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ABSTRACT

ELECTROENCEPHALOGRAM ARTIFACT REMOVAL USING A WAVELET

NEURAL NETWORK

Hoang-Anh T Nguyen
Old Dominion University, December 2010

Director: Dr. Jiang Li

A wavelet neural network (WNN) technique is developed for

electroencephalogram (EEG) artifact removal without electrooculographic (EOG)

recordings. The algorithm combines the universal approximation ch:tracteristics of neural

networks and the time/frequency property of wavelet, where the neural network was

trained on a simulated dataset with known ground truths. The contribution of this thesis is

two-fold. First, many EEG artifact removal algorithms, including regression based

methods, require reference EOG signals, which are not always available. To remove EEG

attifacts, a WNN tries to learn the characteristics of the artifacts first and does not need

reference EOG signals once trained. Second, WNNs are computationally efficient,

making them a reliable real time algorithm. A WNN algorithm is then compared with the

independent component analysis (ICA) technique and an adaptive wavelet thresholding

method is used on both simulated and real datasets. Experimental results show that a

WNN can remove EEG artifacts effectively without diminishing useful EEG information

even for very noisy datasets.
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CHAPTER I

INTRODUCTION

1.1 Electroencephalograms

An electroencephalogram (EEG) is the recording of neural electrical activities

caused by nerve firings. Typically, EEG signals are recorded using recording systems

with electrodes placed across the scalp. EEG waveforms are characterized by tluee

components including shape, frequency, and amplitude. Based on those components, by

using visual or non-visual analysis techniques, it is possible to extract useful features

carried by brain signals.

An EEG carries information about rhythmic activities at different 1'requency

bandwidths (as shown in Table 1.1): 6 — delta (1-4 Hz), 8 — theta (4-8 Hz), u — alpha (8-

13 Hz), [) — beta(13 — 30 Hz) and 7 — gamma (30 -50 Hz) [24, 49, 52]. EEG rhythms are

often followed by external (i.e. some type of stimulation) or internal (e.g., motor

preparation, cognitive processing) events. Rhythmic EEG can be extracted by a number

of methods including time-frequency analysis [14 — 19], band-pass filtering f 1 1, 54],

independent component analysis [13, 37, 50], just to name a few.

1.2 Artifacts

EEG recordings are known to be contaminated by physiological artifacts from

various sources, such as eye blinking/movement, heart beating and movement of other

muscle groups [1]. Such types of artifacts are mixed together with brain signals, making



interpretation of EEG signals difficult [2]. An example of highly contaminated EEG

dataset is shown in Figure 1.1.

Figure 1.1. EEG data set disturbed by various types of artifacts. (Data courtesy of

University of iowa)

Eye movement or blinks, as shown in Figure 1.2, usually produce large electrical

potential, which spreads across the scalp and contaminates EEG recordings. This class of

potential generates significant electrooculographic (EOG) artifacts in recorded EEG

signals. Removal of EOG artifacts is nontrivial because these artifacts contaminate and

overlap in frequency and time domains with an EEG. The effect of EOG artifacts on EEG

signals is found most significantly in low frequency bands such as 6, 9 and a [3]. Eye

blinking generates spike-like shaped signal waveforms with their peaks reaching up to

800uV and occurs in a very short period, 200-400 ms [4]. Meanwhile, artifacts generated

by eye movement are square-shaped, smaller in amplitude but last longer in time and

concentrate in lower frequency bands [5].



Table 1.1. EEG rhythm specifications.

EEG
rhythm

Delta

Theta

Alpha

Beta

Gatntua

Spectral
band

1-4 Hz

4-8 Hz

8-13 Hz

13 — 30 Hz

30 -50 Hz

Description

6 rhyLhm is generated in the
cortex or thalamic cells and
are dominant during the
sleep state or in infants [49].
It is often associated with
slowed or disabled cognitive
processing.

0 rhythm is generated in the
Hippocampus [52] and is
often associated with a
drowsy state or occurs
during a vigilance decrease.

ct rhythm often presents
while the subject is awake,
relaxed with eyes closed
[42]. The subject in this state
is aware of sensory stimuli
without focusing on any
spectftc acttvtty.

]3, mainly generated by the
activation of the cortex, is
often associated with a high
concentration state. For this
reason it is useful in
neurofeedback applications
to increase concentration of
the subject.

y is involved in Lhe formation
of percepts and memory,
linguistic processing, and
other behavioral and
perceptual functions [43].

Graphical illustration
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Muscle activity is involved with activities caused by groups of muscles. The

frequency and amplitude of muscle activity, which depend strongly on scalp topography,

varies widely and overlaps EEG signals. Either asking the subject to be stationary during

the course of EEG recording or simply applying a regression technique is not practical

[I]. Several works have been proposed to remove the influence of muscle activity to EEG

recordings [44-45].

A,

Y

Eigure 1.2. EEG segments contaminated by EOG artifacts.

A heat% beating, or electrocardiogram (ECG), is a rhythmic signal and is

unavoidably mixed into the EEG recordings. An ECG artifact, often inter-mixed with

other artifacts, makes EEG signals slightly spiky when a heart beats [46]. It is possible to

rely on heart beating regularly to recognize the presence of this artifact.

A pulse is another common class of artifact, which appears when the EEG

recording electrodes are placed over or close to blood vessels. The recorded electrical

potentials are then affected during the expansion or contraction processes of those

vessels. The shape of this artifact may be either a sharp spike or a smooth wave [47].

1.3 EEG Model

Brain and eye activities are generated by physiologically separate sources.

Cerebral signals, recorded by an EEG recording system, result from neural firing



activities. On the other hand, EOG artifacts are non-cerebral activities spreading over the

entire recording scalp and then contaminating the EEG electrode recordings. For that

reason, an EEG recording can be represented as a superposition of a true EEG and some

portions of the artifact signals. When an EOG artifact is present, it is assumed that thc

model for the contaminated EEG signal as in the following form (14],

EEG7pp(t) = EEG«„Q(t) + IC. EOG(t)

where EEG«,(t) is the recorded contaminated EEG, EEG«„,(t) denotes the true EEG

signal, EOG(t) represents the original potential changes caused by ocular activity and k

symbolizes the propagated factor and varies between 0 and I depending on the location

of the recording electrode. Hence, k.EOG(tl represents the propagated ocular artifact

from the eye to the recording site, which directly adulterates the brain signals. Estimating

EEG«„,(t) from observed EEG«„,(t) is non-trivial and is equivalent to minimizing the

effect of ocular artifacts. Similar to other artifact removal techniques, the goal of a

proposed wavelet neural network technique is to recover EEG«„,(t) from FEG«,(t).

As a random signal, a true EEG owns the noise-like (flat) power spectrum. In some

cases when a subject performs specific tasks, the biological neural system introduces

activities at particular frequencies making the power spectrum deflated. As a major

artifactual type, once mixed with EEG«„,(t), the ocular artifact k.EOG(t) causes

proliferation in low frequencies and generates spike-like shape data segments across time

domain. These properties are utilized by both wavelet thresholding [l4] and the proposed

WNN technique for artifact correction.



1.4 EOG Artifact Removal Techniques

In recent years, there has been an increasing interest in applying various

techniques to remove ocular artifacts from EEG [I, 2, 5-8, 10, 13, 14-19, 54]. The

methods for removing EOG artifacts based on regression have been widely studied [I, 6,

40, 54]. Regression methods often assume that the scalp potential is the linear summation

of brain and ocular potentials. By subtracting propagated EOG from EEG recordings, the

EEG signals can be recovered [8]. Regression can also be done in frequency domain

based on the concept that subtraction in the frequency-domain is equivalent to filtering in

the time-domain. By eliminating spectral estimates of EOG from those of EEG

recordings, it is possible to recover the non-contaminated EEG [40]. Both types of

regression methods are off-line and rely on EOG recordings, which are however, not

always available [I, 6, 14].

Berg and Scherg [10, 39] proposed a principle component analysis (PCA) based

technique for removing eye movement artifacts. This method assumes that each EEG

channel recording is simultaneously generated by multiple sources across the scalp. By

decomposing multiple channel EEG data into principle components using PCA, the

artifactual and cerebral sources can be identified. The artifacts were removed by

eliminating these contaminated PCA components. Their experiments showed that the

PCA based method outperformed regression based models. However. PCA models

usually failed to completely separate artifacts from cerebral activities [I I], and the

orthogonal assumption for data components in PCA is hardly satisfied [5]. Independent



component analysis (ICA), which was originally developed for thc blind source

separation (BSS) problems, has been used as an alternative method for EEG artifact

removal [1, 12-14]. ICA usually requires a large amount of data and visual inspection to

eliminate noisy independent components, making the method time-consuming and not

suitable for real-time applications.

Recently, wavelet analysis has been used as an effective tool for measuring and

manipulating non-stationary signals such as EEG. Wavelet-based methods, especially the

wavelet-thresholding techniques for EEG artifact removal, have received signif'icant

attention [14-19]. For this class of methods, Wavelet coefficients at low-frequency sub-

bands are corrected by some thresholding functions before signal reconstruction. As an

online artifact removal method, thc most important advantage of using this method for

EEG correction is that it does not rely on either the reference EOG signal or visual

inspection. However, this research's experiments show that wavelet thresholding method

is sensitive to the selection of wavelet and threshold functions.

1.5 Wavelet Neural Network Brief Description

This thesis proposes a novel, robust, and efficient Wavelet Neural Network

(WNN) technique to remove EEG artifacts by combining the approximation capabilities

of both wavelet and neural network methods. Similar to wavelet-based methods, an EOG

recording is not required and WNN can perform artifact removal for single channel data

where ICA or other BSS methods are not applicable. WNN consists of three steps, it (1)

decomposes contaminated EEG signals to a set of wavelet coefl'icients, (2) corrects low

frequency wavelet sub-band coefficients by a trained neural network and (3) reconstructs



EEG signals using the corrected coefficients. The neural network is trained by using a

simulated dataset with known ground truths.

1.6 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 discusses related work.

Chapter 3 presents the proposed wavelet neural network technique along with procedures

for network training and testing. Chapter 4 describes two EEG datascts from a driving

test and a visual selection task and experimental settings. Some of the achieved results on

both datasets and discussions are also given in this Chapter. Finally, Chapter 5 concludes

the thesis and presents future work.



CHAPTER 2

RELATED WORK

2.1 Wavelet Transform and Its Application to EOG Artifact Removal

2.1.1 Wavelet Transform

The wavelet transform [19, 20,25, 28, 29] is an integral transform for which the set of

basis functions, known as wavelets, are well localized both in time and frequency

domains. Wavelets can be constructed from a single function Q(t), named mother

wavelet or analyzing wavelet, by means of translation and dilation,

(2-I)

A continuous wnvelet transform (CWT) of a signal x(t), defined as thc correlation

between the wavelet and the signal itself, can be implemented by the following formula,

W(a,r) = ~ J x(t)tit"„,(t)dt (2-2)

where Q*(t) denotes the complex conjugate of Q(t). The above equation (2-2) indicates

that the wavelet is passed through the analyzed signal and yields a set of coefficients

representing an image of an analyzed signal at different scales in time and frequency

domains. The translated paranteter a plays a crucial role in wavelet transform.

Specifically, for small values of u, the wavelet is a narrow version of the original

function, which corresponds roughly to higher frequencies. For very large values of u, the

wavelet is expanded and owns a low frequency property. Accordingly, the low frequency

terms are analyzed with a less sharper time resolution than high frequency components.
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This is a desirable property especially in analyzing transient waveforms such as EEGs

corrupted with ocular artifacts.

The wavelet transform results in a time-scale decomposition in which scales are

related to frequency rather than to a time-frequency representation [26]. The highest scale

corresponds to the highest frequencies represented in the signal (less or equal to half of

the sampling rate), and the bandwidth of this scale ranges from a half to a quarter of the

sampling rate. While thc bandwith is reduced by two, the number of coefficients at lower

x(n)
dz

dt

cq

a)

dt

x(n)

b)
Figure 2.1. (a) Wavelet transform and (b) wavelet reconstruction.



resolutions decreases aproximately by a factor of two compared to that of the higher

resolution next to it. A proper selection of coefficients from different scales may be used

to suppress artifacts in EEG signals.

The discrete wavelet transfor&n (DWT) is the version of wavelet transform

applied to discrete time series. DWT can be implemented with a simple recursive filter

scheme providing a highly efficient wavelet representation of the original signal. The

reconstruction can be realized by using an inverse filtering operation. Then, the

parameters a and r in equation (2-1) and (2-2) can be represented as a& = 2 'nd
2 'j, where i and j are positive integers. The property of mother wavelet function

tj&(t) depends on the selection of i and j. The family Q;,(t) = 2'i tj&(2't-

j) constitues an orthonormal basis of Hilbcrt space, consisting of finite energy signals

[27]. These coefficients provide full information in a simple way and a direct estimation

of local energies at the different scales.

The wavelet transform and wavelet reconstruction can be illustrated as in Figure

2.1. The (forward) wavelet transform is implemented in the following process: the

original signal is first passed through the high pass (H,) and low pass (G,) filters, that are

designed based on [he properties of wavelet basis function, and then downsampled by

two. After that, the detail, or high frequency coef1'icient series and approximation, or low

frequency coefficient series are obtained. The approximation term is then continously

used as the input of the next level wavelet transform. Finally, there would be one

approximation band (cq) and details (dx, k = 1,,i) representing !he signal information

at different scales. On the other hand, the reconstruction is the reverse process of



12

decomposition. The approximation and detail coefficients at each level are upsampled by

two and passed through low pass Gt and high pass H, synthetic filters, which sastify the

perfect construction condition [25] and are then summed up. This process is continued i

times, equal to the numbet of levels of decomposition. The result of this process could be

the original or corrected signal. In the later case, the detail and approximation coefficients

at some level are modified in desirable ways.

2.1.2 Wavelet Thresholding for EOG Artifact Rentoval

Wavelet thresholding techniques are built on the multiresolution analysis of

wavelet transform, a tool that analyses signal at different time and frequency scales [20].

The approximations and details are processed by thresholding before reconstruction [14]-

[18]. By selecting a 'good'other wavelet, which resembles the shapes of the artifacts,

large-valued coefficients are generated in the areas corresponding to the EEG artifacts at

low-frequency sub-bands and are considered as an estimate of the ocular artifacts. Thus,

shrinking the amplitude range of these coefficients by nonlinear thresholding functions

would remove those artifacts. In this thesis, a wavelet thresholding method was

implemented as follows [14],

~ Use a Butterworth lowpass tilter to smooth the EEG signal before further

processing

~ Apply wavelet transform to the contaminated EEG signal

~ Utilize a thresholding function to automatically corrected high-valued coefficients

at low-frequency subbands

~ Reconstruct the corrected EEG signal
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This process is illustrated by the diagram at Figure 2.2.

Figure 2.2. Wavelet thresholding method.

2.1.3 Thresholding Function

The core idea of wavelet thresholding method is to use some soft, hard or

adaptive functions to threshold the wavelet coefficients and then use that thresholded

coefficients to reconstruct the corrected/dc-noised signal. The threshold function is

selected in the way to suppress the noise and keep the useful information maximally

making the threshold function selection become a non-trivial step. A number of schema

for thresholding has been presented based on the minimax mean square error [28],

Bayesian risk minimization [29] or Stein's ttnhiaset/ risk estimate (SURE) maximization

[30-31]. In this thesis, a time-scale adaptive algorithm based on SURE risk estimate

along with a soft-like thresholding function [18] was used for EEG ocular artifact

removal issues due to its effectiveness illustrated in [14].



In this method, the wavelet coefficients of EEG in specil'ic wavelet sub-bands are

corrected as follows,

w„'(w, t) =

tw+t — —,w(t
2k+1

W2kt1
(2 kg 1) t tk

tw+t+ —,w) t
2k+1

iw] & t (2-3)

where wk represents the corrected version of original wavelet coefficients w using the

thresholding value t. The optimal value of t can be adjusted under SURE risk using

following adaptive steps

t(i+ j) = t(i) — vt(i)

where the adjustment of threshold at step i is defined by

(2-4)

Vt(i) = rt(i).—'2-5)
where

BR(t)zxN18sn+2yN18
at etta ~' gt tra aw,at

(2-6)

and

gt = Wk (Wt, t) Wt (2-7)

The SURE risk threshold function is applied to correct the coelficients at

approximation and several lowest frequency sub-bands. These corrected coefficients are

then used for corrected signal reconstruction.



2.2 Independent Component Analysis

Independent component analysis (ICA) was first proposed by I-lerault and Jutten

at a meeting in Snowbird, Utah in 1986 [I, I I] to solve the blind source separation (BSS)

problem. ICA, as shown in Figure 2.3, aims to recover independent source signals s =

{si(t), sz(t),......sN(t)}, from recorded mixtures x = {xi(t), xz(t),......xis(t)} by an

unknown matrix A of full rank. The basic problem of ICA is to estimate the mixing

matrix A or equivalently, the original independent sources s based on thc following linear

relationship x = As, while no knowledge is available about the sources or the mixing

matrix. ICA identifies an unmixing matrix, W, which decomposes the mixed data into a

sum of temporally independent and spatially fixed components. ICA I'inds u = Wx, where

the rows of the output data matrix represent time courses of activation of the ICA

components [I, 9, I I].

Several algorithms have been proposed to implement ICA such as information

maximization (InfoMax), Fixed-point ICA, Joint approximate diagonalization of eigen-

matrices (JADE) and the second-order blind identification (SOBI). In this research, the

InfoMax algorithm, as presented in [I, 32], was used to perform EEG artifact removal.

2.2.1 ICA in EEG Artifact Removal

EEG artifact removal using ICA can be realized based on several assumptions [ I,

13]: (I) neural electrical recording signals are stationary, (2) the number of sources

generating EEG is the same as the number of recording channels, (3) the sources are

independent, (4) the sources distributions must be non-Gaussian and (5) the mixing



matrix is squared and invertible. Keeping those assumptions in mind, the following

procedure, as shown in Figure 2.4, can bc used to eliminate EEG artifacts. By performing

some sort of ICA technique it is possible to estimate the unmixing matrix W, which is

then utilized to recover the estimated independent components s from original mixtures x

using the linear relationship s = Wx. The independent components (ICs) are then

categorized into artifactual and non-artifactual components. The artifactual components

Unknown
mixing

process

Blind
Source

Separation

Figure 2.3. General theory of independent component analysis.

g = Pf'.v

Original
Contaminated~

EEG K Corrected
EEG

Figure 2.4. EEG artifact removal using ICA procedure.
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are then replaced by zeros making s become s'. Multiplying the inverse of unmixing

matrix with the new 'clean'et of ICs, x = W s', it is possible to recover the clean,

corrected EEG.

2.2.2 Information Maximization Approach (InfoMax): An ICA Algorithm

In [32], Bell and Sejnowski developed a neural network based algorithm named

InfoMax that blindly separates mixtures x, of independent sources s, using information

maximization principle. The core idea in InfoMax algorithm is to maximize the joint

entropy, H[g(s)] where g() is a sigmoid function, by using a stochastic gradient ascent

approach [I, 32, 33]. The goal is to minimize the mutual information between the

independent component s;. InfoMax updates weights of the ICA unmixing matrix W by

using the gradient of entropy which is defined as:

art( ) [a lnl/lj
atv [ atv (2-8)

1
where y; = g(u;) = „, E denotes the expected value, y = [g(u,) ...g(uN)] and

~J~ is the absolute value of the determinant of the Jacobian matrix:

J = det [
—']0

t
(2-9)

where i, j get values between I and size of W. The learning rule defined by (7) can be

defined in the more succinct formula as

AW cc [Wr] + yxr (2-10)

where y = [y, „, yN], which has each element defined by
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2.3 Artificial Neural Network

An artificial neural network (ANN) is often mistaken as a biological term bectuise

ol'ts origin and ANN was inspired from the structure of biological neural networks. In

the framework of this thesis, ANNs arc regarded as mathematical models consisting of

neural units called neurons. Those neurons, at different layers, are linked to others via a

network of inter-connections. Normally, an ANN contains three main classes of layers:

input layer, hidden layers and output layer (Figure 2.5). The number of input and output

layer always equals one, although the number of hidden layers may bc more than one and

may vary based on application. The morc hidden layers and number of hidden units the

ANN has, the more complex it is.

Input layer Hidden layers Ontpnt inyel

Figure 2.5. General artificial neural network structure.

An ANN can be characterized based on neuron properties, network structure, and

learning schemes (48]. Neuron properties include the number of input and output units,
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the weight associated with each input and output unit, and the activation function used for

the hidden layer units. Network structure is the way to connect neurons together in order

to establish an approximation net. If there are associations between all the neurons from

the input layer to the hidden layer, and from the hidden layer to the output layer, then

such an ANN is regarded as fully-connected. Learning schemes, either supervised or

unsupervised, are the algorithms used to initialize and adjust weights among individual

neurons from different layers. A general structure of ANN is illustrated as in Figure 2.5.

2.3.1 Output Weight Optimization Backpropagation

Output weight optimization backpropagation (OWO — BP) [41, 53] is a

supervised learning technique, which employs backpropagation (BP) [55-56] and output

weight optimization (OWO) to adapt a feed-forward neural network, whose structure is

shown in Figurc 2.6, to the real model by minimizing the training square error. BP

algorithm updates the hidden weights, which connect input units x„with hidden units

netH„. Meanwhile, OWO is capable of solving linear equations for output weights,

which connect output activations 0& with output units y„. The output activation is

calculated from hidden unit output from a sigmoid function. OWO-BP computes the

bypass weights from input layer to output layer as well, yet is not shown here for

simplicity.
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netH„, 0

xpt ypt

xp2 ypa

xps yps

xp,M+1 yp,M

p

figure 2.6. Fully-connected one hidden layer MLP structure.

The training square error for the i" output can be written as,

(2-1 2)

where y (i) and y (i) are the i" actual and corresponding desired output units. N, is thep p

number of training patterns. The actual output is computed as

y (i) = p t Wr(t j)Xp O)

where, w,(i j) is the output weight fromj" basis function unit to i" output unit and N, is

the number of basis functions. The basis functions are defined as

xp(j), 1&j&N
xp(j) Op('j N 1) N + 2 & J' N + Na + 1 (2-14)

1, j=N+1
Consequently, the first derivative of E(i) with respect to w,(i,j) is iven by

= — 2 [p(i,j) — Z 'tw,(i j).tx(i,j)] (2-1 5)



where, N, = N + Na+ 1. a(i,j) and p(i,j) are the auto-correlation and cross-correlation

matrices, respectively. They are defined as

(2-16)

as,The optimized weight w,(i,j) is obtained by setting ', to zero, or equivalently
awe(l ))

1 & i & M (2-18)

where M is the number of outputs. Solving the equation (2-lg) is the approach to get the

optimized weight w,.(l j), which is equivalent to minimizing E(t) [53].

2.4 Motivation of the Work

Up to this point, a general theory of both wavelet transform and ICA has been

presented. Also, the ideas behind using wavelet transform, or more specifically a wavelet

thresholding method using adaptive SURE risk threshold function and ICA with the

InfoMax as a representative, werc summarized. ICA is effective in multi-type artifact

removal and should be a good benchmark method for educational purpose in EEG-related

research. As previously mentioned, ICA is time-consuming due to its computational

complexity. Being a batch algorithm, ICA needs to be performed on the whole data set

with at least an adequate number of data points (which is often equivalent to some hours

of EEG data recorded by multi-channel EEG recording systems). Instead of using the

whole data set, wavelet thresholding can be performed EOG artifact correction on a

single channel data. This reduces much time needed for artifact correction. I-lowever, the

selection of wavelet is sensitive to the time-frequency properties of EEG waves.
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Specifically, results from the experiments that were conducted during this work show that

using only one specific wavelet or even various wavelets from one mother wavelet for

various EEG data segments usually gives out unacceptable correction results. Also, the

threshold function selection still needs more investigation to improve this method.

Obviously, ICA is not a desirable method for real-time processing applications. In this

thesis, a solution is being sought that is applicable to an online EOG artifact removal

task. Recognizing the universal approximation of both neural network and wavelet-based

methods, the idea of combining them should be very attractive. However, the large

questions are how to combine them properly and what should be the proper manner to

apply the new method on EOG artifact removal. These issues will be addressed in the

thesis.



23

CHAPTER 3

PROPOSED METHOD

In this thesis, a novel algorithm, Wavelet Neural Network, for EEG artifact

revomal is presented. In this method, the WNN is trained with simulated data resembling

the properties in both time and frequency domains of an EEG signal. The trained WNN is

then used as the corrector for contaminated data. In both testing and training processes,

the original signal is decomposed first with a wavelet to get different frequency

components. The low frequency subband coefficients are then interpolated to maintain

same lengths. A trained artificial neural network (ANN) is fed with such interpolated

inputs to yield the corrected coefficients at its outputs. Finnaly, the corrected coefficients

are downsampled for the wavelet construction to get the corrected signal of original

contaminated signal. The structure of the proposed wavelet neural network is illustrated

in Figure 3.1.

Gtrue(t)

Figure 3.1. Proposed wavelet neural network structure.

The core idea of the method, decomposing the signal in both time and frequency

domains with wavelet and using an ANN to correct them, can be viewed as follows. By
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combining the time/frequency properties of wavelet and the universal approximation

capability of neural network, useful information can be retained that is related to

cognitive activities while eliminating artifacts in EEG.

3.1 EEG Data Simulation

lt has been summarized in [24] that a desirable EEG model should (l) give a

better understanding of brain function, (2) provide testing tool for novel EEG-related

method, and (3) be useful for medical education practice and training. There have been a

number of EEG simulating models [34, 36, 37, 38]. The utilized model [24] was

originally designed for medical research in phamarcodynamics, the psychological science

of effects caused by drug on humans [24, 34]. This EEG simulated model is used for the

purpose of training and testing the proposed WNN method as well as testing other

algorithms like wavelet thresholding on EEG ocular artifact removal [35].

As described in [24], an EEG signal can be simulated based on three assumptions,

Gaussian

White

1'igure 3.2. Simulated EEG generator model.
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(l) short segments of the spontaneous EEGs can be described as linearly filtered, (2) non-

stationary components in the spontaneous EEG can be simulated by changing the

characteristics of this filtering process and (3) the spectral property of the simulated EEG

data resembles that of actual signal. As shown in Figure 3.2, a set of Gaussian noises

(GN) were generated and then filtered by a number of lowpass and bandpass filters with

different cut-off frequencies (Table 3. l) that are similar to the spectral property of EEG

frequency bands. The filtered signals are multiplied with different gains (gn I = 1,,6)

corresponding to its EEG rythmic properties. These EEG simulated rythmic signals are

then summed. That synthetic clean simulated signal is multiplied with an overall gain ga

to get an amplitude coresponding to that of actual EEG. After all, transienls such as

blinking and other eye movement, colleted from real signals were then filtered by

lowpass filters and added to contaminate the simulated data.

Table 3.1. EEG frequency band specifications.

The model (Figure 3.2) slightly differs from the model presented in [24] in the

last step. Instead of adding the transients before multiplying with the overall gain ga, it is

done right after obtaining the clean simulated EEG signal.



3.2 Neural Network for EE'G Artifact Removal

3.2.1 Training

For training purposes, first, the clean simulated EEG is generated using an EEG

generator model without adding transients. That clean EEG is then contaminated by

adding real processed artifacts (transients). By doing that, two separate EEG signals can

be collected that own almost all identical time-frequency properties. The only difference

is with the contamination issue. Looking back at the EEG model described earlier in

formula (1-1), clean and contaminated signals can be considered as EEG«u,(t) and

EEGrec(t) respectively. The network training problem is equivalent to teach the NN how

to recover the EEG«ue(t) from EEGrec(t). Both EEGcrue(t) and EEGrec(t) are

decomposed with wavelet decomposition. The approximation and detail coefficients at

several low-frequency sub-bands are interpolated in order to obtain equal length series.

These modified coefficient series are then combined as a training dataset. The training

dataset then is passed through an ANN using an iterative machine learning technique for

training, as described in Section 2.3.1. Finally, the trained ANN is obtained. A diagram of

the presented process is given at Figure 3.3.

EEGcrue(t)

EEGrec (t)

Wavelet
Decomposition

Interpol ation ANN Trained
ANN

Figure 3.3. Neural network training procedure.
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3.2.2 Testing and Artifact Removal

For testing and real data artifact removal purposes, the beginning steps are

overlapped with those described in ANN training. The EEG«,(t) is decomposed by a

wavelet transform. Coefficients at a low frequency sub-band are then interpolated and

combined together as testing data. The testing data are then passed over the trained ANN.

The corrected data after ANN correction are then down-sampled to the original length

and returned to original wavelet coefficient series for wavelet reconstruction. Figure 3.4

illustrates the testing/correcting procedure.

Figure 3.4. EEG corrected by using WNN.

3.3. Validation Methods

Three metrics are used, power spectrum density (PSD), MSE/RMSE and frequency

correlation, to assess the proposed method. The PSD is a popular metric used to show

information about the power spectrum of EEG signal at specific frequencies. Calculation

of the correlation in frequency domain before and after artifact removal is equivalent to

the correlation in time domain after filtering the time series with the corresponding



frequency filter [l4]-[24]. The frequency correlation between x and y is computed as in

the following formula,

"Z (x 5'+ y*xi
C =

where wt and wz are the lower and upper limits of the interested power spectrum region

to be calculated, c is the correlation value that will be assigned to the frequency of

(w,+wz)/2. If x and y are identical, c gets I, otherwise, c obtains a value between 0 and

l. In this thesis, the 'window size', wt-wz, is selected equal to 2.

The value of MSE/RMSE shows the difference between the corrected and original

non-contaminated signal. This value is proportional [o the accuracy of the method used

for correction.

Mean square error (MSE) is defined by

MSE gr t(EEGyec (r) EEGtyve (t))

where Nv is the length of the contaminated EEG segment. Root mean square error

(RMSE) is defined by

RMSE = (3-3)



CHAPTER 4

RESULTS AND DISCUSSIONS

In this chapter, the experimental results obtained using the proposed algorithm arc

shown and the performance of the algorithm was assessed by comparing it with other

algorithms.

4.1 Datasets

The method was validatedon two datasets recorded in a driving test [35] and a

visual selection task experiment (for, more information, see

htt://scen.ucsd.edu/-amp/fam2data/ ublicl available EEG data.htm!).

4.1.1 Driving Test Dataset

This dataset was collected when participants were performing a driving test [35].

The EEG information was collected by a 128-channel recording system at the sampling

rate of 1000 Hz along with other information including description of the task, system

dynamics related information, performance measures, physiological signals (ECG,

respiration, etc.), and eye tracking. The workload was also analyzed according to the

driving conditions (city-driving, stopped, highway passing, etc.). Due to the recording

condition, the subject eye movements and blinks happen at high frequencies making the

data, especially at frontal recording channels, highly contaminated by ocular artifacts.
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4.1.2 Uisual Selection Task Dataset

This dataset was recorded by a 32-channel recording system at sampling rate of

128 Hz during the course of 238.3125 seconds while the subject participated in a

selective attention task, where the subject was asked to attend to circles flashed in

random order at one of five displayed locations [1]. Even the design of the task helps

restrict the eye movements and blinks, but generally, the data are still highly

contaminated by the ocular artifacts, which are dominant at EEG recorded 1'rom the

electrodes F3, Fz, F4, etc, located in the frontal sites of the subject head.

4.1.3 Experimental Settings

For each dataset, three artifact removal methods were implemented for

comparison: the ICA method, the wavelet thresholding algorithm and the proposed WNN

technique. For each algorithm, a PSD and frequency correlation were computed before

and after artifact removal to illustrate the effectiveness of each algorithm. The

MSE/RMSE was used for method accuracy comparison between WNN and wavelet

thresholding. For the proposed method, an EEG signal was first simulated to train an

ANN and the trained WNN was tested on each of the data sets. The wavelet thresholding

method was implemented by following the instructions in [14] and for the ICA, EEGLAB

software [21] downloaded from htt://scen.ucsd.edu/ee lah/downloadtoolbox.html was

used.
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4.2 Results for the Driving Test Dataset

4.2.1 Results on Simulated Data

For the proposed WNN algorithm, two simulated segments with a length of 5

seconds, created by the simulation model described in Section 3.1, for training and testing

at sampling rate of 1000 Hz are displayed in Figure 4,1 a) and b), respectively. The

artifacts were taken from the driving test data set and added to the simulated data

segments. Data in Figure 4.1 a) were then used to train the neural network in the

proposed WNN algorithm. The trained WNN model was applied to the testing data

segment (Figure 4.1 b)). The simulated signal was decomposed with wavelet Coif3 up to

g levels. The three lowest frequency sub-band coefficients were then corrected by the

trained ANN and used for wavelet reconstruction. The corrected EEG signal is shown in

Figure 4.2. Figure 4.3 shows PSD of the contaminated, corrected and clean EEG signals

both for neural network training and testing. Figure 4.4 shows frequency correlations

among those simulated signals. As mentioned previously, the ICA needs to be performed

on the whole dataset so in this case that only single channel data is available and ICA is

not applicable.
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Figure 4.1. Clean and contaminated simulated signal for (al training and (bi testing.
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Figure 4.2. Contaminated simulated and WNN corrected singals.

Table 4.1. Training and testing (a) MSE and (b) RMSE of signals before and after

correction for driving test dataset.
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Figure 4.4. Frequency correlation between (a) contaminated and wavelet thresholding

corrected simulated signals and (b) clean and wavelet thresholding corrected simulated

signals (c) contaminated and WNN corrected simulated signals and (d) clean and WNN

corrected simulated signals, all for testing.

Table 4.1 shows the difference between the original non-contaminated and

decontaminated signals by WNN and wavelet thresholding via [he metric MSE/RMSE.



4.2.2 Results on Real Data

Due to the recording condition, signals from some channels with bad-conections

to the scalp were deteriorated and not usable. Data for those channels (25, 47, 48, 112,

125 and 126) were removed from the original dataset. The resized dataset contains data

from 122 channels, each of 60 second or equivalent to the total of 7,320,000 data points.

Tthree methods were applied,WNN, ICA and wavelet thrcsholding, on this resized

dataset.

For the WNN technique, the EEG signals were decomposed to 8 levels with

wavelet Coif3. Then, three low frequency sub-band coefficients were corrected. Those

corrected coefficients were then used to reconstruct the decontaminated signals.

For Infomax ICA, it took a computer, equiped with Intel(R) Core(TM) 2 CPU

6400 0 2.13 GHz and RAM 2.00 GB, 27 minutes with 382 steps to yield the unmixing

matrix. After that, the independent components (ICs) were obtained by multiplying the

unmixing matrix with the original mixtures. After visually inspection, the artifactual ICs:

1+7, 10, 11, 13, 14, 16+20, 23, 27, 29, 33, 40, 44, 45, 49 and 57 were made zero. The

corrected signal was obtained by multiplying the inverse version of unmixing matrix with

the 'new'C set.

The wavelet thresholding method was used to adaptively correct four low

frequency sub-band coefficients. For specific data segments, the corrections were

repeated a number of times with various wavelets and at different levels of

decomposition in order to make the corrected data most acceptable. The wavelets from
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the Coiflet and Daubechies family were chosen because experiments show that they

could extract the features of artifacts efficiently.
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Figure 4.5. Contaminated and decontaminated EEG (a) contaminated, ICA and WNN

corrected EEG (b) contaminated, wavelet thresholding and WNN corrected EEG.
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Figure 4.6. PSD of contaminated and de-contaminated EEG.

Figure 4.5 shows a segment with three spike artifacts and its corrected versions

made by various methods in time domain. The results given by three methods confirm

their abilitiy on artil'act removal. Figure 4.6 show PSD plots for one sample artifact

removed segment in the driving test data by the three algorithms. Figure 4.7 shows

frequency correlations between the contaminated and corrected segments.
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Figure 4.7. Frequency correlation between contaminated and decontaminated EEG, (a)

by ICA, (b) by wavelet thresholding and (c) by WNN.

4.3 Results for the Visual Selection Task Dataset

4.3.1 Results on Simulated Data

For the WNN training and testing, the simulated data segments of length 30

seconds, equivalently 3,840 samples, were generated at the sampling rate of 128 Hz.

Then the simulated data were contaminated with artifacts taken from real data at channels

mtmber 1 and 3, or FP1 and FP3 equivalently. After being decomposed by wavelet
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transform with wavelet Coif3 to six levels, the four sub-band low frequency coefficients

were passed through the ANN of structure 4-6-4 for training purposes.
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Figure 4.8. Contaminated simulated and WNN corrected singals (a) 30 seconds and (b)

7.42 I 9 seconds.
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Figure 4.9. PSD of clean, contaminated and WNN corrected signals for (a) training and

(b) testing.
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Figure 4.10. Frequency correlation between (a) contaminated and wavelet thresholding

corrected simulated signals and (b) clean and wavelet thresholding corrected simulated

signals (c) contaminated and WNN corrected simulated signals and (d) clean and WNN

corrected simulated signals, all for testing.

Figure 4.8 a) shows the visual appearance of simulated EEG data (30 seconds), which is

contaminated by numerous artifacts, before and after it has been corrected. The zoom-in

result displayed in Figure 4. 8 b) indicates that the WNN just l'ocuses on removing
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artifacts across contaminated data segments; meanwhile, the non-contaminated

inl'ormation is very well-preserved. Figure 4.9 shows PSD of clean, contaminated,

wavelet-thesholding-conected and WNN-corrected simulated signals used for both

training and testing the ANN. The PSDs given by WNN are corrected and the clean

simulated EEG signals are almost overlapped. That is promising because it demonstrates

that the WNN correction performed very well in terms of frequency property. Figure 4. l0

shows the frequency correlation of the contaminated and clean simulated signals with

their corrected versions by using WNN and wavelet thresholding. The frequency

correlation (Figure 4.10 d)l shows negligible differences between clean and WNN

corrected sinutlated signals, which affirms the previous discussion drawn from the PSD

plot.

4.3.2 Results on Real Data

The real EEG data segments of 30 seconds, or 3840 samples, were decomposed

with wavelet Coif3 to six levels. Then, the four low frequency sub-band coefficients were

interpolated and fed to the trained WNN using the Neural Network. The WNN outputs

corrected coefficients, which were down-sampled and then used to reconstruct the

corrected EEG signal.

The ICA correction was realized by using the same computer as in the driving test

experiment. Infomax ICA was implemented with EEGLAB. Almost three minutes with

275 steps were needed to obtain the unmixing matrix of size 32 x 32. B& careful visual

inspection combined with IC topographic mapping method, which was realized by using
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the recording system descriptions given along with the dataset, the lCs number 1, 2, 4+7

and 22 were made zero. After multiplying the new zero-valued and other non-zero valued

ICs with the mixing matrix the corrected EEG data were obtained.

The Wavelet thresholding method was implemented with wavelet Coif4 with 6

levels of composition. Coefficients at four low frequency sub-bands: 0-2, 2-4, 4-8 and 8-

16 Hz were corrected by the adaptive threshold function.

Figure 4.11 a-c) shows the visual appearance of a real EEG data segment (30

seconds), which was contaminated by numerous artifacts, before and after correction.

Specifically, the artifacts were removed efficiently by WNN (Figure 4.11 b-d)). Figure

4.12 shows the PSD of signal before and after correction by all three methods. The

frequency correlation was shown in Figure 4.13. WNN and wavelet thresholding correct

the contaminated signal in the low frequency range. Meanwhile, ICA performed the

corrections in the entire useful EEG frequency range.

MSE/RMSE, as displayed in Table 4.2, shows the difference between the original

non-contaminated and corrected signals made by WNN and wavelet thresholding for both

the training and testing data.
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Figure 4.12. PSD of contaminated and de-contaminated EEG.

Table 4.2. Training and testing (a) MSE and (b) RMSE of signal before and after

correction for visual selection task dataset.

(a)
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Figure 4.13. Frequency correlation between contaminated and decontaminated EEG by

(a) ICA, (b) wavelet thresholding and (c) WNN.

4.4 Discussions

It has been observed I'rom various results that the WNN algorithm removed ocular

artifacts efficiently while keeping cerebral background information. Like wavelet

thresholding, WNN just needs one single channel data to perform correction which

makes more advantageous than ICA, which needs to perform on the yvhole dataset.

Furthermore, the method was proved through repeated experiments on various data
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segments for its effectiveness and stability, which is not true for the wavelet tluesholding

algorithm.

The PSD plot shows that the low frequency components were reduced

significantly in the corrected signal. That is more evident when looking at the frequency

correlation metric plot between contaminated and corrected signals. There are slight

differences in the range of low frequency components while in other ranges, the useful

information is well-preserved.

The I'requency correlation plots also show that the correction made by ICA

spreads over the entire frequency range and the power of low frequency components are

reduced not significantly. Meanwhile, the low frequency components in the signal were

derogated by wavelet thresholding and WNN while high frequency components are well

preserved by both.

Besides, the MSE/RMSE of the correction to the simulated data made by WNN is

smaller than that of the correction by wavelet thresholding, which implies the WNN is

more accurate.

ICA requires a lot more computing power and multiple channel data sources I'or

artifact removal. It also requires either an automatic or a manual step to determine which

independent component is artifact, making an online implementation ol'CA difficult.

Meanwhile, as mentioned previously, WNN can be performed on signals recorded from

only a single channel without reference to EOG recording. In addition, the processing

time for each data segment correction made by WNN is negligible. Thus, by using a
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sliding window across the entire contaminated EEG data, it is possible for a WNN to

perform the artifact removal in real time.

1n the experiment for WNN correction, the Coiflet 3 basis functions were used

throughout all the implementations. The number of wavelet stages (eight for driving data

set and six for visual selection task data set) were also fixed for each dataset even when

the method is implemented on a large number of data segments with various shapes and

time-frequency properties. The selection of the wavelet stage can be determined on the

base of sampling rate without reference to any other specific characteristics of the

contaminated EEG segments themselves.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

A novel algorithm was proposed: a wavelet neural network capable ol'emoving

EEG artifacts. The algorithm combines the time/frequency property of wavelet and the

approximating capability of neural network to locate and eliminate artifacts.

Experimental results on driving and visual task selection datasets show that WNN can

effectively remove artifact and achieve better results than the wavelet thresholding

algorithm. WNN is also much computationally efficient than the ICA algorithm making it

possible an automatic online algorithm.

Future work includes (l) using more data for training, (2) enhancing the EEG data

simulating techniques, (3) finding the best-fitted wavelet and number of sub-bands to

feed the neural network and (4) applying more advanced machine learning techniques. A

WNN can be extended to solve the problem of removing other EEG artifacts like muscle

or cardiac artifacts if the time-frequency properties of these artifacts are known. Finally,

WNN is applicable to other I-D and 2-D signal processing issues like noise cancellation

in speech, medical image processing and digital communication.
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