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Abstract. We review the main ingredients for an ab-initio study of few-nucleon reactions of
astrophysical interest within the chiral effective field theory approach, with particular attention
to radiative captures relevant for Big Bang Nucleosynthesis and stellar evolution. We conclude
with an outlook for ongoing and future work.

1. Introduction
There are several astrophysical environments in which nuclear reactions take place and play a
significant role. In particular, we consider the nuclear reactions which took place a few minutes
after the Big Bang, in the so-called Big Bang Nucleosynthesis (BBN), and those responsible for
stellar evolution. Most of these reactions are radiative or weak captures among charged particles,
and take place at energies well below the Coulomb barrier. Therefore, their experimental
determination is rather difficult, and theory becomes essential for guiding extrapolation of data
taken at higher energies, or, in some cases for which experiments are impossible, to provide a
reliable estimate. The astrophysics community is eager of more and more accurate predictions
in order to test fundamental models. In this regard, a reliable theoretical prediction is required
to be model-independent, and possibly combined with a robust determination of the theoretical
uncertainty. Ab-initio calculations within the chiral effective field theory (χEFT) framework
are the answer to these requests. We review the ab-initio methods and χEFT in the next two
sections. We conclude in Sec. 4 with an outlook of the ongoing work and near and far future
developments.

2. Ab-initio methods
In an ab-initio method, a nucleus is seen as a system of A nucleons interacting with each other
and with external electro-weak probes. Therefore, a realistic description of nuclear interactions
and electro-weak currents is required. But even if these two ingredients are given, in order to
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reach the goal of having reliable predictions, it is necessary to have an accurate method, that is
able to solve the A-body quantum mechanical problem, not only for bound but also for scattering
states, in an energy region where the Coulomb interaction is crucial. Not many methods are at
hand, and only a few of them are available for small values of A, typically A ≤ 4. One of them
is the so-called Hyperspherical Harmonics (HH) method, which we briefly review here. For a
detailed discussion of the method we refer to Refs. [1, 2]. In the HH method, the wave function
for a bound A-nucleus is written as

ΨA =
∑
µ

cµφµ , (1)

where φµ is a set of basis functions, which include all the spin-isospin structure of the system
and can be expressed in terms of the HH functions [1], while cµ are unknown coefficients
determined applying the Rayleigh-Ritz variational principle. This reduces the problem to solving
an eigenvalue-eigenvector problem with standard numerical techniques, and the binding energy
and coefficients cµ can be determined with great accuracy.

Within the HH method, also the scattering problem, below the clusters breakup threshold,
can be solved, by writing the scattering wave function ΨLSJJz , having incoming relative orbital
angular momentum L and spin S, coupled to total angular momentum JJz, as

ΨLSJJz = ΨLSJJz
C + ΨLSJJz

A . (2)

Here ΨLSJJz
C describes the system in the region where the particles are close to each other and

the nuclear interaction is strong. Therefore, it vanishes for large inter-cluster distances, and can
be expanded as in Eq. (1). The function ΨLSJJz

A describes the relative motion of the two clusters
in the asymptotic region, where, for charged particles, only the long-range Coulomb interaction
is present. For example, for A = 3, i.e. p+ d, the function ΨLSJJz

A can be written as

ΨLSJJz
A =

∑
L′S′

[δLL′δSS′Ω−
L′S′JJz

− JSLS,L′S′Ω+
L′S′JJz

] , (3)

where

Ω±
LSJJz

=
∑
k=1,3

[YL(ŷk)⊗ [φd(ij)⊗ χsk ]S ]JJz

(G̃L(η, qyk)

qyk
± i

FL(η, qyk)

qyk

)
. (4)

Here we have indicated with yk the distance between the proton (particle k) and the deuteron
(particles ij), q is the magnitude of the relative momentum, χsk is the spin function of particle

k, and φd is the deuteron wave function. Furthermore, G̃L is defined as

G̃L(η, qy) = GL(η, qy)× [1− e−βy]2L+1 , (5)

GL, and FL in Eq. (4), being the irregular and regular Coulomb functions, with η = 2µe2/q (µ is
the p+d reduced mass). The parameter β is determined by requiring G̃L → GL for large values
of y, and the function G̃L to be regular at small values of y, and goes to GL for large y. With the
definition of Eq. (4), the functions Ω+

LSJJz
(Ω−

LSJJz
) describe the asymptotic outgoing (ingoing)

p + d relative motion. The parameters JSLS,L′S′ in Eq. (3) are the S-matrix elements which
determine phase-shifts and, for coupled channels, mixing angles at a given energy Ec.m. = q2/2µ.

The unknown quantities in the expansion of Eq. (2) are the coefficients cµ present in ΨLSJJz
C

and the parameters JSLS,L′S′ present in ΨLSJJz
A . They are determined applying the Kohn

variational principle, which states that the functional[
JSLS,L′S′

]
= JSLS,L′S′ − 〈ΨL′S′JJz |H − E|ΨLSJJz〉 (6)
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must be stationary. To be noticed that E ≡ Ec.m. − Bd is the energy of the system, Bd being
the deuteron binding energy. By using Eq. (6), a linear set of equations is obtained for JSLS,L′S′

and cµ, and solved with standard numerical techniques.
As an application of the method, we present in Fig. 1 the latest study [3] of the p+d→ 3He+γ

astrophysical S-factor, performed using a phenomenological two- and three-nucleon interaction
model (namely the Argonne v18 [4] two-nucleon and Urbana IX [5] three-nucleon interaction),
and a model for the nuclear current derived in Ref. [6], where the main two-nucleon current
operators are constructed so as to satisfy the current conservation relation with the given
Hamiltonian. The energy range of interest is the one relevant for BBN. For more details see
Ref. [3]. From inspection of the figure we can conclude that both calculations of Ref. [6] and [3]
are systematically higher than the available experimental data. However, the two calculations,
although performed with the same models for interactions and currents, differ by about 8-10
%. In Ref. [3] this difference was traced back to the different degree of accuracy of the p + d
scattering wave functions, those of Ref. [3] being checked by calculating the average value of the
Hamiltonian in a box (with radius ' 40 fm), which has to be equal to the energy E. Such a
test was not performed in the previous study of Ref. [6]. From this we can conclude that the
degree of accuracy in the solution of the three-body problem, especially for scattering states,
is crucial in these studies. Furthermore, it is not possible to quantify in a robust way the
uncertainty of the theoretical predictions. This is clearly unsatisfactory. In order to be able to
assess the theoretical uncertainty of a given calculation, assuming that the method used to solve
the quantum mechanical problem is accurate, as the one presented here, we can work within the
χEFT approach, which will be described in the next Section.
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Figure 1. The astrophysical S-factor of
the p + d → 3He + γ radiative capture
as function of the center of mass energy.
The calculation of Ref. [3] is represented
as red dots, the green band corresponds
to the polinomial fit of Ref. [7], the
black line reports the study of Ref. [6],
while the remaining symbols are the
experimental data of Refs. [8, 9, 10, 11].

3. The χEFT approach
In this contribution, we provide a brief review of the χEFT approach, emphasizing those features
of the formalism which make it suitable to study nuclear reactions of astrophysical interest.

In essence, the χEFT framework can be seen as a formulation of Quantum Chromodynamics
(QCD) in terms of effective degrees of freedom suitable for low-energy nuclear physics: pions and
nucleons. The symmetries of QCD, in particular its (spontaneously broken) chiral symmetry,
severely restrict the form of the interactions of these particles among themselves and with
external electroweak fields. As a consequence, it is possible to expand the Lagrangian describing
these interactions in powers of Q/Λχ, Q being the pion momentum and Λχ being the chiral-
symmetry-breaking scale (here Λχ ∼ 1 GeV). Then, classes of Lagrangians emerge, each of the
order (Q/Λχ)n and each involving a certain number of unknown coefficients, the so-called low-
energy constants (LECs), which arise when the high-energy degrees of freedom are integrated
out. These LECs are in practice constrained by fits to experimental data. The potentials
and currents derived within this framework have power-law behavior for large momenta, and
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are regularized by introducing a momentum-cutoff function, with cutoff Λ. The introduction
of such a cutoff typically makes the potentials strongly non local (see Ref. [12] and references
therein). This does not in principle represent a problem for the HH approach (see Refs. [13, 14]),
but it poses challenges for other methods, such as those based on Monte Carlo techniques. A few
more observations are in order: (i) in χEFT, two- and three-nucleon interactions arise naturally
and the available models have reached a high degree of accuracy in describing few-nucleon
systems. (ii) In χEFT it is expected that increasing the chiral order n, reduces the dependence
on the cutoff Λ. Therefore, a rough estimate of the theoretical uncertainty is provided by the
Λ-dependence of the results. A further estimate of the theoretical uncertainty is the order-by-
order convergence of the results. The Λ-dependence and the order-by-order convergence give
significant information on the theoretical uncertainty. More sophisticated techniques are also
available, as those described for instance in Ref. [15]. (iii) The framework of χEFT is suitable
to derive consistently interactions and currents. We will discuss the electromagnetic current
operator in χEFT below.

In order to mitigate the non-locality problem alluded to above, we have recently developed
a class of χEFT potential models which are minimally non-local, and therefore can be dealt
with in coordinate space. We will call these models Norfolk potentials (NVs) and we will briefly
describe them in the following. For more details see Refs. [16, 17, 18] and Ref. [19].

The NV potential includes among the degrees of freedom, together with nucleons and pions,
also ∆-isobar as an effective degree of freedom, since the nucleon-∆ mass difference is only twice
the pion mass. By doing so, several contributions, which in the ∆-less theory are at a given
chiral order, are promoted at lower order. Then, the NV two-nucleon potentials are written as

VNN = vEM + vLR + vSR , (7)

where vEM is the electro-magnetic component, which includes corrections up to α2 (α is the
fine-structure constant), vLR is the long-range part of the interaction, derived up to the order
n = 3 [or (Q/Λχ)3] including chiral one- and two-pion exchange diagrams with ∆’s, and vSR is
the short-range interaction which retains contact terms up to n = 4. The potential then contains
26 LECs to be fitted to the experimental data. Before doing this, it is necessary to regularize
the potential, which is done using a Gaussian cutoff both in the long- and short-range part, i.e.

CRX
(r) ∝ e−(r/RX)2 (8)

with X = L, S for long- and short-range respectively, and (RS , RL) = (0.8, 1.2) fm or
(RS , RL) = (0.7, 1.0) fm for the so-called model NVa and NVb respectively. The two sets of
values allow to study the cutoff dependence. The 26 LECs are obtained fitting the 2013 Granada
database [20]: when such fit is performed up to lab-energy Elab = 125 MeV, a χ2/datum ≤ 1.1
is obtained (model I), otherwise if Elab = 200 MeV, χ2/datum ≤ 1.4 (model II).

The three-nucleon interaction to be used in conjunction with the two-nucleon NV model is
derived up to n = 3, and includes the diagrams of Fig. 2, i.e. a long-range contribution mediated
by two-pion exchange, with and without ∆ intermediate states, and a short-range contribution
parametrized in terms of two contact interactions. LECs multiply the two-pion exchange ∆-less
diagram and the short range contributions. However, the former are already present in the two-
nucleon Lagrangian, and therefore constrained consistently with the two-nucleon interaction.
The LECs multipling the two short-range contact interactions are denoted cD and cE . A first
determination of cD and cE was performed in Ref. [18], where the triton binding energy and the
nd doublet scattering length were used in conjunction with each two-nucleon NV models. We
will refer to these models as NVIa, NVIb, NVIIa, and NVIIb. In a second determination [21],
the observables chosen for the fit were the trinucleons binding energy and the Gamow-Teller
matrix element of tritium β-decay. This has required the development of a nuclear axial current
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Figure 2. Schematic representation of
the contributions to the chiral three-
nucleon interaction. Nucleons, ∆’s and
pions are denoted as solid, thick and
dashed lines, respectively. The circles
represent vertex involving LECs. See
text for more details.

consistent with the NV interaction model. We will not discuss here the construction of the
nuclear axial current, as we are mainly focusing on radiative captures. The interested reader
can find all the details in Ref. [21]. The two different procedures of fixing cD and cE produce
rather different values for these LECs, as discussed in Ref. [21]. However, we should notice
that the second procedure has two advantages: (i) the well known strong correlation between
the trinucleons binding energy and the nd doublet scattering length makes the determination
of cD and cE of Ref. [18] somewhat problematic; (ii) the value of cE found in Ref. [21] with
the second procedure is smaller than the one obtained with the first procedure of Ref. [18],
and furthermore in both cases cE results negative. A large and negative cE value leads to a
repulsion in light nuclei, but an attraction in neutron matter. As a consequence, neutron matter
at even relatively low densities would collapse, and neutron stars of twice solar masses would not
exist, in contrast with observational evidences. The potential models obtained with the fitting
procedure of Ref. [21] will be labelled as NVIa*, NVIb*, NVIIa*, and NVIIb*.

The electromagnetic current operator to be used consistently with the NV potential model has
been derived in Ref. [22]. The leading-order (LO) and next-to-leading order (NLO) contributions,
which scale respectively asQ−2 andQ−1 in the power counting, are the “standard” single-nucleon
and one-pion-exchange currents, already present in the phenomenological studies of, for instance,
Refs. [6, 3]. The N2LO terms arise from relativistic corrections to the LO current, and from
contributions involving ∆-isobars in the intermediate states. The N3LO terms are written as
sum of an isoscalar one-pion-exchange (OPE), an isovector two-pion-exchange, and both isoscalar
and isovector contact contributions. The explicit expressions for all these terms are listed in
Ref. [22]. Here we mention that there are 5 LECs, three in the N3LO OPE contribution, and
two in the non-minimal N3LO term (see Ref. [22] for more details). At a first attempt, which
we will refer to as “Fit 1”, by assuming saturation of the OPE contribution with the tree-level
∆ current, the LECs reduce to three, and are fitted reproducing the deuteron and the isoscalar
and isovector combination µS and µV of the A = 3 magnetic moments. The description of the
A = 2 and 3 electromagnetic structure is in reasonable agreement with the experimental data,
up to values of the momentum transfer Q of 2− 3 fm−1. However, some long-standing puzzles
remain, as the failure to reproduce the first diffraction region of the A = 3 magnetic form factors.
These are shown in the first row of Fig. 3, from which we can see also a large model-dependence
especially for Q > 3 fm−1 (see Ref. [22] for more details). In an attempt to solve this problem,
we present here a different fitting procedure, which we refer to as “Fit 2”. In this case, all
the 5 LECs are considered and are obtained by fitting the A = 2, 3 magnetic moments and
the deuteron electro-disintegration cross section at threshold. This leads clearly to completely
different values for 3 of the 5 LECs, i.e. for the isovector ones, since the two LECs in front of the
isoscalar operators are still fixed using the deuteron and magnetic moment and µS . We report
here for completeness the values for the 3 LECs found with the “Fit 2” procedure, in the notation
of Ref. [22], using the NVIa* (NVIb*) potentials: dV1 = −0.0374(−0.0416), dV2 = 0.939(0.324),
and dV3 = 0.118(0.0894). A far better description of the A = 3 magnetic form factors is obtained,
as it can be seen in the second row of Fig. 3. Furthermore, the model-dependence is significantly
reduced, since the “full” results, obtained including all the contributions up to N3LO, essentially
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overlap for all the four considered potentials models up to quite large values of the momentum
transfer Q.

Figure 3. A = 3 magnetic form factors as obtained applying the “Fit 1” (first row) and “Fit
2” (second row) fitting procedure for the LECs present in the electromagnetic current operator
(see text for more details). In the first row, we show the results obtained with the NVIa* and
NVIb* models only, while in the second one all the 4 NV potential models are used. The LO
contribution is also shown as indicated in the labels. The “full” contribution is labelled N3LO.

In conclusion, we have now at hand a theoretical framework which allows us to reproduce
the electromagnetic structure of light nuclei, and, by studying the model-dependence, gives us
a way to estimate the theoretical uncertainty (which seems to be quite small in the case of “Fit
2”). We are ready to address radiative captures of astrophysical interest.

4. Outlook
In the previous sections we have outlined a theoretical framework which allows us to perform
ab-initio calculations of nuclear reactions in an energy regime of interest for astrophysics, and to
assign to the theoretical predictions an uncertainty, whose determination follows well established
procedures and can be considered robust. We are now in the process of studying radiative
captures of interest for stellar evolution and BBN, like neutron capture on proton and deuteron,
and the p + d reaction already mentioned in Sec. 2. But we can approach more reactions: in
fact, as already mentioned in Sec. 3, in order to fit the cD and cE LECs using the Gamow-Teller
matrix element of tritium β-decay, it has been necessary to develop a consistent axial current
operator, with a procedure similar to the one outlined here for the electromagnetic one. This

100 10' 

Fit 1 3H 

10·1 10·' 

g g 
:;: 10·' 

la*•LO 
:;: 10·' 

- Ia*-LO ~ ~ la*.N3LO - Ia*-N3LO lb*-LO 
lb*-N3LO Ib*-LO 

-- Ib*-N3LO 
10·3 10·3 

10·'0 
2 3 4 10·\ 3 4 

Q (fm- 1) Q (fm- 1) 

10° 10' 

10·1 10·1 

~ ... Ia*-LO ~ 
~ 10·2 

- Ia*-N3LO :;:10·' 
Ia*-LO ~ ~ ... 

- Ib*-N3LO - Ia*-N3LO 
- IIa*-N3LO - lb*-N3LO 

10·3 - IIb*-N3LO 10·3 
- Ila*-N3LO 
- Ilb*-N3LO 

10•40 
3 10-40 3 

Q (fm. 1) Q (fm-1) 



27th International Nuclear Physics Conference (INPC2019)
Journal of Physics: Conference Series 1643 (2020) 012055

IOP Publishing
doi:10.1088/1742-6596/1643/1/012055

7

has been done in Ref. [21]. Therefore, also weak capture reactions can be addressed, as the
proton weak capture on proton (the pp reaction) and 3He (the so-called hep reaction).

In the future we also plan to perform a systematic study of radiative and weak captures
involving systems with A > 4, for esample the α+ d→ 6Li + γ radiative capture, which is also
of interest for BBN, since it determines the 6Li primordial abundance. In order to do that, the
HH method needs to be extended to the A = 6 nuclear systems. The first steps to calculate the
ground state of 6Li within the HH method have been in fact already performed [23], with very
promising results.
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