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Domain Adaptive Federated Learning for Multi-institution
Molecular Mutation Prediction and Bias Identification

W. Farzana, M. A. Witherow, I. Longoria, M.S. Sadique, A. Temtam, and K. M. Iftekharuddin

Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University,
Norfolk, VA23529

ABSTRACT

Deep learning models have shown potential in medical image analysis tasks. However, training a generalized
deep learning model requires huge amounts of patient data that is usually gathered from multiple institutions
which may raise privacy concerns. Federated learning (FL) provides an alternative to sharing data across
institutions. Nonetheless, FL is susceptible to a few challenges including inversion attacks on model weights,
heterogenous data distributions, and bias. This study addresses heterogeneity and bias issues for multi-institution
patient data by proposing domain adaptive FL modeling using several radiomics (volume, fractal, texture)
features for O6-methylguanine-DNA methyltransferase (MGMT) classification across multiple institutions. The
proposed domain adaptive FL MGMT classification inherently offers differential privacy (DP) for the patient
data. For domain adaptation two techniques e.g., mixture of experts (ME) with a gating network and adversarial
alignment are used for comparison. The proposed method is evaluated using publicly available multi-institution
(UPENN-GBM, UCSF-PDGM, RSNA-ASNR-MICCAI BraTS-2021) data set with a total of 1007 patients. Our
experiments with 5-fold cross validation suggest that domain adaptive FL offers improved performance with a
mean accuracy of 69.93% ± 4.8 % and area under curve of 0.655 ± 0.055 across multiple institutions. In addition,
further analysis of probability density of gating network for domain adaptive FL identifies the institution that
may bias the global model prediction due to increased heterogeneity for a given input. Our comparison analysis
shows that the proposed method with bias identification offers the best predictive performance when compared
to different commonly employed FL and baseline methods in the literature.

Keywords: Federated Learning (FL), Domain Adaptation (DA), Radiomics, Fractal texture, MGMT, Magnetic
Resonance Imaging (MRI), Classification, Differential Privacy (DP).

1. DESCRIPTION OF PURPOSE

Glioblastoma (GB) is a malignant brain tumor, affecting 50% of all brain gliomas.1 Standard treatment includes
surgical resection, radiation therapy, and temozolomide (TMZ) and Novo-TTF.2 Epigenetic variations and ac-
tionable mutations are found in GB cases.3 In one-third GB cases, MGMT is epigenetically silenced by promoter
hypermethylation,4 improving survival and favorable response to TMZ.5

Several prior studies6–8 demonstrate that deep learning (DL) models can predict MGMT methylation status
from pre-operative magnetic resonance imaging (MRI), but centralized data aggregation for DL model training
raises privacy concerns. Federated learning (FL) offers a promising approach, where participating institutions
train local models on their own data without forwarding it to a server or central node.9 While FL has shown
significant advancements in medical domain, the overall challenges associated with FL are privacy, security, data
heterogeneity, and bias.10

Despite the promising aspects of FL, adversaries can decrypt DL model weights, revealing patients’ information
with high accuracy.11 To alleviate disclosure of patient information from the model weights, differential privacy
(DP)12 has been proposed. DP works by minimizing individually identifiable information while maintaining the
global statistical distribution of the data set. DP can be implemented by adding noise to shared model weights
in FL.13

A common challenge in the medical domain, including GB research, is the domain shift in MRI data distributions
across institutions, affecting the generalization of models trained on quantitative features.14 Domain adaptation
techniques, e.g., mixture of experts (ME) with a gating network and adversarial domain alignment15,16within
the FL framework can improve global model performance. Recently, Li et al.17 demonstrated the potential of
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domain-adaptive FL in medical settings. Given their success with functional MRI (fMRI) data, we hypothesize
that this approach may also work well for structural MRI, which exhibits similar challenges with data hetero-
geneity, bias, and privacy.
Acknowledging the data heterogeneity across institutions, it becomes crucial to explore how the global model
performs for various local (private) institutions and identify potential biases in decision-making. The gating
network15 within ME identifies the contribution of private and global models for patient cases. Further, the
associated distribution of gating network outputs across each institution (private domain) may assist to identify
the institution that may contribute to biased decision-making in the global model.
Consequently, this study aims to address issues of heterogeneity and bias in FL for multi-institutional patient
data. Our proposed approach involves a domain-adaptive FL model using selected radiomics (volume, fractal,
texture) features for O6-methylguanine-DNA methyltransferase (MGMT) classification across multiple institu-
tions.

2. METHODOLOGY

In addressing the challenges of privacy, security, data heterogeneity, and bias outlined in the introduction, our
methodology is designed to not only contribute to improved prediction performance but also to tackle these
challenges. The subsequent sections detail how each aspect of our methodology directly addresses these critical
challenges.

2.1 Patient Data

To address the challenge of data heterogeneity, patient data from three distinct institutions were meticulously
curated, and a comprehensive mapping strategy was employed to avoid overlap. This approach ensures the
robustness and generalizability of our model across diverse institutional dataset. In this study, we collect data
from 3 different institutions that are publicly available in the Cancer Imaging Archive (TCIA). The data set
is comprised of UPENN-GBM,18 UCSF-PDGM,19 RSNA-ASNR-MICCAI BraTS-2021.20,21 We use the pre-
operative scans of GB patients, which include four sequences of MRI scans: pre-contrast T1-weighted (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated Inversion Recovery (FLAIR).
The status of MGMT methylation is provided for each patient within the data set. Appropriate mapping is
conducted to avoid patient data overlap across institutions. All scans are co-registered, and skull stripped. The
data set from 3 institutions includes the expert annotated tumor sub-regions of GB: enhancing tumor (ET),
edema (ED), necrosis (NC), and non-enhancing tumor (NCR/NET). The distribution of patients across three
sites is presented in Table 1.

Table 1: Summary of patient data across three institutions

UPENN-GBM UCSF-PDGM BraTS-2021 Overall Total
Total Patient Case 262 169 576 1007
Patient with
Methylated Status

111 122 300 533

Patient with
Unmethylated Status

151 47 276 474

Total number of MRI
scans

1048 676 2304 4028

2.2 Feature Extraction and Selection

Given the inherent data heterogeneity, our feature extraction process is designed to capture relevant information
from multi-sequence MRI. The subsequent in-house feature selection algorithm ensures that the chosen features
are not only informative but also contribute to addressing the challenge of extracting meaningful insights from
diverse dataset.We extract multi-resolution fractal texture features22–24 and conventional radiomics features
from multiple sequence MRI (mMRI) for each institution. The features represent histogram-based statistics,
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Figure 1: The overall FL pipeline for MGMT status prediction across multiple institutions.

volumetric, area, and textural properties of the tumor and its subregions. Total 1723 radiomics features are
extracted from mMRI, and an in-house feature selection algorithm25 is applied on the extracted features. The
final number of features is 222 for each institution.

2.3 Federated Learning Frameworks

To ensure privacy and security, we employ a Federated Learning (FL) framework with three distinct configu-
rations. FL-avg addresses bias concerns by averaging weights and introducing Laplacian noise, FL-ME adapts
the global model to each institution, mitigating bias through a dynamic mixture of experts, and Fed-Adv-Align
combats domain-specific biases by aligning feature distributions across institutions.
A deep feedforward neural network (FNN) 222-64-8-2 (corresponding to 222 nodes for first layer, 64 nodes fol-
lowed by 8 nodes for hidden layer and 2 nodes as the output) is utilized to classify MGMT methylation status.
We use ReLU activation in the hidden layers followed by batch normalization.Each institution has its own local
model that outputs the class-wise probabilities for the given input features.We use the Adam optimizer (ini-
tial learning rate of 1e-3, lowered by 0.5 every 20 epochs) to train for 100 epochs with the categorial cross
entropy loss.Each of the local models and the global model have the same FNN structure.Three different model
configurations are applied within the FL framework, with details provided in the following sub-sections.

2.3.1 Federated Learning with average of model weights (FL-avg)

In the FL-avg framework (shown in Fig.1 [4.b]), The central node averages the weights of local models, and
the weights from global model (Gfed) are sent back to update the local models. Random noise using Laplacian
mechanisms17 is added to ensure differential privacy.

2.3.2 Federated Learning with Mixture of Experts (FL-ME)

The global model Gfed trained under the privacy preserving FL framework is adapted to each institution. Under
FL-ME configuration, the global (general) model and private (institution) models are trained jointly to yield the
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output for a given input (shown in Fig.1 [4.a]).
Let MGfed be the general model with parameters θGfed and ŷGfed = MGfed(x, θGfed) be the predictive prob-
ability of the positive class by MGfed.The private model MPi for ith institution has parameters θPi and
ŷPi = MPi(x, θPi). The predicted output for institution i is:

ŷi = αi(x)MGfed(x, θGfed) + (1− αi(x))MPi(x, θPi) (1)

where, αi(x) is the gating function and defined as the non-linear layer,15αi(x) = σ(wT
i x + bi) , where σ is the

sigmoid function and wT
i , bi are model weights.

2.3.3 Federated Learning with Adversarial Domain Alignment (Fed-Adv-Align)

As shown in Fig.1 (4.c), source and target sites have respective feature extractors, GS and GT . For a source-
target pair, discriminator DS is trained to classify the domain from which a sample is taken. Meanwhile, GS

and GT are trained in opposition to DS , effectively aligning the source and target feature distributions. The
process repeats for each institution so that all institutions’ feature distributions are aligned.

2.3.4 Bias Identification from Gating Network

The gating network plays a crucial role in identifying and mitigating bias within the FL-ME configuration. By
dynamically weighing the contributions of global and private models based on input, it serves as a tool for
detecting and addressing biases within specific institutional dataset, a key challenge outlined in the introduction.
The gating function αi(x) in equation (1) learns the contribution of global and private (institution) models over
the training process. If the value of αi(x) is small for a particular institution, the overall contribution of the
private model will be higher compared to the global model. Hence, the probability density analysis of the gating
values indicate the presence of an unusual domain distribution within a particular institution,26 which cause bias
in the global model.

3. RESULTS

In this work, we evaluate the efficacy of domain adaptation within the FL framework for MGMT methylation
classification across multiple institutions using FL-avg, FL-ME, and Fed-Adv-Align models. The performance of
the model is evaluated using 5-fold cross validation within individual institutions.The baseline method indicates
when the model is trained and tested on the same institution data. For instance, the baseline model with the
same FNN architecture is trained and tested on UPENN-GBM data with 5-fold cross validation.

Table 2: Mean Test Accuracies(%) across multiple institutions for 5-fold cross validation

Model Configurations UPENN-GBM UCSF-PDGM BraTS-2021 Average
Baseline 42.3± 3.9 71.8 ± 5.4 51.8 ± 1.9 55.3± 3.7
FL-avg 57.6± 3.9 72.4 ± 5.6 50.5 ± 0.6 60.2 ± 3.4
FL-ME 66.4 ± 4.9 80.2 ± 6.5 63.2 ± 2.9 69.93 ± 4.8

Fed-Adv-Align 58.3 ± 4.1 73.6 ± 5.4 55.9 ± 3.7 62.60 ± 4.4

Table 3: Mean Test Area Under Curve (AUC) across multiple institutions for 5-fold cross validation

Model Configurations UPENN-GBM UCSF-PDGM BraTS-2021 Average
Baseline 0.5± 0.0 0.496 ± 0.008 0.498 ± 0.003 0.498 ± 0.003
FL-avg 0.508± 0.010 0.510 ± 0.016 0.501 ± 0.003 0.507 ± 0.010
FL-ME 0.635 ± 0.040 0.698 ± 0.097 0.633 ± 0.026 0.655 ± 0.055

Fed-Adv-Align 0.537 ± 0.012 0.616 ± 0.088 0.553 ± 0.033 0.569 ± 0.044
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(a) Model Accuracy on Test Data (b) Model AUC on Test Data

Figure 2: (a) Mean Accuracies for 5-fold cross validation with 3 different model configurations. (b) Mean AUC
for 5-fold cross validation with 3 different model configurations. Error bars show the standard deviation. A ‘*’
depicts a significant difference (p-value¡0.05) between two groups, and ‘ns’ denotes a non-significant difference
between two groups.

The inclusion of domain adaptation (ME) in FL modeling improves cross-validation accuracy and AUC to
69.93% and 0.655, respectively. Significant differences (ANOVA test, p-value < 0.05) exist across institutions
with different model configurations as shown in Figure 2.

The gating values for each institution are the output of the gating network as shown in Fig.1. The institution
with smaller gating value and probability density gives more weight to the private model’s decision compared
to the global model. As shown in Figure 3(a) the mean with standard deviation for BraTS-2021 is 0.53±0.213
while that of UCSF-PDGM is 0.57±0.163. Moreover, there is a significant difference (p-value=0.04) between the
probability density distribution of UCSF-PDGM and BraTS-2021.We observe low performance of global models
(FL-ME, FL-Avg, Fed-Adv-Align) in BraTS-2021 when compared to UCSF-PDGM, UPENN-GBM as shown in
Table 2 and Table 3. Therefore, if the contribution of global and private model is not regulated, the global model
performance may be biased when adapted to unusual domains like BraTS-2021.BraTS-2021 is considered as an
unusual domain (heterogeneous) since it comprises 576 patient data curated from different institutions,27 when
compared to the other two data sets from single institution (e.g., UPENN-GBM and UCSF-PDGM) only.

(a) (b)

Figure 3: (a) The mean and standard deviation of gating values for each institution (BraTS-2021, UPENN-GBM,
and UCSF-PDGM), (b) Probability density of gating values across three institutions.

The performance comparison of our FL models with deep learning in Table 4 shows that the proposed FL-
ME performs better than other approaches. It is evident from the comparison that other deep learning-based
methods does not consider the differential privacy within FL and bias identification for multi-institutional data.

4. NOVEL CONTRIBUTION

The contributions of this study are two-folds. First, this work addresses the challenge posed by data heterogeneity
and bias across multiple institutions with domain adaptive FL modeling to improve accuracy and generalizability
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Table 4: Performance comparison between our method and other MGMT predictive DL methods.

Methods Data Total
number
of
patients

Validation
Method

MRI
Sequence

Accuracy
(%)

AUC FL with
Differ-
ential
Privacy

Bias
Identi-
fication

B. H. Kim
et al.6

(2022)

SNUH,
BraTS-
2021

985 SNUH as
test data

FLAIR,
T1,
T1Gd,
T2

49.3
± 1.3

0.516
±3.8

✘ ✘

N. Saeed et
al.6(2023)

BraTS-
2021

585 5-fold CV FLAIR,
T1,
T1Gd,
T2

− 0.63
±0.01

✘ ✘

Atef et al.28

(2022)
BraTS-
2021

672 External
Validation
Data

FLAIR,
T1,
T1Gd,
T2

− 0.6152 ✘ ✘

FL-avg
(Ours)

UPENN-
GBM,
UCSF-
PDGM,
BraTS-
2021

1007 5-fold CV FLAIR,
T1Gd, T2

60.2
±0.034

0.507
±0.010

✓ ✓

FL-ME
(Ours)

UPENN-
GBM,
UCSF-
PDGM,
BraTS-
2021

1007 5-fold CV FLAIR,
T1Gd, T2

69.93
±0.048

0.655
±0.055

✓ ✓

Fed-Adv-
Align(Ours)

UPENN-
GBM,
UCSF-
PDGM,
BraTS-
2021

1007 5-fold CV FLAIR,
T1Gd, T2

62.60
±0.044

0.569
±0.044

✓ ✓

of MGMT classification across institutions for 1007 patients with a total of 4028 MRI scans. Second, analysis of
probability density of gating network outputs with domain adaptive FL provides insights into which institution
may be contributing to bias the global model prediction. This offers better understanding of diagnostic reliability
of the global FL model for MGMT classification in this study.

5. CONCLUSION

This work proposes a comprehensive and generalized privacy preserving domain adapted FL model to han-
dle heterogenous data distributions and bias from multiple institutions (UPENN-GBM, UCSF-PDGM, RSNA-
ASNR-MICCAI BraTS-2021) for MGMT classification in GB patients. The experimental results suggest that
the domain adaptive module within the FL framework provides the best predictive performance when compared
to other relevant state-of-the-art FL approaches. We further perform rigorous statistical analysis of gating net-
work outputs to identify the institution that may bias predictions from the global model. The outputs of gating
network regulate the contribution of private and global model across each institution. Therefore, as observed
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from the experimental results, the predictive performance of gating network outputs for BraTS-2021 (and conse-
quently for the global model) are lower when compared to UCSF-PDGM and UPENN-GBM. Since BraTS-2021
dataset encompasses patient cases from different institutions, it is more heterogenous and hence exhibits an
unusual domain distribution that can lead to bias in the predictive performance of global model. In the future,
we plan to study the cause of bias in the global model due to private model data distribution. We further plan to
identify the underlying imaging biomarker(s) and survival analysis of patient cases across multiple institutions
with the domain adaptive FL model.
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