common-cause) and special-cause variation in a real-time operational
setting may prevent the manufacture of the defective product and reduce future warranty
claims.

Conclusions

The ability to quantify the real-time variation of data signatures in manufacturing is
important. By quantifying the natural (common-cause) variation of the process and distin-
guishing such variation from special-cause variation (events), operational personnel have
the ability to monitor real-time process stability from advanced data. Given that applica-
tions of advanced sensor technologies for the rapid assessment of quality on production
lines are increasing and produce non-univariate data signatures, the results of this study
may be a useful step in advancing the applications of SPC. Of the two control band meth-
ods examined, the Bonferroni control band method was closely aligned with the Shewhart
philosophy when the pdf is either Gaussian or lognormal. The Bayesian spline smoothing
method may be better when the pdf is Weibull.

Advancing SPC methods that quantify process variation from on-line sensor technol-
ogy is essential for the success of Industry 4.0 and the advancement of real-time analytics.
As operational personnel inmanufacturing progress as data scientists, development of new
SPC methods for data signatures is essential for sustaining a competitive business advan-
tage. A precursor to reducing variation in a process is to first quantify variation. Variation
reduction leads to target size reduction, lower costs, and avoidance of warranty claims.
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