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Dynamic Output Feedback Invariants of Full

Relative Degree Nonlinear SISO Systems

W. Steven Gray† Luis A. Duffaut Espinosa‡

Abstract— The goal of this paper is to explicitly describe
invariants of a plant described by a Chen–Fliess series under
a class of dynamic output feedback laws using earlier work
by the authors on feedback transformation groups. The main
result requires the rather strong assumption that the plant
has a generating series with both finite Lie rank and full
relative degree. In which case, there is no loss of generality in
working with state space realizations of the plant. An additional
genericness assumption regarding the normal form of the plant
is also required, but as shown by the examples, this condition is
often available in typical problems. All of the analysis presented
is restricted to the single-input, single-output case.

Index Terms— Nonlinear systems, dynamic output feedback,
Chen–Fliess series

AMS Subject Classifications— 93C10, 93B52, 93B25

I. INTRODUCTION

The study of feedback invariants has a long history in

control theory beginning with the work of Brockett, Hammer

and Krishnaprasad in the case of linear systems [3], [4],

[14] and Brockett, Jakubczyk, Respondek, and many others

in the context of nonlinear state space systems [2], [16],

[17], [20]. More recently in [7], [11], the authors have been

interested in identifying invariants under dynamic output

feedback of nonlinear systems described in terms of Chen–

Fliess functional expansions or Fliess operators [6]. The

basic idea was to employ various combinatorial algebras

of formal power series induced by system interconnections

[8] to identify a transformation group that describes the

action of such feedback on a given system. The approach

has been incremental in that first a general output feedback

transformation group was developed with a corresponding

right action which describes the result of applying such

feedback to any possible plant. Then an algorithm was

given to identify a class of invariant subseries contained

by the generating series of a plant. Various conditions were

presented under which this invariant series was maximal, but

in general the results given by this algorithm are known to be

conservative. Now in [11] a somewhat implicit description

was given of an output feedback invariant series given a

specific plant and an arbitrary Fliess operator in the feedback

path. This is the starting point for the present work, where

the goal is to provide a completely explicit description of

such an invariant series under certain assumptions.

The first step towards this goal is to simply describe

the relevant subgroup of the output feedback transformation

group. Then the main result describes under what conditions

†Department of Electrical and Computer Engineering, Old Dominion
University, Norfolk, Virginia 23529, USA

‡Department of Electrical and Biomedical Engineering, University of
Vermont, Burlington, Vermont 05405, USA

the algorithm given in [7] applies to the problem at hand.

This will require the rather strong assumption that the plant

has a generating series with both finite Lie rank and full

relative degree. In which case, there is no loss of generality

in working with state space realizations of the plant. An

additional genericness assumption regarding the normal form

of the plant is also required, but as shown by the examples,

this condition is often available in typical problems. All of

the analysis presented is restricted to the single-input, single-

output case. Finally, it should be stated that a much larger

feedback transformation group has also been studied by one

of the authors in [10], but most of the results presented there

do not provide any interesting specificity here.

The paper is organized as follows. First some preliminaries

are introduced for readers not familiar with Fliess operators

and their associated interconnection algebras. Then a short

summary of dynamic output feedback invariants for linear

time-invariant (LTI) systems is given. This provides some

motivation and a basis for comparison against the nonlinear

case. The main results are presented in Section IV and then

applied to four examples in the subsequent section. The main

conclusion and some suggestions for future work are given

in the final section.

II. PRELIMINARIES

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from X ,

η = xi1 · · ·xik , is called a word over X . The length of η,

|η|, is the number of letters in η. Let |η|xi
denote the number

of times the letter xi ∈ X appears in the word η. The set of

all words including the empty word, ∅, is designated by X∗,

and X+ := X∗ − {∅}. The set X∗ forms a monoid under

catenation. The set ηX∗ is comprised of all words with the

prefix η. Any mapping c : X∗ → R
ℓ is called a formal

power series. The value of c at η ∈ X∗ is written as (c, η)
and called the coefficient of η in c. If (c, ∅) = 0 then c is

said to be proper. The support of c, supp(c), is the set of all

words having nonzero coefficients. Typically, c is represented

as the formal sum c =
∑

η∈X∗(c, η)η. The collection of all

formal power series over X is denoted by R
ℓ〈〈X〉〉. It forms

an associative R-algebra under the catenation product and

an associative and commutative R-algebra under the shuffle

product, that is, the bilinear product defined in terms of the

shuffle product of two words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η
[6].
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A. Fliess Operators

One can formally associate with any series c ∈ R
ℓ〈〈X〉〉

a causal m-input, ℓ-output operator, Fc, in the following

manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue

measurable function u : [t0, t1] → R
m, define ‖u‖p =

max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual

Lp-norm for a measurable real-valued function, ui, defined

on [t0, t1]. Let Lm
p [t0, t1] denote the set of all measurable

functions defined on [t0, t1] having a finite ‖ · ‖p norm

and Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] : ‖u‖p ≤ R}.

Assume C[t0, t1] is the subset of continuous functions in

Lm
1 [t0, t1]. Define inductively for each η ∈ X∗ the map

Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output

operator corresponding to c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0)

[6]. If there exists constants K,M > 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗,

then Fc constitutes a well defined mapping from Bm
p (R)[t0,

t0+T ] into Bℓ
q(S)[t0, t0+T ] for sufficiently small R, T > 0,

where the numbers p, q ∈ [1,∞] are conjugate exponents,

i.e., 1/p+1/q = 1 [12]. The set of all such locally convergent

generating series is denoted by R
ℓ
LC〈〈X〉〉. A Fliess operator

Fc is realizable on a ball Bm
p (R)[t0, t0 +T ] whenever there

exists a system of n ordinary differential equations and a set

of ℓ output functions,

ż(t) = g0(z(t)) +

m∑

i=1

gi(z(t))ui(t), z(t0) = z0 (1a)

yj(t) = hj(z(t)), j = 1, . . . , ℓ, (1b)

where each analytic vector field gi is written in terms of local

coordinates on a neighborhood W of z0, every real-valued

function hj is analytic on W , and (1a) has a solution z well

defined on [t0, t0 + T ] for any input u ∈ Bm
p (R)[t0, t0 + T ]

satisfying yj(t) = Fcj [u](t) = hj(z(t)), j = 1, . . . , ℓ. It is

easily verified that for any η = xik · · ·xi1 ∈ X∗

(cj , η) = Lgηhj(z0) := Lgi1
· · ·Lgik

hj(z0),

where Lgihj denotes the Lie derivative of the output hj with

respect to the vector field gi. A given operator Fc can be

shown to be realizable if and only if its generating series

c ∈ R
ℓ
LC〈〈X〉〉 has finite Lie rank [6], [15].

B. Algebras Induced by System Interconnections

Given Fliess operators Fc and Fd, where c, d ∈
R

ℓ
LC〈〈X〉〉, the parallel and product connections satisfy

Fc + Fd = Fc+d and FcFd = Fc ⊔⊔ d, respectively [6].

When Fliess operators Fc and Fd with c ∈ R
ℓ
LC〈〈X〉〉 and

d ∈ R
m
LC〈〈X〉〉 are interconnected in a cascade fashion, the

y v 

FdFdF

Fc+ 
u 

Fig. 1. Feedback interconnection of Fliess operators Fc and Fd

composite system Fc ◦Fd has the Fliess operator representa-

tion Fc◦d, where the composition product of c and d is given

by

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1) (2)

[5]. Here 1 denotes the monomial 1∅, and ψd is the con-

tinuous (in the ultrametric sense) algebra homomorphism

from R〈〈X〉〉 to the set of vector space endomorphisms on

R〈〈X〉〉, End(R〈〈X〉〉), uniquely specified by ψd(xiη) =
ψd(xi)◦ψd(η) with ψd(xi)(e) = x0(di ⊔⊔ e), i = 0, 1, . . . ,m
for any e ∈ R〈〈X〉〉, and where di is the i-th component

series of d (d0 := 1). By definition ψd(∅) is the identity

map on R〈〈X〉〉.
When two Fliess operators Fc and Fd are interconnected to

form a feedback system as shown in Figure 1, the generating

series for the closed-loop system is denoted by the feedback

product c@d. It can be computed explicitly using the Hopf

algebra of coordinate functions associated with the underly-

ing output feedback group [8]. Specifically, in the SISO case,

where X = {x0, x1} and m = ℓ = 1, define the set of unital

Fliess operators Fδ = {I + Fc : c ∈ RLC〈〈X〉〉}, where

I denotes the identity map. It is convenient to introduce the

symbol δ as the (fictitious) generating series for the identity

map. That is, Fδ := I such that I + Fc := Fδ+c = Fcδ

with cδ := δ + c. The set of all such generating series for

Fδ will be denoted by RLC〈〈Xδ〉〉. The central idea is that

(Fδ, ◦, I) forms a group of operators under the composition

Fcδ ◦ Fdδ
= (I + Fc) ◦ (I + Fd) = Fcδ◦dδ

,

where cδ ◦dδ := δ+c⊚d, c⊚d := d+c ◦̃ dδ , and ◦̃ denotes

the mixed composition product. That is, the product

c ◦̃ dδ =
∑

η∈X∗

(c, η)φd(η)(1),

where φd is analogous to ψd in (2) except here φd(xi)(e) =
xie+ x0(di ⊔⊔ e) with d0 := 0. The coordinate maps for the

corresponding Hopf algebra H have the form

aη : R〈〈X〉〉 → R : c 7→ (c, η),

where η ∈ X∗. The commutative product is defined as

µ : aη ⊗ aξ 7→ aηaξ,

where the unit 1 is defined to map every c to zero. If the

degree of aη is defined as deg(aη) = 2 |η|x0
+ |η|x1

+1, then

H is graded and connected with H =
⊕

n≥0Hn, where

Hn is the set of all elements of degree n and H0 = R1.
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The coproduct ∆ is defined so that the formal power series

product c⊚ d for the group Fδ satisfies

∆aη(c, d) = aη(c⊚ d) = (c⊚ d, η).

Of primary importance is the following lemma which de-

scribes how the group inverse c−1
δ := δ + c−1 is computed.

Lemma 1: [8] The Hopf algebra (H,µ,∆) has an an-

tipode S satisfying aη(c
−1) = (Saη)(c) for all η ∈ X∗ and

c ∈ R〈〈X〉〉.
With this concept, the generating series for the feedback

connection, c@d, can be computed explicitly.

Theorem 1: [8] For any c, d ∈ R〈〈X〉〉 it follows that

c@d = c ◦̃ (−d ◦ c)−1
δ .

It is shown in [7] that the feedback product can be viewed in

terms of the group (R〈〈Xδ〉〉, ◦, δ) acting as a right transfor-

mation group on the set R〈〈X〉〉 via the mixed composition

product.1 This group contains all possible dynamic output

feedback laws for all possible plants, but it also contains a

bit more since, for example, δ+ x1 ∈ R〈〈Xδ〉〉 even though

there does not exist c, d ∈ R〈〈X〉〉 such that x1 = −d ◦ c.
Therefore, a series being invariant under the right transfor-

mation group (R〈〈Xδ〉〉, ◦, δ) is a sufficient condition for

being invariant under dynamic output feedback. Of particular

importance is the following invariance theorem, which uses

the fact that every c ∈ R〈〈X〉〉 can be decomposed into its

natural and forced components, that is, c = cN + cF , where

cN :=
∑

k≥0(c, x
k
0)x

k
0 and cF := c− cN .

Theorem 2: [7] Every nonzero series c ∈ R〈〈X〉〉 which

is not equivalent to cN can be decomposed into the form

c = ci + c̃, where supp(ci) ∩ supp(c̃) = ∅,

ci = cN0
+ xr1−1

0 x1cN1
+ xr1−1

0 x1x
r2−1
0 x1cN2

+ · · · ,
cNℓ

∈ R[X0] (a polynomial in x0), rℓ ≥ 1, deg(cNℓ
) ≤

rℓ+1− 1, and ci is a nonzero invariant series under the right

transformation group (R〈〈Xδ〉〉, ◦, δ). That is, c ◦̃ eδ = ci +
cv(e) with supp(ci) ∩ supp(cv(e)) = ∅ for all e ∈ R〈〈X〉〉.

The proof of the theorem is constructive. It boils down to

identifying pairs (cNℓ
, rℓ+1), ℓ ≥ 0 to extract the invariant

ci from c via the following algorithm:

Step 1: Set ℓ = 0.

Step 2: Write c in the canonical form

c = cN + xr−1
0 c1 + xr0c2 + · · · ,

where r ≥ 1, ck are proper series with x−1
0 (ck) = 0

for all k ≥ 1, and c1 6= 0.

Step 3: Define cNℓ
=
∑r−1

k=0(cN , x
k
0)x

k
0 and rℓ+1 = r.

Step 4: Redefine c = x−1
1 (c1) and set ℓ = ℓ+ 1.

Step 5: If |c|x1
= 0 set cNℓ

= c, cNk
= 0, k > ℓ and

stop. Otherwise, return to Step 2.

The algorithm will only terminate when c is input-limited,

that is, when maxη∈supp(c) |η|x1
is finite. There is no claim

that the series ci is maximal in the sense that its support

contains the support of any other series which is also

invariant under R〈〈Xδ〉〉. On the other hand, as will be

1The same composition symbol will be used for the group product on
R〈〈Xδ〉〉 and series composition c◦d on R〈〈X〉〉. The distinction between
c and cδ = δ + c will always make it clear which product is at play.

addressed later in the paper, it may be too conservative if

c is fixed (i.e, the plant is given) and only group elements

of the form (−d ◦ c)δ , d ∈ R〈〈X〉〉 are admissible.

C. Relative Degree

The standard definition of relative degree for any input-

affine state space realization (1) of y = Fc[u] with c ∈
RLC〈〈X〉〉 is given in [15]. But the concept can also be

defined solely in terms of formal power series concepts.

The starting point is the notion of a linear word when

X = {x0, x1}, namely, any word in the language L =
{η ∈ X∗ : η = xn1

0 x1x
n0

0 , n1, n0 ≥ 0}.
Definition 1: [9] Given c ∈ R〈〈X〉〉, let r ≥ 1 be the

largest integer such that supp(cF ) ⊆ xr−1
0 X∗. Then c has

relative degree r if the linear word xr−1
0 x1 ∈ supp(c),

otherwise it is not well defined.

Observe that c having relative degree r is equivalent to

saying that

c = cN + cF = cN +Kxr−1
0 x1 + xr−1

0 e

for some K 6= 0 and some proper e ∈ R〈〈X〉〉 with

x1 6∈ supp(e). It is shown in [9], [10] that this definition is

equivalent to the standard definition when Fc is realizable.

III. DYNAMIC OUTPUT FEEDBACK INVARIANTS FOR

LINEAR TIME-INVARIANT SYSTEMS

Consider a SISO LTI system u(t) 7→ y(t) with an

irreducible transfer function

y(s)

u(s)
= h(s) = K

b0 + b1s+ · · ·+ bn−r−1s
n−r−1 + sn−r

a0 + a1s · · ·+ · · · an−1sn−1 + sn

= K
b(s)

a(s)
,

where K 6= 0 and 1 ≤ r < n. In a calculation originating

with the work of Kalman [18] and carried out explicitly by

Hammer [14], one can divide b(s) into a(s) so that a(s) =
b(s)p(s) + r(s) with (r(s), b(s)) being a coprime pair of

polynomials

p(s) = p0 + p1s+ · · ·+ pr−1s
r−1 + sr

r(s) = r0 + r1s+ · · ·+ rn−r−2s
n−r−2 + rn−r−1s

n−r−1

and deg(r(s)) < deg(b(s)).2 In which case,

h(s) =
K

p(s) + r(s)
b(s)

=
K

p(s)

(

1 +
r(s)

b(s)

1

p(s)

)−1

, (3)

so that h(s) can be viewed as the feedback interconnection

shown in Figure 2. At least three interpretations of (3) are

possible as described next: a factorization point of view, an

interpretation in terms of state space realizations, and a power

series perspective.

If dynamic output feedback u(s) = v(s) − g(s)y(s) is

applied for some strictly proper g(s) then it is immediate

from (3) that the closed-loop system is

y(s)

v(s)
= hcl(s) =

K

p(s) +
[
r(s)
b(s) +Kg(s)

] ,

2The relative degree r and the remainder r(s) will always be distin-
guished by the argument ‘(s)’.
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y + u 
1 

p(s ) 

b(s ) 

r(s ) 

K 
_

Fig. 2. LTI system h(s) viewed as a feedback connection

implying that the polynomial p(s) is invariant under this

feedback class (henceforth, abbreviated as dynamic output

feedback). In particular, it can happen that the all pole system

K/p(s) is not equal to K/sr and thus does not have a

Brunovsky type state space realization. In the special case

where h(s) is minimum phase and 1/p(s) is stable, equa-

tion (3) is a right coprime factorization h(s) = Kn(s)d−1(s)
since the Bezout equation

ñ(s)

[
1

p(s)

]

︸ ︷︷ ︸

n(s)

+d̃(s)

[

1 +
r(s)

b(s)

1

p(s)

]

︸ ︷︷ ︸

d(s)

= 1

has the stable solution ñ(s) = −r(s)/b(s) and d̃(s) = 1.

Thus, the controller Kg(s) = d̃−1(s)ñ(s) = −r(s)/b(s)
yields the stable closed-loop system hcl(s) = K/p(s) [13].

To derive a state space interpretation of (3), let (A1, b1, c1)
and (A2, b2, c2) be minimal realizations of 1/p(s) and

r(s)/b(s), respectively. Then a realization of h(s) follows

directly from the feedback structure in (3) to be

ż =

[
A1 −b1c2
b2c1 A2

]

z +

[
Kb1
0

]

u, z(0) = z0

y =
[
c1 0

]
z.

If both realizations are assumed to be in controller canonical

form, then this realization becomes

ż1 = z2 (4a)

ż2 = z3 (4b)

...

żr−1 = zr (4c)

żr = Pξ +Rη +Ku (4d)

η̇ = Sξ +Qη (4e)

y = z1, (4f)

where ξ = [z1 · · · zr], η = [zr+1 · · · zn], P = −[p0 · · · pr−1],
R = −[r0 · · · rn−r−1], S = en−re

T
1 (r), and

Q =









0 1 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1









.

(Here ei(j) ∈ R
j has a one in the i-th position and zero

elsewhere. The notation is simplified to ei if i = j.) This is

the Brynes-Isidori normal form which appears in the context

of feedback linearization [15]. If r < n − 1 then η̇ = Qη,

η(0) = η0 are the zero dynamics of the system. Setting u =
v − w in (4d), where

˙̃η = Qη̃ + en−ry, η̃(0) = η0

w =
R

K
η̃,

it follows that η̃(t) = η(t), t ≥ 0 since both the zero

dynamics and the feedback system y 7→ w are driven in

precisely the same way by the output y. In which case, the

closed-loop system becomes

ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = Pξ +Kv

η̇ = Sξ +Qη, η(0) = η0
˙̃η = en−ry +Qη̃, η̃(0) = η0

y = z1.

The dynamics of ξ are the invariant dynamics of the system

under dynamic output feedback. As expected, Kg(s) :=
Kw(s)/y(s) = −r(s)/b(s), and the output y is zero pre-

cisely when ξ(0) = 0 and v(t) = 0, t ≥ 0 implying that

u(t) = u∗(t) := (R/K)eQtη(0).
From a power series point of view, one can write (3) as

h(s) =
K

p(s)

∞∑

k=0

(

−r(s)
b(s)

1

p(s)

)k

=
K

p(s)
−K

r(s)

b(s)

1

p2(s)
+O

((
r(s)

b(s)

)2
1

p3(s)

)

.

The infinite series is well defined as a formal power series

because the strict properness of r(s)/(b(s)p(s)) implies the

series is locally finite, and hence summable [1]. It is clear

that the first r+1 terms of this series expansion will always

coincide with the first r + 1 terms of

K

p(s)
= hrs

−r + hr+1s
−r−1 + · · ·+ h2rs

−2r +O(s−2r−1).

Furthermore, these specific terms are invariant under dy-

namic output feedback, and therefore the polynomial

ph(x) := hrx
r+hr+1x

r+1+ · · ·+h2rx2r is invariant in this

sense. In fact, this polynomial is maximal in that there is no

higher degree polynomial having this invariance property.

Example 1: Consider the case where r = 3 so that

K/p(s) = K/(p0 + p1s+ p2s
2 + s3). A simple calculation

gives ph(x) = h3x
3 + h4x

4 + h5x
5 + h6x

6, where

h3 = K (5a)

h4 = −Kp2 (5b)

h5 = K(p22 − p1) (5c)

h6 = K(2p1p2 − p32 − p0). (5d)
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IV. DYNAMIC OUTPUT FEEDBACK INVARIANTS OF A

GIVEN PLANT

In this section, the problem of determining a dynamic out-

put feedback invariant series for a given plant is considered.

It is shown first that the underlying transformation group for

this problem is an additive subgroup of (R〈〈Xδ〉〉, ◦, δ).
Definition 2: For any fixed c ∈ R〈〈X〉〉, define

Oc = {eδ ∈ R〈〈Xδ〉〉 : eδ = (d ◦ c)δ, d ∈ R〈〈X〉〉} .
Theorem 3: For any series c ∈ R〈〈X〉〉, the triple

(Oc,+, δ) defines an additive group, where

eδ + e′δ = (d ◦ c)δ + (d′ ◦ c)δ := ((d+ d′) ◦ c)δ
for any eδ = (d ◦ c)δ, e′δ = (d′ ◦ c)δ ∈ Oc.

Proof: The claim follows directly from the left linearity of

the composition product on the R-vector space R〈〈X〉〉.
Theorem 4: The additive group (R〈〈X〉〉,+, 0) acts on the

set R〈〈X〉〉 as a right transformation group, where the action

is given by the output feedback product. That is, c@0 = c
and

(c@d1)@d2 = c@(d1 + d2).

Proof: The first identity is trivial. For the second, two

algebraic facts are needed. First, as described in Lemma 1,

the composition inverse is defined in terms of a Hopf algebra

antipode, S, using the group (R〈〈Xδ〉〉, ◦, δ). Such an S
is always an antihomomorphism for both the algebra and

the coalgebra structures on H , for example, S(a1a2) =
S(a2)S(a1), ∀a1, a2 ∈ H . Therefore, it follows directly that

(cδ ◦ dδ)−1 = d−1
δ ◦ c−1

δ . Second, it is easily checked that

the following associativity property holds

c ◦ (d ◦̃ eδ) = (c ◦ d) ◦̃ eδ
keeping in mind that

Fc(Fd ◦̃ eδ ) = Fc(Fd(I + Fe)) = Fc◦d(I + Fe).

Proceeding with the calculation, it follows by definition of

the output feedback product and the fact that (R〈〈X〉〉, ◦, δ)
is known to act as a right transformation on R〈〈X〉〉 via the

product c ◦̃ dδ that

(c@d1)@d2

= (c ◦̃ (−d1 ◦ c)−1
δ )@d2

= (c ◦̃ (−d1 ◦ c)−1
δ ) ◦̃ (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1

δ ))−1
δ

= c ◦̃
[
(−d1 ◦ c)−1

δ ◦ (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1
δ ))−1

δ

]
.

Now apply the first fact stated above, the definition of the

group product on R〈〈Xδ〉〉, and the second fact in this order

to get

(c@d1)@d2 = c ◦̃
[
(−d2 ◦ (c ◦̃ (−d1 ◦ c)−1

δ ))δ◦
(−d1 ◦ c)δ

]−1

= c ◦̃
[
(−d1 ◦ c) + (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1

δ )) ◦̃
(−d1 ◦ c)δ

]−1

δ

= c ◦̃
[
(−d1 ◦ c) + ((−d2 ◦ c) ◦̃ (−d1 ◦ c)−1

δ ) ◦̃
(−d1 ◦ c)δ

]−1

δ
.

Finally, just simplify the result using properties already stated

so that

(c@d1)@d2 = c ◦̃
[
(−d1 ◦ c) + (−d2 ◦ c) ◦̃ ((−d1 ◦ c)−1

δ ◦
(−d1 ◦ c)δ)

]−1

δ

= c ◦̃ (−(d1 + d2) ◦ c))−1
δ

= c@(d1 + d2).

Next, the main result of the paper is given. Consider a

SISO input-affine analytic nonlinear system (1) (so m =
ℓ = 1) having full relative degree and corresponding normal

form

ż1 = z2

ż2 = z3
...

żn−1 = zn

żn = p(z) + κ(z)u

y = z1

about z0. (Note z has been redefined in the new coordinate

system.) This will be abbreviated as (p, κ, z0). Let κ0(zn) :=
κ(z1,0, . . . , zn−1,0, zn) denote a real analytic function on

some open interval containing zn,0. This function will be

called generic in the event that Diκ0(zn,0) 6= 0, i ≥ 0, where

D is the differential operator κ0(∂/∂zn). This can coincide

with a standard notion of genericness depending on the

origin of the model. For example, if the set of Taylor series

coefficients of κ0 is a random sequence in the product space

R
ω := Π∞

i=0Xi, where X = R, one can define a product

measure on R
ω via any continuous probability measure on

R. In which case, the probability that Diκ0(zn,0) = 0 for one

or more i is zero. On the another hand, if κ0 is a polynomial

in zn, then it is not generic.

Theorem 5: Suppose a SISO analytic nonlinear system (1)

has relative degree r = n, and its corresponding normal form

is (p, κ, z0) with κ0 being generic. Then y = Fc[u], where

the maximum invariant subseries of the generating series

c ∈ RLC〈〈X〉〉 under dynamic output feedback contains the

subseries
∞∑

i=1

(c, xn−1
0 xi1)x

n−1
0 xi1 (6)

with (c, xn−1
0 xi1) 6= 0, i ≥ 0. Furthermore, this subseries is

realized by the reduced normal form (0, κ0(zn), z0).
Proof: A straightforward calculation using the assumptions

of full relative degree and that κ0 is generic gives

(c, xn−1
0 xi1) = Li

g1
Ln−1
g0

h(z0) = Di−1κ0(zn,0) 6= 0, i ≥ 1.

From this result it is also clear that the reduced normal

form realizes the series (6). Now applying the algorithm in

Theorem 2, it follows directly that ci is equivalent to (6)

in this case. Since ci is known to be invariant under the

output feedback group (R〈〈Xδ〉〉, ◦, δ), it is automatically

invariant under the additive subgroup (R〈〈X〉〉,+, 0). Hence,

the claim is proved.

It should be plainly stated that no claim is being made

that subseries (6) is maximal in any sense. But to date no
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counterexample has been discovered to the contrary under

the stated conditions, which admittedly are strong. So the

question remains open.

V. EXAMPLES

Four examples are presented next. The first two examples

satisfy the assumptions stated in Theorem 5. The second

two examples do not and thus illustrate some consequences

of this fact.

Example 2: The following system is considered in [15,

p. 151]:

ż =





0
z1 + z22
z1 − z2



+





ez2

ez2

0



u

y = z3.

The system has full relative degree r = 3 about any point z
satisfying 1+ 2z2 6= 0. At the point z = 0, for example, the

generating series is

c = −x20x1 − 3x20x
2
1 − 4x30x

2
1 − 3x20x1x0x1 − 8x20x

3
1−

4x40x
2
1 − 2x30x1x0x1 − 24x30x

3
1 − 19x20x1x0x

2
1−

8x20x
2
1x0x1 − 28x20x

4
1 − 60x40x

3
1 − 42x30x1x0x

2
1−

22x30x
2
1x0x1 − 116x30x

4
1 − 22x20x1x

2
0x

2
1−

14x20x1x0x1x0x1 − 105x20x1x0x
3
1 − 64x20x

2
1x0x

2
1−

28x20x
3
1x0x1 − 124x20x

5
1 − 96x50x

3
1 − 72x40x1x0x

2
1−

40x40x
2
1x0x1 − 476x40x

4
1 − 40x30x1x

2
0x

2
1−

22x30x1x0x1x0x1 − 370x30x1x0x
3
1 − 242x30x

2
1x0x

2
1−

112x30x
3
1x0x1 − 620x30x

5
1 − 12x20x1x

3
0x

2
1−

6x20x1x
2
0x1x0x1 − 264x20x1x

2
0x

3
1 − 190x20x1x0x1x0x

2
1−

93x20x1x0x
2
1x0x1 − 620x20x1x0x

4
1 − 72x20x

2
1x

2
0x

2
1−

44x20x
2
1x0x1x0x1 − 448x20x

2
1x0x

3
1 − 276x20x

3
1x0x

2
1−

124x20x
4
1x0x1 − 668x20x

6
1 − · · · .

A candidate for the maximum invariant series can be easily

identified without any theory by simply selecting feedback

systems Fd at random in Figure 1 and comparing c against

c@d. It quickly becomes apparent from such an experiment

that the terms underlined above are invariant, so that one may

conjecture that the maximum invariant series under dynamic

output feedback is

−x20x1−3x20x
2
1−8x20x

3
1−28x20x

4
1−124x20x

5
1−668x20x

6
1−· · · .

The coefficients 1, 3, 8, 28, 124, 668, . . . comprise the integer

sequence A000776 in [19]. The normal form about z0 = 0
is determined to be

ż1 = z2

ż2 = z3

ż3 = p(z2, z3) + κ(z2, z3)u

y = z1,

where

p(z2, z3) = z3(
√

1− 4(z2 + z3)− 1)

κ(z2, z3) = −
√

1− 4(z2 + z3) ·

exp

(
1

2

(√

1− 4(z2 + z3)− 1
))

.

The reduced normal is therefore

ż1 = z2

ż2 = z3

ż3 = −
√
1− 4z3 exp

(
1

2

(√
1− 4z3 − 1

)
)

y = z1.

Is it easily checked that the integer sequence A000776 is

generated by Diκ0(0), i ≥ 0, so Theorem 5 applies and

its conclusion is consistent with what was observed in the

experiment.

Example 3: The following system is found in [15, p. 156]:

ż =





z3 + z2z3
z1

z2 + z1z2



+





0
1 + z2
−z3



u

y = z1.

The system has relative degree r = 3 about any point z
satisfying (1+z1)(1+z2)(1+2z2)−z1z3 6= 0. At the point

z = 0 the generating series is

c = x20x1 + 3x20x
2
1 + 7x20x

3
1 + x50x1 + 2x40x

2
1 + x30x1x0x1+

x20x1x
2
0x1 + 15x20x

4
1 + 13x50x

2
1 + 5x40x1x0x1+

18x40x
3
1 + 3x30x1x

2
0x1 + 9x30x1x0x

2
1 + 3x30x

2
1x0x1+

3x20x1x
3
0x1 + 9x20x1x

2
0x

2
1 + 3x20x1x0x1x0x1+

3x20x
2
1x

2
0x1 + 31x20x

5
1 + 67x50x

3
1 + 25x40x1x0x

2
1+

5x40x
2
1x0x1 + 110x40x

4
1 + 11x30x1x

2
0x

2
1+

x30x1x0x1x0x1 + 55x30x1x0x
3
1 + 3x30x

2
1x

2
0x1+

23x30x
2
1x0x

2
1 + 7x30x

3
1x0x1 + 11x20x1x

3
0x

2
1+

x20x1x
2
0x1x0x1 + 55x20x1x

2
0x

3
1 + 3x20x1x0x1x

2
0x1+

23x20x1x0x1x0x
2
1 + 7x20x1x0x

2
1x0x1 + 7x20x

2
1x

3
0x1+

23x20x
2
1x

2
0x

2
1 + 7x20x

2
1x0x1x0x1 + 7x20x

3
1x

2
0x1+

63x20x
6
1 + · · · .

As in the previous example, the candidate maximum invari-

ant series is identified empirically to be

x20x1+3x20x
2
1+7x20x

3
1+15x20x

4
1+31x20x

5
1+63x20x

6
1+ · · · .

The coefficients 1, 3, 7, 15, 31, 63, . . . form the integer se-

quence A000225 in [19]. The corresponding normal form

about z0 = 0 is too complex to be displayed here, but its

reduced normal form is

ż1 = z2

ż2 = z3

ż3 =

(
1

2
+

1

2

√
1 + 4z3 + 2z3

)

u

y = z1.

A direct calculation shows that the integer sequence

A000225 is generated by Diκ0(0), i ≥ 0, so again The-

orem 5 applies, and its conclusion is consistent with the

experiment.
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Example 4: Reconsider the LTI system h(s) in Example 1

where n = r = 3 but now with nonlinear feedback Fd. The

generating series for the plant Fc is

c = h3x
2
0x1 + h4x

3
0x1 + h5x

4
0x1 + h6x

5
0x1 + · · · ,

where the first four hk are given in (5). The normal form

corresponds to (4) with r = n. The key observation is that

κ(z) = κ0(z3) = K is not generic, therefore Theorem 5

does not apply. A brute force calculation of the coefficients

of c@d for arbitrary d shows that (c@d, xk−1
0 x1) = hk, k =

3, 4, 5, 6, while all other coefficients are functions of d. So

the maximal dynamic output feedback invariant series likely

contains at least h3x
2
0x1 + h4x

3
0x1 + h5x

4
0x1 + h6x

5
0x1, and

thus has three terms not predicted by Theorem 2.

Example 5: This final example illustrates that the intro-

duction of zero dynamics nullifies the conclusion of The-

orem 5. Consider the following system appearing in [15,

p. 167]:

ż =





z3 − z32
−z2

z21 − z3



+





0
−1
1



u

y = z1,

which has relative degree r = 2 < 3 when 1 + 3z22 6= 0. So

Theorem 5 does not apply. In this case the generating series

at z = 0 is

c = x0x1 − x20x1 + x30x1 + 6x0x
3
1 − x40x1 − 18x20x

3
1−

12x0x1x0x
2
1 − 6x0x

2
1x0x1 + x50x1 + 4x40x

2
1+

2x30x1x0x1 + 54x30x
3
1 + 36x20x1x0x

2
1 + 18x20x

2
1x0x1+

24x0x1x
2
0x

2
1 + 12x0x1x0x1x0x1 + 6x0x

2
1x

2
0x1 − x60x1−

16x50x
2
1 − 8x40x1x0x1 − 162x40x

3
1 − 2x30x1x

2
0x1−

108x30x1x0x
2
1 − 54x30x

2
1x0x1 − 72x20x1x

2
0x

2
1−

36x20x1x0x1x0x1 − 18x20x
2
1x

2
0x1 − 48x0x1x

3
0x

2
1−

24x0x1x
2
0x1x0x1 − 12x0x1x0x1x

2
0x1−

6x0x
2
1x

3
0x1 + 96x40x

4
1 + 48x30x1x0x

3
1 + · · · .

The maximum invariant series is determined empirically to

be

x0x1 − x20x1 + 6x0x
3
1 − 18x20x

3
1 − 12x0x1x0x

2
1−

6x0x
2
1x0x1 + 54x30x

3
1 + 36x20x1x0x

2
1 + 18x20x

2
1x0x1+

24x0x1x
2
0x

2
1 + 12x0x1x0x1x0x1 + 6x0x

2
1x

2
0x1+

96x40x
4
1 + 48x30x1x0x

3
1 + · · · ,

which is far from what is predicted by Theorem 5. So

some generalization of this result needs to be investigated

to address this more general case.

VI. CONCLUSIONS AND FUTURE WORK

The main objective of this paper was to explicitly describe

invariants of a SISO plant described by a Chen–Fliess series

under a class of dynamic output feedback laws when the

plant has a generating series with both finite Lie rank and

full relative degree. An additional genericness assumption

regarding the normal form of the plant was also required. In

particular, it was shown that the LTI case is too specialized

for the main result to apply, and systems without full relative

degree are beyond the scope of this analysis. Future work

should explore how to generalize the main algorithm used in

this paper in order to relax these strong assumptions.
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