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ABSTRACT

EFFECTS OF SIMULATANEOUS ALARMS ON RESOLUTION HEURISTICS

Amanda C. Allen
Old Dominion University, 2014

Director: Dr. J. Christopher Brill, Ph.D.

Automated signaling systems are frequently used to direct operator attention to

potential hazards. Although these automated systems can lead to enhanced human

performance, factors such as degraded alarm signal reliability and lack of trust can

undermine the potential benefits ofautomation (Breznitz, 1984; Rice, 2009, Wickens &

2007). Additionally, work by Gilson, Mouloua, Graft, and McDonald (2001), as well as

Keller and Rice (2009), suggest that an alarm contained within a larger array of alarms

should not be evaluated individually. Due to the increasing use of multiple alarms in

complex environments such as operating rooms and cockpits (Konkani, Oakley, & Bauld,

2012; Woods, Sarter, & Billings, 1997), it is important to identify reaction strategies that

may and should be used when an unreliable alarm is in the presence ofother alarms.

Accordingly, the influence of reliability level and the number of additional activated

alarms on objective trust, reaction time, and acceptance rate with a 12-alarm array was

evaluated using a 2 x 12 split-plot factorial design. Overall a significant linear trend was

observed in objective trust measures as the number ofadditional activated alarms (p &

.001). This finding indicates the number of additional activated alarms, instead of the

given alarm reliability, was used to calibrate objective trust. Reaction time was found to

be quadratic (p & .001). Acceptance rate followed a cubic trend (p & .001), with

significant quadratic (p = .02) and significant linear (p & .001) derivative trends. This

suggests participant response changed ftom alarm dismissal to acceptance near 50% of



alarm array activation. Finally, there was a significant effect of reliability level (p & .001)

on acceptance rate, although no significance differences were found between the 50%

and 75% groups. Overall, the results constitute evidence for an extension ofprobability

matching theory based on percent system activation and indicate the need to minimize

alarms in display design.



Copyright, 2014, by Amanda Allen, All Rights Reserved.



This thesis is dedicated to my parents, Wendell and Deborah Allen, whose unwavering
support has made this all possible.



TABLE OF CONTENTS

LIST OF TABLES.

LIST OF FIGURES ..
Chapter

L INTRODUCTION.
ALARMS.
AUTOMATION
SENSOR BASED SIGNALING
TRUST .

RELIABILITY.
MULTIPLE ALARMS.
GOAL OF THE PRESENT STUDY

Page

. Y111

.I

.I
2
.4
.5

......8
.10
.14

II. METHOD..
RESEARCH DESIGN.
PARTICIPANTS .

APPARATUS ..

TASKS AND MEASURES ..

PROCEDURES..

.17

.17
....17

.18

.19

.22

III. RESULTS.
HYPOTHESIS ONE: ACCEPTANCE RATE.
HYPOTHESIS TWO: SUBJECTIVE TRUST.
HYPOTHESIS THREE: REACTION TIME.
HYPOTHESIS FOUR: ANCHORING EFFECT

.25

.27

.30

.32

.34

IV. DISCUSSION..
SUBJECTIVE VERSUS OBJECTIVE MEASURES OF TRUST ......
MULTIPLE ALARMS ON TRUST AND ACCEPTANCE RATE ....
DESIGN IMPLICATIONS.
FUTURE RESEARCH.
LIMITATIONS ..

CONCLUSION..

.36
......3 6
......38

.39
....41

.43

REFERENCES

APPENDICES
A. INFORMED CONSENT STATEMENT

.45

.51



B. MEDICAL QUESTIONNAIRE
C. DESCRIPTIVE STATISTICS FOR EXPERIMENTAL DATA....

VITA



vnl

LIST OF TABLES

Table

1. Split-plot ANOVA for Effects ofNumber ofAdditional Alarms and
Reliability Level on Acceptance Rate...

2. Split-plot ANOVA for Effects of Number ofAdditional Alarms and
Reliability Level on Composite Trust

3. Split-plot ANOVA for Effects ofNumber of Additional Alarms and
Reliability Level on Reaction Time

Page

.29

.31

.33



LIST OF FIGURES

Figure

1. Simplified Model of the Human Information Processing System ....

2. Sample 12-Alarm Array with Three Activated Alarms.

Page

18

3. Compensatory Tracldng Task.

4. Acceptance Rate as a Function ofNumber of Additional Activated Alarms .............25

5. Composite Trust Score as a Function ofNumber ofAdditional Activated Alarms ...29

6. Reaction Time as a Function ofNumber ofAdditional Activated Alarms ... ...... 3 3

7. Mean Composite Trust Scores by Reliability Level 37



CHAPTER I

INTRODUCTION

Human beings use automated alarms every day. In the workforce, an automated

alarm can signal critical events: warning aircraft pilots to change altitude, aiding doctors

as they operate, and helping engineers monitor power plant functions. Often alarm

systems enhance human performance; however, factors such as degraded alarm signal,

reliability, and trust, can alter how the operator uses automated signaling systems

(Breznitz, 1984; Getty, Swets, Pickett, & Gontheir, 1995; Wiegmann, Rich, and Zhang,

2001). Due to the potential consequences ofalarm misuse and disuse (Parasuraman &

Riley, 1997), a large portion of the alarm literature is dedicated to exploring which

factors influence human interaction with individual alarms. Yet, relatively few articles

explore how human behavior changes in the presence of multiple simultaneous alarms.

Given the increasing use ofmultiple alarms in envimnments such as operating rooms and

cockpits (Konkani, Oakley, & Bauld, 2012; Woods, Sarter, & Billings, 1997), it is

important to identify strategies that may be used when responding to multiple automated

alarms. Accordingly, the purpose of this study is to explore alarm response strategies to

an unreliable alarm when multiple simultaneous alarms are present.

Alarms

Often the terms alarm, alert, and warning are used interchangeably. However, it

is important to distinguish between the three types of signals as they may elicit differing

responses. To address the ambiguity of these terms, Bliss and Gilson (1998) defined

alarms, alerts, and warnings as part of a taxonomy for emergency signals.



Alarms are signals that require an immediate response from the human operator

(Bliss & Gilson, 1998). A common example is a fire alarm. The alarm signals the

presence ofdanger (the fire) and an immediate reaction (evacuation) is required to avoid

this danger. Alerts signal that a dangerous condition will develop if current conditions

continue (Bliss & Gilson, 1998). As such, alerts may not require an immediate response.

For example, the gas light indicator signals a condition (low fuel) that will eventually

result in danger to the operator (the car shutting off). However, this danger is not

currently present, thus, the response does not need to be immediate. 8'amings are

typically written, and indicate that danger may exist given certain conditions (Bliss &

Gilson, 1998). A spray paint can contains a warning that the contents are under pressure,

and that should external temperatures exceed a specified threshold, combustion may

occur.

One of the defining characteristics used to distinguish alarms, alerts, and

warnings, is the response required by the operator. Alarms require an immediate

response, alerts require an eventual response, and warnings indicate when a response

should take place. Additionally, alarms and alerts can be delivered through any modality

and are most frequently found as part of an automated system.

Automation

Automated systems complete, or partially complete, a task that could be

performed by a human operator (Parasuraman & Riley, 1997). Typically, automation is

implemented when a task is too dangerous, difficult, unpleasant, or impossible for a

human operator to perform (Wickens, Lee, Liu, & Becker, 2004). For example, the

mining industry has begun to use automated mining machines due to the danger mining



presents for human laborers (Lynas & Horberry, 2011). In the power generation industry,

trend displays are implemented for use in process control to show the current state of the

plant, as well as anticipated states. Monitoring and predicting power plant states may be

too mentally demanding for the operator, given the many other tasks they must complete

(Moray, 1997). Both of these instances exemplify different levels ofautomation as well

as categories of automation.

Levels of automation (LOA) are defined by the degree ofhuman involvement, or

the level of control, the human operator has over a course ofaction (Endsley & Kaber,

1999). In contrast, categories refer to the type, rather than level, of automation. Using a

simplified version of the information processing model (Figure I), Parasuraman,

Sheridan, and Wickens (2000) pmposed four categories ofautomation: (I) information

acquisition, (2) information analysis, (3) decision and action selection, and (4) action

implementation.

Sensory Perception i Decision Response
Processing Working Memory Making Selection

Figure 1. Simplified Model of Human Information Processing System. Adapted &om "A

Modelfor Types and Levels ofHuman Interaction with Automation" by R. Parasuraman,
T. B. Sheridan, and C. D. Wickens, IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 30 (3), p. 287. Copyright 2000 byIEEE.

Stage I of the information-processing model, sensory processing, refers to the

sensation and perception of external stimuli by a human being. When applied to

automation, this stage corresponds with the first category of automation: information



acquisition, wherein the collection and aggregation of data obtained through sensors is

automated.

It is important to note that the level of automation can vary in each category of

automation, and different levels of automation can produce differing effects on human

performance (Parasuraman, Sheridan, & Wickens, 2000). For example, in the

information acquisition category, sensors that automatically adjust their positions to

optimize data acquisition would characterize low levels of automation. The human

operator must manually sort and prioritize the data. The highlighting of important data

by the automation would represent a higher LOA. An even higher LOA would consist of

filtering information, in which the automation reviews the data and displays only certain

information to the operator, resulting in less human involvement. As a result, it is

essential to specify the level and category of automation under investigation to ensure

proper generalization of results. This is especially important for theoretical predictions,

as the predicted outcomes may apply to only certain types or levels of automation. For

the purposes of this study, multiple alarm signal response will be examined by using a

sensor-based signaling system, which represents low levels of automation within the first

(information acquisition) category ofautomation.

Sensor-Based Signaling Systems

The term "sensor-based signaling systems" (henceforth called signaling systems)

was created to describe automated systems used to monitor sources of potential hazards

and to direct user attention as needed (Bliss & Gilson, 1998). From a theoretical

standpoint, signaling systems correspond to the first stage of information processing,

sensory processing, due to the automation's purpose ofgathering external data. This



purpose is similar to how a human would sense and process external stimuli. Using the

corresponding categories proposed by Parasuraman et al. (2000), signaling systems are

thus categorized as information acquisition automation.

A common example of a signaling system is a smoke detector. Once a threshold

of smoke concentration has been reached, the system will direct human attention to the

potential threat of fire. Although this example demonstrates the use of a signaling system

for an alarm, these systems can also be implemented to issue alerts or warnings (as

previously defined), thus providing a broad range of applications (Bliss k Gilson, 1998;

Meyer 2004). Given this range of functions, signaling systems are perhaps one of the

most familiar forms of automation; signaling systems can be found in security

monitoring, aviation, medicine, transportation, power generation, and military application

domains (Wickens, 2004).

Trust

Due to the prevalence of signaling systems, it is vital to understand the factors

affecting human-automation interaction. If the human operator does not respond

appropriately to a signaling system, then the value of the automation is diminished. In

critical situations, an inappmpriate response can even result in death. For example, a

smoke detector may signal the possible presence of fire, yet people may ignore the signal

and fail to evacuate.

Because of the potential consequences associated with ignoring a sensor-based

signal, considerable research has been devoted to identifying key factors that influence an

operator's decision to dismiss or ignore critical signals. One of the most prevalent factors

thought to influence human-automation interaction is trust. Simply, if the operator does



not trust an automated system, such as a smoke detector, he or she is less likely to use

that system. This relationship between trust and automation use has been the subject of

considerable research (Lee & Moray, 1994; Muir & Moray, 1996; Lee & See, 2004;

Muir, 1986, 1994; Rice, 2009, Wiegmann et al., 2001).

Subjective measures of trust. In exploring the construct of trust, Muir (1987)

suggested that trust in automation is similar to interpersonal trust. Under this theory, trust

in automation can be affected by the same factors that affect trust in humans. For

example, Rempel, Holmes, and Zanna (1985) identified three dimensions of interpersonal

trust: predictability, dependability, and faith. These dimensions are comparable to

human-automation dimensions of trust suggested by Sheridan (1981): reliability,

dependence, familiarity, and robustness.

Similarly, Mooreman, Deshpande, and Zaltman (1993) defined interpersonal trust

as a "willingness to rely on an exchange partner in whom one has confidence" (p. 82),

indicating reliance and confidence as key components of interpersonal trust. Wiegmann,

et al. (2001) built upon this and defined subjective measures of automation trust asusers'onfidence

ratings and verbal estimates of reliability. Although the nature of trust is still

debated in the literature, many constructs of trust include dimensions of reliability,

confidence, and/or dependability (Jian, Bisantz, & Drury, 2000; Rempel et al., 1985;

Sheridan, 1981; Wiegmann et al., 2001). However, popular measures of subjective trust,

such as the one by Jian et al. (2001), have yet to be validated. Thus the use of subjective

measures of trust can be contmversial.

Objective measures of trust. Trust has also been measured using objective

(behavioral) measures. Muir and Murray (1996) found a positive correlation between



trust and the amount of control allocated to the system by operators using a virtual

pasteurizer plant. Similarly, trust has been found to be a factor in reliance on augmented

vision system in target identification (Dzindolet, Pierce, Beck, Dawe, & Anderson,

2001). Field studies have also identified the role of trust through observations of

autopilot use and flight management systems (Moiser, Skitka, & Kore, 1994).

There is some evidence that reaction time may be a particularly useful indicator of

trust. A qualitative study by Getty, Swets, Pickett, and Gonthier (1995), found

participants reacted more quickly to alarms with high Positive Predictive Values than

alarms with low Positive Predictive Values. Subsequently, some authors choose to

measure trust using reaction time (Rice, 2009). Rice wrote, "I assumed that when

participants trusted the automation, they would quickly agree with the aid" (p. 312).

Although Rice (2009) does not cite the reasons for his assumptions, they may be based on

the earlier work by Getty, Swets, Pickett, and Gonthier.

Conversely, there is also evidence that trust does not mediate the relationship

between reliability and reaction time. Chancey (2013) empirically assessed how

subjective measures of trust mediate response behavior. It was found that trust partially

mediated the relationship between reliability rate and agreement rate, however, trust did

not mediate the relationship between reliability and reaction time. These findings were

supported by a subsequent study in which the role of trust as a mediator for reliability and

reaction time was analyzed (Chancey, Proaps, Bliss, 2013). Additionally, Wiegmann

(2001) did not find consistent correlations between subjective measures of trust and

reaction time, suggesting that reaction time may not be a good indication of trust.



It is possible that the decreased reaction times observed in Rice's work are due to

participants'onfidence in their own responses, and not the participants'rust in the alarm

itself, It is conceivable that more highly reliable automation would induce higher levels

ofresponse confidence in participants, and thus reaction time may be a function of

response confidence and not an indication of trust in the alarm. As a result of the

seemingly conflicting evidence, the relationship between trust and objective measures is

also controversial in the literature.

In an effort to more fully understand the role of trust in multiple alarm situations,

both subjective and objectives measures of trust are used in this study.

ReliabiTity

Because no automation can ever be 100% reliable, unreliability is an inherent

problem with all automation. In keeping with the smoke detector example, the smoke

detector's sensor collects data about particles in the air. These data are processed using

an algorithm to determine if the preset threshold has been met, at which point the smoke

detector will signal the presence of smoke. However, if the threshold is too liberal, it will

signal the presence of smoke when relatively few particles are in the air, which might be

indicative of dust accumulation or a slight wisp of smoke &om extinguishing a candle.

This could constitute a false alarm, depending on the consequences associated with the

presence of smoke. Conversely, if the threshold is set too conservatively, the smoke

detector may fail to signal the human operator, despite the presence of smoke. This

constitutes a miss.

Both false alarms and misses have been studied extensively in the literature.

Evidence suggests false-alarm and miss-prone systems may evoke differing responses



from the human operator (Parasurman & Riley, 1997). In false-alarm prone systems, the

operator may not trust that the alarm is a true alarm due to the high occurrence of false

alarms. Consequently, operators react more slowly (Getty et al., 1995), ignore, or disable

the alarm (Sorkin, 1988). This response behavior has been termed the "cry-wolf'ffect,

based on Breznitz's (1984) work examining behavioral and physiological responses to

false alarms. Similarly, specific patterns ofbehavior have been associated with miss-

prone alarms. In miss-prone systems, operators may develop a maladaptive automation

reliance behavior called misuse, in which the operator fails to detect a miss due to an

over-reliance on the system to detect all hazards (Parasuraman & Riley, 1997). The

operator trusts the automation to accurately detect and identify all hazards.

Because the unreliability of the signaling system affects operator trust (Lee &

See, 2004; Meyer, 2001; Rice, 2009), it is important to consider alarm reliability when

investigating operator trust and response behaviors. In a study by Wiegmann et al.

(2001), higher reliability levels resulted in higher agreement rates, quicker decision times

with affirmative decisions, higher confidence ratings, snd higher subjective ratings of

automation reliability. It was also found that operators were sensitive to changes in

reliability (Wiegmann et al., 2001).

In some cases, lower reliability levels ofautomation can be so detrimental to

performance it would be better if there were no automation at all (Wickens & Dixon,

2007). The level at which performance falls below baseline (performance levels with no

automafion) is estimated to be at 70% reliability (Wickens & Dixon, 2007). This

estimate was determined using regression analysis of the results ofover 40 studies.

These studies included Type I (Information Acquisition) and Type 2 (Information



Analysis) automation, miss-prone and false alarm-prone systems, as well as a variety of

opaque and clear systems. It should also be noted that reliability had a more pronounced

effect on performance when workload was high, such as a dual task paradigm. Given the

variety of conditions represented in the data set used, 70% can only be used as a general

estimate, and a range of reliabilities should be used when possible.

Multiple Alarms

The preponderance of literature is dedicated to investigating single automated

sensor-based signals. However, relatively little research has identified strategies for

responding to multiple contiguous sensor-based signals. This is a critical omission in the

literature because technology has afforded the development of increasingly complex

systems, which can o(ten have more than one potential hazard, suggesting the need for

multiple sensor-based signals. To illustrate, airplane cockpits and nuclear power plants

can have potentially hundreds of alarm signals. The likelihood ofneeding to resolve

multiple signals co-located in the same environment can be high. In an extreme case,

during the Three Mile Island nuclear power incident, more than 500 annunciators

changed status (Sheridan, 1981). Moreover, confusion over the relationship between

ambiguous indicators can pose a problem to operators who may be forced to make a

decision (Gilson, Mouloua, Graft, k McDonald, 2001).

Several strategies for single alarm response have been previously observed in the

literature. For example, Bliss, Gilson, and Deaton (1995) found evidence ofprobability

matching behavior, as well as what the authors termed an "optimal strategy" response

pattern. Approximately 10% of the participants adopted the "optimal strategy" and

became "extreme responders" such that in accepting a 75% reliable alarm at every



11

presentation, participants ensured that they were correct 75% of the time (1,00 x .75=

.75). In contrast, the majority ofparticipants used a probability matching strategy, which

results in lower overall accuracy.

Probability matching is a strategy in which in alarm acceptance is calibrated based

on alarm reliability. Statistically, ifa participant accepts a 75% reliable alarm in only

75% ofpresentations, then the resulting correct alarm acceptance rate would be 56.25%

(0.75 x 0.75= 56.25). Given that various alarm response strategies have been identified

with single alarms, it is likely that an operator may also use one or more strategies when

responding to multiple alarms.

Two strategies pmposed by Keller and Rice (2009) are component-specific trust

and system-wide trust. In component-specific trust, an unreliable signal is viewed as an

individual component that is separate from the other sensor-based signals that may also

be present. Consequently, acceptance rates of the other, more reliable, alarm signals in

an array should be unaffected by a single unreliable alarm signal. Alternatively, the

operator may adopt system-wide trust, in which the reliability of an alarm signal is

evaluated based on the entire system of sensor-based signals. Keller and Rice evaluated

these two theories thmugh a series of studies.

In an initial study, Keller and Rice (2009) presented participants with two gauges,

the second ofwhich was always 100% reliable. The other gauge was 70%, 85%, or 100%

reliable, depending on group assignment. Sensitivity of the second (100% reliable) alarm

decreased in conditions where the first alarm was 70% or 85% reliable. Thus, the

imperfect alarm impacted sensitivity for the always 100% reliable alarm. This "dragging

down" effect was later observed with alarm agreement rates using a larger eight-alarm



array (Geels-Blair, Rice, & Schwark, 2013). Agreement rates for the always 100'/o

reliable alarms (alarms 2-8) lowered in conditions where the first alarm was imperfect.

The effect on seemingly unrelated signals, in a variety of signal array sizes, suggests

operators adopted system-wide trust as opposed to component-wide trust.

It should be noted that all measures of trust in these two studies were objective:

reaction time and alarm acceptance. Some researchers, such as Wiegmann et al. (2001),

recommend that subjective measures should be used to indicate trust (a psychological

construct), and objective behavioral measures should to indicate automation reliance.

This recommendation is based on findings that objective and subjective measures of trust

were inconsistently correlated (Wiegmann et al., 2001).

Additionally the signals used by Rice et al. were not completely opaque, the

operator could verify the accuracy of the alarm by comparing the gauge value to a given

safe value; however, it required significant cognitive resources to verify alarm accuracy

due to their complexity. There are also issues concerning when the alarms were active.

In the 2009 experiment by Keller and Rice, only a single alarm was activated at any

given time. As previously mentioned, it is possible, and in some environments likely,

that multiple signals will simultaneously indicate a hazard. Although it was feasible for

more than one alarm to be activated in each trial of the 2013 study (Geels-Blair, Rice, &

Schwark, 2013), the results were not analyzed based on the number of activated alanna

present. The work by Gilson, Mouloua, Graft and MacDonald (2001) addresses some of

these issues by examining confidence when multiple-alarm signals are present.

In a series of studies by Gilson et al., participants were given an array of six

alarms, one ofwhich was marked "test" alarm. Participants were told that the test alarm
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was only 50% reliable, meaning that it was actually a false alarm half of the time the

alarm was activated. A series of trials were then presented in which additional alarms

were activated with the test alarm. When only the test alarm was activated, participant's

average confidence that the test alarm was a true alarm was 23%, significantly lower than

the given 50% reliability level. As the number of additional active alarms increased, so

did participant confidence. An activation of all six alarms produced an average

confidence rating of97%. Additionally, the increase of confidence level with additional

alarm activation produced a significant linear trend. Gilson et al. (2001) subsequently

postulated that confidence level is founded upon the overall number ofactivated alarms.

These changes in confidence level suggest that participants evaluate spatially contiguous

alarms as part ofa larger system and not independently, similar to the findings of Geels-

Blair, Rice, and Schwark (2013).

Gilson et al.'s (2001) research raises many intriguing questions; however there are

several things to note concerning his work. First is the issue of reliability. As previously

mentioned, the work by Wickens and Dixon (2007) recommends that a variety of

reliability levels should be used, with 70% as the possible threshold for automation

related performance increases. A 50% reliability level is akin to guessing and may not be

the most ecologically valid reliability level. Additionally, the context of the alarm signal

was not given to the participant. Although such situations may exist in the real world, for

example someone may hear a smoke alarm while in a different room Irom the fire, the

lack ofalarm context in this experiment raises the question of ecological validity.

Furthermore, Gilson et al. (2001) used six-alarm arrays in their studies. If

participants are indeed basing confidence on the percentage of the overall all system



activation, this would necessitate only six possiBle percentage estimates. Four of these

six possible activation estimates would occur when the number of activated alarms,

divided by the total number of alarms, results in commonly used fiactions such as I/3,

I/2, 2/3, and I/1. If a larger array had been used, a greater number ofpercentage

estimations formed from uncommon and more difficult to evaluate Iractions would be

required. Research suggests that people tend to underestimate high probabilities and

under estimate low probabilities (Hollands & Dryer, 2000). It is possible that the

increased complexity of a larger array may reveal a non-linear pattern of estimation,

similar to that ofprevious research on proportion estimation. If Gilson's idea of system

percent-activation is correct, then an array with one out of six alarms activated should

produce the same percent confidence rating as an array with two out of 12 alarms

activated.

Most importantly, although confidence has been identified as a critical component

of automation-human interaction (Jian, Bisantz, & Drury, 2000; Rempel et a1.1985;

Sheridan, 1981; Wiegmann et al., 2001), confidence estimates alone do not fully capture

the construct of trust. A more robust measure of trust and its different dimensions, to

include the dimension of confidence, would allow for a more accurate interpretation of

the results.

Goal of Present Study

The purpose of the present study was to evaluate the system-percentage strategy

proposed by Gilson et al. (2001) using a larger, 12-alarm array with three levels of

reliability. Additionally, participants were required to accept or dismiss the alarm and

answer a trust questionnaire, in order to obtain both subjective and objective measures of



trust. The alarms were opaque and false alarm prone; however, a context was given to

participants to provide ecological validity.

Based on the previous literature discussed, there are four hypotheses. First, a

greater number ofactivated alarms will lead to higher acceptance rates on an unreliable

test alarm than when fewer alarms are activated. This hypothesis is based on the work by

Keller and Rice (2009), and Geels-Blair, Rice, and Schwark (2013), where it was found

reliability of surrounding alarms (as perceived by the number of alarm activations over

time) were a factor in alarm acceptance by the participant. Given the previous influence

of surrounding alarms, it is anticipated that participants in this study will likewise use the

activation of surrounding alarms when responding to the test alarm, resulting in a higher

acceptance rate when a greater percentage of the display is activated.

Second, subjective trust of the unreliable test alarm will increase as the number

of additional activated alarms increases. Gilson et al., (2001) found confidence, a

dimension of subjective trust, increased as the number ofadditional activated alarms

increased. Consequently, it is expected that subjective measures of trust will also

increase as the number ofadditional alarms increases.

Third, reaction time is hypothesized to follow a quadratic trend: as the number of

activated alarms reaches the extremes (all or none of the array), participants will respond

more quickly to the unreliable test alarm. When studying multiple alarms, Gilson et. al

(2001) measured participants'onfidence in the test alarm. Gilson found when all of the

alarm array was activated, participants were confident the alarm was true. When no

additional alarms were activated, participants expressed low confidence that the alarm

was true, suggesting that the participants were confident that it was a false alarm. As



16

previously discussed, it is possible that the decreased reaction times observed in previous

work (Keller & Rice, 2009; Geels-Blair, Rice, and Schwark 2013; Rice, 2009) may be

due to participants'onfidence in their own responses, and not the participants'rust in

the alarm itself. If reaction time is a function of response confidence, it can be

hypothesized that participants will have faster reaction times at higher confidence levels.

Thus, based on this previously found confidence pattern (Gilson et aL, 2001), it is

predicted there will be higher confidence in a response (accept or dismiss) at the extremes

of multiple alarm activation (all and none), producing an overall quadratic trend in

reaction time.

Finally, it is hypothesized that there will be an anchoring effect: participants

exposed to highly reliable alarms will indicate significantly higher mean trust ratings

compared to participants exposed to less reliable alarms. Many researchers have

discussed the role of reliability, however Wiegmann, et al., (2001) explicitly examined

how different levels of reliability effect both subjective and objective trust, finding

participants to be sensitive to differing levels of reliability. Accordingly, it is predicted

that participants in this study will exhibit higher levels of subjective trust at the 100%

reliability level than the 75% and 50% level, respectively. Similarly, there will be higher

levels of subjective nust at the 75% reliability level than the 50% reliability level.
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CHAPTER II

METHOD

Research Design

This experiment employed a 2 x 12 mixed factorial experimental design. The

between-groups independent variable, alarm reliability, consisted of three levels: 50%,

75%, and 100% true alarms. The within-groups independent variable was the number of

additional activated alarms. Dependent variables were reaction time, subjective trust, and

alarm acceptance rate.

Participants

A power analysis conducted using G*Power 3.1 software estimated a sample size

of42 participants for this study. Due to the lack of established effect sizes with multiple

alarms, a conservative small to medium effect size was used to establish the target sample

size for the primary ANOVA analysis (.15, u = .05 and P = .80). Based on this power

analysis, 44 participants (19 males and 25 females) were recruited from the Old

Dominion University Psychology Department subject pool and compensated with

research participation credit. The mean age ofparticipants was 20 years (SD = 4.2, min =

18, max = 45). All participants had normal or corrected-to-normal vision and did not

report any sensorimotor deficits. On average, participants reported playing video games

3.0 hours per week (SD = 2.7, min = 0, max = 7).

This study was approved by Old Dominion University Institutional Review Board

(IRB). Signed informed consent was obtained &om each participant prior to beginning

the experiment.
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Apparatus

All experimental equipment and programs were controlled by a desktop computer

with an Intel Core i7 2.67 GHz processor and 9.00 GB system RAM. Visual stimuli were

presented on a standard 22-inch LG LCD color computer monitor using SuperLab 4.5.2

software. The computer monitor was approximately 12 cm above the surface of the desk

and 60 cm from the seated participant.

Stimuli. Participants were presented with a 12-alarm array, as illusnated in Figure

Figure 2. Sample 12-Alarm Array with Three Activated Alarms.

The alarm stimulus consisted of four rows of three boxes, creating a 12-box array.

The boxes were 6 cm x 3 cm with a I cm space separating all boxes. Based upon the

placement of the monitor and typical viewing distance, each box subtended average
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viewing angles of 5.8 degrees horizontally and 2.9 degrees vertically. Each box

represented an alarm, and activated alarms were displayed in gray. Prior research has

found the perception of red enhances motor function response as compared to lightness-

matched gray alarms (Elliot & Aarts, 2011). Although red is oflen used in alarm signals,

grey was chosen for the stimuli in this experiment so as not to preclude color deficient or

color blind students. The upper left alarm was labeled "test" in all presentations of the

stimulus, to indicate the unreliable alarm the participant would be responding to during

the experhnent.

Response Method. A Cedrus model RB-530 response box was used to record

responses. The response box contains a subprocessor for low latency and is accurate to

within one millisecond. The RB-530 buttons are approximately 2.0 x 2.4 cm in size and

located 1.0 cm apart. "Accept" and "Dismiss" labels were affixed to the lefl and right

response button, respectively. A standard keyboard number pad was used to record

participant responses to a trust questionnaire.

Tasks and Measures

Primary Task: Multi-Attribute Task Battery (MATB II). The MATB II

program simulates the kinds of tasks that pilots perform during flight (Santiago-Espada,

Meyer, Latorella, & Comstock 2011). Participants were asked to perform the

compensatory tracking task available in this battery (see Figure 3).
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Figure 3. Compensatory Tracking Task.

Using a joystick, participants were asked to keep a blue reticle as close to the

center of the pair ofcrosshairs as possible. This center location is further identified by a

square surrounding the area. During the task, the reticle continuously drifts in random

directions. Participants must make compensatory movements to keep the reticle centered

on the crosshairs. The purpose of the task is to simulate maintaining level fiight while

environmental factors, such as wind, affect the aircraft. The root mean square error of the

reticle was recorded every 15 seconds. The root mean square error is considered an

indication of the stability of tracking petformance, as it describes the error of the

participant in holding the reticle at center.

Secondary Task: 12-Alarm array con6guration. Participants were presented

with an array configuration consisting of 12 alarms. The top left alarm was designated

and labeled the "test" alarm. Typically, a miss is generated when an alarm fails to signal

when there is a real hazard. In this experiment, the test alarm was always activated, thus
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the test alarm could only produce real or false alarms. On any given trial, from one and

eleven additional alarms were also activated. Presentation ofan alarm configuration

occurred after a random inter-stimulus-interval of 8, 12, or 16 seconds to prevent

participants &om forming a response rhythm. The positions of the additional activated

alarms were pre-selected at random. Participants were prompted to accept or dismiss the

test alarm, using the Cedrus model RB-530 response box, as quickly and accurately as

possible. Reaction time was measured in milliseconds &om the presentation of the

stimulus to response input (alarm acceptance or dismissal). Acceptance rates for each

alarm configuration were calculated by dividing the number of alarm acceptance

responses by the total number ofpresentations. No response feedback was given.

Trust Questionnaire. A modified version of Jian, Bisantz, and Drury's (2000)

human-automation trust questionnaire was used to assess participants'rust in the test

alarm. The original survey consists of five items assessing operator distrust, and six

items assessing operator trust. As participants were presented with the trust questionnaire

after every trial, the complete Jian, Bisantz, and Drury trust questionnaire would have

been potentially fatiguing to participants. Thus, the modified version used in this study

retained questions only &om the trust portion of the questionnaire, which best aligned

with previous research on dimensions of trust (Muir, 1987; Rempel et al., 1985; Sheridan,

1998). Additionally, when examining the human-automation trust questionnaire, the trust

items were compared to dimensions of trust previously identified, most notably by

Sheridan (1988; familiarity, reliability, and confidence) and by Muir (1987; faith,

predictability, and dependability). Two trust questionnaire items &om the Jian, Bisantz,

and Drury measure were unrelated to previously identified trust dimensions (i.e., this



22

system provides security and this system has integrity). These two questions were also

removed. The resulting questionnaire consisted of four questions:

~ How confident are you the test alarm is a true alarm?

~ How much do you Mst the alarm?

~ How reliable is the alarm?

~ How dependable is the alarm?

Participants were instructed to respond honestly to all questions using a scale of

0-100. As an example, participants were told a response of 100 to the question "how

confident are you the test alarm is a true alarm?" indicates full confidence, and zero

indicates no confidence. Responses were entered using a standard numeric keypad. The

four questions were displayed in random order after each alarm configuration

presentation. This randomization prevents survey bias based on question order.

Additionally, each alarm configuration was randomly presented a total of five times

throughout the experiment.

Separate dimension scores were calculated by averaging the responses to each of

the four questions presented for each alarm configuration. A composite trust score was

then computed by summing all ofa configuration's dimension scores. As there is no

theoretical justification to weighing one trust dimension greater than another, the

approach ofusing unweighted averages and summations was used. Composite trust

scores could range &om 0-400.

Procedure

Participants were given an overview of the experiment and written informed

consent was obtained (see Appendix A). A briefmedical questionnaire (see Appendix B)
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was used to screen for sensory or motor deficits. Any sensorimotor deficits would result

in exclusion trom the study. Next, participants were randomly assigned to one of three

different reliability groups (50%, 75%, and 100%) and seated in front of a standard

desktop computer.

A vignette was given to participants instructing them to pretend they were an

airplane pilot. Participants were told they were in charge of flying the plane, their

primary task, as well as responding to a panel ofalarms, their secondary task. An

example panel of a random 12-alarm array configuration was then displayed on the right-

most screen. Participants were informed each gray box represented an activated alarm

indicating something was wrong with the plane. Depending on group assignment,

participants were told the test alarm in each configuration was true 50%, 75%, or 100%

of the time. As the pilot, participants were told they were responsible for either accepting

the test alarm as a true alarm or dismissing the alarm as a false alarm. The "accept" and

"dismiss" alarm response buttons were then pointed out to the participant. Participants

were asked to respond as quickly and accurately as possible, and were reminded of the

real-world consequences associated with alarm acceptance and dismissal: accepting an

alarm as true would alert flight control and possibly delay or ground the flight, something

the pilot should avoid if the alarm is not true. Alternatively, the safety of the passengers

is also the responsibility of the pilot, and ignoring a true alarm may endanger the

passengers onboard. No information was given concerning the reliability or relatedness

of the other alarms in the panel. Once the alarm was accepted or dismissed participants

were prompted to respond to the trust questionnaire. The numeric keypad was then

demonstrated for questionnaire response.
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Following the secondary alarm task demonstration, the MATB-II tracking task

was introduced to participants of the left-most screen. Alter familiarizing themselves

with the tracking task for approximately 2 minutes, participants practiced both the

primary and secondary task together for three randomly chosen alarm configurations of

the secondary task. Completing both tasks on separate screens required a division of

attention by the participants.

Once the practice session was completed, participants were given the opportunity

to ask any questions before the start of the experiment. Participants were presented with

five instances ofeach 12-alarm array configurations, in random order, resulting in 60

trials. At the conclusion of the experiment, the participants were debriefed and

dismissed. The experiment lasted approximately 40 minutes.
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CHAPTER III

RESULTS

All statistical tests were conducted using PASW Statistics 20 software, with a =

.05. No family-wise alpha corrections were made as hypotheses were a priori .

It should be noted that an alpha of level represents the probability of a Type I

error, or detecting a relationship between variables when there is not one. Conversely, a

Type II ermr represents the probability of failing to detect a relationship when there is

one. A higher alpha level results in a higher probability ofa Type I error, but a lower

probability of a Type II error. The balance of a Type I and Type Il, and the associated

consequences of each, should be taken into account when choosing an alpha level for an

experiment. However, what is considered an acceptable alpha level, and thus the best

balance ofType I and Type II ermrs, is conventionally set within a discipline (Maxwell

& Delaney, 2004, p. 24), such as the a =.05 used in this study.

However, a conventionally set alpha level still does not fully address the concerns

of a Type II error when examining a specific study within a discipline. Given this issue,

Maxwell snd Delaney (2004, p. 24) suggest that power, in addition to the set alpha level,

should be taken into consideration when evaluating the validity ofa statistical conclusion.

Power is the probability of rejecting the null hypothesis when it is false. Statistically it is

equivalent to I — the probability of a Type II error. Higher power thus corresponds with a

lower likelihood ofa Type II error. All statistical tests performed in this experiment

achieved an observed power level greater than .80.

To address the statistical assumption for normality, histograms of the data were

visually inspected for unimodal distribution. Additionally, a skew and kurtosis threshold
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of l2I was used, as per the recommendations of Maxwell and Delaney (2004, p. 115).

Levene's Test was used to assess homogeneity ofvariance for the between-subject

variable (reliability level). These assumptions of normality and homogeneity were

generally met, and ANOVA is robust to violations ofnormality and moderate violations

ofhomogeneity (Maxwell & Delaney, 2004, p. 110). For the within-subject variable

(additional alarm activation), Mauchley's tests were conducted to assess sphericity. The

assumption of sphericity was violated and a Greenhouse-Geisser correction was used in

all cases. For a detailed report ofdescriptive analyses of the data, see Appendix C.

The 50% and 75% reliability level gmups each contained 15 participants and the

100% reliability level group contained 14 participants. However, reaction time data for

one participant in the 50% reliability group was removed because the participant left the

room during the experhnent. Four participants in the 100% reliability group and one

participant in the 50% reliability group adopted an optimization strategy wherein the

participant accepted the alarm at every presentation. This behavior ofextreme

responding has been previously observed (Bliss, Gilson, & Deaton, 1995), and suggests

that some operators may use alternative strategies. Nevertheless, these types of

responders would also be present in real-world alarm scenarios, and their inclusion in this

study increases ecological validity. Thus, these participants'ata were not adjusted or

removed f'rom the analyses. No additional outliers were removed from the data set for

similar reasons ofecological validity.

Finally, polynomial trend analyses produce a-1 trend components, making an 11

order polynomial trend possible in this experiment. These higher order trends are often

uninterruptable. Additionally, high numbers ofpolynomial trends increase the likelihood
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of a Type 1 error as well as present a danger of over fitting the data. However, data may

represent combination of several pure polynomial trends, and thus it is recommended that

higher order trends should be tested (Maxwell & Delaney, 2004, p. 259). As and

example Maxwell and Delaney point out a negatively accelerated curve would increase as

X increases, but the increases themselves become smaller over time (2004, p. 259). This

example represents a model with both linear and quadratic components. It is thus

important to report some higher order polynomial trends, as well as the pure polynomial

trend that may best account for the data. For this experiment, a visual inspection of the

graphed data and effect size are taken into account before reporting the highest

interpretable significant polynomial trend in the text.

Hypothesis One: Acceptance Rate

The first hypothesis, that a greater number of activated alarms will result in

significantly higher alarm acceptance rates of an unreliable alarm, was tested using a 2 x

12 split-plot ANOVA. The between-gmups independent variable was reliability level

(50/o and 75 /o), the within-groups independent variable was the number of additional

activated alarms (0-11), and the dependent variable was acceptance rate. The 100'/o

reliability was group not included in this analysis as it did not represent an unreliable

alarm, and thus did not represent an alarm that would be present in the real world.
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Figure 4. Acceptance Rate as a Function ofNumber ofAdditional Activated Alarms.

There was no significant interaction between additional alarms and reliability

level; however, a significant main effect of additional alarms was found, F(2.65, 74.06) =

27.71, p &.001, ri& =.50 (see Table 1). An a priori polynomial trend analysis of the

main effect of the number ofadditional alarms revealed a significant cubic trend, F(1, 28)

= 11.05, p & .001, tl~ = .28, a significant quadratic trend, F(1, 28) = 6.65, p = .02, ttr =

.19, and a significant linear trend, F(1, 28) = 51.62, p = &.001, tb = .65. There was no

significant difference between reliability groups.
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Table 1

Split plot ANO VA for sects ofNumber ofAdditional Alarms and Reliability Level on

Acceptance Rate

Source SS df MS F p ps

Reliability Level 0.06 1.00 0.06 0.27 0.61 0.01
IEve yuviwvvv)

Additional

Alarms

6.$ 28.vv v.22

24.62 2.65 9.31 27.71 &.001 0.50

Linear 22.06 1.00 22.06 51.62 &.001 0.65

Quadratic 0.75 1.00 0.75 6.65 0.02 0.19

Cubic 0.87 1.00 0.87 11.05 &.001 0.28

Additional

Alarms x

Reliability Level 0.99 2.65 0.38 1.12 0.34 0.04

Note. This table displays the omnibus sources ofvariance, as well as follow-up
polynomial trend analyses of the main effect of the number of additional alarms.

Hypothesis Two: Subjective Trust. A 2 x 12 split-plot ANOVA was used to test the

second hypothesis, that trust in and unreliable test alarm would increase as the number of

additional activated alarms increases. Similar to the erst hypothesis, the 100% reliability

group was not included in this analysis, as it did not represent an unreliable alarm. The

independent variables were alarm reliability (between-groups; 50% and 75%) and the

number ofadditional active alarms (within-groups; 0-11).
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Figuve 5. Composite Trust Score as a Function ofNumber ofAdditional Activated

Alarms.

A significant main effect ofadditional alarms was found, F(1.73, 48.41) = 22.33,

p & .001, riv = .44 (see Figure 5 and Table 2). An a priori polynomial trend analysis of

the main effect of the number of additional alarms revealed a significant linear trend, F(1,

28) = 29.68, p = &.001, qv =.52. There was no significant difference in nust between

the reliability levels. Additionally, there was no significant interaction between

additional alarms and reliability level.
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Table 2

Split plot ANOVA for Effects ofNumber ofAlarms and Reliability Level on Composite

Trust Score

Source

Reliability Level

Erro~retweeng

Additional Alarms

SS df MS

16922.71 1.00 16922.71

173269.68 28.00 . 618820

F p rtv

2.74 0.11 0.09

835700.55 1.73 483339.02 22.33 &.001 0.44

Linear 817263.62 1.00 817263.62 29.68 &.001 0.52

Quadratic 3748.39 1.00 3748.39 2.05 0.16 0.07

Cubic 647.64 1.00 647.64 0.80 0.38 0.03

Additional Alarms x

Reliability Level 14540.71 1.73 8409.82 0.39 0.65 0.01

Note. This table displays the omnibus sources ofvariance, as well as follow-up
polynomial trend analyses of the main effect of the number of additional alarms.

Hypothesis Three: Reaction Time

The third hypothesis, that reaction time will produce a quadratic trend, was

evaluated using a 2 x 12 split-plot ANOVA. The 100% reliability gmup not included in

this analysis as it did not represent an unreliable alarm. The independent variables were

alarm reliability (between-groups; 50% and 75%) and the number of additional active

alarms (within-gmups; 0-11).
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Figure 6. Reaction Time as a Function ofNumber of Additional Activated Alarms.

There was no significant interaction between additional alarms and reliability

level; however, a significant main effect ofadditional alarms was found, F(3.05, 82.39) =

4.33, p = .007, iiv = .14 (see Figure 6 and Table 3). An a priori polynomial trend

analysis of the main effect of the number of additional alarms revealed a significant

quadratic trend, F(1, 27) = 27.58, p = &.001, t)» = .51, There was no significant

difference between the reliability levels.
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Table 3

Split plot ANOVA for sects ofNumber ofAdditional Alarms and Reliability Level on
Reaction Time

Source SS df MS F p qv

Reliability Level 1666896.21 1.00 1666896.21 0.04 0.85 0.00

Error (between) 1292463031.39 27.00 47869001.16

Additional

Alarms 224003432.25 3.05 73406124.03 4.33 0.01 0.14

Linear 8330236.17 1.00 8330236.17 2.70 0.11 0.09

Quadratic 155343065.94 1.00 155343065.94 27.58 &.001 0.51

Cubic 5206592.92 1.00 5206592.92 0.85 0.36 0.03

Additional

Alarms x

Reliability Level 73294309.71 3.05 24018610.50 1.42 0.24 0.05

Note. This table displays the omnibus sources ofvariance, as well as follow-up
polynomial trend analyses of the main eA'ect of the number of additional alarms.

Hypothesis Four: Anchoring Effect

The fourth hypothesis, that an anchoring effect would be observed inparticipants'rust

on the basis of alarm reliability, was evaluated using a 3 x 12 split-plot ANOVA

with the 50%, 75%, and 100% reliability level. It was predicted that there would be

signi6cantly higher mean trust scores in the 75% reliability group than the 50% reliability

group. Similarly, the 100% reliability group would exhibit significantly higher mean

trust scores than the 75% or 50% groups.



34

350

Mean Composite Trust Score

300

o 250":R

200

150

&o 100

50 '/yy~~/Pg
50~/o 759o

Reliability Croup

1003S

Figure 7. Mean Composite Trust Scores by Reliability Level.

There was a significant between groups difference in reliability level, F(2, 41) =

14.60, p & .001, q,'= .41. Planned pairwise comparisons revealed mean trust scores were

significantly higher for the 100% reliability level (M = 314.1, SD = 14.3) than for the

50'/ reliability level (M = 214.9, SD = 13.8), F(1, 41) = 25.11, p & .001, qa = .38.

Similarly, the average 100% trust score (M = 314.1, SD = 14.3) was significantly higher

than the average 75% trust score (M = 228.6, SD = 13.8), F(1, 41) = 18.65, p & .001, tip

= .31. However, no significant difference in trust was found between the 50% and 75%

reliability groups (see Figure 7).
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CHAPTER IV

DISCUSSION

The goal of the present study was to assess the system percentage strategy

identified by Gilson et al. (2001) using a larger 12-alarm array. In accordance with

previous literature on reliability (Wickens & Dixon, 2007), two reliability levels were

used when evaluating this strategy: 75%, and 50%. Dependent measures included

reaction time, alarm acceptance rate, and scores from a multi-dimensional trust

instrument. Overall, the hypotheses were supported. Subjective bust varied as a function

of the overall number of additional activated alarms and was impacted by reliability level.

Acceptance rate did follow a linear trend, as predicted; however, the highest order

interpretable trend that was significant was cubic. Reaction time was quadratic in nature,

as predicted. The implications of these results are discussed below.

Subjective versus Objective Measures of Trust

Much consideration was given to the use of subjective and objective measures of

trust in this experiment. Getty et al., (1995) were among the first researchers to

emphasize the use of reaction time to document trust as a function of reliability (which

they termed Positive Predictive Value, "the probability that a warning will truly indicate

some specified dangerous condition"; Getty et al., 1995, p. 30). Based on their study,

they concluded faster reaction times are due to the higher Positive Predictive Value of an

alarm. Although the definition of Positive Predictive Value can be interpreted as

conditional reliability (i.e., the probability of an alarm signal given an event in the

environment), the researchers also equated low Positive Predictive Value with the cry

wolf effect, a phenomenon ffequently associated with trust. Given this early research, it
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respond more quickly to an alarm they trust and consequently more slowly to an alarm

they do not trust.

Interestingly, Gilson et aL (2001) found that confidence, a dimension of trust,

increased linearly as a function of the number ofoverall activated alarms. Ifparticipants

do respond more quickly to an alarm they trust, then reaction time should, therefore, also

follow a linear trend. However, in the present study reaction time formed a quadratic

trend. This quadratic pattern differs from the linear trend observed in the subjective trust

data, indicating that reaction time may not be the best measure of trust.

These findings support the work ofWiegmann et al. (2001), who did not found

any correlations between reaction time and subjective measures of trust. In his work,

Wiegmann (2001) shares a similar viewpoint of Lee and See (2004) by advocating trust

as a psychological construct that should be assessed only with subjective measures.

Given the differing response patterns observed in the objective and subjective trust data

of this study, the results of this experiment support this recommendation.

Although behavioral measures of trust represent less invasive alternatives to

subjective measures, defining trust as a behavioral response should be approached with

caution, as behavioral measures may reflect more than just participant trust. Moreover,

the quadratic trend predicted in reaction time was based on inferences of response

confidence, implying other factors may better explain the variance in response behaviors.

ft should be noted that response confidence is different &om task self-confidence, which

has be studied and found to impact automation trust (Lee and See, 2004). Task self

confidence is the confidence the user has in his or her own ability to perform the
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automated task. For example, a nurse with high task self-confidence in blood pressure

monitoring may be less likely to use a blood-pressure monitoring automation. Response

confidence, as used in this study, refers to how confident the user is in his or her response

decision. These factors represent possible avenues of future research that should be

explored.

Multiple Alarms on Trust and Acceptance Rate

The primary goal of this study was to examine trust and acceptance behavior

when multiple alarms are present. As expected, participants calibrated their trust and

acceptance rate of the test alarm based on the overall number of active alarms in the

system (see Figure 5). These results are similar to those found by Gilson et al. (2001)

and support a system-wide theory of trust, wherein additional alarms were found to effect

response time and acceptance rate (Rice, 2009).

Notably, the analysis ofacceptance behavior based on the number ofadditional

alarms allows for greater examination of the system-wide trust theory than previously

reported. The results of this study suggest that what is currently considered system-wide

trust theory may simply be an extension ofprobability matching theory (Bliss et al.,

1995).

Probability matching behavior occurs when participants match their acceptance

rate to the probability of a true alarm. In multiple-alarm situations, it appears participants

may employ an analogous strategy to determine alarm acceptance. The difference is the

probability of alarm validity was inferred lrom the overall number of active alarms rather

than on the given alarm system reliability. When more than 50% of the system was

activated, which would indicate greater-than-chance odds, the test alarm was generally
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accepted. Conversely, when the probably of a true alarm was below 50%, or less than six

activated alarms, the test alarm was rejected.

Previous research with individual alarms has consistently indicated that reliability

level affects trust (Lee & See, 2004; Meyer, 2001; Rice, 2009); however, the average

trust ratings for the 50% and 75% reliability level in this study were not significantly

different. These findings represent a departure trom previous reliability research, and

further suggest operators may disregard given or learned reliability information in favor

ofusing the number ofactivated alarms in order to determine the probability of a true

Design Implications

The results of this study have notable implications for display design. The growth

of complexity in system operations has increasingly separated the operator from the raw

data used by the system, creating opaque systems in a variety of domains (Wiegmann et

al., 2001). In an opaque system, information concerning raw data, system processing,

and algorithms are generally unavailable to the operator. Aviation cockpits and operating

rooms serve as real-world examples of these complex systems requiring multiple

signaling systems. When raw data or algorithms are absent, operators are forced to

evaluate a system's recommendation without understanding the basis for the

recommendation. The operator must then rely on other factors, such as the probability of

an alarm being true, when choosing to accept an alarm. Researchers recommend

increasingly transparent designs, such as displaying the processes and algorithms

involved in automation, to mitigate the detrimental effect of opaque displays on operator

performance (Lee and See, 2004; Wiegmann et al., 2001). Yet, implementing such
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displays may well exacerbate already high levels ofworkload in applied task

environments.

This transparency may be even more critical for multiple alarm displays. The

results of the present study suggest the operator relies heavily on the visual display to

evaluate the probability of an alarm being true when multiple alarms are present. This

may be a function of the mental workload and attention required when using a given

reliability level or past experience for probability calibration. With a single alarm, the

number of alarm presentations and the number of accurate alarms must be continuously

monitored to calculate the reliability based on experience. Even if the reliability is

obtained without personal experience, the operator must still monitor the overall number

of alarms presented in order to sustain an acceptance percentage that approximates the

probability of a true alarm. This behavior has been observed before in prior alarm

research (Wiegmann et al., 2001)

The visual display ofmultiple alarms represents a potentially faster and less

taxing alternative to calculating the probability of a true alarm, as evidenced by the use of

concurrent alarm number in trust and acceptance rates for this study. Instead of

monitoring a display over time, the user can make a quick estimate based only on

immediately available display information. This increased dependency on the display

may amplify the disadvantages opaque display design, indicating an increased need for

transparency in multiple alarm displays.

The number of alarms must also be carefully considered. The attentional and

temporal demands of a complex environment may limit the operator's ability to fully

analyze the system recommendation, even in a transparent display. The results of this
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study suggest trust in an individual alarm signal would be lower in a larger alarm array

than a smaller army. Similarly, ifalarms in an array are part ofan unrelated subsystem

processes, the operator's use of these additional alarms to calculate the probability ofa

true alarm may result in inappropriate levels of alarm trust and incorrect response

selections.

To give a real world example, hospital rooms often contain monitors with

multiple alarm displays. Consider the scenario where five alarms are co-located on a

screen with a blood-oxygen alarm. The results of this study suggest that when the

oxygen monitor signals, the nurse will be more less likely to consider the signal a true

alarm than if only two related alarms were co-located in the display. The failure to

consider the alarm a true alarm can potentially result in the nurse failing to take

appropriate action. This issue is further compounded if the other co-located alarms

monitor unrelated functions, because the likelihood of multiple alarms signaling is

generally lower than when related functions are monitored. Thus, a given alarm is more

likely to be the only alarm signaling, and therefore also more likely to be dismissed as a

false alarm due to the lack of additional signaling alarms. It is recommended that in

addition to transparency, the display should be limited to related and necessary alarms to

alleviate the influence of simultaneous alarms on primary alarm responses.

Future Research

To inore fully explore design reconnnendations, future researchers should

evaluate the impact of specific design principles on multiple alarm arrays. The proximity

compatibility principle (Wickens & Carswell, 1995) provides a guideline for display

location based on perceptual processing. The stimuli used in this study were configured
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based on the proximity compatibility principle: homogeneous features and the co-location

of displays. Co-located displays reduce information access costs, or the costs associated

with visual search and shifts in attention across a display. Similarly, homogeneous

features aid in integrative processing (Wickens & Carswell, 1995). In this study, the use

of homogeneous rectangles may have aided in percent calculations by allowing the

participant to estimate percent activation as a function of shaded area, whereas the

collocation of the alarms may have assisted in the mathematical calculation of system

percentage through the reduction ofvisual search and information access cost.

The use of heterogeneous features to separate unrelated alarms may lessen the

potential influence of simultaneous alarms on primary alarm decisions. This could be

particularly valuable in complex and space-limited environments, such as airplane

cockpits, where the likelihood ofmultiple alarms in close proximity is high. The use of

visual demarcations to join related alarms may also help to separate any unconnected and

unrelated alarms, thus reducing the likelihood ofunrelated alarm inclusion in the primary

alarm decision.

Additionally, future research should address alarm reliability levels above 75%.

The reliability percentages used in this study may not have fully captured the variance of

operator behavior in an unreliable system. Although there was no self-reported trust

differences between the 50% and 75% reliability gmup, there was a difference between

the 100% reliability group and the lower reliabilities respectively. These differences may

suggest response behavior changes at an untested level of reliability. Using reliabilities

between 75% and 100% may reveal the threshold at which reliability level is considered

over the number ofactivated alarms present. Smoke detectors represent a real world
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system in which reliability rates fall in this 75 /o-100/o range (Bukowski, Budnick,

Schemel, 1999).

Limitations

There are several limitations to this research, which should serve as additional

considerations for future research in this area. First, the system used in this study is a

false-alarm pmne system. Considerable research has shown differing effects on human-

automation interaction due to false alarm versus miss-prone systems (Parasuramsn &

Riley, 1997). As such, the results of this study should only be applied to similar false-

alann prone systems.

Although the trust measure used in this study enabled a multi-dimensional

evaluation of trust, it has not been validated in the literature. Without validation, it is

possible that another construct may be responsible for the findings. Also, it should be

noted that alarm acceptance rates were calculated based on five presentations of each

alarm configuration. This limits the number ofpossible acceptance rate values used in

the data and accordingly reduces variability in responses. It is possible that with a greater

number of alarm presentations, the increased variability would reveal a linear

relationship, as opposed to a cubic trend.

As noted previously, the alarm stimuli used in the preset study were gray in

color. This coloration differs &om the traditional alarm color (red). Previous research

suggests that participants respond more quickly and with more force to lightness-matched

red alarms than gray alarms. Consequently, faster reaction times may be elicited when

using traditional alarm color. In addition to the use of red alarms, future studies should



43

use stimuli specific to a complex environment, such as an operating room or airplane

cockpit, to increase ecological validity.

Finally, operators interact with signaling systems over long periods of time. This

study does not address the possible impact of fatigue on strategy use.

Conclusions

The results of this study revealed a unique application ofprobability matching

behavior observed with multiple alarm displays. In this experiment, the number of

activated alarms was used to estimate the probability of an alarm being true, instead ofa

test alarm's given reliability leveL This represents an important theoretical contribution

through the extension of current probability matching theory (Bliss et al., 1995).

Furthermore, when taken in conjunction with previous work by Gilson et al. (2001), there

is evidence this strategy is employed for a variety of array sizes and alarm reliabilities.

Design implications include the importance of transparent displays and limiting large

alarm arrays, especially in complex and opaque environments. Specific design solutions,

such as those related to the pmximity compatibility principle, should be explored in

future research.
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APPENDIX A

INFORMED CONSENT STATEMENT

Purpose of this Form: The purposes of this form are to give you information that may affect
your decision whether to say YES or NO to participation in this research, and to record the
consent of those who say YES.

Research Project Title: Effects of Simultaneous Alarms on Resolution Heuristics

Responsible Project Investigator(s): J. Christopher Brill, Ph.D., Assistant Professor, College of
Sciences, Psychology Department

Co-Investigator(s): Amanda Allen, Graduate student, College of Sciences, Psychology
Department

Overview of Research Project: This experiment is intended to examine how you judge a test
alarm when other alarms are also present. Ifyou choose to participate in this study, you will be
asked to respond to the presentation ofvisual alarms on a computer screen.

If I choose to participate, what will I be asked to do?
You will be asked to complete a brief medical history to ensure that you are eligible to participate
in the study. This medical history primarily asks about conditions or medications that might be
related to sensory deficits (e.g., loss of hearing, reduced skin sensitivity) and motor ability. You
may refuse to answer any questions that make you feel uncomfortable.

The researcher will then seat you in fmnt of the computer screen, and you will be provided with
more specific instructions on how to complete the task. You will have the opportunity to ask for
clarification ifany aspect of the task is confusing.

What steps are being taken to ensure my privacy?
All information you provide will be kept confidential, and none of the forms will list your name.
This form will be separated from the rest ofyour data packet so no one can link your data and
your identity. All written information (e.g., surveys, forms, etc.) is kept in a locked file cabinet.
A numerical code will be used for all electronic information (e.g., performance data) so that your
identity cannot be linked with the data file.

Are there any risks associated with participating in this experiment?
The experiment does not require you to perform actions beyond those experienced in everyday
life. Therefore, this protocol is deemed minimal risk.

What if I have questions about the experiment or its procedures?
You may ask questions about the experiment at any time. Ifyou have questions after the
experiment session has ended, you may contact Dr. Chris Brill at jcbrill@odu.edu or (757) 683-
4242. The ODU Institutional Review Board (ODU-IRB) has reviewed my request to conduct this
project. Ifyou have any concerns about your rights in this study, you may contact the Oifice of
Research at (757) 683-3460 or George Maihafer of the ODU-IRB at (757) 683-4520 or email
gmaihafe@odu.edu.

How long does the experiment last?
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It varies from person to person, but a typical time commitment approximately 30 minutes.

Will I receive any compensation for participating in this experiment?
Ifyou decide to participate in this study, you will receive 1 Psychology Department research
credit, which may be applied to course requirements or extra credit in certain Psychology courses.
Equivalent credits may be obtained in other ways. You do not have to participate in this study, or
any Psychology Department study, in order to obtain this credit.

Are there any benefits or costs associated with participating in this experiment?
While there are no direct benefits for participation in this study, the results will be useful for
evaluating the nature of alarm resolution. Since this study uses technology largely encountered in
daily life (desktop computer, and videogame-like systems), there are no additional risks.

Is there anything else I need to know?
You must be 18 years ofage or older to participate in this experiment. Additionally, in order to
be eligible for participation in this study you must not have any major sensorimotor impairment
that might impact your ability to perceive or respond to visual and tactile signals. You are iree to
withdraw from the experiment at any time without any negative consequences; however, you will
only be compensated for the amount of time you spent participating in the experiment.

We will be recruiting approximately 50 participants for this study.

I have read the procedure described above. I voluntarily agree to participate in the
procedure and I have received a copy of this description.

Participant's Signature Date

Investigator's Signature Date
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APPENDIX B

DEMOGRAPHICS AND MEDICAL QUESTIONNAIRE

This survey was designed to obtain information about our research participants prior to serving in
our studies. We need this information to help us interpret your results. ALL data collected in this
laboratory is to be kept confidential.

I) Age:

2) Sex (circle one): Male / Female

3) Handedness: Left / Right

4) Do you have any medical conditions or injuries affecting your vision? Yes / No

4a) Ifyes, please explain:

4b) If applicable, did you bring a correction with you? (i.e., glasses or contact

lenses): Yes/No

5) Do you have any medical conditions or injuries affecting your hearing? Yes / No

Sa) If yes, please explain:

6) Do you have any medical conditions or injuries affecting your sensitivity to

touch? Yes/No

6a) If yes, please explain:

7) Do you have any medical conditions or injuries affecting your motor control,
particularly the use ofyour hands? Yes / No

7a) Ifyes, please explain:

8) Do you have any medical conditions affecting your ability to pay attention?

Yes / No
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ga) Ifyes, please explain:

9) How often do you play video/computer games? Never Monthly Weekly

Daily

9a) Ifyou do play video/computer games, circle the number that corresponds to
how confident you are using video/computer games:

1

Low
2 3 4 5

Average



APPENDIX C

DESCRIPTIVE STATISTICS FOR EXPERIMENTAL DATA

Descriptive Statisticsfor Acceptance Rate by Alarm Levelfor the 50% Reliability Group

Number
ofAlarms

1 0.00 1.00

Minimum Maximum Mean Standard
Deviation

0.19 0.08 2.22 5.98

Skewness Kurtosis

0.00 0.21 0.10 1.48 1.06

0.00 1.00 0.27 0.08 1.45 1.45

0.00 1.00 0.33 0.09 0.78 -0.85

0.00 1.00 0.37 0.10 0.65 -1.04

0.00 1.00 0.55 0.08 -0.08 -0.95

0.20 1.00 0.77 0.08 -1.06 0.14

0.40 1.00 0.85 0.06 -1.35 0.59

0.00 1.00 0.81 0.08 -1.88 2.76

10 0.20 0.87 0.07 -1.98 3.82

0.40 0.92 0.06 -2.31 4.66

12 0.60 1.00 0.89 0.07 -1.16 -0.41
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Descriptive Statisticsfor Acceptance Rate by Alarm Levelfor the 75% Reliability Group

Number of
Alarms

1 0.00 1.00 0.24

Minimum Maximum Mean Standard
Deviation

0.08 1.15 -0.06

Skewness Kurtosis

0.00 1.00 0.35 0.10 0.60 -1.45

0.00 0.80 0.20 0.08 1.10 -0.47

0.00 1.00 0.33 0.09 -0.35

0.00 1.00 0.53 0.10 -0.28

0.40 1.00 0.82 0.08 -0.83

0.00 1.00 0.08 0.58

0.40 0.80 0.06 -0.75 -1.19

0.20 0.81 0.08 -1.49 0.78

10 0.20 0.79 0.07 0.37

0.20 1.00 0.86 0.06 -1.74 1.78

12 0.00 1.00 0.85 0.07 3.36
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Descriptive Statistics for Acceptance Rate by Alarm Levelfor the 100% Reliability Group

iVumber of
Alarms

1 0.00 1.00

Minimum Maximum Mean Standard
Deviation

0.70 0.38 -1.08 -0.41

Skew Kurtosis

0.00 1.00 0.73 0.34 -1.01 -0.01

0.00 1.00 0.73 0.37 -1.13 0.08

0.00 1.00 0.77 0.32 -1.54 1.64

0.00 1.00 0.79 0.34 -1.56 1.26

0.20 1.00 0.22 -2.70 8.26

0.40 1.00 0.87 0.22 -1.70 1.82

0.40 1.00 0.90 0.19 -1.94 3.18

0.20 1.00 0.89 0.24 4.25

10 0.60 1.00 0.91 0.15 -1.53 0.94

0.00 1.00 0.86 0.28 -2.64 7.62

12 0.60 1.00 0.93 0.15 -1.87 2.09
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Descriptive Statisticsfor Reaction Time by Alarm Levelfor the 50% Reliability Group

Number
ofAlarms

1 1244.80 3828.00 2020.34

Standard
Deviation

669.99 1.55 3.22

Skewness Kurtosis

1305.80 4003.60 2046.99 800.95 1.29 1.24

1086.00 6013.20 2624.94 1341.53 1.57

1172.40 31135.80 5930.07 7715.28 3.04

1129.20 7906.00 3575.67 2206.27 0.94

1366.20 11115.00 4405.97 2634.15 1.27

1096.00 8365.00 4264.56 2135.56 0.32

2.18

10.18

0.07

2.18

-0.43

1464.40 16690.40 4184.71 4032.71 2.67 7.72

10

1294.00 14576.60 3659.93 3654.45 2.55

1239.40 7592.20 2590.19 1562.02 2.83

1067.80 3732.20 2344.50 849.24 0.26

6.46

9.17

-1.12

12 1227.40 3855.60 2154.71 801.35 0.86 -0.05
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Descriptive Statisticsfor Reaction Time by Alarm Levelfor the 75/o Reliability Group

Number
ofAlarms

1

Mi nimum Maximum Mean

1171.60 11697.60 2929.79

Standard
Deviation
2896.55 2.49 6.17

Skewness Kurtosis

1293.40 7047.20 2716.04 1469.46 2.10 5.08

1107.00 16289.40 3918.92 4463.91 2.08 3.68

1524.00 12126.40 3501.39 2783.24 2.48 6.65

1400.20 8562.00 3207.29 1970.21 1.75 3.09

10

12

1318.00 16508.80 4275.83 4042.12 2.33

1236.60 10468.60 3543.28 2410.97 1.84

1358.20 10065.40 3311.97 2839.74 1.76

1403.60 9538.80 3430.29 2802.50 1.47

1038.60 8164.20 2641.24 1931.84 1.99

1078.20 6561.00 2409.61 1436.67 1.89

1237.80 6677.20 2254.92 1375.60 2.62

5.85

4.19

1.93

0.77

4.16

4.24

8.14
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Descriptive Statisticsfor Reaction Time by Alarm Levelfor the 100% Reliability Group

Number of
Alarms

1

Minimum Maximum Mean

1023.80 4631.00 2866.84

Standard
Deviation

1212.41 0.26 -1.14

Skewness Kurtosis

649.00 4813.80 2639.44 1206.26 0.17

741.20 7878.80 3504.39 2149.44 0.66

-0.52

0.05

682.60 8570.40 3157.97 2205.70 1.54 2.19

10

846.40 6265.80 3269.29 1485.79 0.23

746.40 8810.40 3090.21 1945.01 2.02

1090.60 12104.40 3853.86 2953.19 1.77

958.20 6972.80 3302.91 2258.30 0.60

1137.40 6681.80 3193.29 1645.10 0.94

1064.60 14819.00 3858.07 3627.78 2.41

905.60 9923.80 3322.89 2497.44 1.56

-0.21

5.79

4.00

-1.57

0.14

6.57

2.72

12 933.60 4084.20 2217.33 928.01 0.53 -0.49
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Descriptive Statisticsfor Composite Trust by Alarm Levelfor the 50% Reliability Group

Number of
Alarms Minimum

1 10.00
Maximum Mean

229.60 134.33

Standard
Deviation

62.24
Skewness

-0.40
Kurtosis

-0.16

12.00 307.00 165.44 70.58

85.50 282.00 171.47 48.72

-0.22

0.29

0.90

0.99

89.25 236.00 178.67 35.66 -0.90 1.75

10

12

136.00 231.00 188.80 26.27

144.00 248.70 205.51 27.29

131.00 240.00 213.56 25.61

200.00 285.00 241.59 27.38

184.00 314.00 240.95 36.78

193.00 451.20 267.53 68.54

200.00 375.00 286.68 57.92

128.20 400.00 283.83 80.29

-0.55

-0.86

-2.58

-0.14

0.19

1.39

0.14

0.01

0.46

1.18

8.35

-1.06

-0.55

2.43

-1.37

-0.50



Descriptive Statisticsfor Composite Trust by Alarm Levelfor the 75% Reliability Group

Number of
Alarms Minimum

1 14.00
Maximum

296.00

Standard
Mean Deviation
128.77 92.11

Skewness
0.33

Kurtosis
-1.26

10

12

37.80 309.80 176.99 93.11

53.60 290.00 170.15 66.28

117.00 276.00 192.56 42.16

162.00 272.00 220.13 33.37

167.80 280.00 234.62 31.86

155.40 315.20 244.36 41.62

146.75 430.40 265.52 66.07

82.80 327.00 256.32 67.16

116.50 360.00 267.99 64.29

121.00 380.00 285.92 81.67

87.00 400.00 299.59 95.84

-0.13

-0.12

0.29

-0.38

-0.69

-0.55

0.64

-1.37

-0.92

-0.92

-0.98

-0.70

-0.26

-0.84

-0.19

0.37

2.03

1.96

0.77

-0.09

-0.12



Descriptive Statisticsfor Composite Trust by Alarm Levelfor the 100% Reliability Group

Number of
Alarms Minimum

I 300
Maxi mum

400.00

Standard
Mean Deviation Skew
266.24 152.04 -0.79

Kurtosis
-1.11

19.75 400.00 280.56 136.96 -1.08

60.00 400.00 284.65 121.80 -0.71

87.00 400.00 308.22 116.40 -1.02

-0.20

-0.81

-0.63

132.00 400.00 295.84 109.90 -0.51 -1.71

10

12

144.00 400.00 313.52 96.05 -0.60

131.00 400.00 313.42 93.34 -0.81

151.40 400.00 329.60 83.51 -0.98

184.00 400.00 334.86 76.08 -0.88
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